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Abstract. The Mediterranean (MED) basin is a climate change hot-spot that has seen drying and a pronounced increase in

heatwaves over the last century. At the same time, it is experiencing increased heavy precipitation during wintertime cold spells.

Understanding and quantifying the risks from compound events over the MED is paramount for present and future disaster risk

reduction measures. Here, we apply a novel method to study compound events based on dynamical systems theory and analyse

compound temperature and precipitation events over the MED from 1979 to 2018. The dynamical systems analysis quantifies5

the strength of the coupling between different atmospheric variables over the MED. Further, we consider compound warm-dry

anomalies in summer and cold-wet anomalies in winter. Our results show that these warm-dry and cold-wet compound days

are associated with large values of the temperature-precipitation coupling parameter of the dynamical systems analysis. This

indicates that there is a strong interaction between temperature and precipitation during compound events. In winter, we find no

significant trend in the coupling between temperature and precipitation. However in summer, we find a significant upward trend10

which is likely driven by a stronger coupling during warm and dry days. Thermodynamic processes associated with long-term

MED warming can best explain the trend, which intensifies compound warm-dry events.

1 Introduction

The Mediterranean (MED) basin is considered a climate change hot-spot (Giorgi, 2006) and has seen winter drying as well

as a pronounced increase in summer heatwaves over recent decades (e.g., Mariotti, 2010; Hoerling et al., 2012; Shohami15

et al., 2011; Nykjaer, 2009). Summer heatwave trends observed over the historical period are mainly driven by thermodynamic

changes, such as increasing temperatures, that exacerbate soil drying and daily maximum temperatures. Drying trends during

winter are associated with atmospheric circulation changes (i.e. northward shift and intensification of the storm track), likely

triggered by increased greenhouse gas and aerosol forcing (Hoerling et al., 2012). However, wintertime heavy precipitation,
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often in the form of snowfall, has not decreased as rapidly as one may expect as a consequence of global warming (Faranda,20

2019).

Many studies have investigated climate change projections over the MED under high greenhouse gases emission scenarios,

providing strong evidence for a continuation of the trends witnessed in the historical period, and much warmer and drier

conditions by the end of the 21st century (Zappa et al., 2015; Mariotti et al., 2015; Scoccimarro et al., 2016; Hochman et al.,

2018; Samuels et al., 2018; Seager et al., 2014; Barcikowska et al., 2020; Goubanova and Li, 2007; Giorgi and Lionello, 2008;25

Giannakopoulos et al., 2009; Beniston et al., 2007). Such climatic changes imply more severe and frequent summer heatwaves

and droughts (Fischer and Schär, 2010; Giorgi and Lionello, 2008; Beniston et al., 2007; Giannakopoulos et al., 2009), but also

an increase in heavy precipitation events notwithstanding the decline in total precipitation (Scoccimarro et al., 2016; Samuels

et al., 2018; Goubanova and Li, 2007; Giannakopoulos et al., 2009; Tramblay and Somot, 2018). Changes, such as a reduction

of cold spell intensity, are also expected during winter. For example, Hochman et al. (2020) showed that Cyprus Lows –30

synoptic low-pressure systems that develop over the Eastern MED and can drive cold spells and heavy precipitation over the

Levant – are projected to decrease in frequency and rain-bearing capacity in the future. Changes in atmospheric dynamics, such

as an amplified "monsoon-desert mechanism" in summer (Rodwell and Hoskins, 1996; Cherchi et al., 2016; Kim et al., 2019;

Wang et al., 2012) or a poleward shift of the tropical belt in winter (Hu and Fu, 2007; Seidel et al., 2008; Peleg et al., 2015;

Totz et al., 2018), may play a significant role in enhancing the drying of the MED in future climates.35

In recent years, it has become increasingly clear that hydro-meteorological impacts often result from the compounding

nature of several variables and\or events, even if they are not extreme when analysed independently (e.g., Moftakhari et al.,

2017; Zscheischler et al., 2020). For natural hazards it is thus important to consider compound, or multi-variate, events (e.g.,

Zscheischler et al., 2020, 2018; De Luca et al., 2017; De Luca et al., 2020; Couasnon et al., 2020; Ward et al., 2018), as well

as cascading events (e.g., de Ruiter et al., 2020). Such compound events can lead to socio-economic damages exceeding those40

expected if the individual hazards were to occur separately (e.g., de Ruiter et al., 2020; Barriopedro et al., 2011). The MED

region is highly vulnerable to compound heat-related events, such as the co-occurrence of heatwaves and droughts (Manning

et al., 2019; Zampieri et al., 2017; Li et al., 2009). Wintertime cold-wet events, especially when associated with snowfall, may

also result in costly regional impacts (e.g., Hochman et al., 2019; Bisci et al., 2012). Summer heatwaves and droughts may

lead to premature deaths and wildfires, as occurred during the 2003 and 2010 European heatwaves (Shaposhnikov et al., 2014;45

Bosch, 2003). On the other hand, cold-wet events during winter may cause road-network disruptions (Seeherman and Liu,

2015).

Here, we specifically seek to characterise precipitation-temperature compound events over the MED in terms of the coupling

between precipitation and temperature fields. This allows us to relate long-term changes in compound events to their underlying

physical drivers. We focus on compound warm-dry and cold-wet events during summer (June-July-August, JJA) and winter50

(December-January-February, DJF), respectively. We apply a method based on dynamical systems theory that reflects the

dynamical evolution of the atmosphere and is well-suited to diagnosing changes in atmospheric properties (Faranda et al.,
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2019). Our approach considers the analysed variables in terms of their evolution in phase-space, and quantifies the strength of

their coupling along with a measure of their persistence (Faranda et al., 2020; De Luca et al., 2020). The article is structured

as follows: Section 2 describes the methods, data and statistical tests. Sections 3-4 present the results. Specifically, Section 355

focuses on the strength of the dynamical coupling, chiefly during JJA. Section 4 investigates the large-scale patterns of sea-level

pressure (SLP), temperature and precipitation observed during the days when the dynamical coupling is high in both JJA and

DJF, and relates these to the compound warm-dry and cold-wet events. Finally, Section 5 summarises and discusses our main

findings, and outlines future research opportunities.

2 Methods and data60

2.1 Dynamical systems metrics

In this study, we use a dynamical systems approach to compute two metrics: θ−1 and α. The metric θ−1, which we term

persistence, is very intuitively a measure of the average residence time of the system around a state of interest. Hence, the

higher the value of θ−1, the more likely it is that the preceding and future states of the system will resemble the current state

over relatively long timescales (Faranda et al., 2017b; Messori et al., 2017; Hochman et al., 2019). The metric α, which we65

term co-recurrence ratio, is a measure of the dynamical coupling between two variables, independently of their values (e.g.

wet or dry), or in other terms their dependence structure.

The calculation of the dynamical systems metrics stems from the combination of Poincaré recurrences with extreme value

theory (Lucarini et al., 2012; Freitas et al., 2010; Faranda et al., 2020). By recurrences we refer to the system being analysed

returning arbitrarily close to a previously visited state in the phase-space. Given an atmospheric variable x, we consider a state70

of interest ζx. In our case, this would be an instantaneous configuration of that variable, such as a latitude-longitude temperature

map on a given day over the MED. We then consider recurrences to be those states that are close to ζx, namely other timesteps

at which the selected variable takes a very similar configuration. In order to quantify how close two configurations are to one

another, we use the Euclidean distance (dist) between latitude-longitude maps. To compute the recurrences we first define an

observable via logarithmic returns as follows:75

g(x(t), ζx) =− log[dist(x(t), ζx)] (1)

Where x(t) represents the time-series of x. We then define a threshold s(q,ζx) as a function of high q-th quantile of the

time-series g(x(t), ζx). Next, ∀ g(x(t), ζx)> s(q,ζx) we define an exceedance u(ζx) = g(x(t), ζx)− s(q,ζx). The cumulative
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probability distribution F (u,ζx) then converges to the exponential member of the Generalized Pareto Distribution (Freitas

et al., 2010; Lucarini et al., 2012):80

F (u,ζx)' exp

[
−ϑ(ζx)

u(ζx)

σ(ζx)

]
(2)

Where ϑ is the extremal index (Moloney et al., 2019), and we estimate it here following Süveges (2007). The dynamical

systems persistence is computed as: θ−1(ζx) = ∆t/ϑ(ζx). In our case, ∆t= 1 day and θ−1
x has the units of the timestep of the

data being analysed (i.e. days). For conciseness, we hereafter adopt the notation θ−1
x to refer to the persistence of state ζx.

To extend the analysis to two variables, x and y, we can compute joint logarithmic returns around a state of interest ζ =85

{ζx, ζy} as follows:

g(x(t),y(t)) =−log

[
dist

(
x(t)

‖x‖
,
ζx
‖x‖

)2

+ dist
(
y(t)

‖y‖
,
ζy
‖y‖

)2
] 1

2

(3)

Where ‖.‖ represents the average root mean square norm of a vector’s coordinates. Once joint logarithmic returns are

defined, we compute the co-persistence θ−1
x,y based on the recurrences around ζ. This effectively amounts to a weighted average

of θ−1
x and θ−1

y (Faranda et al., 2020; Abadi et al., 2018). In our analysis, the joint state ζ = {ζx, ζy} would correspond to two90

instantaneous latitude-longitude maps: one for precipitation and one for temperature.

We further define the co-recurrence ratio (Faranda et al., 2020) α between x and y as:

α(ζ) =
ν[g(x(t))> sx(q)|g(y(t))> sy(q)]

ν[g(x(t))> sx(q)]
(4)

Where sx(q) and sy(q) are high q-th quantiles (or thresholds) of the univariate logarithmic returns g(x(t)) and g(y(t)), and

ν[−] represents the number of events that satisfy condition [−]. Given a state ζ = {ζx, ζy}, the co-recurrence ratio 0 ≤ α≤95

1 measures the number of events where x resembles ζx given that y resembles ζy , versus the number of cases when only x

resembles the relevant reference state. When α = 0, there are no co-recurrences of ζ = {ζx, ζy} when we observe a recurrence

of ζx. When α = 1, recurrences of ζx are always also co-recurrences of ζ = {ζx, ζy}. Hence, α may be interpreted as a measure

of the dynamical coupling between x and y. However, α does not indicate causality: indeed, the order of x and y may be

exchanged without affecting the value of α.100

In order to compute the dynamical metrics we use a quantile q = 0.98 to determine s. In previous studies (e.g., Faranda et al.,

2011; Lucarini et al., 2012; Faranda et al., 2017b, 2019), this value has provided good estimates of the dynamical indicators,

as it is high enough to select only genuine recurrences of ζ, while also ensuring a sufficiently large sample of recurrences for

analysis. Tests further showed little sensitivity of the results to q in the range 0.95< q < 0.99 (Faranda et al., 2017b).
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Finally, the dynamical systems approach rests on a number of theoretical assumptions, not all of which are strictly fulfilled105

by climate data. Specifically, the framework assumes the existence of an underlying chaotic attractor for the dynamics, and

was derived for ergodic systems (Freitas et al., 2010). However, recent applications have shown that weak nonstationarities

do not preclude the validity of the results (e.g., Faranda et al., 2019), provided that they do not lead to bifurcations of the

system. Unlike common statistical techniques (e.g. copulas), which rely on extrapolation of extreme values from statistical

distributions, the metrics we use here are grounded in the underlying dynamics of the system being analysed.110

In our analysis, we consider each daily timestep in our datasets in turn as the state of interest ζ. The final result of our

analysis is therefore a value for each metric and timestep for the MED domain. This allows us to relate specific values of

the metrics to the corresponding geographical anomaly patterns. We term compound dynamical extremes (CDEs) the days

characterised by α > 90th quantile of the full-year distribution over the 1979-2018 period. We selected the 90th quantile as

a good balance between an extreme value threshold and obtaining a sufficiently large sample of events. As sensitivity test we115

repeated the analysis in Section 4.2 for a 95th quantile threshold, obtaining similar results (not shown). The two dynamical

metrics successfully reflect large-scale features of atmospheric motions, and have recently been applied to a range of different

climate variables over different geographical domains (Faranda et al., 2017a, b, 2019, 2020; Messori et al., 2017; Rodrigues

et al., 2018; Hochman et al., 2019, 2020; De Luca et al., 2020; Scher and Messori, 2018).

2.2 Data120

We use the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis over 1979-2018, with a spatial

horizontal resolution of 0.25◦ and a 6-hourly temporal resolution (C3S, 2017). Our MED domain follows the "Full Mediter-

ranean" region described in Giorgi and Lionello (2008). For ERA5, this corresponds to 27.75–48.00 ◦N, 9.75 ◦W–39.00 ◦E.

To improve the robustness of our results, we have repeated the bulk of the analysis on ERA-Interim (Dee et al., 2011) and

ERA5 10-member ensemble (C3S, 2017) (see Supplementary Material). We use the instantaneous 6-hourly data to compute125

daily maximum and minimum 2m temperature (K) and forecasted 1-hourly data for daily total precipitation (mm), from now

on termed Tmax, Tmin and P respectively. Warm-dry days are days displaying positive Tmax and negative P anomalies relative

to JJA means. Similarly, cold-wet days are DJF days displaying negative Tmin and positive P anomalies relative to DJF means.

These are collectively referred to as ’compound events’ and the corresponding anomaly means are computed individually at

grid-point-level. Therefore, if for example a grid-point in a given day is warm it does not necessarily imply that it is also dry.130

We also analyse daily-mean sea-level pressure (SLP, hPa) anomalies relative to JJA (DJF) means, computed from instantaneous

6-hourly steps.

2.3 Statistical tests

The statistical significance of the Sen’s slopes (Sen, 1968) of the α and θ−1 time-series is verified using the Mann-Kendall

test (Mann, 1945) from the R package ’modifiedmk_v1.4.0’. The Sen’s slopes provide information about the steepness of the135

trends. If the Sen’s slope is positive (negative) the corresponding trend is increasing (decreasing).
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The statistical significance of SLP, Tmax, Tmin and P composite anomalies occurring during CDEs is computed using a

one-tailed Mann-Whitney test at the 5% confidence level (Mann and Whitney, 1947). The null hypothesis is that a randomly

selected median anomaly value during a CDE is equally likely to be less than or greater than a randomly selected median

value from the days that are not CDEs. The alternative hypothesis is that during JJA (DJF), the SLP and Tmax (Tmin) median140

anomalies observed during CDEs are higher (lower) than those observed during other days. For P in JJA (DJF), the alternative

hypothesis is that anomalies observed during CDEs are lower (higher) than those during other days. To avoid incurring in

Type I errors (or false positives), we apply the Bonferroni correction to all p-values when considering single-gridpoint data

(Bonferroni, 1936). The one-tailed Mann-Whitney test is also applied to the cumulative distribution functions (CDFs) of the

anomaly means occurring during CDEs versus all other days.145

Lastly, we checked the statistical significance of the percentage (%) agreement between JJA (DJF) CDEs and compound

events. Here, the null hypothesis is that the JJA (DJF) observed % agreement is due to chance and to compute the significance

the following steps have been followed: i) create n=1,000 datasets of random dates, with the same number of elements in each

dataset as we have for the CDEs; ii) compute the % of agreement between CDEs and compound events’ days for each dataset

and grid-point; iii) pool together all the random % values and compute their 1st and 99th quantiles for each grid-point; iv)150

check whether the observed % values fall outside the random quantile values, and if this is the case consider the % values

statistically significant at the 1% level (p-value <0.01).

3 Temperature-precipitation coupling

During JJA, the co-recurrence ratio (α) between Tmax and P shows a significant upward trend (p-value <0.01) over 1979-2018

(Figures 1a and S1a). This points to an increasingly strong coupling between Tmax and P over time. Similar trends are also155

obtained when considering Tmin and P (not shown). During DJF, we also observe positive, albeit non-significant, α trends for

all three reanalysis products (Figure S2). There is a clear correlation between α and summer mean Tmax, as highlighted in

Figures 1b and S1b. Indeed, ranking α values by JJA-averages of Tmax results in positive and statistically significant trends

(p-values <0.01), comparable in magnitude to those seen in Figures 1a and S1a. Moreover, both a regression analysis and the

two-sided Spearman’s rank correlation test (Corder and Foreman, 2014) between JJA α values and JJA average Tmax over160

the MED show a clear association between them (Figure S3). Trends in the α time-series of both CDE and non-CDE days are

positive and statistically significant (Figure S4), pointing to a general shift in the α distribution towards higher values.
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JJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJAJJA ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01ERA5 slope=0.001, p−val<0.01
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Figure 1. Co-recurrence ratio (α) and local co-persistence θ−1
Tmax,P JJA means for ERA5 during the 1979-2018 period over the Mediter-

ranean (MED). (a) α JJA yearly means; (b) α ranked according to ascending JJA average Tmax; (c) θ−1
Tmax,P JJA yearly means; and (d)

θ−1
Tmax,P ranked according to ascending JJA average Tmax. The dashed lines are 5-year centered moving averages. The Sen’s slopes and

p-values are also shown.
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We next compute the local co-persistence (θ−1
Tmax,P ) trends during JJA (Figures 1c and S1c) in analogy to Figures 1a and

S1a. The significant upward trends (p-value <0.01 for ERA5 and ERA-Interim, and p-value <0.05 for ERA5 ensemble) in

θ−1
Tmax,P imply a trend towards longer-lasting joint spatial patterns of Tmax and P over the MED within the observational165

period. By computing the co-persistence trends with only warm-dry days, similar results are obtained (not shown), pointing

towards increasingly long warm-dry events over the region. As for α, changes in co-persistence map directly onto changes

in average Tmax in JJA (Figures 1d and S1d). Interestingly, there is a clear peak in θ−1
Tmax,P during summer 2003 for all

reanalysis products, coinciding with the extreme 2003 European heatwave (Black et al., 2004; Fischer et al., 2007; Stott et al.,

2004). Moreover, similar trends as for Figure 1 are obtained when computing α and θ−1
Tmax,P for land-only grid-points (Figure170

S5a-d). The same, albeit with lower values, applies for α trends over sea-only (Figure S5e-f), while θ−1
Tmax,P in this case does

not show statistical significance (Figure S5g-h). The latter may be related to the damping role of the sea on air temperatures,

although a more systematic analysis would be required to ascertain this. The trends in θ−1
Tmax,P reflect trends in the (univariate)

local persistence of Tmax (θ−1
Tmax) and P (θ−1

P ) (Figures 2 and S6). They also at least in part explain the trends in α, since

one may intuitively expect a higher co-persistence to lead to a higher co-recurrence ratio. We indeed find that θ−1
Tmax,P and α175

are positively and significantly correlated in JJA (not shown). Trends in θ−1
Tmax (Figures 2a and S6a) are stronger than those in

θ−1
P (Figures 2b and S6b). This strengthens our interpretation of Tmax as playing a predominant role in setting the observed

positive trends in the dynamical metrics.
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Figure 2. As Figure 1c but for univariate local persistence of (a) Tmax (θ−1
Tmax) and (b) P (θ−1

P ).
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4 Compound dynamical extremes (CDEs) linked to compound warm-dry and cold-wet events

4.1 Seasonality of CDEs180

We next investigate the temporal distribution of CDEs. For α computed on Tmax and P, all three reanalysis products display

most of the CDEs clustering in July and August, with a secondary peak in DJF (Figures 3a and S7a). For α computed on Tmin

and P, most CDEs occur during DJF, July and August (Figures 3b and S7b). This holds for all three reanalysis products. We

hypothesise that the large number of CDEs during July and August (Figures 3b and S7b) can be linked to extreme summertime

precipitation events, that cool the air and increase wetness (e.g., Stadtherr et al., 2016; Christensen and Christensen, 2003).185

We further note that, notwithstanding the previously mentioned correlation between co-persistence and alpha, the seasonality

of θ−1
Tmax,P extremes – defined analogously to the CDEs – does not reflect that of the CDEs (not shown). For both variable

combinations, the two shoulder seasons (i.e. spring and autumn) display very few CDEs. In Faranda et al. (2017a), the authors

hypothesised that during autumn and spring the atmospheric flow sits on a saddle-like point of the dynamics, while winter and

summer represent more stable basins of attraction. Assuming that distinct attractors indeed exist for winter and summer, we190

thus interpret these low CDE counts as the result of the atmospheric flow exploring both summer and winter configurations,

resulting in rarer co-recurrences.
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Figure 3. Monthly counts of compound dynamical extremes (CDEs) for ERA5 during 1979-2018 over the MED. (a) α computed from Tmax

and P; and (b) α computed from Tmin and P. CDEs are defined as α daily observations > 90th quantile of the α distribution for the full

dataset.
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4.2 Pressure, temperature and precipitation anomalies during CDEs

During JJA, CDEs correspond to statistically significant positive SLP anomalies over the western MED (north-western Africa)

and the Anatolia - Black Sea region. These are separated by negative SLP anomalies spanning the Aegean sea, the Levant and195

Northern Egypt (Figures 4a and S8a-b). These SLP anomalies are in turn associated with significant warm Tmax anomalies

over most of the MED, with a particularly warm Balkan Peninsula, and a negative anomaly over central northern Africa, to

the east of the positive SLP anomaly (Figures 4c and S8c-d). Lastly, we observe weak dry P anomalies over the Black Sea

(Figures 4e and S8e-f) and stronger wet P anomalies over the Alps. The latter correspond to statistically significant convective

available potential energy (CAPE, JKg−1) positive anomalies (Figure S9), and may therefore be linked to localised convective200

P events. We conclude that JJA CDEs are closely linked to widespread warm Tmax anomalies, but have a weaker footprint on

P anomalies, except over the Alps.

In DJF we observe an east-west dipole in SLP over the MED, that favours cold-air advection from northern Europe to

the Balkans, parts of the Italian Peninsula and the Southern and Eastern MED (Figure 4b and S10a-b). Indeed, negative and

significant Tmin anomalies are observed over most of the MED region (Figure 4d and S10 c-d). The Eastern MED also displays205

significant positive P anomalies (Figure 4f and S10e-f). The statistically significant (p-value <0.05) negative SLP anomalies

over the Eastern MED are reminiscent of the footprint of Cyprus Lows, which are the main rain-bearing systems over the

region (Alpert et al., 2004; Saaroni et al., 2010) (Figures 4b and S10a-b). Cyprus Lows are also associated with the majority

of wintertime cold spells over the Eastern MED (Hochman et al., 2020), and we indeed find that some of the P anomalies over

the Eastern MED are snowfall events, particularly over the Balkans, Turkey and Lebanon (Figure S11). We thus conclude that210

CDEs are associated with wintertime cold-wet compound events over the Eastern MED.

As a proxy for the variability within our composites in Figure 4, we compute the standard deviations (SDs) of the anomalies

(not shown). We observe that SLP SDs are larger over the northern and central MED, while temperature SDs are larger over

land compared to the sea – the latter a natural consequence of the sea’s large thermal inertia. Finally, precipitation SDs are larger

where the higher anomaly mean values are reported (i.e. the Alps in JJA and south-Eastern MED in DJF), which may be linked215

to the prevailingly dry summertime conditions in the MED which yield low SDs where little or no rain falls. Similar results

are obtained when computing Figure 4 using only extreme anomalies (anom > 90th and anom < 10th quantiles) matching

CDEs, although the JJA positive SLP anomalies are less geographically extensive (Figure S12).
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Figure 4. JJA and DJF anomaly means of (a-b) SLP, (c-d) Tmax and Tmin, and (e-f) P during CDE days. The data are from the ERA5

reanalysis during 1979-2018. α for JJA is computed from Tmax and P, whereas for DJF from Tmin and P. Stippling shows statistically

significant anomalies (p-value <0.05, Mann-Whitney one-tailed test). The Bonferroni correction is applied to all p-values.
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4.3 Distributions of temperature and precipitation anomaly means

We next test empirically whether the CDEs highlighted above have a systematic link to compound JJA warm-dry and DJF220

cold-wet events. During JJA, Tmax and P daily anomaly means, computed for each grid-point during CDEs, are predominantly

warm (85%) and dry (79%) respectively (Figure 5a-b). Similar results are also obtained for ERA-Interim and ERA5 ensemble

(Figure S13). P anomalies tend to cluster around zero, owing to the overall dry summertime climate of the region, although

as noted above they do show a preference for negative (dry) values (Figures 5b and S13b,d). A Mann-Whitney one-tailed test

between the anomaly means during CDEs versus all other days in JJA results in statistically significant differences (p-value225

�0.01) for all reanalysis products for both Tmax and P. This implies that CDEs are significantly warmer and drier than other

JJA days.

In DJF, most of the Tmin and P anomaly means are cold (78%) and wet (58%) respectively for ERA5 (Figure 5c-d) and

the other reanalysis products (Figure S14). Again, a Mann-Whitney one-tailed test between anomaly means during CDEs and

all other DJF days highlights statistically significant (p-value �0.01) differences for all reanalysis products’, except ERA-230

Interim’s P (p-value <0.05). This implies that CDEs are significantly colder and wetter than all other DJF days. The CDEs

therefore present a somewhat mirror image of the preferred anomalies seen in the geographical anomaly composites for both

JJA and DJF.
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Figure 5. Histograms and cumulative distribution functions (CDFs) of anomaly means of (a) Tmax, (b) P during JJA CDEs, and (c) Tmin,

(d) P during DJF CDEs. The data are the same as in Figure 4c-f. The distributions are statistically different from those of all other JJA and

DJF days, respectively (p-value �0.01, Mann-Whitney one-tailed test).
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4.4 Spatial patterns of compound warm-dry and cold-wet events

We next complement the statistical information provided by the histograms and CDFs with spatial distributions of percentage235

(%) match between CDEs and compound events. Simply, for each grid-point in Figure 6 we identify the days reporting com-

pound events and CDEs, then divide the total number of these days by the total number of CDEs and multiply the resulting

number by 100 to obtain the % agreement value. Across the MED, a high fraction of CDEs coincide with compound warm-dry

events during JJA. Values locally exceed 70%, meaning that >70% of all JJA CDEs occur during compound warm-dry events

(Figures 6a and S15). The highest percentages occur in southern Spain, the Balearic Islands, Italy and the Balkans. During DJF,240

the % match between CDEs and compound cold-wet events is lower than that seen for warm-dry JJA events (<50%) (Figures

6b and S16). The highest % occurs over the Eastern MED sea, between the coastlines of Libya, Egypt, Greece and Turkey. In

both JJA and DJF the vast majority of observations (%) are statistically significant at the 1% level (p-value <0.01, Figures 6,

S15-S16).
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Figure 6. Percentage (%) of CDEs occurring during compound (a) JJA warm-dry and (b) DJF cold-wet events. The data are from the ERA5

reanalysis during 1979-2018. Stippling represent values not statistically significant at the 1% level (p-value ≥ 0.01).
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5 Discussion and conclusions245

In this paper, we analysed compound warm-dry (cold-wet) events during JJA (DJF) over the Mediterranean (MED) through the

lens of dynamical systems theory. We specifically computed a measure of coupling (α) between daily maximum temperature

(Tmax) and total precipitation (P) during JJA and daily minimum temperature (Tmin) and P during DJF. We then identified days

when the two variables are strongly coupled (α > 90th percentile of its full distribution) and termed them compound dynamical

extremes (CDEs). We further computed a dynamical systems measure of the persistence of large-scale configurations in the250

above variables (θ−1), considering them both individually and in pairs. We made use of the ERA5 dataset but replicated the

analyses also with ERA-Interim and ERA5 10-member ensemble (see Supplementary Material). We generally found a good

agreement between the different reanalysis products.

During JJA, both α and θ−1
Tmax,P display significant upward trends. An upward persistence trend is also found if we focus

specifically on warm-dry days. We propose these trends are driven by surface warming over the MED. A possible physical255

process driving increasing coupling with increasing temperature is soil drying. Although we didn’t investigate this in detail

here, we found that also a decrease in average P is linked with an upward and significant trend in α (Figure S17) and that

the correlation between Figures 1b and S17 α values is positive and significant (ρ=0.56, p-value <0.01). Specifically, the

increasingly warm summer temperatures and lack of P may lead to significantly lower soil-moisture content, triggering a

feedback mechanism that favours persistent warm-dry conditions. However, at this stage, is difficult to discern between the260

prevailing role between Tmax and P in driving the α trends, since they may have a compound or univariate effect. We will

therefore keep this investigation for a further work. Consistently with the α trends, we found that CDEs computed from Tmax

and P cluster during July and August, whereas CDEs computed from Tmin and P cluster during July, August and DJF. During

CDE days, synoptic patterns in JJA show significant positive SLP and warm Tmax anomalies over large parts of the MED,

and dry but mainly not-significant anomalies for P. The latter is somewhat unsurprising, as the low climatological summertime265

precipitation over the region effectively prevents the occurrence of large negative precipitation anomalies. Moreover, Tmax

anomalies result stronger over land than over the sea, because the latter’s thermal inertia likely plays a damping role during

the occurrence of heatwaves. Lastly, the JJA SLP patterns do not point to any clear and documented synoptic structure. It may

therefore be possible that CDEs capture several different sets of weather circulation regimes. In DJF, CDEs are associated with

significant negative SLP anomalies and cold-wet anomalies centred over the Eastern MED. The distributions of anomalies270

occurring during CDEs are significantly different (p-values of <0.01 or <0.05) from the ones recorded during all other days.

Lastly, we found that CDEs correspond to a heightened frequency of positive Tmax and negative P anomalies during JJA, and

to a heightened frequency of negative Tmin and positive P anomalies during DJF over large parts of the MED. The percentages

of CDEs matching cold-wet days during DJF are, however, lower than those found during summer for warm-dry days.

The findings that summertime Tmax and P have become more strongly coupled over the last 40 years, and that the persistence275

of warm-dry days has increased, are in agreement with Zscheischler and Seneviratne (2017) and Manning et al. (2019). The

former study showed that land-atmosphere feedbacks in a warmer world may lead to an increase in warm-dry summers larger
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than what may be expected by analysing the projected temperature and precipitation changes as single variables. However, the

work of Zscheischler and Seneviratne (2017) differs from ours since they made use of detrended temperature and precipitation

datasets. Whereas Manning et al. (2019) found that rising temperatures drive an increased probability of dry and hot events in280

Europe, with dry periods becoming hotter and hence pointing to a significant thermodynamic response of compound events

due to global warming. Assuming a continued increase in future temperatures, we may therefore expect ongoing positive JJA

α and θ−1
Tmax,P trends, leading to a higher frequency of compound JJA warm-dry events.

The analysis of DJF CDEs, matching cold-wet events, points to very different dynamics. Here, the largest anomalies in

SLP, Tmin and P are found over the Eastern MED, and are reminiscent of the footprint of Cyprus Lows. These are wintertime285

synoptic systems that play a predominant role in driving concurrent cold spells and heavy precipitation events over the Levant

(e.g., Hochman et al., 2019). Our findings show no significant increase in α values during DJF, in line with studies suggesting

a decrease in Cyprus Lows frequency, persistence and associated precipitation over the Eastern MED (Hochman et al., 2020,

2018; Peleg et al., 2015).

Our findings highlight a close connection between CDEs, computed from dynamical systems coupling, and compound JJA290

warm-dry and DJF cold-wet events over the MED. The link between CDEs and compound events likely issue from the fact that,

in both cases, the data reflect anomalous (or highly-coupled) conditions for the atmospheric variables being studied. It is of

particular interest that α distinguishes between JJA warm-dry and DJF cold-wet compound events. However, results obtained

from our dynamical systems approach may be sensitive to the size and location of the geographical domain(s) under study. For

such reason, it is important to constrain the dynamical systems analysis only over a geographical area justified by for example295

physical process understanding or impact assessment. In the latter case, one may be interested to calculate compound climate

risks by making use of CDEs as a measure of the multi-hazard component or link α with (long-enough) impact datasets, such

as insurance losses, crop yield or renewable energy production.

Based on our results, we learn the following: i) the coupling between temperature and precipitation at large scales is driven by

specific regions and processes (e.g. Cyprus-low) and therefore it does not always reflect the whole MED; ii) the coupling results300

are sensitive even to non-extreme events, and thus the co-recurrence ratio (α) may be fruitfully used in forthcoming studies to

elucidate potential future seasonal climatic changes over the MED; and iii) our results provide information on specific factors

that are driving the changes in α (e.g. surface warming). In the future, we envisage making use of global CMIP6 data under

different Shared Socioeconomic Pathways (SSPs) up to 2100 (O’Neill et al., 2016) and abrupt climate change simulations (e.g.

4xCO2) (Eyring et al., 2016). These investigations may also shed some light on possible tipping points over the MED (Lenton305

et al., 2008; Lenton, 2011).
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