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General comments: I think this is a notable (two-part) paper. Its key message, that
the heat flux at the earth’s surface is a derivative of order half of the temperature, and
that this modifies the simplest EBMs in an important way is both significant in itself, and
provides a foundation for the author’s concurrent work on fractional stochastic eneergy
balance models.

I have only one gripe that needs attention. It relates to earlier work which needs to be
more fully described and integrated into the manuscript. When this is done so it will
actually reinforce the author’s message, I think.

Specific comment: Earlier work on half-order derivatives in heat transfer.

C1

The list of references on fractional calculus seems to me to be comprehensive in gen-
eral, but to be missing a key reference. Podlubny [1999] notes in his preface that:
... from the viewpoint of applications in physics, chemistry and engineering it was
undoubtedly the book written by K. B. Oldham and J. Spanier [i.e. "The Fractional Cal-
culus", Academic Press, 1974; now in a Dover Edition] which played an outstanding
role in the development of the subject which can be called applied fractional calculus.
Moreover, it was the first book which was entirely devoted to a systematic presentation
of the ideas, methods, and applications of the fractional calculus.

Referring back to this book suggests to me that to say, as the manuscript presently
does, that “... half-order derivatives have occasionally [sic] been used in the context of
the heat equation, (at least since [Babenko, 1986])" substantially underestimates the
extent to which half order derivatives have already been studied in the heat equation
context. Oldham and Spanier devote their chapter 11 to applications of what they
call the semidifferential operator, i.e. the fractional derivative of half order, to diffusion
problems including heat transfer.

The book built on their own papers, particularly Oldham KB, Spanier J (1972) A gen-
eral solution of the diffusion equation for semiinfinite geometries, J Math Anal Appl
39:665–669 and Oldham KB (1973) Diffusive transport to planar, cylindrical and spher-
ical electrodes, J Electroanal Chem Interfacial Electrochem, 41:351–358.

They give the diffusion equation as

∂

∂t
F (ξ, η, ζ, t) = κ∇2F (ξ, η, ζ, t) (1)

and then note that in in three special, semi-infinite, cases this can be simplified so that
Laplacian depends only on the radial co-ordinate r and t. In the planar case they give:
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∂

∂t
F (r, t)− κ ∂

2

∂r2
F (r, t) = 0 (2)

They take the system is initially in equilibrium F (r, t) = F0, for t < 0, r ≥ 0. An
unspecified perturbation occurs at t = 0, and for times of interest t < 0 it does not
affect regions remote from the r = 0 boundary. Hence F (r, t) = F0, for t ≤ τ, r = ∞,
and in the case of planar geometry they derive the solution:

∂

∂r
F (r, t) = − 1√

κ

∂1/2

∂t1/2
F (r, t) +

F0√
πκt

(3)

They then go on to consider the problem of 1D heat conduction in a semi-infinite plane,
and so look at the heat equation in the form:

∂

∂t
T (r, t)− K

ρσ

∂2

∂r2
T (r, t) = 0 (4)

with appropriate boundary conditions of T (r, 0) = 0 and T (∞, t) = 0.

The heat flux sought is

J(t) ≡ −K ∂

∂r
T (0, t) (5)

which they get from their earlier solution for ∂F (r, t)/∂r by putting T for F , K/ρσ for κ,
and using T0 = 0

J(T ) = −K ∂

∂r
T (0, t) =

√
Kρσ

∂1/2

∂t1/2
T (0, t) (6)
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Because this result, Oldham and Spanier’s equation 11.2.10 is closely related to equa-
tion 43 in part I of the present ms, I think that it should be explained clearly whether
i) the present paper is effectively an illustration of Oldham and Spanier’s result in the
EBM context, or ii) whether it offers a derivation in a domain to which Oldham and
Spanier’s result did not apply. Either situation will be important and publishable but
readers need to know which applies.

Interestingly, Oldham and Spanier noted that the equation had been obtained by Meyer
in 1960 in a Canadian NRC technical report (“A heat-flux-meter for use with thin film
surface thermometers"), but rather than being written as a half order derivative it was
then given in the alternative integral form

J(T ) =

√
Kρσ

4π
[
2T (0, t)√

t
+

∫ t

0

T (0, t)− T (0, τ)√
t− τ dτ ] (7)

without explicitly using fractional calculus. It was thus known in the heat transfer context
even before the first EBMs were derived, in a sense reinforcing the present author’s
point.
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