

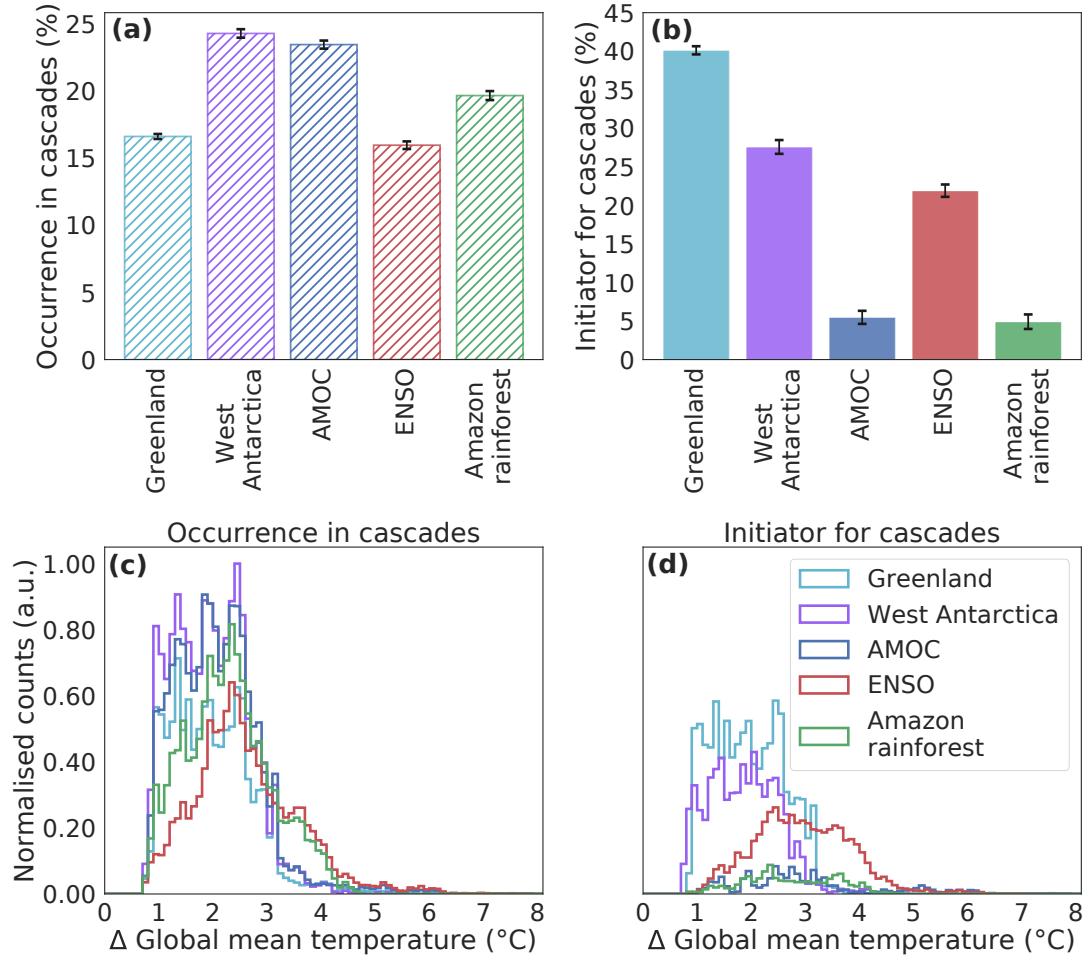
Supplementary Material of Interacting tipping elements increase risk of climate domino effects under global warming

Nico Wunderling^{1,2,3}, Jonathan F. Donges^{1,4}, Jürgen Kurths^{1,5}, and Ricarda Winkelmann^{1,2}

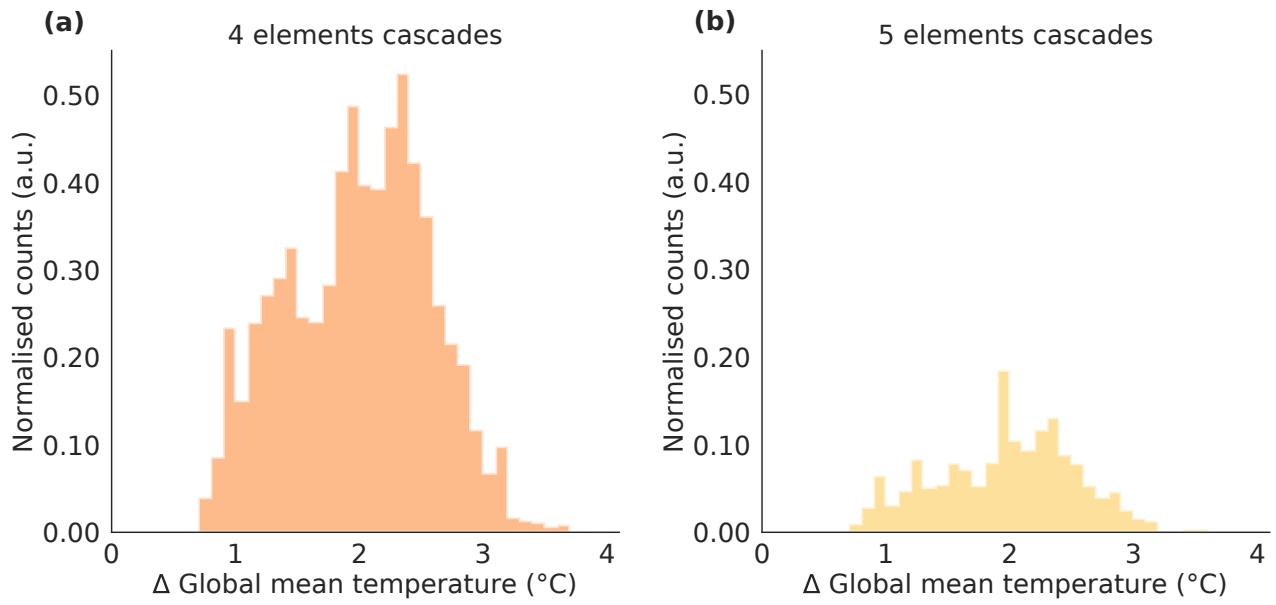
¹Earth System Analysis and Complexity Science, Potsdam Institute for Climate Impact, Research (PIK), Member of the Leibniz Association, 14473 Potsdam, Germany

²Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany

³Department of Physics, Humboldt University of Berlin, 12489 Berlin, Germany


⁴Stockholm Resilience Centre, Stockholm University, Stockholm, SE-10691, Sweden

⁵Saratov State University, Saratov, RU-410012, Russia


Correspondence: Nico Wunderling (nico.wunderling@pik-potsdam.de), Ricarda Winkelmann (ricarda.winkelmann@pik-potsdam.de)

Parameter group	Parameter	Initial value
Critical temperatures (°C)	$T_{\text{limit, Greenland}}$	2.5
	$T_{\text{limit, West Antarctica}}$	2.1
	$T_{\text{limit, AMOC}}$	5.1
	$T_{\text{limit, ENSO}}$	5.5
	$T_{\text{limit, Amazon rainforest}}$	3.5
Strong links (a.u.)	Greenland → AMOC	0.32
	AMOC → Greenland	-0.17
	Greenland → West Antarctica	0.25
	ENSO → Amazon rainforest	0.27
Intermediate links (a.u.)	ENSO → West Antarctica	0.26
	AMOC → Amazon rainforest	0.0
	West Antarctica → AMOC	0.0
Weak links (a.u.)	AMOC → ENSO	0.20
	West Antarctica → Greenland	0.19
	ENSO → AMOC	-0.12
	AMOC → West Antarctica	0.12
	Amazon rainforest → ENSO	0.0

Table S 1. Exemplary initial values in Fig. 2. All initial values are random numbers drawn from a random, uniform distribution with a latin-hypercube sampling algorithm (Baudin, 2013) between their respective limits (see Tabs. 1 and 2). The random numbers for the links have already been multiplied with $1/10 \times s_{ij}$ (see Table 2). The exemplary timelines were computed using a network without considering the uncertain links (AMOC → Amazon rainforest, West Antarctica → AMOC and Amazon rainforest → ENSO), whose link strengths are set to zero (see Fig. 2).

Figure S 1. Role of tipping elements in cascades. **(a)** Relative frequency in percent of occurrence of a certain tipping element in a tipping cascade (hatched bars). The standard deviation is computed by evaluating the deviation between reasonable network settings (see Section 2.5, *Model initialisation and uncertainty*). **(b)** Relative frequency in percent that a certain tipping element causes a tipping cascade (coloured bars). We define that the cause of a cascade is the element, whose critical temperature is closest to the temperature of the cascade. Again the error bars show the standard deviation between different network settings as in **(a)**. **(c)** Count versus global mean temperature increase at which a tipping cascade occurs divided into the respective five tipping elements. **(d)** Same as in **(c)**, but for the tipping element which causes the cascade. N.B.: **(c)** and **(d)** are set to the same scale normalised to the highest value in the histogram.

Figure S 2. Tipping cascades of size four and five versus temperature increase. **(a)** Tipping cascades of size four, **(b)** Tipping cascades of size five. The scale is the same as in Figs. 4(c, d), but here we show a zoom-in in temperature increase and normalised counts to improve visibility.

References

Baudin, M.: pyDOE: The experimental design package for python, software available under the BSD license (3-Clause) at <https://pythonhosted.org/pyDOE/index.html>, 2013.