
Editor 

The authors have done an excellent job of responding to the reviewer comments. I am looking forward 
to seeing the final version of the revised manuscript. 

Reviewer #2 raised some valuable points about the chosen metrics in this study and how those 
metrics compare with others previously used. The authors have done a great job of responding to the 
reviewer. I would encourage the authors to include some of this information (perhaps focusing on the 
general response and the response to comment #10) in the supplemental material of their revised 
manuscript. These sorts of discussions are useful for future studies, and I would hate to see that 
information get lost. 

We thank the editor for the positive assessment of our manuscript and our responses to the 
reviewers comments. We agree that it would be potentially helpful to have some of our 
answers on model independence and the skill tests documented in the supplement. We have, 
therefore, extended section S3 in the supplement of the revised paper to also include a 
discussion about the potential circularity between calibration of the performance shape 
parameter and the subsequent skill tests, which both draw on future model information. For a 
summary on the different approaches used to establish model independence we have added a 
new section to the supplement (section S4 in the revised manuscript), where we also show an 
alternative “family tree” clustering based on the model error correlation distance.  

  



Reviewer 1 

Summary 

The authors present a methodology for weighting CMIP6 models based on several performance 
metrics as well as on their independence from each other. This provides narrower bounds on future 
global mean temperature changes than in the unweighted ensemble, primarily by down-weighting the 
highly sensitive models that happen to have poor performance with respect to two reanalysis products 
and/or are closely related to other models. I found the paper to be nicely motivated, well organized 
and supported, and a useful contribution to the literature. There are a few areas that I think need to be 
clarified, and so I recommend minor revisions. 

We thank the reviewer for the positive assessment and for the comments on our paper. Please 
find our answers to the comments highlighted in bold below.  

 

Major Comments 

* Figure 1 and the discussion around lines 241-242: the terminology of 0% to 100%trend-based 
seems too ambiguous to me and should just be written out explicitly. Couldn’t the terms that are 
included just be stated explicitly in the figure? The figure doesn’t really stand on its own, since one 
has to refer to these lines to know what exactly is meant by these. Additionally, it is not clear what the 
intermediate values (33%,50%, 66%) correspond to exactly. Upon multiple readings, I still cannot 
understand what is meant by these percentages at all, and I’m not completely sure what is actually 
meant by “50% tasTREND and 50% anomaly- and variance-based diagnostics” that forms the basis 
of the remaining analysis. Please clarify. 

Thank you for pointing this out. The reviewer is correct, our notation in the original manuscript 
was ambiguous. What we are doing in our analysis is splitting 5 diagnostics into two parts: 1) 
tasTREND, 2) tasANOM, tasSTD, pslANOM, pslSTD. Each of the categories in figure 1 relates 
to the relative importance of tasTREND compared to the other diagnostics, i.e.: 

● 0% tasTREND + (25% tasANOM + 25% tasSTD + 25% pslANOM + 25% pslSTD) [termed 
‘not-trend based’ in the manuscript] 

● 33% tasTREND + (17% tasANOM + 17% tasSTD + 17% pslANOM + 17% pslSTD) 

● 50% tasTREND + (13% tasANOM + 13% tasSTD + 13% pslANOM + 13% pslSTD)  

● 66% tasTREND + (8% tasANOM + 8% tasSTD + 8% pslANOM + 8% pslSTD)  

● 100% tasTREND + (0% tasANOM + 0% tasSTD + 0% pslANOM + 0% pslSTD) [termed 
‘only tasTREND based’ in the manuscript] 

(values not summing up to 100% is due to rounding) 

We have adjusted the paragraph in question as well as figure 1 in order to make this clearer 
(see figure 1 and line 259f in the revised manuscript). 

* Discussion of Figure 2 around line 270: Should one have intuitively expected this from the math? I 
cannot seem to rationalize why using a model that is close to the CMIP6 MME to weigh CMIP6 would 
pull the CMIP6 MME mean away from the pseudo-observational “truth”. This seems like a deficiency 
in the weighting. Shouldn’t the weighting be resilient to this and do very little “harm” in this case? 

Again, thank you for pointing this out. We did not mean to say that cases in which the perfect 
model is close to the unweighted MME necessarily lead to a decrease in skill and there are 
several examples where this is not the case (e.g., for pseudo observations from CanESM2 or 



IPSL-CM5A-MR; see figure S2 in the revised manuscript). It is crucial, however, to point out 
that when we write ‘close to the truth’ we mean close to the truth in the evaluation periods 
(2041-60 or 2081-00). These periods are not used to inform the weighting and it is possible (in 
a pure model world as well as in the real world) that the information drawn from the past does 
not lead to a skill increase in the future if the constraint from the past is unrelated to the future 
projection. We have adapted our discussion of this topic to be clearer (see lines 291-308 in the 
revised manuscript).  

In addition, skill might be dependent on the emission path. Looking at the time series plots 
using IPSL-CM5A-LR as pseudo-observations (figure S2 in the revised manuscript), for 
example, we see a slight downward shift of the distributions for SSP1-2.6 as well as SSP5-8.5. 
For the former, this leads to an increase in skill while it reduces skill for the latter. We have 
added a short discussion on this topic to the revised manuscript in lines 309-313 . 

We have also added additional information about the skill for each CMIP5 model used as 
pseudo-observation to figure S2 in the revised manuscript. Finally, we note that figures 2, 4, 
S2, and S4 have been updated in accordance with a comment from reviewer 2 (see last 
paragraph of our answer to their comment 10). For each CMIP5 pseudo-observation we now 
exclude the direct CMIP6 predecessors (if existing) from the calculation (see line 236-237 and 
table S5 in the revised manuscript). 

* Figure 4: The combined and performance-only weights are shown, but not the in-dependence 
weights. Is there a reason for this? Is it worth also showing the ECS or TCR from these models on this 
plot, so that one could see that higher ECS/TCR models tend to be down-weighted? I assume this is 
correct, to the extent that models that warm the most over the 21st Century have high ECS/TCR, but I 
don’t recall the authors coming out and saying it. Modifying this figure in this way could be a compact 
way of making that point. 

We had originally decided against showing independence weights to avoid the readers being 
overwhelmed by the figure (and because they could be inferred from the difference between 
combined weights and performance weights). Also, in the original figure we had shown the 
weights relative to the median weight, so that the distance of a model with, e.g., twice the 
equal weight would show at the same distance from ‘1’ (equal weighting) as a model with ½ of 
the weight (see also your last minor comment). However, we realise that this might be slightly 
harder to interpret so we have changed it in the revised manuscript.  

We now show normalised weights for all three cases: independence, performance, and 
combined. In addition we now indicate TCR by coloring the labels accordingly (Figure 4 in the 
revised manuscript) and we have added a table containing all values to the supplement (Table 
S2).  

* Figure 4: I’m surprised to see several well-regarded models having relatively low performance 
weights (UKESM, HadGEM, CanESM, CESM), whereas some models that are typically poor 
performers seem to do well here (GISS, FGOALS, INM-CM). Any comment? Is it possible that your 
performance metrics are too restrictive (just involving tas and psl, two fields that may not adequately 
discriminate models with good vs bad moist physics that governs feedback and ECS), allowing poor 
performing models to get high weights? 

The reviewer is right, several typically well-regarded models receive rather low weights in our 
scheme. However, we point out that most of the models mentioned as examples have very 
high TCR. Based on our analysis (and other studies, see, e.g., Tokarska et al., 2020, Nijsse et 
al., 2020) these very high warming models are less likely and therefore they are 
down-weighted. In some cases (UKESM, HadGEM, CanESM) the main reason is the obvious 
mismatch between the observed and simulated warming over the course of the 20th century, 
which the modeling groups acknowledge in their technical description papers of the models.  

It is indeed possible that our particular diagnostics choice leads to typically less well-regarded 
models receiving relatively high weights. This means that according to our chosen diagnostics 



they are performing well compared to other models. It is possible that we would need to 
include more or other diagnostics to downweight models which have, e.g., bad moist physics, 
since the weighting method does not include knowledge about specific parameterizations. 
This point highlights the importance of careful diagnostics choices and the fact that the 
weighting is always aimed at a particular target and diagnostics choice. The weighting is not 
supposed to tease out which model is best in every case, and depending on the target and 
diagnostics choice the models receiving the highest or lowest weights will be different. This 
does not mean models receiving low weights in this case are bad models in general, as the 
reviewer realized some low weight models in our case are well regarded models and 
considered good models in general. But it means that based on their performance in 
simulating historical warming trends they are considered less likely here.  

 

Minor Comments 

*line 61: should be “model’s”*line 78: should be “method’s” 

Done. 

*Line 250: I don’t see where the 10-20% statement comes from. By my eye, the medians range from 
near 0% to slightly larger than 25%. 

The reviewer is correct, we changed this.  

*Figure 1: titles should be “leave-one-out”  

We changed the caption so this is no longer applicable.  

*Figure 2 caption: should be “which” 

Done. 

*Figure 2: To clarify, the similarity between pseudo-obs and MME is only assessed over the 
“Diagnostic period” right? (Side-note: “diagnostic period” only appears in the figure and is not 
discussed in the text.) By my eye, MPI looks closer to the MME than does CanESM, so I’m a bit 
confused here. Is the reason because similarity in the evolution of GMST only one of the several 
metrics employed, and MPI does worse in the ones that cannot be gleaned from this figure? 

We now introduce the terms diagnostic period in the main text of the revised manuscript (lines 
215). Regarding the second point: the reviewer is correct in assuming that the performance of 
the models in the diagnostics that inform the weighting can not be inferred from figure 2 in 
general. We have added a sentence to the caption of figure 2 to make that clear.  

*Line 309: “allows us” or “allows one”; also, it seems like some reference to all the performance 
metrics work done by Gleckler et al seems appropriate here. I believe they also advocate for 
comparing against multiple observational datasets. 

This sentence does no longer exist but we have added a reference to Gleckler et al. (2008) in 
line 108 in the revised manuscript, where we motivate the usage of more than one 
observational dataset. 

*Line 314: I don’t see the motivation for these 3 groupings. Is it in any way objective? 

This paragraph no longer exists in the revised manuscript.  



*Figure 6: too small to read, suggest stacking the two panels vertically rather than placing them next 
to each other horizontally 

Done. 

*Line 334: should be “model’s” 

Done. 

*I don’t think the average reader should be expected to know how to interpret a figure like Figure 5. 
Only the meaning of the colors are explained in the caption. What does the rest signify? 

We have added additional description to figure 5 and now provide a more detailed description 
of the clustering approach in the supplement (section S6 in the revised manuscript).  

*Line 391 “The weighting also largely reconciles CMIP6 with 5”: what is this referring to specifically, 
and is there a figure in particular being referenced? 

We were referring to the fact that the constrained CMIP6 TCR is closer to the CMIP5 TCR range 
from, e.g., the IPCC AR5 (1°C-2.5°C). However, this sentence was slightly misplaced here and 
is no longer included in the revised manuscript.  

*Figure 4: Are all weights less than or equal to 1 in absolute units, and only exceed when expressed 
relative to equal weighting as is done in the figure? Otherwise I’m a little confused about why a model 
would have a weight in excess of 1. How exactly is wi used? weighted avg of X = sum(wi*Xi)/sum(wi)? 

We now show normalised weights for all three cases: independence, performance, and 
combined.  See also our answer to your major point regarding figure 4 above. 

  



Reviewer 2 

Summary 

Some models are more consistent with historical observations than others. In climate projection, it 
makes intuitive sense to give more weight to the models that are more consistent with observed 
climate shifts and less weight to models that are less consistent with observed climate shifts. 

But how? 

This paper reports on a method of assigning model weights that relies on two distinct distance 
measures: the distance of models from observations and the distance of models from other models. 
The method requires the specification of two parameters that determine how each of these distances 
are turned into model weights. The method for determining the parameter associated with inter-model 
distance is poorly explained(see specific comment 8 below). The method for determining the 
parameter associated with distance from observations is also poorly explained, but for many 
experiments, involves future-time-pseudo-observations from the future states that are the objective of 
the prediction (see comment 10 below). In other words, the tuning method appears to render the tests 
of the method to be of the “in-sample” variety. To weaken the degree of “in-sampleness” an additional 
test is performed using CMIP5 runs. However, since one expects many of the CMIP6 models to be 
closely related to the CMIP5 models,there are strong reasons to believe that this test is not truly 
“out-of-sample” either. 

Even with the use of “future-time-pseudo-observations” in the tuning procedure, the improvements 
from this weighting scheme seem very modest in comparison with, for example, those obtained in 
Abramowitz and Bishop (2015, J. Climate) – (using a a method that solely required historical 
observations for the weights). The revised paper should include some attempt to 
compare/contrast/explain the Abramowitz and Bishop results. 

A superficially appealing feature of the method is that it gives more weight to models that are both 
skillful and statistically independent of other models. However, this independence is just described in 
terms of inter-model distance and not in terms of the independence of the model error. Is there some 
unstated proof that increased inter-model distance equates to increased model error independence? 
(It seems easy to think of counter examples). As demonstrated in Bishop and Abramowitz (2013),it is 
the independence of the error of the individual models comprising an ensemble forecast (as 
measured by inter-model forecast error correlation) that increases the predictive power of the 
ensemble. The revised paper needs to address the issue of the relationship or lack of relationship 
between inter-model distance and model error independence. 

After applying the method to the CMIP6 ensemble members, the authors find reduced warming 
relative to the simple sample means of CMIP6 ensembles for the high and low CO2 concentration 
scenarios considered. However, any confidence in this prediction must be strongly tempered by the 
“in sample” circular- nature of the testing and tuning procedures used by this method. My overall 
recommendation would be that the paper be returned to the authors to address the specific comments 
below and to include results from experiments in which only historical observations (or 
model-based-historical-pseudo-observations) were used to determine the weights. This constitutes 
major revision. 

We thank the reviewer for the critical assessment of our manuscript. The reviewer raises 
several important questions in the general comments above. Most of them we address in our 
answers to the specific comments as summarised below. In addition, we discuss the rationale 
behind our model independence metric in the following:  

● Calculation of the independence shape parameter: see comment 8 

● Calculation of the performance shape parameter: see comment 10 



● Out of sample skill tests: see comment 10 

● Skill improvement and comparison with Abramowitz and Bishop (2015): see comment 
11; in addition we have added several references to the approach used therein in the 
revised manuscript.  

● Model distance versus model error independence: see below 

 

Model-model distance and model error correlation 

The weighting method we apply in our study separates between a model's performance and 
independence. For establishing either measure, different metrics have been used in the past 
(see line 145 in the revised manuscript). In the case of independence, one could, for example, 
argue that it should be based on our knowledge of a model's inner workings (such as shared 
components, parameterizations or heritage with other models). However, this information is 
not always easily accessible and is, in addition, hard to quantify. Therefore, we here use an 
output-based definition of independence: given a generalised distance metric (based on the 
climatology of two variables) we define independence as a model distance to all other models 
in the ensemble. This is equivalent to the distance of the models’ errors: 

 e  (m  obs) (m  obs) mei −  j =  i −  −  j −  =  i − mj  

where  is the model error,  is the model, and  the observation.e m bso   

This approach has the advantage that it does not rely on observations, which are often 
geographically sparse and restricted in time. It, therefore, allows, in theory, establishing model 
independence based on hundreds of years of pre-industrial control runs or based on variables 
which do not have reliable global observations, such as precipitation.  

Here we use surface air temperature and surface pressure as the basis for our estimate of 
independence. This follows the work of Merrifield et al. (2020), who show that using these two 
variables allow a clear separation of initial-condition members of the same model as well as 
closely related models on the one side and independent models on the other side (see, e.g., 
figure 5 in Merrifield et al., 2020). In addition, in our manuscript we show qualitative results of 
our independence classification as a model dependence tree in figure 5 and discuss several 
clusters where the “inner workings” are known (line 389-395 in the revised manuscript). As a 
further test we insert artificial new models into the ensemble (see figure 6 and related 
discussions). This allows us to investigate the change in independence weight based on the 
relation of the inserted model to the rest of the multi-model ensemble.  

Bishop and Abramowitz (2013) follow a different approach that is based on the assumption 
that independent models have uncorrelated error time series. This approach can not directly 
be applied to our framework since we base our weighting on time-aggregated (mean, standard 
deviation, trend) spatially resolved fields. The main question the reviewer seems to pose, 
therefore is: Do the two approaches deliver fundamentally different results? 

To test this we assume that the concept of error independence also holds for time-averaged 
spatial fields. We apply an independence weighting based on the spatial correlation of model 
errors and contrast the results with our original results (based on model distances). inSij  
equation (1) then becomes the matrix of model error correlation distances: 

 1 CORR (m  obs, m  obs)Sij =  −  spatial i −   j −   

Figure R1 below shows the models “family tree” equivalent to figure 5 in the manuscript based 
on these correlation distances. While the grouping of models is mostly the same as in figure 5, 



there are also some obvious differences. The difference between the closest related models 
(e.g., UKESM1-0-LL and HadGEM3-GC1-LL) and the maximum distance between any two 
clusters of models is considerably larger. Several models have changed to a different cluster 
(e.g., NorESM2-MM or AWI-CM-1-1-MR). Without a detailed analysis, however, we can not make 
any clear statements on which clustering is “more correct”.  

 

Figure R1: Similar to figure 5 in the revised manuscript but based on error correlation distances instead 
of model-model distances. Note that for this case we do not use any area weighting.  

Based on the general similarity of the two trees, we do not expect the change in the 
independence metric to have a major influence on the results. In a second step we, therefore, 
look at the weighted distributions based on independence weights using these error 
correlation distances. The results are presented in figure R2 below. Compared to figure 8 in 
the revised manuscript there are only minimal differences. This at least shows that there are 
no strong disagreements between the approaches. One reason for the similarity is certainly 
also the fact that the weighting is dominated to a large degree by the performance weighting 
and, in particular, by the low weights of some of the strong warming models.  

In summary we, therefore, argue that either approach might be appropriate to use, and the 
main conclusions in our manuscript are the same for an independence matric based on 
correlation. For simplicity we, therefore, prefer to continue using our original metric basing 
independence directly on model-model distances which does not require observations and 
thus eliminates one potential source of uncertainty.  We have, however, added section S4 to 
the supplement discussing or method to estimate model independence in the context of other 
approaches.  

 

 



 

Figure R2:  Similar to figure 8 in the revised manuscript but with the independence weighting based on 
error correlation distances instead of model-model distances. Note that for this case we do not use any 
area weighting in the independence weighting calculation.  

 

Specific comments 

1. Line 16. Consider explaining what TCR is in the abstract to appeal to a broader audience. 

Indeed our study aims at a quite general audience and therefore focuses mainly on projections 
of future global warming which are widely known. In the revised manuscript we no longer 
mention TCR in the abstract.  

2. Line 31. Do you mean model uncertainty, unknown model climate error, unknown 
model-climate-sensitivity-to-CO2 error or model climate differences? We know what the model is, and 
we can determine its climate past, present and future by running it. We can also determine the 
differences between the climates of different models. Given the limitations of the spatio-temporal 
distribution of observations, the uncertain thing is the actual climate both past, present, and future, is it 
not? 

Model uncertainty here refers to the error of both present and future climate. In particular to its 
bias, since for climate projections we are concerned with correctly estimating distributions of 
trajectories, rather than individual trajectories like for weather and climate prediction.  

“Model uncertainty”  has become a standard piece of terminology in this subfield, following its 
popularization by Hawkins and Sutton (2009). It is also mentioned as “structural” uncertainty 
or error, referring to the structure of the model (which is assumed to be different between 
different climate models, hence the “model” label). We have updated the paragraph in 
question to make that more clear (lines 30-34 in the revised manuscript). 

3. Line 35. Lorenz, the father of chaos theory, argued that while the accuracy of weather forecasts 
was limited to a few weeks the climate of a system was not sensitive to specified initial conditions and 
could be known provided the forcing on the system was known. I guess “climate” in the sense of 
Lorenz refers to the statistical description of the attractor of the chaotic system. When you refer to 
“internal variability” do you just mean slow modes of the model’s chaotic attractor that might possibly 
be confused with a change in the mean of the model’s attractor if the ensemble size was too small? 

“Internal variability” indeed refers to initial condition sensitivity; the terminology has become 
standard in the climate literature following papers like Hawkins and Sutton (2009) or Deser et 



al. (2012). Here “climate” refers to the statistical description of the attractor of the system 
which these models attempt to represent - including the atmosphere but also the ocean, ice, 
and land surface. Particularly for the ocean, coupled models and the real earth’s coupled 
system show variations  on timescales of, at the very least, multiple years (e.g., due to ENSO) 
that depend on the initial conditions. Recently some efforts have sought to identify 
predictability on the order of decades, though if this exists it is assumed (here and generally) 
to be small.  

Because GCMs are expensive to run and have unknown but expected long timescales before 
ensemble variance that properly samples the climatology is achieved, CMIP models are not at 
the point where many of them have enough ensemble members to adequately sample the 
attractor (in contrast to weather prediction, where that is currently achievable and in fact often 
achieved). With a small number of ensemble members and long timescales, internal variability 
is convolved with forced responses. These can be isolated with “large ensembles” (of several 
tens of simulations differing only by initial conditions) but the CMIP ensemble includes many 
models which are expected to differ in their bias, some of which also include multiple 
realizations from the same model, which are expected to differ among each other only in terms 
of their “internal variability” or due to sampling. We have added some discussion to the 
paragraph in question (lines 34-40 in the revised manuscript). 

Deser, C., Phillips, A. S., Bourdette, V., & Teng, H. (2012). Uncertainty in climate change 
projections: the role of internal variability. Climate Dynamics, 38(3–4), 527–546. 
https://doi.org/10.1007/s00382-010-0977-x 

4. Line 102: I’m guessing you are referring to Section 3.2 of Brunner et al., 2019. Is that correct? If so, 
please state this in the text. Your wording suggested that you had estimated an observation error 
variance. However, on reading Section 3.2 of Brunner et al., 2019, I’m now guessing that you are 
referring to how your derived weights change depending on which subset of all observations you use. 
Are you suggesting that the reason for your weights changing is because the observations have 
different errors? Can you rule out the possibility that your weighting scheme isn’t just over-fitting each 
individual observational data set? In any case, the revised paper needs to clarify whether in fact you 
are referring to the size of the change in weights associated with using differing observational data 
sets. Also, the observed values are known. They are not uncertain. The errors of the observed values 
are unknown. It is the observational error that is uncertain. 

Thank you  for pointing this out, the wording was unclear in the original manuscript. Indeed, it 
has been pointed out in the literature that using different observational datasets can lead to 
diverging results in some cases (e.g., Gleckler et al. 2008, Lorenz et al. 2018, Brunner et al. 
2019) due to differences in the datasets. We referred to these differences in the observational 
datasets as observational uncertainty but no longer do so in the revised manuscript.  

What we are concerned with here is bias in the observational datasets, which are a central 
challenge in climate science. In the presence of such biases, it is not unexpected that the 
results of the weighting change based on the datasets used. To get a reference that is as 
robust as possible, we are using a combination of two observational datasets (ERA5 and 
MERRA2) to calculate the model-observation distances and further the performance weights. 
The datasets are combined by taking the center of the observational spread at each grid cell 
(following Brunner et al. 2019 who also discuss other approaches; see their section 3.2 as well 
as section S2 and figure S3 in their supplement). We have clarified that and added additional 
information to the section in question in the revised manuscript (lines 103-110).  

Gleckler, P. J., Taylor, K. E., & Doutriaux, C. (2008). Performance metrics for climate models. 
Journal of Geophysical Research Atmospheres, 113(6), 1–20. 
https://doi.org/10.1029/2007JD008972 

5. Line 145. “We want to...” If there was a hypothetical user of the climate projection that only cared 
about temperature trend and not about year-to-year variability, might you not be doing them a 



disservice by down-weighting members that have an excellent temperature trend but poor 
inter-annual variability? Consider changing to “We choose to...“ 

The reviewer is correct in pointing out that the selection of diagnostics for establishing the 
models performance weights should depend on the target in question. In our study we look at 
temperature change in two time periods as a target, which is closely related to the temperature 
trend. Therefore, the temperature trend is indeed a powerful diagnostic.  

However, it also is strongly influenced by internal variability (i.e., it differs quite strongly 
between initial-condition members of the same model) which is not desirable for a good 
diagnostic as we argue in line 171 of the revised manuscript: “Ideally, a performance weight is 
reflective of underlying model properties and does not depend on which ensemble member is 
chosen to represent that model (i.e., on internal variability). tasTREND does not fulfil this 
requirement: the spread within one model is the same order of magnitude as the spread 
among different models.” 

We therefore use “a balanced combination of climate system features (i.e., diagnostics) 
relevant for the target to inform the weighting to minimise the risk for skill decreases. This 
guards against the possibility of a model “accidentally” fitting observations for a single 
diagnostic while being far away from them in several others (and hence possibly not providing 
a skilful projection of the target variable).” (line 454 of the revised manuscript) 

In this sense we argue that even if a user is only interested in a model simulating future 
temperature trend correctly, it might still be important to also include other diagnostics. This 
can help to avoid weighting a model highly because it “accidentally” matches the 
observations in a given historical period due to, e.g., internal variability.  

6. Line 147-149. Equations should be added to precisely describe these observation derived 
quantities – perhaps in an appendix or supplementary material. 

We have now added a mathematical description of the diagnostic calculation to the 
supplement (section S2) and reference it in the revised manuscript in line 160. 

7. Line 170. You must state what was used as a proxy for a perfect model. I would think that the 
derived sigma_D must be related to the ensemble variance of the model states around the time 
averaged state. That quantity will depend on the model will it not? Please clarify. 

We have adjusted our description of the shape parameter calculation in the revised 
manuscript in order to make this more clear. In the revised manuscript we now refer to the 
iterative test used to the performance shape parameter as parameter calibration (lines 
182-191). In addition we have added additional information including a schematic of the 
calibration test to the supplement (section S3). 

8. Line 183. I looked at Section 2.3 of Brunner et al., 2019 for an explanation but Brunner et al. (2019) 
just directs the reader to Lorenz et al., 2018. Your work needs to be reproducible. When referring to 
another paper for a key explanation, you must give very specific information about where in the paper 
the explanation resides (e.g. a section number) to ensure reproducibility. You have not done this. 

The reviewer rightfully points out that we should have been more clear in referencing this 
important information. The calculation of the independence shape parameter and reasoning 
behind it is described in detail in the supplement of Brunner et al. (2019; section S3.1), which 
we now explicitly mention. In addition we now provide a summary as well as a discussion of 
the chosen value in the context of our study in the supplement of the revised manuscript (see 
line 200 and supplement section S5 in the revised manuscript). 



9. Line 191. The method used to evaluate performance given here seems almost identical to that 
given in Abramowitz and Bishop (2015) but no reference is given to this paper or others that may 
have used this approach before. Such literature is relevant and should be cited. 

Thank you for pointing this out. We have added several references to the relevant literature 
which used similar approaches before (see line 206 in the revised manuscript).  

10. Line 200-205. Here, we learn that sigma_D weights are determined in part from information from a 
place that is inaccessible in reality: the future. Only model futures are accessible. By line 205 we learn 
that the model future states (rather than observations) are, in fact, an integral part of choosing the 
weights. This is a significant departure from many other observation-based methods for improving 
ensemble forecasts and projections. The use of future time observations in the training causes all of 
the associated tests to be “in-sample” tests – dramatically reducing their trustworthiness. Since the 
CMIP5 models belong to the same general class of human produced climate simulators they can 
barely be considered “out-of-sample”. Please comment on the limitations of this approach. In addition, 
you have not clarified how the method of tuning for future states interacts with the method to 
determine sigma_D referred to on line 170 (see previous comment). 

The reviewer rightfully points out that there is some influence from the future model states 
included in the weights via the performance parameter calibration. However, there also seems 
to be some misunderstanding regarding our approach.  We adapted the sections in question 
to make it more clear in the revised manuscript.  

The model performance weights are proportional to each model’s generalised distance (a 
combination of 5 diagnostics) to the observations ( ) as given in the numerator of equationDi  
(1). The proportionality constant is the performance shape parameter sigma_D, which 
translates these distances into the weights. It is indeed established using the target period, 
i.e., the future model states. The weighting for the ensemble is then calibrated as a whole 
using this single parameter, and it is not the case that the weight of each model is calibrated 
individually through its historical simulation.  

Crucially, this means that the weighting is still dominated by the comparison of models to the 
observations only. Consider, for example, a case where the diagnostics are really poorly 
chosen: this could be because they are dominated by (random) internal variability or because 
they do not have any physical relationship to the target. The weighting then would not have 
any skill, regardless of the sigma_D parameter.  

As, for example, Sanderson et al. (2017) state, selecting sigma_D only based on historical 
information might lead to overconfident results as a more skillful representation of the base 
state does not necessarily translate to a more skillful representation of the future. Selecting 
sigma_D only based on historical information would a priori assume that the chosen metric is 
relevant for the projection. One way of approaching the problem might be to apply the method 
on the historical and then test the result in a perfect model test, potentially adjusting the 
method in an iterative approach to maximise skill.  

In our weighting approach we already include such a perfect model test in the calculation of 
the weights in order to avoid overconfident results. To avoid confusion between the setting of 
the parameter and the subsequent testing of method skill we have changed the terminology in 
our manuscript and refer to the former as parameter calibration to separate it from the later 
perfect model tests which are used to calculate the skill of the weighting. In addition we have 
added a section in the supplement detailing and visualising this parameter calibration (section 
S3 and figure S1 in the revised manuscript).  

Finally, addressing the question of the relationship between the calibration of the performance 
shape parameter and the subsequent testing of the skill of the method, we would argue that 
the circularity is quite limited. There are several reasons for this:  



● As we point out above, the weighting is, to a large degree, based on the model’s 
distance to historical observations, with future observations only influencing them via 
sigma_D, which is a single value constant across all models, over time, and all metrics.  

● The parameter calibration does not aim at maximising (mean) skill, but rather ensures 
that the results are not overconfident. Take the example of poorly chosen diagnostics 
again: in such a case, any separation into better or worse models would be 
overconfident as it would be based on pure chance. During the parameter calibration 
this would become obvious and sigma_D would be relaxed to a large value (in order to 
avoid this overconfidence) leading to an approximation of equal weighting.  
Subsequently testing the skill of the method can still be insightful to estimate the 
actual increase in skill (or the lack thereof - in the case of badly chosen diagnostics).  

● We use two different model pools to draw the perfect models from in our investigation 
of the method’s skill. The first one is based on CMIP6 data, and one could therefore 
argue that it has a stronger potential circularity as the same models have been used to 
calibrate sigma_D. However, this test is mainly used to investigate the relative 
differences between different combinations of diagnostics and to select the best 
performing one (see figure 1 and related discussion). Since any remaining circularity is 
the same for all cases shown in figure 1, a comparison between them should still be 
valid. We have adapted the abstract as well as section 3.1 to make that more clear.  

● For the second test, we use CMIP5 models, which have not been used in the parameter 
calibration, as perfect models. Here, another potential issue arises: several CMIP6 
models are related to CMIP5 models and are therefore not independent. However, 
about eight years of additional model development lie between the two generations. In 
addition, it has been noted that several CMIP6 models have a much higher climate 
sensitivity and are, hence, quite different from their predecessors (at least in their 
response to anthropogenic forcing, which dominates the future period used for the 
perfect model test).  

To further increase the independence between the CMIP5 and CMIP6 ensembles, we now 
exclude directly-related models from the perfect model test in the revised manuscript. So, for 
example, when weighting based on the CMIP5 model HadGEM2-ES we exclude the CMIP6 
models HadGEM3-GC31-LL and UKESM1-0-LL from the evaluation. A list of CMIP6 models 
excluded for each CMIP5 model can be found in table S5 in the supplement and we have added 
some discussion about this topic in section S3 of the supplement.  

11. Line 266-280. Here we learn that the method is very prone to creating decreased skill relative to 
the multi-model unweighted mean. This negative result is in contrast to the positive results found in 
Abramowitz and Bishop (2015) using the method of Bishop and Abramowitz (2013). 

Thank you for pointing this out, this was not expressed clearly in the original manuscript. In 
fact, the method produces a median skill increase of about 12-22% when using CMIP5 models 
as pseudo observations (see figure 3a in the revised manuscript). Nonetheless, it is correct 
that there can be a decrease in skill from the unweighted to the weighted multi-model 
ensemble based on our skill metric when using some CMIP5 models as pseudo-observations. 
However, these instances are limited to only a few (about 15% across SSPs and target periods) 
cases. We have revised the paragraph in question to make this more clear (line 314-322 in the 
revised manuscript).  

We note that the change in skill also depends on the skill metric used and the target it is 
applied to. Here, our target is 20-year mean, global mean temperature change from 1995-2014 
to two future periods (2041-60 and 2081-00). As a skill metric, we use the continuous ranked 
probability skill score (CRPSS), a measure for ensemble forecast quality. Note that this does 
not only evaluate the distance between the (un-) weighted mean and the reference but also 
considers the full distribution.  
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Abstract. The sixth Coupled Model Intercomparison Project (CMIP6) constitutes the latest update on expected future climate

change based on a new generation of climate models. To extract reliable estimates of future warming and related uncertainties

from these models, the spread in their projections is often translated into probabilistic estimates such as mean and likely range.

Here, we use a model weighting approach, which accounts for a model’ s
:::
the

:::::::
models’ historical performance based on several

diagnostics as well as possible model inter-dependence within the CMIP6 ensemble, to calculate constrained distributions of5

global mean temperature change. We investigate the skill of our approach in a perfect model test, where we remove each CMIP6

model from the ensemble in turn, use it as pseudo-observation
:::
use

::::::::::::::::
previous-generation

::::::
CMIP5

:::::::
models

::
as

:::::::::::::::::
pseudo-observations

in the historical period, and evaluate the weighted CMIP6 ensemble against it in the future. This is complemented by a second

perfect model test drawing on the previous-generation CMIP5 models as .
::::
The

:::::::::::
performance

::
of

:::
the

::
so

::::::::
weighted

::::::::::
distribution

::
in

:::::::
matching

:::
the

:
pseudo-observations

:
in
:::
the

::::::
future

:
is
::::
then

::::::::
evaluated

::::
and

:::
we

:::
find

::
a
:::::
mean

:::::::
increase

::
in

::::
skill

::
of

:::::
about

:::::::::::::
17% compared10

::
to

::
the

::::::::::
unweighted

::::::::::
distribution. In addition, we show that our independence diagnostics

::::::
metric correctly clusters models known

to be similar based on a CMIP6 “family tree”, which enables applying a weighting based on the degree of inter-model de-

pendence. We then apply the weighting approach, based on two observational estimates (ERA5 and MERRA2), to constrain

CMIP6 projections in weak (SSP1-2.6) and strong (SSP5-8.5) climate change scenarios. Our results show a reduction in pro-

jected mean warming for both scenarios because some CMIP6 models with high future warming receive systematically lower15

performance weights. The mean of end-of-century warming (2081-2100 relative to 1995-2014) for SSP5-8.5 with weighting

is 3.7 °C, compared to 4.1 °C without weighting; the likely (66%) uncertainty range is 3.1 °C to 4.6 °C, a decrease
::
in

::::::
spread

of 13%. For SSP1-2.6, weighted end-of-century warming is 1 °C (0.7 °C to 1.4 °C) . Applying the weighting to estimates of

Transient Climate Response (TCR) yields 1.9 °C (1.6 °C to 2.1 °C – a reduction in the likely uncertainty range of 46%), which

is consistent with estimates from previous model generations and other lines of evidence
:
a
::::::::
reduction

::
of

::::::::::
−0.2 °C in

:::
the

:::::
mean20

:::
and

::::::::
−24% in

:::
the

:::::
likely

:::::
range

::::::::
compared

::
to
:::
the

::::::::::
unweighted

::::
case.

1



1 Introduction

Projections of future climate by Earth System Models provide a crucial source of information for adaptation planing, mitigation

decisions, and the scientific community alike. Many of these climate model projections are coordinated and provided within the

frame of the Coupled Model Intercomparison Projects (CMIPs), which are now in phase 6 (Eyring et al., 2016). A typical way of25

communicating information from such multi-model ensembles (MMEs) is by combining them into probabilistic distributions,

such as
::::::
through

:
a best estimate and uncertainty range

:
an

::::::::::
uncertainty

:::::
range

:::
or

:
a
:::::::::::

probabilistic
::::::::::
distribution. In doing so it is

important to make sure that the different sources of uncertainty are identified, discussed, and accounted for, to provide reliable

information without being overconfident. Typically
::
In

::::::
climate

:::::::
science

:::::::
typically three main sources of uncertainty are identified

in MMEs: (i) uncertainty in future emissions, (ii) internal variability of the climate system, and (iii) model response uncertainty30

(e.g., Hawkins and Sutton, 2009; Knutti et al., 2010).

Uncertainty due to future emissions can easily be isolated by making projections conditional on scenarios such as the Shared

Socioeconomic Pathways (SSPs) in CMIP6 (O’Neill et al., 2014) or the Representative Concentration Pathways (RCPs) in

CMIP5 (van Vuuren et al., 2011). The other two sources of uncertainty are harder to quantify since reliably separating

them is often challenging (e.g., Kay et al., 2015; Maher et al., 2019). Model uncertainty arises due to different responses35

and feedbacks of
:::::::::
(sometimes

::::
also

::::::::
referred

::
to

:::
as

::::::::
structural

::::::::::
uncertainty

::
or

::::::::
response

:::::::::::
uncertainty)

::
is

::::
used

:::::
here

::
to

::::::::
describe

::
the

::::::::
differing

:::::::::
responses

::
of

:::::::
climate models to a given radiative forcing , leading to different estimates of mean warming or

Transient Climate Response (TCR) (e.g., Forster et al., 2013)
::::::
forcing

:::
due

::
to

::::
their

::::::::
structural

:::::::::
differences

:::::::::
following

:::
the

::::::::
definition

::
by

:::::::::::::::::::::::
Hawkins and Sutton (2009). Such different responses to the same forcing can emerge, among other things, due to different

processes and feedbacks as well as due to the parametrisations used in the different models (e.g., Zelinka et al., 2020). In-40

ternal variability
:
,
::::::
finally,

::::
here

:::::
refers

::
to

:
a
:::::::
model’s

:::::::::
sensitivity

::
to

:::
the

:::::
initial

:::::::::
conditions

::
as

::::::::
captured

::
by

::::::::::::::
initial-condition

::::::::
ensemble

:::::::
members

:::::::::::::::::::::
(e.g., Deser et al., 2012).

::
In

:::
this

:::::
sense,

::
it stems from the chaotic behavior of the climate system

:
at
::::::::
different

::::
time

:::::
scales

and is highly dependent on the variable of interest as well as the period and region averaged over
:::::::::
considered. While, for example,

uncertainty in global mean temperature is mainly dominated by differences between models, regional temperature trends are

considerably more dependent on internal variabilityas can be estimated from .
::::::::
Recently,

::::::
efforts

::::
have

::::
been

:::::
made

::
to

:::
use

::::::::
so-called45

Single Model Initial-condition Large Ensembles (SMILEs) (Lehner et al., 2020; Maher et al., 2019; Merrifield et al., 2019)
::
to

:::::::::
investigate

::::::
internal

:::::::::
variability

::
in

::
the

:::::::
climate

:::::::::
projections

::::
more

::::::::::::::
comprehensively

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Kay et al., 2015; Maher et al., 2019; Lehner et al., 2020; Merrifield et al., 2020).

Depending on the composition of the investigated MME, uncertainty estimates often fail to reflect that included models are

not always independent from each other. In the development process of climate models, ideas, code and even full components

are shared between institutions or models might be branched from each other in order to investigate specific questions. This can50

lead to some models (or model components) being copied more often, resulting in an over-representation of their respective in-

ternal variability or sensitivity to forcing (Bishop and Abramowitz, 2013; Boé, 2018; Boé and Terray, 2015)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Masson and Knutti, 2011; Bishop and Abramowitz, 2013; Knutti et al., 2013; Boé, 2018; Boé and Terray, 2015).

The CMIP MMEs in particular have not been designed with the aim of including only independent models and are therefore

sometimes referred to as “ensembles of opportunity” (e.g., Tebaldi and Knutti, 2007) incorporating as many models as possible.
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When calculating probabilities based on such MMEs it is therefore important to account for model inter-dependence in order55

to accurately translate model spread into estimates of mean change and related uncertainties
:::::::::::::::::::::::::::
(Knutti, 2010; Knutti et al., 2010).

In addition, not all models represent the aspects of the climate system relevant to a given question equally well. To account for

that, a variety of different approaches have been used to weight, sub-select, or constrain models based on their historical perfor-

mance. This has been done both regionally and globally as well as for a range of different target metrics such as end-of-century

temperature change or TCR (see, e.g., Brunner et al., 2020b; Eyring et al., 2019; Knutti et al., 2017a, for an overview)
:::::::
Transient60

::::::
Climate

::::::::
Response

::::::
(TCR)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(for an overview see, e.g., Knutti et al., 2017a; Eyring et al., 2019; Brunner et al., 2020b). Global mean

temperature increase in particular is one of the most widely discussed effects of continuing climate change and the main fo-

cus of many public and political discussions. With the release of the new generation of CMIP6 models, this discussion has

been sparked yet again, as several CMIP6 models show stronger warming than most of the earlier-generation CMIP5 models

(Forster et al., 2020; Zelinka et al., 2020; Swart et al., 2019; Gettelman et al., 2019; Voldoire et al., 2019; Golaz et al., 2019; Andrews et al., 2019)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Andrews et al., 2019; Gettelman et al., 2019; Golaz et al., 2019; Voldoire et al., 2019; Swart et al., 2019; Zelinka et al., 2020; Forster et al., 2020).65

This raises the question of whether these models are accurate representations of the climate system and what that means for

the interpretation of the historical climate record and the expected change due to future anthropogenic emissions.

Here, we use the Climate model Weighting by Independence and Performance (ClimWIP) method (e.g., Merrifield et al., 2019; Brunner et al., 2019; Knutti et al., 2017b)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Knutti et al., 2017b; Lorenz et al., 2018; Brunner et al., 2019; Merrifield et al., 2020) to

weight models in the CMIP6 MME. Weights are based on (i) each models
::::::
model’s

:
performance in simulating historical proper-

ties of the climate system such as horizontally resolved anomaly, variability, and trend fields, and (ii) its independence from the70

other models in the ensemble, estimated based on shared biases of climatology. In contrast to many other methods, which con-

strain model projections based on only one observable quantity, such as the warming trend (e.g., Giorgi and Mearns, 2002; Ribes et al., 2017; Jiménez-de-la Cuesta and Mauritsen, 2019; Nijsse et al., 2020; Tokarska et al., 2020)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Giorgi and Mearns, 2002; Ribes et al., 2017; Jiménez-de-la Cuesta and Mauritsen, 2019; Liang et al., 2020; Nijsse et al., 2020; Tokarska et al., 2020),

ClimWIP is based on multiple diagnostics, representing different aspects of the climate system. These diagnostics are chosen

to evaluate a model’s performance in simulating observed climatology, variability, and trend patterns. Note that, in contrast to

other approaches such as emergent constraint-based methods, some of these diagnostics might not be highly correlated with75

the target metric (however, it is still important that they are physically relevant – to avoid introducing noise without useful

information in the weighting). Combining a range of relevant diagnostics is less prone to overconfidence, since the risk of

up-weighting a model because it “accidentally” fits observations for one diagnostic, while being far away from them in several

others is greatly reduced. In turn, methods which are based on such a basket of diagnostics have been found to generally lead

to weaker constraints (Sanderson et al., 2017; Brunner et al., 2020b), as the effect of the weighting typically weakens when80

adding more diagnostics (Lorenz et al., 2018).

ClimWIP has already been used to create estimates of regional change and related uncertainties for a range of different vari-

ables such as Arctic sea ice (Knutti et al., 2017b), Antarctic ozone concentrations (Amos et al., 2020), North American maxi-

mum temperature (Lorenz et al., 2018) and European temperature and precipitation (Merrifield et al., 2019; Brunner et al., 2019).

::::::::::::::::::::::::::::::::::::
(Brunner et al., 2019; Merrifield et al., 2020).

::::::::
Recently,

::::::::::::::::::::
Liang et al. (2020) have

::::
used

::
an

:::::::::
adaptation

::
of

:::
the

:::::::
method

::
to

::::::::
constrain85

::::::
changes

::
in
::::::
global

::::::::::
temperature

::::
using

::::::
global

::::
mean

::::::::::
temperature

:::::
trend

::
as

:::::
single

:::::::::
diagnostic

::
for

::::
both

:::
the

:::::::::::
performance

:::
and

:::::::::::
independence

:::::::::
weighting.

:
Here, we focus on investigating the ClimWIP methods

::::::::
method’s performance in weighting global mean temper-

ature changes when informed by different
:
a
:::::
range

::
of

:
diagnostics. To assess the robustness of these choices, we perform an

out-of-sample perfect model test using CMIP5 and CMIP6 as pseudo-observations. Based on these results, we select a com-
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bination of diagnostics which capture not only a model’s transient warming but also its ability to reproduce historical patterns90

in climatology and variability fields in order to increase the robustness of the weighting scheme and minimize the risk of skill

decreases due to the weighting. This approach is particularly important for users interested in the “worst case” rather than in

mean changes. We also look into the inter-dependencies among the models, showing the ability of our diagnostics in clustering

models with known shared components using a “family tree” (Masson and Knutti, 2011; Knutti et al., 2013) and further the

skill of the independence weighting to account for this. We then calculate combined performance-independence weights based95

on two reanalysis products in order to also account for the uncertainty in the observational record. Finally, we apply these

weights to provide constrained distributions of future warming and CTR
::::
TCR.

2 Data and Methods

2.1 Model data

The analysis is based on all currently available CMIP6 models which provide surface air temperature (tas) and sea level100

pressure (psl) for the historical, SSP1-2.6, and SSP5-8.5 experiments. We use all available ensemble members, which is a

total of 129 runs from 33 models (see table S3
:::
S4 in the supplementary material for a full list including references). We use

models post-processed within the ETH Zurich CMIP6 next generation archive, which provides additional quality checks and

re-grids models onto a common 2.5°×2.5° latitude-longitude grid, using second order conservative remapping (see Brunner

et al., 2020a, for details). In addition, we use the first
:::
one

:
member of all CMIP5 models providing the same variables and the105

corresponding experiments (historical, RCP2.6, RCP8.5) which is a total of 27 models (see table S4
::
S5

:
for a full list).

2.2 Reanalysis data

To represent historical observations in tas and psl, we use two reanalysis products: ERA5 (C3S, 2017) and MERRA2 (Gelaro et al., 2017; GMAO, 2015a, b).

::::::::::::::::::::::::::::::::
(GMAO, 2015a, b; Gelaro et al., 2017). Both products are regridded to a 2.5°×2.5° latitude-longitude grid using second order

conservative remapping and are evaluated in the period 1980-2014. Within the framework of the model weighting, they are110

combined to provide an estimate of observational uncertainty (see Brunner et al., 2019, for details)
:::
We

:::
use

::
a
::::::::::
combination

:::
of

::::
these

::::
two

:::::::::::
observational

:::::::
datasets

::::::::
following

:::
the

::::::
results

:::
of

:::::::::::::::::::
Lorenz et al. (2018) and

::::::::::::::::::
Brunner et al. (2019),

::::
who

:::::
show

::::
that

:::::
using

::::::::
individual

:::::::
datasets

:::::::::
separately

:::
can

::::
lead

:::
to

::::::::
diverging

::::::
results

::
in

:::::
some

::::::
cases.

::
It

:::
has

::::
been

:::::::
argued

:::
that

::::
that

:::::::::
combining

::::::::
multiple

::::::
datasets

:::::
(e.g.,

:::
by

:::::
using

::::
their

:::
full

:::::
range

:::
or

::::
their

::::::
mean)

:::::
yields

:::::
more

:::::
stable

::::::
results

::::::::::::::::::::::::::::::::::::
(Gleckler et al., 2008; Brunner et al., 2019).

::::
Here

:::
we

:::
use

:::
the

:::::
mean

::
of

::::::
ERA5

:::
and

:::::::::
MERRA2

::
at

::::
each

::::
grid

::::
point

:::
as

::::::::
reference

::::::::
equivalent

::
to
::::::::::::::::::
Brunner et al. (2019). Finally, we115

also compare our results to globally averaged merged temperatures from the Berkley Earth Surface Temperature (BEST) data

set
::::::::::::
(Cowtan, 2019).
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2.3 Model weighting scheme

We use an updated version of the ClimWIP method described in Merrifield et al. (2019) and Brunner et al. (2019)
::::::::::::::::::::
Brunner et al. (2019) and

::::::::::::::::::
Merrifield et al. (2020), which is based on earlier work by Lorenz et al. (2018), Knutti et al. (2017b), Sanderson et al. (2015b),120

and Sanderson et al. (2015a); it can be downloaded at: https://github.com/lukasbrunner/ClimWIP.git. It assigns a weight wi to

each model mi that accounts for both model performance as well as independence,

wi =
e
−
(
Di
σD

)2

1+
∑M

j 6=i e
−
(
Sij
σS

)2 , (1)

where Di and Sij are the generalised distances of model mi to the observations and to model mj , respectively. The shape

parameters σD and σS set the strength of the weighting, effectively determining the point at which a model is considered to be125

“close” to the observations or to another model (c.f., section 2.5).

This updated version of ClimWIP assigns the same weight to each initial-condition ensemble member of a model, which is

adjusted by the number of ensemble members (see the revised version of Merrifield et al., 2019, for a detailed discussion)
:::::::::::::::::::::::::::::::::::::::::::
(see Merrifield et al., 2020, for a detailed discussion).

To illustrate this additional step in the weighting method, consider a single performance diagnostic d. d is calculated for each

model and ensemble member separately, hence d= dki with i representing individual models , and k running over all ensemble130

members Ki of model mi (in CMIP6, from one to 50
::::::::
members

::
in

::::::
CMIP6). For each model mi, the mean diagnostic d′i is,

d′i =

∑K
k d

k
i

Ki
,for all i. (2)

d′i is then used to calculate the generalised distance Di and further the performance weight wi via (1).
::
A

::::::
detailed

::::::::::
description

::
of

:::
this

:::::::::
processing

:::::
chain

::::
can

::
be

::::::
found

::
in

::::::
section

:::
S2

::
in

:::
the

:::::::::::
supplement. An analogous process is used for distances between

models. This setup allows a consistent comparison of model fields to each other and to observations in the presence of internal135

variability and, in particular, also enables the use of variance-based diagnostics. In addition, it ensures a consistent estimate of

the performance shape parameter σD in the perfect model test
:::::::::
calibration (see section 2.5), based on the average weight per

model; in previous work, in contrast, it
::
the

:::::::::
calibration

:
was based on only one ensemble member per model.

2.4 Weighting target and diagnostics

We apply the weighting to projections of annual mean, global mean temperature change from two SSPs, representing weak140

(SSP1-2.6) and strong (SSP5-8.5) climate change scenarios. Changes in two 20-year target periods representing mid-century

(2041-2060) and end-of-century (2081-2100) conditions are compared to a 1995-2014 baseline. In addition, we weight TCR

values from all available models obtained from an update of the data set described in Tokarska et al. (2020). The weights are

calculated from global, horizontally-resolved diagnostics based on annual mean data in the 35-year period 1980-2014. We use

different diagnostics for the calculation of the independence and performance parts of the weighting, as proposed in the revised145

version of Merrifield et al. (2019)
::::::::::::::::::
Merrifield et al. (2020).
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The goal of the independence weighting is to identify structural similarities between models (such as shared offsets or similar

spatial patterns) which are interpreted to be indications of inter-dependence arising from, e.g., shared components or parametri-

sations. In the past, combinations of horizontally-resolved regional temperature, precipitation, and sea level pressure fields,

have typically been used (e.g., Brunner et al., 2019; Sanderson et al., 2017; Knutti et al., 2013; Boé, 2018; Lorenz et al., 2018).150

Following
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Knutti et al., 2013; Sanderson et al., 2017; Boé, 2018; Lorenz et al., 2018; Brunner et al., 2019).

::::::::
Building

:::
on

the work of Merrifield et al. (2019)
:::::::::::::::::::
Merrifield et al. (2020), we use a combination of two global, climatology-based diagnos-

tics, the spatial pattern of climatological temperature (tasCLIM) and sea level pressure (pslCLIM), that
::
as

::::::
similar

::::::::::
diagnostics

were found to work well for clustering CMIP5-generation models known to be similar. This definition of independence does not

:::::
Beside

::::
our

::::::::
approach,

::::::
several

:::::
other

:::::::
methods

::
to

:::::
tackle

:::
this

:::::
issue

::
of

:::::
model

::::::::::
dependence

:::::
exist.

:::::::
Among

::::
them

:::
are

:::::::::
approaches

::::::
which155

:::
use

::::
other

::::::
metrics

::
to
::::::::
establish

:::::
model

:::::::::::
independence

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Pennell and Reichler, 2011; Bishop and Abramowitz, 2013; Boé, 2018),

:::::
which

:::::
select

:
a
:::::
more

::::::::::
independent

:::::::
sub-set

::
of

:::
the

:::::::
original

::::::::
ensemble

:::::::::::::::::::::::::::::::::::::
(e.g., Leduc et al., 2016; Herger et al., 2018a),

::
or

:::::
even

::::
treat

:::::
model

::::::::
similarity

:::
as

:::
an

::::::::
indication

:::
for

::::::::::
robustness

:::
and

::::
give

:::::::
models

::::::
which

:::
are

:::::
closer

:::
to

:::
the

:::::
multi

::::::
model

:::::
mean

:::::
more

::::::
weight

:::::::::::::::::::::::::::::::::::::::::::
(e.g., Giorgi and Mearns, 2002; Tegegne et al., 2019).

::::::
Neither

::
of
:::::
these

:::::::::
definitions

::
of

:::::::::::
independence

:
hold in a purely

:::::
strictly

:
sta-

tistical sense (Annan and Hargreaves, 2017), but we still stress that it is important to account for different degrees of model160

inter-dependencies as well
::::
good as possible when developing probabilistic estimates from an “ensemble of opportunity” such

as CMIP6. We validate this approach in section 4.2 of the results
::::::::
Additional

:::::::::
discussion

:::::
about

::::
our

::::::
method

::
to
::::::::

calculate
::::::
model

:::::::::::
independence

::
in

:::
the

::::::
context

:::
of

::::
other

::::::::::
approaches

:::
can

::
be

:::::
found

:::
in

::::::
section

::
S4

::
of

:::
the

::::::::::
supplement.

The performance weighting, in turn, allocates more weight to models which better represent the observed behavior of the

climate system as measured by the diagnostics, while down-weighting models with large discrepancies from the observations.165

We use multiple diagnostics to limit overconfidence in the case where a model fits the observations well in one diagnostic by

chance, while being far away from them in several others. For example, we want to avoid giving heavy weight to a model

based solely on its representation of the temperature trend if its year-to-year variability differs strongly from observed year-

to-year variability. The performance weights are based on five global, horizontally-resolved diagnostics: temperature anomaly

(tasANOM; calculated from tasCLIM by removing the global mean), temperature variability (tasSTD), pslANOM, and pslSTD170

as well as temperature trend (tasTREND).
:
A
:::::::
detailed

::::::::::
description

::
of

:::
the

:::::::::
diagnostic

:::::::::
calculation

::::
can

::
be

:::::
found

:::
in

::::::
section

:::
S2

::
in

::
the

:::::::::::
supplement.

:
We use anomalies instead of climatologies in the performance weight in order to avoid punishing models

for absolute bias in global-mean temperature and pressure, because these are not correlated with projected warming (Flato

et al., 2013; Giorgi and Coppola, 2010). This can be different for regional cases, where, e.g., absolute temperature biases have

been shown to be important for constraining projections of Arctic sea ice extent (Knutti et al., 2017b) or European summer175

temperatures (Selten et al., 2020).

One aim of our study is to find an optimal combination of diagnostics that successfully constrains projections for our target

quantity (global temperature change) while avoiding overconfidence or susceptibility to uncertainty from internal variability.

For example, tasTREND is a powerful diagnostic because of its clear physical relationship to and high correlation with pro-

jected warming (e.g., Tokarska et al., 2020; Nijsse et al., 2020)
:::::::::::::::::::::::::::::::::::::
(e.g., Nijsse et al., 2020; Tokarska et al., 2020). However, while180

it has the highest correlation to the target of all investigated diagnostics, it also has the largest uncertainty due to internal vari-
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ability (i.e., spread of tasTREND across ensemble members of the same model). Ideally, a performance weight is reflective

of underlying model properties and does not depend on which ensemble member is chosen to represent that model(i. e., on

internal variability).
:
. tasTREND does not fulfil this requirement: the spread within one model is the same order of magnitude

as the spread among different models. To find a compromise, we divide our diagnostics into two groups: trend-based diag-185

nostics (tasTREND) and not-trend based diagnostics (tasANOM, tasSTD, pslANOM, and pslSTD). Different combinations of

these two groups (ranging from only not-trend based to only tasTREND) are evaluated in section 3.1 and the best performing

combination is selected for the remainder of the study.

2.5 Calculation
:::::::::
Estimation

:
of the shape parameters

The shape parameters σD and σS ::
are

::::
two

::::::::
constants

::::::
which determine the width of the Gaussian weighting functions .

:::
for190

::
all

:::::::
models.

:::
As

::::
such

::::
they

::::
are

:::::::::
responsible

:::
for

::::::::::
translating

:::
the

::::::::::
generalised

::::::::
distances

:::
into

::::::::
weights.

:
In case of the performance

weighting, small values of σD lead to very aggressive weighting with a few models receiving all the weight, while large values

lead to more equal weighting.
:
It

::
is

::::::::
important

::
to

::::
note

::::
that,

:::::
while

:::
σD::::

sets
:::
this

:::::::::
“strength”

::
of

:::
the

:::::::::
weighting,

:::
the

:::::
rank

::
of

:
a
::::::
model

::::
(i.e.,

:::::
where

::
it

:::
lies

::
on

:::
the

:::::
scale

::::
from

::::
best

::
to

::::::
worst)

:
is
::::::
purely

:::::
based

:::
on

::
its

::::::::::
generalised

:::::::
distance

::
to

:::
the

:::::::::::
observations. To estimate a

performance shape parameter σD that weights models based on their historical performance without being overconfident, we195

use
:
a
:::::::::
calibration

::::::::
approach

:::::
based

::
on

:
the perfect model test detailed in Knutti et al. (2017b)

::
in

::::::::::::::::::::
Knutti et al. (2017b) and

:::::::
detailed

::
in

::::::
section

::
S3

::
in
:::
the

::::::::::
supplement. In short, the test

::::::::
calibration

:
selects the smallest σD value (hence the strongest weighting) for

which 80% of perfect models
:::::::
“perfect

:::::::
models” fall within the 10-90 percentile range of the weighted distribution .

::
in

:::
the

:::::
target

::::::
period.

::::::
Smaller

:::
σD::::::

values
::::
lead

::
to

:::
less

:::::::
models

:::::::
fulfilling

::::
this

:::::::
criterion

:::
and

:::::
hence

::
to
::::
too

::::::
narrow,

:::::::::::
overconfident

::::::::::
projections.

:
Note

that methods that simply maximize correlation of the weighted mean to the target in a perfect model test often tend to pick200

small values of σD that result in projections that are overconfident in the sense that the uncertainty ranges are too small (Knutti

et al., 2017b).
::
A

::::::
similar

::::
issue

:::::
arises

:::
for

:::::::
methods

::::::
which

:::::::
estimate

:::
σD :::::

based
::::
only

::
on

::::::::
historical

::::::::::
information

::
as

:::::
better

:::::::::::
performance

::
in

:::
the

::::
base

::::
state

::::
does

::::
not

:::::::::
necessarily

::::
lead

::
to

::
a
::::
more

:::::
skill

:::::::::::
representation

:::
of

:::
the

::::::
future,

::::
e.g.,

::
if

:::
the

::::::
chosen

:::::::::
diagnostics

::::
are

:::
not

::::::
relevant

:::
for

:::
the

:::::
target

::::::::::::::::::::::::::
(Sanderson and Wehner, 2017).

The independence weighting has a subtle but fundamentally different dependence on its shape parameter σS : small values205

lead to equal weighting, as all models are considered to be independent, but so do large values, as all models are considered to be

dependent. Hence, the effect of the independence weighting is strongest if the shape parameter is chosen such that it identifies

clusters of models as similar (down-weighting them) while still correctly identifying models which are far from each other as in-

dependent (hence giving them relatively more weight)(see revised version of Merrifield et al., 2019, for a more detailed discussion including SMILEs).

:
.
:::
For

:
a
:::::::
detailed

:::::::::
discussion

::::::::
including

:::::::
SMILEs

:::
see

:::::::::::::::::::
Merrifield et al. (2020).

:
To estimate σS , we use the information from models210

with more than one ensemble member. We know that
:::::
Simply

::::
put,

:::
we

:::::
know

:::
that

:::::::::::::
initial-condition

:
ensemble members are copies

of the same model that differ only due to internal variability, and therefore we have a priori
::::
some information about the correct

independence weighting.
::::::::
distances

:::
that

:::::
must

::
be

:::::::::
considered

::::::
“close"

:::
by

:::
σS .

::::
The

::::::
method

:::
for

:::::::::
calculating

:
σS is

::::::::
described

::
in

:::::
detail

::
in

::::::
section

::
3

::
of

:::
the

::::::::::
supplement

::
of

::::::::::::::::::
Brunner et al. (2019).

:::::
Here,

:::
we

::::::
arrive

::
at

:
a
:::::

value
:::

of
:::::::::
σS = 0.54,

::::::
which

:::
we

:::
use

::::::::::
throughout

::
the

::::::::::
manuscript.

::
It
::

is
::::::
worth

:::::
noting

::::
that

:::
σS::

is
:
based only on historical

:::::
model information, and is therefore independent from215
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::::::::::
observations

::
or

:
the selected target period or scenario. Following the method described in detail in Brunner et al. (2019), we

arrive at a value of σS = 0.54, which we use throughout the manuscript
:::
and

::::::::
scenario.

:::::::::
Additional

:::::::::
discussion

::
of

:::
the

:::::::
selected

:::
σS

::::
value

::
in

:::
the

:::::::
context

::
of

:::
the

::::::::::
multi-model

::::::::
ensemble

::::
used

::
in
::::
this

:::::
study

:::
can

::
be

:::::
found

:::
in

::
the

::::::::::
supplement

:::::::
(section

:::
S5).

2.6 Validation of the performance weighting

To investigate the skill of ClimWIP in weighting CMIP6 global mean temperature change and the effect of the different diagnos-220

tic combinations(different relative importance of tasTREND) ,
:
we apply a perfect model test

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Abramowitz and Bishop, 2015; Boé and Terray, 2015; Sanderson et al., 2017; Knutti et al., 2017b; Herger et al., 2018a, b; Abramowitz et al., 2019).

As a skill measure
:
, we use the continuous ranked probability skill score (CRPSS), a measure for ensemble forecast quality,

defined as the relative error between the distribution of weighted models and a reference (Hersbach, 2000). Here, we define

the CRPSS as relative
:::
use

:::
the

::::::
relative

::::::
CRPSS

:
change between the unweighted and weighted cases (in %), with positive values

indicating a skill increase. The CRPSS is calculated separately for both SSPs and future time periods, since we expect to find225

different skill for different projected climate states.

The first perfect model test is based only on the CMIP6 MME and focuses on evaluating the performance weighting
::::
only

::::::
focuses

:::
on

:::
the

::::::
relative

::::
skill

::::::::::
differences

:::::
when

:::::::
applying

:::::::::::
performance

:::::::
weights

:::::
based

:::
on

:::::::
different

::::::::::::
combinations

::
of

::::::::::
diagnostics

(results are presented in section 3.1). We explain its implementation based on an example perfect model mj with only one

ensemble member for simplicity here: (i) the model mj is taken as pseudo-observation and removed from the CMIP6 MME;230

(ii) the output from mj during the historical
::::::::
diagnostic

:
period (1980-2014) is used to calculate the performance diagnostics for

the remaining models (d′i 6=j); (iii) the generalised model-“observation” distances (Di6=j) and the performance weights (wi 6=j)

are calculated and applied to the MME (excluding mj); (iv) the CRPSS is calculated
:
in

:::
the

::::::
target

::::::
periods

:
using the future

projections of mj as reference. This is done iteratively, using each model in CMIP6 MME in turn as pseudo-observation.

For perfect models with more than one ensemble member (mk
j ), all members are removed from the ensemble in (i), d′i 6=j is235

calculated for each member separately in (ii) and then averaged, and the CRPSS is also calculated for each ensemble member

in (iv) and averaged.

We note that a similar perfect model test is also an integral part of ClimWIP as it is used to estimate
::::
This

::::::::
approach

::
is

:::::::::
structurally

::::::
similar

::
to

:::
the

::::
one

::::
used

::
to

:::::::
calibrate

:
the performance shape parameter σD :

as
:::::::
integral

::::
part

::
of

::::::::
ClimWIP (described in

section 2.5), which introduces a small amount of circularity in this test. However, it is still valuable to investigate the skill of240

the weighting method using this test to (i)
::
the

::::::
metric

:::
and

:::
aim

::
of

::::
this

::::::
perfect

:::::
model

:::
test

:::
are

:::::
quite

::::::::
different.

:
It
::
is

::::
used

::
to

:
show the

potential for an increase in skill through
:
a

:::
skill

::::::::
increase

::::::
through

:::
the

:::::::::::
performance weighting, as well as the risk of a decrease ,

(ii) cross-check the
::::
based

:::
on

:::
the

:::::::
selected σD calculation, and (iii) compare different fractions of trend- versus not-trend-based

diagnostics, in order
:::
and to establish the most skilful combination

::
of

:::::::::
diagnostics.

The second perfect model test (section 3.2) is conceptually equivalent
::::::
similar, but pseudo-observations are

::::
now drawn from245

CMIP5
::::::
instead

::
of

::::::
CMIP6. This test has the advantages that we can always use the full CMIP6 MME (without having to remove

any models) and that the
::
the

:
perfect models have not been used to estimate σD and can be considered independent, at least

in a methodological sense. Note that they are not necessarily independent in a model sense
:
.
:::::
Even

::::::
though

:::
one

::::::
might

:::::
argue

:::
that

::::
also

:::
the

:::::::
CMIP5

:::::::::::::::::
pseudo-observations

:::
are

:::
not

::::
fully

::::::::::::
out-of-sample

:
as several CMIP6 models descend from

::
are

:::::::
related

::
to
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CMIP5 models and might be structurally similar to their predecessors, which was the case for the CMIP5 and 3 generations250

(Knutti et al., 2013). However, there are also considerable differences between CMIP5 and 6 that arise from many years of

additional model development, a longer observational record to tune
:::::::
calribrate

:
to, and differing spatial resolutions. In addition,

the emission scenarios that force CMIP5 and 6
:
in
:::
the

::::::
future (RCPs and SSPs, respectively) result in slightly different radiative

forcings (Forster et al., 2020) ; determining how these scenario families differ is currently an active area of research
:::
and

::::::
several

::::::
CMIP6

::::
have

::::
been

::::::
shown

::
to

::::
lead

::
to

::::::::::
considerably

:::::
more

::::::::
warming

::::
than

::::
most

::::::
CMIP5

::::::
models. We do not discuss these similarities255

and differences
:::::::
between

:::
the

:::::
model

::::::::::
generations in detail here; instead we

::::::
simply use CMIP5 simply as a source of additional

::
for

:
pseudo-observations to evaluate the skill of ClimWIP for

:
in

:
weighting the CMIP6 MMEto improve the fit to a given .

:::
To

::::
avoid

:::::
cases

::::
with

::::
the

::::::
highest

::::::::
potential

::
of

:::::::::
remaining

::::::::::
dependence

:::::::
between

::::::::::
generations

:::
we

:::::::
exclude

:::::::
CMIP6

::::::
models

::::::
which

:::
are

:::::
direct

::::::::::
predecessors

::
of

:::
the

:::::::::
respective CMIP5 model

::::
used

::
as

::::::
pseudo

:::::::::::
observations

::::
(see

::::
table

:::
S5

::
for

::
a
:::
list).

2.7 Validation of the independence weighting260

To validate that the information in the diagnostics chosen for the independence weighting (tasCLIM and pslCLIM) can identify

models known to be similar, we use a hierarchical clustering approach based on Müllner (2011) and implemented in the Python

SciPy package (www.scipy.org). We use the linkage function with the average method applied to the horizontally-resolved

distance fields between each pair of models
:::
(see

:::::::
section

::
S6

::
in

:::
the

::::::::::
supplement

:::
for

::::
more

:::::::
details). This approach is conceptually

similar to the work from Masson and Knutti (2011) and Knutti et al. (2013) and follows their example of showing similarity265

as model “family trees”. The hierarchical clustering is not used in the model weighting itself; we use it here only to show

that qualitative information about model similarity can be inferred from model output using the two chosen diagnostics and to

compare it to the results from the independence weighting.

The independence weighting (denominator in equation (1)) quantifies the similarity information extracted from the pairwise

distance fields via the independence shape parameter (σS ; see section 2.5). The independence weighting estimates where two270

models fall on the spectrum from completely independent to completely redundant and weights them accordingly. In order to

test this approach, we successively add artificial “new” models into the CMIP6 MME: for an example model with two members

(m1
j and m2

j ), we remove the first member and add it as additional model (mM+1). In an idealized case, where all models are

perfectly independent from each other and all ensemble members of a model are identical, we would expect the weight of the

member that remains (m2
j ) to go down by a factor 1/2, while the weight of all other models would stay the same. However, in275

a real MME, where there is internal variability and complex model inter-dependencies exist, we would not necessarily expect

such simple behaviour; several other models might also be (rightfully) affected by adding such a duplicate while the effect on

the m2
j would be smaller (see section 4.2)
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Figure 1. Continuous ranked probability skill score (CRPSS)
:::::
relative

::
to
:::
the

:::::::::
unweighted

:::::::
ensemble

:::
for

:::
the

:::::::::
performance

::::::::
weighting based on

a leave-one-out perfect model test with CMIP6 for (a) mid-century and (b) end-of-century temperature change relative to 1995-2014. The

x-axis shows different combinations of the two diagnostic groups (see section 2.4) ranging from only not-trend based (0% tasTREND) to

only trend-based (100% tasTREND).
::::
Values

:::
not

:::::::
summing

::
to
:::::::
100% is

:::
due

::
to

:::::::
rounding

::
in

::
the

:::::
labels

::::
only.

3 Evaluation of the weighting in the perfect model test

3.1 Leave-one-out perfect model test with CMIP6280

We start by calculating the performance weights in
::
the

:::::::::
diagnostic

::::::
period

::::::::::
(1980-2014)

::
in

:
a pure model world and without using

the independence weighting. In this first step we focus on the evaluation of the performance weighting
::::::
relative

:::
skill

::::::::::
differences

when using different combinations of diagnosticsand on calculating the ideal performance shape parameters (σD). Figure 1

shows the distribution of the CRPSS (with positive values indicating an increase in projection skill due to the weighting

and vice versa; see section 2.6) evaluated for
:::
two the mid- and end-of-century

::::
target

:
periods, the two SSPs, and for different285

combinations of diagnostics. The diagnostics range from only not-trend based (0% tasTREND ; using only tasANOM , tasSTD

, pslANOM , and pslSTD
::
+

:::::::::::::
25% tasANOM

::
+

:::::::::::
25% tasSTD

:
+
::::::::::::::
25% pslANOM

::
+

:::::::::::
25% pslSTD

::
=

:::::
100%) to only tasTREND

based (100% tasTREND). Overall, all diagnostic combinations tend to increase median skill compared to the unweighted

projections, but there is a considerable range of CRPSS values and they can be negative. In evaluating the different cases we

hence focus on two important aspects of the CRPSS distribution: (i) the median as best estimate of expected relative skill290

change and (ii) the 5th and 25th percentiles in particular if they are negative. Negative CRPSS values indicate a worsening

of the projections compared to the unweighted case. Since the goal of the weighting is to improve the projections based on

performance and dependence of the models, the risk of negative CRPSSs should be minimised.

We find the σD-values to be correctly chosen
::::::::
calibrated

:
by the method in order to limit the risk for a strong skill decrease

(CRPSS is close to zero or positive for the 25th percentile in almost all cases). For the mid-century period, the median skill295
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Figure 2. Time series of temperature change (relative to 1995-2014) for unweighted (gray) and weighted (colored) CMIP6 mean (lines) and

likely (66%) range (shading) as well as the CMIP5 models serving as pseudo-observations (dashed lines). Shown are the cases wich
:::::
which

lead to (a) the largest decrease in skill (CMIP5 pseudo-observation: CanEMS2
:::::::::::
MIROC-ESM) and (b) to the largest increase (MPI-ESM-LR)

for SSP5-8.5 in the end-of-century
::::
target period. Note that no inference on the performance of the CMIP5 models can be drawn from this

figure.
::::::::
Diagnostic

:::::
period

::::
refers

::
to
:::
the

::::::::
1980-2014

::::::
period,

:::::
which

::::::
informs

::
the

:::::::
weights;

::
the

:::::
target

::::::
periods

::
to

::::::::
2041-2060

:::
and

:::::::::
2081-2100.

increases by about 10% to 20% across both SSPs and all
::
up

::
to

:::::::::::::
25% depending

:::
on

::::
SSP

:::
and

:
combination of diagnostics. The

magnitude of potential negative CRPSSs in a “worst-case” scenario (5th percentile), however, is better constrained using a

balanced combination of diagnostics (e.g., 50% tasTREND). In the end-of-century period, the median skill is more variable

(mainly due to the selected performance shape parameters σD; see table S1), with combinations that include both trend and

not-trend diagnostics again performing best.300

Using 50% tasTREND and 50% anomaly- and variance-based diagnostics (tasANOM, tasSTD, pslANOM,
:::::
about

::::::::::::::
13% tasANOM,

:::::::::::
13% tasSTD,

::::::::::::::
13% pslANOM,

::::
and

:::::
13% pslSTD) optimises the combination of median CRPSS increases and avoidance of

possible negative CRPSSs; we therefore use this combination to calculate the weights for the rest of the analysis. Note that

the two SSPs and time periods have slightly different σD values (ranging from 0.35 to 0.58; table S1), leading to slightly

differing weights even though the historical information is the same. This arises from differences in confidence when applying305

the method for different targets. However, since the σD values are found to be so similar we use the mean value from the two

SSPs and time periods in the following for simplicity, hence σD = 0.43. This does not have a strong influence on the results

but simplifies their presentation and interpretation.

3.2 Perfect model test using CMIP5 as pseudo-observations

We now use each of the 27 CMIP5 models in turn as pseudo-observation and include both the performance and independence310

parts of the method. For all considerations in this section
:
, we use the CMIP5 merged historical and RCP runs corresponding to

the CMIP6 historical and SSP runs, i.e., RCP2.6 to SSP1-2.6 and RCP8.5 to SSP5-8.5. This allows an evaluation of the skill

11



of the
:::
full

:
weighting method applied to the full CMIP6 MME in the future. Figure 2 shows two cases selected to lead to the

largest decrease (figure 2a) and increase (figure 2b) in the CRPSS for SSP5-8.5 in the end-of-century period when applying

the weights. The figures reveal
::::
This

::::::
reveals an important feature of the weighting: if the unweighted MME is already close to315

the “truth” the risk for a skill decrease is highest (
::::::::::
constraining

:::::::
methods

:::
in

:::::::
general:

::::
there

::
is
::
a
:::
risk

::::
that

:::
the

::::::::::
information

:::::
from

::
the

::::::::
historical

::::::
period

:::::
might

:::
not

::::
lead

::
to
::
a
::::
skill

:::::::
increase

::
in

:::
the

::::::
future.

::
In

:::
the

::::
case

::::::
shown

::
in figure 2a ). In other words, using the

CMIP5 model CanESM2, which happens to be close to the unweighted CMIP6 MME mean , as
::::::::
weighting

:::::
based

:::
on pseudo-

observations to weigh CMIP6 tends to pull the CMIP6 MME mean
::::
from

::::::::::::
MIROC-ESM

::::
shifts

:::
the

::::::::::
distribution

::::::::::
downwards,

:::::
while

:::::::::
projections

::::
from

::::::::::::
MIROC-ESM

:::
end

:::
up

:::::::
warming

:::::
more

::::
than

:::
the

::::::::::
unweighted

::::
mean

:::
in

::
the

::::::
future.

::::
This

::::::
reflects

:::
the

:::::::::
possibility

::::
that320

:::::::::
information

::::::
drawn

::::
from

::::
real

::::::::
historical

::::::::::
observations

::::::
might

:::
not

:::
lead

::
to
:::
an

:::::::
increase

::
in

:::::::::
projection

::::
skill

::
in

::::
some

::::::
cases.

::::
Here

:::::
cases

::
of

:::::::::
decreasing

::::
skill

:::::
appear

:::
for

:::::
about

:::::::
15% of

:::::::::::::::::
pseudo-observations.

:

:::
The

::::::
largest

::::
skill

:::::::::
increases,

::
in

::::
turn,

:::::
often

::::::
comes

::::
from

:::::::::::::::::
pseudo-observations

::::::
rather

:::
far away from the pseudo-observational

“truth”. In the reverse case
::::::::::
unweighted

:::::
mean.

:
It
::::::
seems

:::
that, if the “truth” is

::::::::::::::::
pseudo-observations

::::::
behave

:
very different from the

MME mean – e.g., the CMIP5 model MPI-ESM-LR being rather different from the CMIP6 MME mean –, the potential for a325

skill increase is highest (figure 2b).
:::::
model

::::::::
ensemble

::
in

:::
the

::::::::
historical

::::::
period,

::::
there

::
is

:
a
:::::
good

::::::
chance

:::
that

::::
they

::::
will

:::::::
continue

::
to

:::
do

::
so

::
in

:::
the

::::::
future.

:::
One

::::::::::
explanation

:::
for

:::
this

:::::
could

:::
be

:
a
:::::::::
systematic

:::::::::
difference

:::::::
between

:::
the

::::::
models

::
in

:::
the

::::::::
ensemble

::::
and

:::
the

::::::
pseudo

:::::::::
observation

::::
due

::
to,

:::::
e.g.,

:
a
:::::::
missing

::::::::
feedback

::
or

::::::::::
component.

:
An important cautionary takeaway is thus to not only maximise

median
:::::
mean skill increase when setting up the method, as the cases with highest skill might come from rather “unrealistic”

pseudo-observations (i.e., the ones on the tails of the model distribution, like
:
).

::::
This

::
is illustrated in figure 2 and figure S1

::
S5330

::
in

:::
the

::::::::::
supplement

::::
(e.g.,

:::::
using

:::
the

:::::::
CMIP5

::::::
GFDL

::
or

:::::
GISS

:::::::
models

::
as

:::::::
pseudo

::::::::::
observations). However, in many cases we do

not necessarily expect the real climate to follow such an extreme trajectory but rather be closer to the unweighed
::::::::::
unweighted

MME mean (in part because real observations tend to be used in model development and tuning). It is thus important to use

a balanced set of multiple diagnostics
:::
and

:::
not

:::::
only

:::::::
optimise

:::
for

::::::::
maximal

:::::::::
correlation

:::
in

::::::::
choosing

:::
σD, which might make

the highest possible skill increases unattainable, but – maybe more importantly – guard against even more substantial skill335

decreases.

::::::
Finally,

::
it

::
is

::::::::
important

::
to

::::
note

::::
that

:::
the

::::
skill

::
of

:::
the

:::::::::
weighting

:::
for

:
a
:::::
given

::::::::::::::::
pseudo-observation

::::
also

:::::::
depends

:::
on

:::
the

:::::
target.

:::
In

::::::
isolated

:::::
cases

::::
that

:::
can

:::::
mean

::::
that

:::
the

:::::::::
weighting

::::
leads

:::
to

::
an

:::::::
increase

:::
in

::::
skill

:::
for

:::
one

::::
SSP

:::::
while

::
it
:::::
leads

::
to

::
a
:::::::
decrease

:::
in

:::
the

::::
other

:::::
(e.g.,

::::::::::::::
IPSL-CM5A-LR

::
as

:::::::::::::::::
pseudo-observation)

::
or

::
to
:::

an
:::::::
increase

::
in

::::
one

::::
time

::::::
period

:::
and

::
to

::
a
:::::::
decrease

::
in

:::
the

:::::
other

:::::
(e.g.,

:::::::::::::::
CSIRO-Mk3-6-0). An overview of the weighting based on each of the 27 CMIP5 models can be found in figure S1

:::
S5 in the340

supplement.

To look into the skill change more quantitatively, figure 3a shows the skill distribution of weighting CMIP6 to predict each

of the pseudo-observations drawn from CMIP5 for both
:::::
target time periods and scenarios.

:::
We

::::
note

:::::
again

:::
that

:::
for

::::
each

:::::::
CMIP5

::::::::::::::::
pseudo-observation

::::::
directly

::::::
related

::::::
CMIP6

:::::::
models

::
are

::::::::
excluded

::::
(see

::::
table

:::
S5

::
for

::
a
::::
list). Compared to the leave-one-out perfect

model test with CMIP6 shown in figure 1 the increase in median CRPSS is lower and the risk for negative CRPSSs is slightly345

higher. This is not unexpected for a test sample , which has not been used for training (i.e., the estimation of the σD-value)

and
:::::
which

:
is structurally different from CMIP6 in several aspects (such as forcing scheme and maximum amount of warming).
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Figure 3. (a) Similar to figure 1 but using 27 CMIP5 models as pseudo-observations and showing only the 50% tasTREND case. (b) Map

of median of
::
the CRPSS values

:::::
relative

::
to
:::
the

:::::::::
unweighted

:::::::
ensemble

:
for 2041-2060 under SSP5-8.5

But the setup still achieves a median CRPSS increase of about 10% to 20%
::::::::::
12% to 22%, with the risk of

::
for

:
a skill reduction

being mostly confined to less than 25%, clearly showing
:::::::
confined

::
to

:::::
about

::::::
15% of

:::::
cases

:::
and

::
to

::
a
::::::::
maximum

::::::::
decrease

::
of

:::::
about

:::::
25%.

::::
This

::::::
clearly

::::::
shows that ClimWIP can be used to provide reliable estimates of future global temperature change and350

related uncertainties from the CMIP6 MME.

Finally, we consider the question of whether there are regional patterns in the skill change by investigating a map of median

CRPSSs for SSP5-8.5 in the mid-century period in figure 3b (see figure S2
::
S6

:
in the supplement for the other cases). Note

that each CMIP6 model is still assigned only one weight, but the CRPSS is calculated at each grid point separately. The skill

increases almost everywhere with the northern hemisphere having a slightly higher amplitude. A notable exception is the355

North Atlantic, where weighting leads to a slight decrease in median skill. Indeed, this is the only region where the unweighted

CMIP6 mean underestimates the warming from CMIP5. Weighting the CMIP6 ensemble leads to a slight strengthening of the

underestimation in this region, while it reduces the difference almost everywhere else.

In summary, weighting CMIP6 in a perfect model test using five different diagnostics to establish model performance and

two diagnostics for independence shows an increase in
:
a

::::
clear

:::::::
increase

::
in

::::::
median

:
skill compared to the unweighted distribution360

for the vast majority of cases and consistent over both investigated scenarios and time periods. Looking into the geographical

distribution reveals an increase in skill almost everywhere, with some decreases found in the Southern Ocean, particularly

in SSP1-2.6 (figure S2
:::
S6). Importantly, skill increases almost everywhere over land, thus benefiting assessments of climate

impacts and adaptation where people are affected most directly.
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4 Weighting CMIP6 projections of future warming based on observations365

So far we have selected a combination of diagnostics, which leads to the highest increase in median skill while minimising the

risk for a skill decrease based on an out-of-sample perfect model test with CMIP6 in section 3.1. We also argued that we use

the same shape parameters (which determine the strength of the weighting) for all cases, namely σS = 0.54 for independence

and σD = 0.43 for performance. In section 3.2 we then evaluated this setup by using
::
27 pseudo-observations drawn from the

CMIP5 MME. In this section we now calculate weights for CMIP6 based on observed climate and validate the effect of the370

independence weighting.

We use observational surface air temperature and sea level pressure estimates from the ERA5 and MERRA2 reanaly-

ses to calculate the performance diagnostics (tasANOM, tasSTD, tasTREND, pslANOM, pslSTD). The combination of two

reanalysis products allows to account for observational uncertainty, which has been found to be important for robust weighting

in earlier work by Brunner et al. (2019) and Lorenz et al. (2018). As independence diagnostics we continue to use model-model375

distances in tasCLIM and pslCLIM.

4.1 Calculation of weights for CMIP6

Figure 4 shows the combined performance and independence weights assigned to each CMIP6 model by ClimWIP when

applied to the target of global temperature change. Three general regimes can be identified: (i) models which represent historical

observations better than average receive relative weights mostly between
::
In

:::::::
addition

::::
also

:::
the

:::::::::
individual

:::::::::::
performance

::::
and380

:::::::::::
independence

:::::::
weights

:::
are

::::::
shown.

:::
All

:::::
three

:::::
cases

:::
are

::::::::::
individually

::::::::::
normalised.

::::::::
Applying

::::
the

::::::::
combined

:::::::
weight,

:::::
about

:::
half

:::
of

::
the

:::::::
models

::::::
receive

:::::
more

::::::
weight

::::
than

:::
in

:
a
::::::
simple

:::::::::
arithmetic

:::::
mean

::::
and

:::::
about

::::
half

::::::
receive

::::
less.

::::
The

::::
best

::::::::::
performing

::::::
model,

::::::::::::
GFDL-ESM4,

::::
has

:::::
about

::::
four

::::
times

:::::
more

::::::::
influence

::::
than

::
it

:::::
would

::::
have

:::::::
without

::::::::
weighting

::::::
(about

::::
0.13

:::::::::
compared

::
to

::::
0.03

::
in

:::
the

:::
case

::::
with

:::::
equal

::::::::::
weighting).

:::
The

:::::
three

:::::
lowest

::::::::::
performing

:::::::
models,

::::::::::::
MIROC-ES2L,

:::::::::
CanESM5,

::::
and

::::::::::::::::::
HadGEM3-GC31-LL,

::
in

::::
turn

::::::
receive

:::
less

::::
than

:
1and 2 (with a maximum of about 4), (ii)models which represent historical observations slightly less well, but385

can still be considered skillful representations of the climate system, receive relative weights mostly between 1 and 0.5, and

(iii)models which can be considered less skillful based on their past performance receive weights of less than 0.2.
::
/20

:::
of

:::
the

::::
equal

:::::::::
weighting

:::::
(about

:::::::
0.001).

::::::
Indeed,

::::::
several

:::::
recent

:::::::
studies

::::
have

:::::
found

::::
that

::::::
models

:::::
which

:::::
show

:::::
more

:::::
future

:::::::
warming

::::
per

:::
unit

::
of

::::::::::
greenhouse

:::
gas

:::
are

::::
less

:::::
likely

::::
based

:::
on

::::::::::
comparison

:::
with

::::
past

:::::::::::
observations

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Jiménez-de-la Cuesta and Mauritsen, 2019; Nijsse et al., 2020; Tokarska et al., 2020).390

::::::::
Consistent

:::::
with

::::
their

:::::::
findings

::::::
models

::::
with

::::
high

:::::
TCR

::::::
receive

::::
very

:::
low

:::::::::::
performance

::::
(and

:::::::::
combined)

:::::::
weights

:::::
(label

:::::::
colours

::
in

:::::
figure

::
4).

:::::::
Among

:::
the

:::
five

::::::
lowest

::::::
ranking

:::::::
models

:::
four

:::::
have

:
a
::::
TCR

::::::
above

:::::::::
2.5 °C and

::
all

::::::
models

::::
with

:::::
TCR

:::::
above

::::::::::::
2.5 °C receive

:::
less

::::
then

:::::
equal

:::::::
weight.

::::
The

::::
eight

:::::::
highest

:::::::
ranking

:::::::
models,

::
in

::::
turn,

:::::
have

::::
TCR

::::::
values

:::::::
ranging

:::::
from

:::::::::::::::::
1.5 °C to 2.5 °C and

:::
lie,

::::::::
therefore,

:::::
rather

::
in

:::
the

::::::
middle

::
of

:::
the

:::::::
CMIP6

::::
TCR

::::::
range.

:::
See

:::::
table

::
S2

::
in
:::

the
::::::::::

supplement
:::
for

::
a

::::::::
summary

::
of

::
all

::::::
model

:::::::
weights

:::
and

::::
TCR

::::::
values.

:
395

In addition
::
to

::
the

:::::::::
combined

::::::::
weighting, figure 4 also shows the pure performance weights . The relative differences

:::::::::::
independence

:::
and

:::::::::::
performance

:::::::
weights

:::::::::
separately.

::::
We

::::::
discuss

::::::
model

::::::::::::
independence

:::
in

:::::
more

:::::
detail

::
in

::::
the

::::
next

:::::::
section.

::::
For

:::
the

::::::
model
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Figure 4. Combined independence-performance weights for each CMIP6 model (line with dots) and
:::
was

:::
well

::
as
:
pure performance weights

(squares) relative to equal weighing
:::
and

::::
pure

::::::::::
independence

::::::
weights

::::::::
(triangles). Weights smaller than 0.2 times

::
All

::::
three

::::
cases

:::
are

:::::::::
individually

::::::::
normalised

:::
and

:::
the equal weighting are only

::::
each

::::
model

:::::
would

::::::
receive

::
in

:
a
:::::
normal

::::::::
arithmetic

::::
mean

::
is
:
shown as their approximate combined

weight
:::
for

:::::::
reference (fractions in the right bottom corner

:::::
dashed

:::
line). The

::::
labels

:::
are

::::::
coloured

:::
by

::::
each

:::::
models

::::
TCR

:::::
value:

:::::::
> 2.5°C

:
-
::::

red,

:::::
> 2°C

:
-
::::::
yellow,

:::::::
> 1.5°C

:
-
:::::
green,

:::
and

:::::::
≤ 1.5°C

:
-
::::
blue.

::::
The number of ensemble members per model is shown in brackets after the model

namein the x-axis labels.

::::::::::
performance

:::::::::
weighting,

:::
the

:::::::
relative

::::::::
difference

:
to the combined weights are

::::::::
weighting

::::
(i.e.,

:::
the

::::::::
influence

::
of

:::
the

::::::::::::
independence

:::::::::
weighting)

::
is mostly below 50%, with the MIROC model family being one notable exception. Both MIROC models are very

independent, which shifts MIROC6 from a below-average model (based on the pure performance weight; black square in fig-400

ure 4) to an above-average model in the combined weight (black dot) effectively more than doubling its performance weight.

For MIROC-ES2L the scaling due to independence is similarly high(not visible in figure 4), but its total weight is still domi-

nated by the very low performance weight. In the next section we investigate if these independence weights indeed correctly

represent the complex model inter-dependencies in the CMIP6 MME and down-weight models which are highly dependent on

other models appropriately.405

4.2 Validation of the independence weighting

To test if model inter-dependence can correctly be inferred from model output in general, we first take a quantitative approach,

somewhat different to the model (independence) weighting itself.
::::::::
Focusing

::
on

:::
the

::::::::::::
independence

:::::::
weights

::
in

:::::
figure

::
4
:::
one

::::
can

::::::
broadly

::::::::::
distinguish

::::
three

::::::
cases:

:::
(i)

::::::::
relatively

:::::::::::
independent

:::::::
models,

:::
(ii)

:::::::
clusters

::
of

:::::::
models

:::::
which

::::
are

:::::
quite

:::::::::
dependent,

::::
and
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Figure 5. Model “family tree ” for all 33 CMIP6 models used in this study similar to Knutti et al. (2013). Based
::::::
Models

:::::::
branching

::::::
further

:
to
:::

the
:::
left

:::
are

::::
more

:::::::::
dependent,

:::::
models

::::::::
branching

::::::
further

::
to

::
the

::::
right

:::
are

::::
more

::::::::::
independent.

::::
The

::::::
analysis

::
is

:::::
based on global, horizontally

resolved tasCLIM and pslCLIM in the period 1980-2014.
:::
The

:::::::::::
independence

::::
shape

::::::::
parameter

:::
σS ::

is
:::::::
indicated

::
as

::::::
dashed

::::::
vertical

:::
line,

:::
an

::::::::
estimation

::
of

::::::
internal

::::::::
variability

::
as

:::
grey

:::::::
shading.

:
Labels with the same colour indicate models with obvious dependencies such as shared

components or same origin (models with no clear dependencies are labelled in black).Weak relations such as remote “ancestors” are not

colored together (e.g., BCC-CSM2-MR and CESM2).
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Figure 6. Similar to figure 4 but removing one variant
:::::::::::
initial-condition

::::::::
ensemble

::::::
member from (a) MIROC6 and (b) MPI-ESM1-2-HR and

adding it as separate model when calculating the independence weights (the “new” model is not shown in the plot). Models with obvious

dependencies to the “new” model
:::
have

::::
bold

:::::
labels (same as in

:::::::
equivalent

::
to
:
figure 5)have bold labels.

::
The

::::::
change

::
in

:::
the

:::::::
combined

::::::
weight

:::::
relative

::
to

:::
the

::::::
original

:::::
weight

::
is

:::::
shown

::
as

:::
blue

::::
bars

::::
using

:::
the

::::
right

::::
axis.
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:::
(iii)

:::::::
models

:::
for

:::::
which

:::
the

::::::::::::
independence

:::::::::
weighting

::::
does

:::
not

::::::
really

::::::::
influence

:::
the

:::::::::
weighting.

:::
To

::::::::
visualise

:::
and

:::::::
discuss

:::::
these410

::::
cases

:::::::::
somewhat

::::::::::::
quantitatively,

:::
we

:::::
show

:
a
:::::::

CMIP6
::::::
model

::::::
family

:::
tree

:::::::
similar

::
to

:::
the

:::::
work

:::
by

:::::::::::::::::::::::::
Masson and Knutti (2011) and

::::::::::::::::
Knutti et al. (2013).

Using the same two diagnostics, namely horizontally resolved global temperature and sea level pressure climatologies (from

1980-2014) we apply a hierarchical clustering approach (section 2.7). Figure 5 shows the resulting “family tree ”
:::::
family

::::
tree of

CMIP6 models similar to the work by Masson and Knutti (2011) and Knutti et al. (2013). Models
:
In

::::
this

:::
tree

::::::
models

::::::
which

:::
are415

::::::
closely

::::::
related

::::::
branch

::::::
further

::
to

:::
the

:::
left,

:::::
while

::::
very

::::::::::
independent

::::::
model

:::::::
clusters

:::::
branch

::::::
further

::
to
:::
the

:::::
right.

::::
The

:::::
mean

:::::::
distance

:::::::
between

:::
two

::::::::::::::
initial-condition

::::::::
members

::
of

:::
the

:::::
same

::
as

::
an

:::::::::
estimation

:::
for

:::
the

:::::::
internal

:::::::::
variability

::
in

:::
the

::::::::::
generalised

:::::::
distance

::
is

:::::::
indicated

:::
as

::::
grey

:::::::
shading.

::::::
Model

::::::
which

::::
have

::
a
:::::::
distance

::::::
similar

:::
to

:::
this

:::::
value

:::::
(e.g.,

:::
the

::::
two

:::::::::
CanESM5

::::::
model

::::::::
versions)

:::
are

:::::::
basically

:::::::::::::::
indistinguishable.

::::
The

:::::::::::
independence

:::::
shape

:::::::::
parameter

::::
used

:::::::
through

:::
the

:::::::::
manuscript

:::::::::::
(σS = 0.54)

::
is

:::::
shown

:::
as

::::::
dashed

::::::
vertical

::::
line.420

:
A
:::::::::::::

comprehensive
:::::::::::

investigation
:::

of
:::
the

::::::::
complex

::::::::::::::::
inter-dependencies

::::::
within

:::
the

:::::::::::
multi-model

::::::::
ensemble

::
in

::::
use

:::
and

:::::::
further

:::::::
between

::::::
models

:::::
from

:::
the

::::
same

:::::::::
institution

::
or

::
of

:::::::
similar

:::::
origin

::
is

::::::
beyond

:::
the

::::::
scope

::
of

:::
this

:::::
study

::::
and

:::
will

:::
be

::::::
subject

::
of

::::::
future

:::::
work.

::::
Here

:::
we

::::
limit

::::::::
ourselves

::
to
::::::::

pointing
:::
out

::::::
several

::::
base

:::::::
features

::
of

:::
the

:::::::::::
output-based

:::::::::
clustering,

:::::
which

:::::
serve

::
as

::::::::::
indications

:::
that

::
it

:
is
::::::
skilful

::
in

:::::::::
identifying

:::::::::::::
inter-dependent

:::::::
models.

:::
The

::::::
labels

::
of

::::::
models with the same origin or

::::
with known shared compo-

nents are marked in the same colour , as this is
:
in

:::::
figure

::
5.
::::::
These

:::
two

::::::
factors

:::
are the most objective measure for a priori model425

dependence we have. The information about the model components is taken from each models
:::::::
model’s description page on the

ES-DOC explorer (https://es-doc.org/cmip6/) as listed in table S3
::
S4 in the supplement.

Figure 5 clearly shows that clustering models based on the selected diagnostics performs well:
::::::
models

::::
with

::::::
shared

::::::::::
components

::
or

::::
with

:::
the

::::
same

:::::
origin

:::::::::
(indicated

::
by

:::
the

:::::
same

::::::
colour)

:::
are

::::::
always

:::::::
grouped

::::::::
together.

:::::::
Looking

:::
into

::
a
::
bit

:::::
more

:::::
detail

:::
we

::::
find,

:::
for

:::::::
example,

::::
that

::::::
closely related models such as low and high resolution versions (MPI-ESM-2-LR and MPI-ESM-2-HR; CNRM-430

CM6-1 and CNRM-CM6-1-HR) or versions with only one differing component (CESM2 and CESM2-WACCM; INM-CM5-0

and INM-CM4-8; both differing only in the atmosphere) are detected as being very similar. Both MIROC models, which have

been identified as very independent based on figure 4are again ,
::
in
:::::
turn,

::
are

:
found to be very far away from each other and even

further away from all other models in the CMIP6 MME.

To investigate if the independence weighting correctly identifies and weights models based on their degree of inter-dependence435

::::::::
translates

:::::
model

:::::::
distance

::::
into

::::::
weights

:
we now look at two models as examples: one model that performs well and is relatively

independent (MIROC6) and another that also performs well but is more dependent (MPI-ESM1-2-HR). Each has multiple en-

semble members; we remove one member from each and add it to the MME as an additional model as detailed in section 2.7.

In the first case (figure 6a; MIROC6 which is among the least dependent models), the original weight is reduced by almost

1/2, which is close to what we would expect in the idealised case. All other models are unaffected by adding a duplicate440

of MIROC6, even the other model from the same center, MIROC-ES2L which differs in atmospheric resolution and cumulus

treatment (Tatebe et al., 2019; Hajima et al., 2019). Based on the “family tree” shown in figure 5 this behaviour is not surprising:

the two MIROC models are not only identified as the most independent models in the CMIP6 MME but also as very independent
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from each
::::
other. While some of the components and parameterizations are similar, updates in parameterizations and in the

tuning of the parameters appear to be sufficient here to create a model that behaves quite differently.445

The second case (figure 6b; MPI-ESM1-2-HR which is among the most dependent models) shows a very different picture.

The strongest effect on the original weight is found for the copied model itself, which is reduced by about 0.8
::::
20%, but also

several other models are affected: MPI-ESM1-2-LR (reduced by 0.86), AWI-CM-1-1-MR (0.9), NESM3 (0.93), MRI-ESM2-0

(0.94), and CAMS-CSM1-0 (0.94). Looking into the these models in more detail, we conclude that the inter-dependencies

detected by our method can be traced to shared components in most cases: MPI-ESM1-2-LR is just the low resolution version450

of MPI-ESM1-2-HR (run with a T63 atmosphere instead of T127 and a 1.5° ocean instead of 0.4°), AWI-CM-1-1-MR and

NESM3 share the atmospheric (ECHAM6.3) and similar land (JSBACH3.x) components, and CAMS-CSM1-0 shares a similar

atmospheric (ECHAM5) component, while MRI-ESM2-0 does not have any obvious dependencies. Information about the

models can be found in their reference publications (Mauritsen et al., 2019; Gutjahr et al., 2019; Semmler et al., 2019; Yang

et al., 2020; Chen et al., 2019; Yukimoto et al., 2019) and on the ES-DOC explorer, which provides detailed information about455

all model used in this study. The links to each models information page can be found in table S3
::
S4

:
in the supplementary

material.

4.3 Applying weights to CMIP6 temperature projections and TCR

Figure 7 shows a timeseries of unweighted and weighted projections based on a weak (SSP1-2.6) and strong (SSP5-8.5) climate

change scenario. For both scenarios a clear shift in the mean towards less warming is visible, which is also reflected in the460

upper uncertainty bound. Notably, however, the lower bound hardly changes, leading to a reduction in projection uncertainty

in total. This becomes even clearer when investigating the two 20-year periods, reflecting mid- and end-of-century conditions

(figure 8a and table S2
::
S3).

Based on these results, warming exceeding 5 °C by the end of the century is very unlikely even under the strongest climate

change scenario SSP5-8.5. The mean warming for this case is shifted downward to about 3.7 °C and the 66% (likely) and 90%465

ranges are reduced by 12% and 30%, respectively. For SSP1-2.6 in the end-of-century period as well as both SSPs in the mid-

century period, reductions in the mean warming of about 0.1 °C
:::::::::::::
0.1 °C to 0.2 °C are found. The likely range is reduced by about

30%
:::::::::::
20% to 30% in these three cases. A summary of all

::::::
weights

:::
and

::::::::
warming

:::::
values

:::
for

:::
all

::::::
models

::
as

::::
well

::
as

::
all

:
statistics can

be found in table
::::
tables S2

:::
and

::
S3

:
in the supplement. Recent studies that use historical temperature trend as an observational

constraint for future warming lead to similar conclusions, with lower constrained warming compared to unconstrained (both in470

the mean and upper percentiles of the distributions) (e.g., Tokarska et al., 2020; Nijsse et al., 2020)
:::::::::::::::::::::::::::::::::::::
(e.g., Nijsse et al., 2020; Tokarska et al., 2020).

To investigate the influence of remaining internal variability in our combination of diagnostics on the weighting
:
,
:
we also

perform a bootstrap test. Selecting only one random member per model (for models with more than one ensemble member)

we calculate weights and the corresponding unweighted and weighted temperature change distributions. This is repeated 100

times, providing uncertainty estimates for both the unweighted and weighted percentiles. The mean values of the weighted475

percentiles taken over all 100 bootstrap samples are very similar to the values from the weighting based on the full MME

(including all ensemble members; see figure S3
::
S7) confirming the robustness of our approach.
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Figure 7. Timeseries of temperature change (relative to 1995-2014) for unweighted (gray) and weighted (colored) CMIP6 mean (lines) and

likely (66%) range (shading). Three observational datasets are also shown in black; note that BEST is not used to inform the weighting and

is only shown for comparison here.

We also apply weights to TCR estimates in figure 8b. For four models included in the weighting of temperature change we do

not yet have all information available to estimate TCR (FGOALS-g3, CanESM5-CanOE, FIO-ESM-2-0, MCM-UA-1-0); these

are omitted in figure 8b. For the remaining 29 models we find a
:::::
finding

:::
an unweighted mean TCR value of about 2 °C with a480

likely range of 1.6 °C to 2.6 °C
:::::::::::::
1.6 °C to 2.5 °C. Weighting by historical model performance and independence constrains this

to 1.9 °C (1.6 °C to 2.1 °C
:::::::::::::
1.6 °C to 2.2 °C), a reduction of 46%

::::
36% in the likely range. These values are consistent with re-

cent studies based on emergent constraints which estimate the likely range of TCR to be 1.5 °C to 2.2 °C
:::::::::::::
1.3 °C to 2.1 °C (Nijsse

et al., 2020) and 1.2 °C to 2.0 °C (Tokarska et al., 2020)
:::
and

::::
they

::::
are

:::
also

:::::
very

::::::
similar

::
to
::::

the
:::::
range

::
of

:::::::::::::::
1.5° to 2.2° from

::::::::::::::::::::::
Sherwood et al. (2020) who

::::::::
combine

:::::::
multiple

::::
lines

:::
of

:::::::
evidence. They are also consistent but substantially more narrow than485

the likely range from the fifth assessment report of the IPCC (IPCC, 2013) based on CMIP5: 1 °C to 2.5 °C.

Figure 8b clearly shows that almost all models with higher than equal weights lie within the likely range, and only one model

lies above it (KACE-1-0-G
:::::::::::
FIO-ESM-2-0). This is a strong indication that TCR values beyond about 2.5 °C are unlikely when

weighting based on several diagnostics and when accounting for model independence. The weighting also largely reconciles

CMIP6 with 5 by giving less weight to some of the models in CMIP6 that warm most strongly.490
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Figure 8. (a) Unweighted (gray) and weighted (colors) temperature change (relative to 1995-2014) for both periods and scenarios. (b)

Unweighted (gray) and weighted (green) Transient Climate Response (TCR). The dots show individual models as labelled, with the dot size

indicating the weight. The horizontal dot position is arbitrary.

5 Discussion and Conclusions

We have used the Climate model Weighting by Independence and Performance (ClimWIP) method to constrain projections

of future global temperature change from the CMIP6 multi-model ensemble. Based on a leave-one-out perfect model test, a

combination of five global, horizontally-resolved diagnostic fields (anomaly, variance, and trend of surface air temperature and

anomaly and variance of sea level pressure) was selected to inform the performance weighting. The skill of weighting based on495

this selection was tested and confirmed in a second perfect model test using CMIP5 models as pseudo-observations. Our results

clearly show the usefulness of this weighting approach in translating model spread into reliable estimates of future changes

and in particular into uncertainties that are consistent with observations of present day climate and observed trends.

We also discussed the remaining risk for decreasing skill compared to the raw distribution which is a crucial question in

all weighting or constraining methods. We show the importance of using a balanced combination of climate system features500

(i.e., diagnostics) relevant for the target to inform the weighting to minimise the risk for skill decreases. This guards against

the possibility of a model “accidentally” fitting observations for a single diagnostic while being far away from them in several

others (and hence possibly not providing a skilful projection of the target variable).

By adding copies of existing models into the CMIP6 multi-model ensemble we verified the effect of the independence

weighting, showing that models get correctly down-weighted based on an estimate of dependence derived from their output.505

To inform the independence weighting we used two global, horizontally resolved fields (climatology of surface air temperature
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and sea level pressure) which we showed to allow a clear clustering of models with obvious inter-dependencies using a CMIP6

“family tree”.

From these tests we conclude that ClimWIP is skilful in weighting global mean temperature change from CMIP6 using the

selected setup. We hence use it to calculate weights for each CMIP6 model and apply them in order to obtain probabilistic es-510

timates of future changes. Compared to the unweighted case these results clearly show that the CMIP6 models which lead to the

highest warming are less probable, confirming earlier studies (e.g., Tokarska et al., 2020; Nijsse et al., 2020)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Nijsse et al., 2020; Sherwood et al., 2020; Tokarska et al., 2020).

We find a weighted mean global temperature change (relative to 1995-2014) of 3.7 °C with a likely (66%) range of 3.1 °C to

4.6 °C by the end of the century when following SSP5-8.5. With ambitious climate mitigation (SSP1-2.6) a weighted mean

change of 1 °C (likely range: 0.7 °C to 1.4 °C) is projected for the same period.515

On the policy level, this highlights the need for quick and decisive climate action to achieve the Paris climate targets. For

climate modeling on the other hand, this approach demonstrates the potential to narrow the uncertainties in CMIP6 projections,

particular on the upper bound. The large investments in climate model development have so far not led to reduced model spread

in the raw ensemble, but the use of climatological information and emergent transient constraints has the potential to provide

more robust projections with reduced uncertainties, that at the same time are more consistent with observed trends, thus520

maximizing the value of climate model information for impacts and adaptation.
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Knutti, R., Sedláček, J., Sanderson, B. M., Lorenz, R., Fischer, E. M., and Eyring, V.: A climate model projection weighting scheme ac-

counting for performance and interdependence, Geophysical Research Letters, 44, 1909–1918, https://doi.org/10.1002/2016GL072012,

http://doi.wiley.com/10.1002/2016GL072012, 2017b.665
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