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Abstract: The original Budyko-Sellers type 1-D energy balance models (EBMs) consider the Earth system averaged over long 

times and applies the continuum mechanics heat equation.  When these and the more phenomenological box models are 10 

extended to include time varying anomalies, they have a key weakness: neither model explicitly nor realistically treats the  

conductive - radiative surface boundary condition that is necessary for a correct treatment of energy storage.   

In this first of a two part series, we apply standard Laplace and Fourier techniques to the continuum mechanics heat equation, 

solving it with the correct radiative - conductive boundary conditions obtaining an equation directly for the surface temperature 

anomalies  in terms of the anomalous forcing.  Although classical, this equation is half – not integer – ordered: the “Half - 15 

ordered Energy Balance Equation” (HEBE).  A quite general consequence is that although Newton’s law of cooling holds, that 

the heat flux across surfaces is proportional to a half (not first) ordered time derivative of the surface temperature.  This implies 

that the surface heat flux has a long memory, that it depends on the entire previous history of the forcing, the temperature- heat 

flux relationship is no longer instantaneous.  

We then consider the case where the Earth is periodically forced.  The classical case is diurnal heat forcing; we extend this to 20 

annual conductive – radiative forcing and show that the surface thermal impedance is a complex valued quantity equal to the 

(complex) climate sensitivity.  Using a simple semi-empirical model of the forcing, we show how the HEBE can account for 

the phase lag between the summer maximum forcing and maximum surface temperature Earth response.   

In part II, we extend all these results to spatially inhomogeneous forcing and to the full horizontally inhomogeneous problem 

with spatially varying specific heats, diffusivities, advection velocities, climate sensitivities.  We consider the consequences 25 

for macroweather (monthly, seasonal, interannual) forecasting and climate projections. 

1 Introduction 

Ever since [Budyko, 1969] and [Sellers, 1969] proposed a simple model describing the exchange of energy between the earth 

and outer space, energy balance models (EBMs) have provided a straightforward way of understanding past, present and 

possible future climates.  The models usually have either zero or one spatial dimension representing respectively the globally 30 

or latitudinally averaged meridional temperature distribution (for a review, see [McGuffie and Henderson-Sellers, 2005 ], and 

[North and Kim, 2017]).    

The fundamental EBM challenge is to model the way that imbalances in incoming short wave and outgoing long wave radiation 

are transformed into changes in surface temperatures.  In an energy balanced climate state, the vertical flux imbalances are 

transported horizontally.  Here we are primarily interested in the anomalies with respect to this state.  When an external flux 35 

(forcing) is added, some of this anomalous imbalance is radiated to outer space while some is converted into sensible heat and 

conducted into (or out of) the subsurface.  This latter flux accounts for both energy storage as well as for surface temperature 

changes and attendant changes in long wave emissions.  EBMs avoid explicit treatment of this critical surface boundary 

condition, treating it phenomenologically in ways that are flawed; in this two part paper, we show how they can easily be 
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improved with significant benefits: first, the (idealized) homogeneous case (part I), and then the general horizontally 40 

inhomogeneous (2D) case (part II). 

First consider box EBMs with zero horizontal dimensions, a model of the mean Earth temperature.  These are based on two 

distinct assumptions: a) that the rate that heat (S) is exchanged between the earth and outer space (dS/dt) is proportional to the 

difference between the surface temperature (T) and its long term equilibrium value (Teq): dS/dt  (Teq-T)  (Newton’s Law of 

Cooling, NLC) and b) that this rate is also proportional to the rate of change of surface temperature: .   45 

Budyko-Sellers models are on firmer ground: they start with the basic continuum mechanics heat equation with advective and 

diffusive heat transport.  Yet they  have no vertical coordinate, and so are unable to correctly treat the surface conduction – 

radiation - energy storage issue.  By restricting explicit treatment of energy transport to the horizontal, they resort to the ad 

hoc assumption that the vertical flux imbalances are redirected horizontally and meridionally.  The original Budyko-Sellers 

models were of time independent climate states, there was no energy storage at all: the radiative imbalances were completely 50 

redirected.  While this approximation may be reasonable for these long term states, they become problematic as soon the 

original models were extended to include temporal variations ([Dwyers and Petersen, 1975]).  While these time varying 

extensions implicitly allow for subsurface energy storage, this implicit treatment is both unnecessary and unsatisfactory.  

The basic physical problem is that anomalous radiative flux imbalances partly lead to heat conduction fluxes into the subsurface 

and partly to changes in longwave radiative fluxes.  The part conducted into the subsurface is stored and may re-emerge, 55 

possibly much later.  Starting with the heat equation, realistic and mathematically correct treatments, involve the introduction 

of a vertical coordinate and the use of conductive - radiative surface boundary conditions (BCs).  If one considers the 

horizontally homogeneous 3-D problem in a semi-infinite medium with these mixed BCs and linearized long wave emissions, 

the problem is classical and can be straightforwardly solved using Laplace and Fourier techniques.  Mathematically it turns 

out that the key is the surface layer that defines the surface vertical temperature gradient.  The influence of the subsurface is 60 

only over a thin layer of the order of a few diffusion depths where most of the energy storage occurs.  This depth depends on 

the specific heat per volume as well as the diffusivity and is estimated to be typically of the order of 100m for the ocean 

(depending its turbulent diffusivity), and less over land (see appendix A, part 2). 

The exact treatment of this homogeneous problem confirms that Newton’s law of cooling holds, but shows that the classical 

box model relation between heat flux and the surface temperature is wrong: symbolically the correct relation is 65 

 with H = 1/2 -  not the phenomenological value H = 1.  Physically, these fractional derivatives are 

simply convolutions, in this case involving power law storage (hence “memories”).  The corresponding half-order energy 

balance equation (HEBE) has qualitatively much stronger storage than the short exponential memories associated with the 

standard integer ordered (H = 1) box model derivatives.  

Half-order	derivatives	have	appeared	in	heat	and	diffusion	problems	since	at	least	[Meyer,	1960],	[Oldham	and	70 

Spanier,	 1972],	 [Oldham,	 1973],	 and	 [Oldham	 and	 Spanier,	 1974].	 	 An	 equation	 mathematically	 identical	 to	 the	

homogeneous	H	 =	 1/2	 special	 case	 of	 the	 FEBE	was	 derived	 by	 [Oldham,	 1973]	 as	 a	 short	 time	 approximation	 to	

∝
dS / dt ∝ dT / dt

dS / dt ∝ d HT / dtH
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electrolyte	diffusion	in	a	spherical	geometry,	and	[Oldham	and	Spanier,	1974]	anticipate	our	present	application	by	

noting	that	half-order	derivatives	can	be	applied	to	“not	one	but	an	entire	class	of	boundary	value	problems…”.			Later,	

half-order	 derivatives	were	 developed	by	 [Babenko,	 1986],	 and	 have	 been	 regularly	 exploited	 in	 engineering	 heat	75 

transfer	 problems,	 see	 e.g.	 [Sierociuk	 et	 al.,	 2013],	 [Sierociuk	 et	 al.,	 2015]	 and	 references	 therein.	 	 The	method	 is	

probably	not	more	generally	known	since	most	applications	are	with	fairly	standard	heat	flux	boundary	conditions	and	

other	more	familiar	techniques	can	be	used.		

More	generally,	fractional	derivatives	and	their	equations	[Podlubny,	1999],		have	a	history	going	back	to	Leibniz	in	the	

17th	century	and	their	development	has	exploded	in	the	last	decades	(for	books	on	the	subject,	see	e.g.	[Miller	and	Ross,	80 

1993],	[Podlubny,	1999],	[Hilfer,	2000],	[West	et	al.,	2003],	[Tarasov,	2010],	[Klafter	et	al.,	2012],	[Klafter	et	al.,	2012],	

[Baleanu	et	al.,	2012],	[Atanackovic	et	al.,	2014]).			

Interestingly, the explicit or implicit application of fractional derivatives to model the Earth’s temperature - and more 

recently energy budget - has several antecedents arising from the wide range spatial scaling symmetries of atmospheric fields 

respected by the fluid equations, models and (empirically) by the atmospheric fields themselves (see the reviews [Lovejoy and 85 

Schertzer, 2013], [Lovejoy, 2019a]).  Since this includes the velocity field - whose spatial scaling implies scaling in time - it 

implies that power laws should be more realistic than exponentials.  At first, this led to power law Climate Response Functions 

(CRFs), [Rypdal, 2012; van Hateren, 2013], [Rypdal and Rypdal, 2014], [Rypdal	et	al.,	2015]	,	[Hebert, 2017], [Hébert et al., 

2020].  However, without truncations, pure power law CRFs lead to divergences: the “runaway Green’s function effect” 

[Hébert and Lovejoy, 2015], a model unstable to infinitesimal step function increases in forcing: the Equilibrium Climate 90 

Sensitivity is infinite.  These can be tamed either by a high frequency truncation ([Hebert, 2017], [Hébert et al., 2020]), or by 

restricting forcings to only those that return to	zero	[Rypdal,	2016],		[Myrvoll-Nilsen	et	al.,	2020].  

However, [Lovejoy, 2019a], , [Lovejoy et al., 2020], argued that it is not the CRF itself, but rather the earth’s heat storage 

mechanisms that respect the scaling symmetry.  This hypothesis implies that the corresponding storage (the derivative term) 

in the energy balance equation (EBE) is of fractional rather than integer order: the fractional energy balance equation (FEBE).  95 

Denoting the order of the derivative term in the equation by H, it was shown empirically that if the derivative was of order H 

≈ 0.4 - 0.5 (rather than the classical EBE value H = 1), that it could account for both the low frequency multidecadal memory 

[Hebert, 2017], [Hébert et al., 2020] needed for climate projections, as well as the high frequency macroweather (i.e. the 

regime at longer time scales than the lifetime of planetary structures, here, monthly to decadal) memory needed for monthly, 

seasonal and annual macroweather forecasts, [Lovejoy et al., 2015], [Del Rio Amador and Lovejoy, 2019; Del Rio Amador 100 

and Lovejoy, 2020a; Del Rio Amador and Lovejoy, 2020b].   Indeed, the FEBE CRF can be used directly to make climate 

projections  that are compatible with the Coupled Model Intercomparison Project 5 (CMIP5) multi-model ensemble mean 

projections but with substantially smaller uncertainties ([Procyk et al., 2020]).  Finally, it is possible to generalize the classical 

(3D) continuum equation to the Fractional Heat Equation from which the (inhomogeneous, 2D) FEBE governs the surface 

temperature (work in progress).  105 
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In spite of empirical and theoretical support, the FEBE is essentially a phenomenological global model; in this paper we show 

how – at least for the H = 1/2 special case-  it can be placed on a firmer theoretical basis while simultaneously extending it to 

two spatial dimensions.  Our model is for macroweather temperature anomalies i.e. at time scales longer than the lifetimes of 

planetary structures, typically 10 days.  Following Budyko and Sellers, the system averaged over weather scales is considered 

to be a continuum justifying the application of the continuum mechanics heat equation. Our starting point is thus the same as 110 

the classical EBMs: radiative, advective and conductive heat transport using the standard continuum mechanics energy 

equation.  Also following the classical approaches, the longwave black body radiation is treated in its linearized form.  

This work is divided into two parts.  The first part is classical, it focuses on the homogeneous heat equation pointing out the 

consequence that with semi-infinite geometry (depth) and with (realistic) conductive - radiative boundary conditions, that the 

surface temperature satisfies the homogeneous HEBE.  We relate this to the usual box models, Budyko-Sellers models, and 115 

classical diurnal heating models including the notions of thermal admittance and impedance and complex climate sensitivities 

useful in understanding the annual cycle.  We underscore the generality of the basic (long memory) storage mechanism.  The 

second part extends this work to the horizontal, first to the homogeneous case (but with inhomogeneous forcing, including a 

direct comparison with the classical latitudinally varying 1-D Budyko-Sellers model on the sphere), and then - using Babenko’s 

method - to the general inhomogeneous case.  Part II also contains several appendices that discuss empirical parameter 120 

estimates, spatial statistics useful for Empirical Orthogonal Functions and understanding the horizontal scaling properties as 

well as the changes needed to account for spherical geometry. 

2. The Transport Equations 

2.1 Conductive and advective heat fluxes 

In most of what follows, the earth’s spherical geometry plays no role, we use Cartesian coordinates with the z axis pointing 125 

upwards and horizontal coordinates x = (x,y) (however in section II.2.3 and appendix II.C of part II), we treat the latitudinally 

varying case on a sphere).  The horizontal is essentially the same the Budyko-Sellers model: horizontal diffusive and advective 

heat fluxes are atmospheric column averages lying on the surface (z = 0).  What is new is the treatment of the vertical with 

radiative and conductive fluxes crossing the surface either into the subsurface (downward, the negative z direction where it 

can propagate to ), or to outer space (upward, z >0) so that heat is effectively stored in the half-volume (x,y,z <0).  Although 130 

in principle this means that all the semi-infinite region z≤0 is modelled, we will see that ultimately only the vertical surface 

temperature derivative is needed and this is well defined as long as the surface layer is of the order of a few diffusion depths 

(tens or hundreds of meters).  Later, we show that the main equations only explicitly depend on the local relaxation times and 

climate sensitivities, the vertical and horizontal transport details are only implicit.  Finally, the fields are assumed to be in the 

macroweather regime i.e. they have been averaged over the weather – macroweather transition scale (about 10 days) or longer, 135 

and possibly for tens or hundreds of kilometers in space (the space-time limits are not yet clear).  Since ten days is the typical 

−∞
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lifetime of planetary atmospheric structures, much of the actual turbulent atmospheric transport processes are averaged out, 

giving some justification to the parametrization.   

We start with energy transport by diffusion: Fick’s law  where Qd is the diffusive heat flux vector, k is the 

thermal diffusivity, r the density, c the specific heat, and T(x,z,t) the temperature.  Following standard energy balance models, 140 

we use eddy diffusivities that are different in the horizontal (“h”)  and vertical (“v”), kh(x), kv(x): 

		 (1)	

(the circonflex indicates unit vectors).  To include advection, we consider the heat equation for a fluid in a horizontal velocity 

field vh: 

		 (2)	145 

Where D/Dt is the advective derivative.  The heat equation is therefore: 

		 (3)	

If cr = constant and using the continuity equation,  and we can write: 

	 (4)	

Qa is the advective heat flux and T0 is a constant reference temperature (it disappears when the divergence is taken).  This is 150 

the classical fluid heat equation, it can readily be verified that it conserves energy (integrate both sides over a volume and then 

use the divergence theorem).  kh(x), kv(x), vh(x) are taken to be independent of t and z, they are part of the climate state and are 

empirically determined so as to reproduce the time independent climate temperature distribution.  In future work, they could 

be given their own time-varying anomalies.    

2.2 Radiative heat fluxes   155 

At the surface, there is an incoming energy flux : 

		 (5)	
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Where F is the anomalous forcing and Q0 (x) is the local solar radiation: 

	 (6)	

Q is the mean top of the atmosphere flux (≈341 W/m2), S(x) is the dimensionless local solar constant with local coalbedo a(x) 160 

(in the notation of [North and Kim, 2017]) and the time dependent part of the radiative balance is specified by the additional 

incoming energy flux, the “forcing” F(x,t).  Although in this paper we mostly ignore temporal albedo variations (see however 

section 3.3), they are important for studying temperature-albedo feedbacks and climate transitions. If needed,  even if they 

include a (potentially nonlinear) temperature dependence, they are easy to incorporate.  For example, they could be included 

in F by using  in place of a (x) in eq. 6 and165 

 in place of F in eq. 5. 

As usual, F(x,t) includes solar, volcanic and anthropogenic forcings.  However since macroweather includes random internal 

variability, F(x,t) also includes a stochastic internal variability component.  Finally, for macroweather scales shorter than a 

year, F could also include the annual cycle and therefore possible cyclical albedo variations due to seasonally varying 

cloudiness (section 3.3).  Alternatively T and F can be deseasonalized in the usual way to yield standard monthly climate 170 

“normals” so that the mean anomalies are zero over the climate normal reference period.   

 is partially balanced by the outgoing  that  depends on the surface temperature and the effective emissivity 

e(x): 

		 (7)	

where	s is Stefan-Boltzmann constant.  The ,  imbalance drives the system, it implies that heat diffuses across the 175 
surface which is the top boundary condition needed to solve eq. 3 for T(x,z<0,t): 

	 (8)	

The derivative term  is the conductive (sensible) heat flux across the surface, into the earth, see fig. 

1.   The radiative fluxes thus impose a “mixed” conductive - radiative boundary condition  involving both T and  
(they are a special case of “Robin” boundary conditions [Hahn and Ozisk, 2012 ]).   If we add the initial condition 180 

 (or later, ) and the Dirichlet boundary condition at great depth 

and assume that the system is periodic or infinite in the horizontal, then, in principle, these are enough 

Q0 x( ) = QS x( )a x( )

a x,t( ) = a0 x( )+ a1 x,t,T x,t( )( )
F x,t( ) = F0 x,t( )+QS x( )a1 x,t,T x,t( )( )

R↓ x ,t( ) 		R↑ x ,t( )
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σε x( )T x ,z ,t( )4 + ρcκ v
x( )∂T x ,z ,t( )

∂z

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
z=0

=Q0 x( )+F x ,t( )

ρcκ
v
∂T /∂z

z=0
=Q

s

∂T /∂z

T x ,z ,t =0( )=0 T x ,z ,t = −∞( )=0
		T x ,z =−∞,t( ) =0
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to determine the temperature for T(x,z<0,t>0) (or eventually, ).  Instead of avoiding this conductive - 

radiative BC below we show how it directly yields an equation for the surface temperature. 

2.3 The Climatological and anomaly fields 185 

Let us now decompose the heat flux and temperature into time independent (climatological) and  time varying (anomaly) 

components: Qc, Tc and Q, T.   As usual, we linearize the outgoing black body radiation, although we do so around the spatially 

varying surface temperature Tc(x,z = 0) (i.e. not the global average temperature) which yields spatially varying coefficients:   

		 (9)	

(Tc+T is the actual temperature), with climate sensitivity: 190 

		 (10)	

Since typical macroweather temperature anomalies are only a few degrees, the black body emission is quite linear with the 

temperature anomaly.  However  due to feedbacks,  the proportionality coefficient – the climate sensitivity – as estimated in 

eq. 10 is not accurate; below, we simply consider s(x) to be an empirically determined function of position.  

The incoming radiation at the location x drives the system.  The radiative imbalance DR going into the subsurface is therefore 195 

equal to the conductive flux Qs into the surface; it specifies the conductive-radiative surface boundary condition for Tc and the 

anomalies T: 

		 (11)	

Where Qd,z is the (upward) vertical component of the heat flux at the surface given by Fick’s law: .  The 

conductive - radiative surface boundary conditions for the time independent climate and anomaly temperatures  is therefore:  200 

 

	 (12)	
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s, r, c and k are all presumed to be functions of x.   Note: the conductive heat flux is a sensible heat flux; the boundary condition 

involves its vertical component that represents heat stored in the subsurface.   While eqs. 11, 12 involve the vertical temperature 

derivative at the surface (i.e. over an infinitesimal layer), lv = srckv defines the diffusion depth (typically ≈ 10 - 100m in 205 

thickness, see part II); so that physically the model need only be realistic over this fairly shallow depth where most of the heat 

is stored. 

Now, in the temperature eq. 3, replace T by Tc+T.  The equation for the time independent climate part is: 

	 (13)	

and for the time-varying anomalies: 210 

		 (14)	

These equations must now be solved using boundary conditions eqs. 11, 12 for respectively Tc, T and Tc = T = 0 at 

(all t), and  (or see below, ).  

The separation into one equation for the time invariant climate state and another for the time-varying anomalies is done for 

convenience.  As long as the outgoing long wave radiation is approximately linear over the whole range of temperatures (as is 215 

commonly assumed in EBMs), this division involves no anomaly smallness assumptions nor assumptions concerning their 

time averages; the choice of the reference climate depends on the application.  Below, we choose anomalies defined in the 

standard way (although not necessarily with the annual cycle removed, section 3.3), this is adequate for monthly and seasonal 

forecasts as well as 21st century climate projections.  However, a different choice might be more appropriate for modelling 

transitions between different climates including possible chaotic behaviours. 220 

  

2.4 The climatological temperature distribution and Budyko-Sellers models 

In order to simplify the problem, starting with [Budyko, 1969] and [Sellers, 1969], the usual approach to obtaining Tc is 

somewhat different.  First, the climatological temperature field is only defined at z = 0, i.e. Tc(x) = Tc(x,0).   Without a vertical 

coordinate, the climatological radiative imbalance no longer forces the system via the vertical surface 225 

derivative (eq. 11), instead the imbalance is conventionally redirected in the meridional direction away from the equator (fig. 

2).   

To see how this works, return to eq. 4  for the climatological component and put : 
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	 (15)	

(in this formulation, one usually uses the latitude angle instead of the meridional coordinate y see part II, section 2.3).  The 230 

direction of the redirected vertical flux is always away from the equator (y = 0; hence sign(y)), in any event, zonal fluxes will 

cancel when averaged over latitudinal bands.   

The usual Budyko-Sellers type models then average Qc over lines of constant latitude yielding a 1-D model: 

		 (16)	

(overbar indicates averaging over all longitudes, x).   235 

In the more popular Seller’s version, the basic horizontal transport is due to the eddy  thermal diffusivity, the kh term.   There 

may also be a small advection velocity v but it is not considered to be a true physical velocity but only an ad hoc parameter 

needed to prevent kh from being negative ([Sellers, 1969]), the standard presentation ([North et al., 1981], ) avoids the problem 

by using the diffusivity, see section 3.1).  The horizontal eddy diffusivity kh is often taken as the sum of contributions from 

water, water vapor and air.   In the pure Budyko version, there is no eddy diffusivity, the heat flux is assumed to be proportional 240 

to the temperature difference with respect to a reference (e.g. mean) value; .  Comparing this with eq. 4 for 

Qa, we see that this implies that Budyko horizontal heat fluxes are purely advective.  

The final step to obtaining the energy equation is to take the divergence: 

	 (17)	

Budyko and Sellers only considered the time independent case and obtained: 245 

		 (18)	

By appropriately choosing a reference temperature (usually the global average), the constant can be adjusted for convenience.  

Somewhat later, [Dwyers and Petersen, 1975] considered the time independent case (eq. 17) which is second order in y.  

Subsequently the model has been widely used for studying different past and future climates and the corresponding transitions.  

Note that the  term corresponds to energy storage; in the time independent case there is no storage.    250 
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Q
c
y( )= ρc v

y
Tc −κh

∂Tc

∂ y

⎛

⎝
⎜

⎞

⎠
⎟ + sign y( ) Q0 y( )−R↑ Tc( )( )⎛

⎝
⎜

⎞

⎠
⎟ y!

Q( )
y
∝ T −T0( )

	
∇⋅Q

c
=
∂Qc

∂ y
=−ρc

∂Tc

∂t

		

∂Q
c
y( )

∂ y
=0

Q
c
y( ) = const

ρc
∂Tc
∂t



11 
 

3.  The classical origin of the fractional operators: conductive-radiative boundary conditions in a semi-infinite domain   

3.1 The zero dimensional homogeneous heat equation 

3.1.1 The key parameters 

No matter how the climate temperature equation is solved, the equation for the time dependent anomaly temperature remains 

eq. 14.   We now rewrite it in a way that brings out the critical mathematical properties.  Since rc and kv are only functions of 255 

x, eq. 14 can be rewritten: 

		 (19)	

Where we have defined an effective diffusion velocity vd and effective advection velocity v.  Eq. 19 must be solved with the 

boundary conditions in eq. 12. 

The roles of the various terms are clearer if the equation is nondimensionalized.  For this, we note that if we include the 260 

boundary conditions, the anomaly temperature is entirely determined by the dimensional quantities k, s, r and c.  From these, 

there exists a unique dimensional combination t(x) with dimensions of time, we will see that this controls the relaxation of the 

system back to thermodynamic equilibrium, it is a “relaxation time”.  Using kv yields: 

		 (20)	

where lv(x) is the vertical relaxation length of the surface energy balance processes.    In the next section, we give some rough 265 

parameter estimates.   We may also define the horizontal diffusion length lh, speed V , nondimensional (square root) diffusivity 

ratio b and nondimensional advection vector a: 

	 (21)	

The continuity equation for energy becomes .  For global (zero dimensional) models, t has been estimated as 

2 – 5 years which is comparable to the classical exponential relaxation time scales mentioned above ([Hebert, 2017], [Procyk 270 

et al., 2020]) and in section 3.3 we estimate t ≈ 2.75 years. 
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In order to understand the classical origin of fractional derivatives, it is helpful to consider the homogeneous Seller-type 

(diffusive transport) heat equation where t,  lv and lh are constants and can thus be used to nondimensionalize the operators.  t 

is therefore in terms of relaxation times, x in terms of diffusion lengths lh and  z in terms of diffusion depths lv.  By taking s = 

1, we effectively have a forcing F with dimensions of temperature.  In part I, we consider only the “zero dimensional” equation 275 

where the “zero” refers to the number of horizontal dimensions (i.e. only vertical, z and time t).   

With these dimensional parameters, we can write the equations as: 

	 (22)	

	 (23)	

Where z is the dimensionless horizontal transport operator.  We have ignored the reference temperature T0 by either taking it 280 

to be zero or by assuming  which is true if b = constant.    

If the advection is chosen appropriately, then we may write the horizontal transport operator in the form: 

	 (24)	

This is convenient for comparing the HEBE with the 1-D B-S equations on a sphere in part II section 2.3, and avoids the 

unphysical negative diffusivities reported by Sellers.  285 

	 (25)	

Where	DF		is	a	HEBE	diffusion	constant	per	radian	and	R	is	the	earth	radius.	

3.1.2 Parameter estimates 

Before proceeding, it is useful to get a feel for typical values of the parameters in the equations.  In part II, section 2.3 

and appendix II.A we combine these parameter estimates with analyses of monthly space-time temperature anomalies in order 290 

to analyse which terms in the equations are dominant at different time scales, the following are order of magnitude estimates. 
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A key parameter is the horizontal diffusion length  (eq. 21).  It can be estimated from the 

horizontal diffusivity kh, and the volumetric specific heat rc, the sensitivity s, and vertical diffusivity kv, or alternatively from 

kh  and t.    

a) Volumetric specific heat rc:  Ocean and land values are similar: water and soil: respectively rc ≈ 4x106 , ≈ 1x106 295 

J/(m3K). 

b) Climate sensitivity s: Using the CO2 doubling value 3±1.5K, 90% confidence interval and 3.71 W/m2 for CO2 

doubling, the global mean value is s ≈ 0.8±0.4 K/W/m2, with regional values a factor of ≈ 2 higher or lower (IPCC AR5) 

yielding rcs ≈ 3x106 s/m.   

c) Relaxation time t:  Based on responses to anthropogenic forcings since 1880,  [Hebert, 2017], [Hébert et al., 2020; 300 

Procyk et al., 2020], give the global estimate t ≈ 108s (≈ 4 years).  This is comparable to the relaxation times for global box 

models.  

d) Horizontal Diffusivity kh: As detailed in Part II, section 2.3,  [North et al., 1981], [North and Kim, 2017] uses a 

diffusion constant per radian analogous to DF eq. 25 combined with global scale climatological forcing and temperature data 

to estimate a global thermal conductivity K = 4.1x106 Wm-1K-1 from which we estimate the horizontal (eddy) diffusivity as kh  305 

= K /(rc) ≈ 1 m2/s.  [Sellers, 1969] gives values about 100 times larger for the ocean.   

e) Vertical diffusivity kv: The vertical diffusivity is not used in the usual energy balance models, however in climate 

models, ocean values of kv ≈ 10-4 m2/s are typical [Houghton et al., 2001].  For soil, rough values are  kv ≈ 10-6 m2/s (wet) and 

kv ≈ 10-7 m2/s (dry) are measured in [Márquez et al., 2016].  Alternatively we can use kv =  t/(rcs)2 and the global estimates 

of t ≈ 108s to obtain kv ≈ 10-5 m2/s which is close to the model values.   310 

f) Diffusion depth lv:  Using  we find for the ocean and soils respectively lv ≈ 300m, ≈ 3 – 10m.  Using the 

global estimates kv ≈ 10-5 – 10-4 m2/s yields lv ≈ 30 - 100m.  

g) Diffusion length lh: Using , lh ≈ 30 km (ocean), 3 km (land).  Using and kh ≈1 m2/s 

yields a global estimate lh ≈ 10 km.   

h) Diffusive based velocity parameter V:  V ≈ lh/t ≈ 3x 10-3 – 3x 10-4 m/s.  315 

i) Nondimensional advection velocity a:  The best transport model – diffusive, advective – or both - is not clear, 

therefore let us estimate the magnitude of the advective velocity v assuming that it dominates the transport.   The appropriate 

value is not obvious since most models just use eddy diffusivity – not advection - for transport.  One way - for example [Warren 

and Schneider, 1979] - is to note that typical meridional heat fluxes are of the order of 100 W/m2 over meridional bands whose 

temperature gradients DT are several degrees K.  If this heat is transported by advection, it implies v ≈ Qa/(rcDT) ≈ 10-5 -        320 

10-4m/s (eq. 4), hence, using V ≈ 10-4m/s (above), we find a = v/V ≈ 0.1 - 1.   

lh = τκ h( )1/2 = βκ hρcs

lv =κ vρcs

lh = κ hκ v( )1/2 ρcs lh = τκ h( )1/2
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3.1.3 The nondimensional equations 

With z, t in dimensionless form, the homogeneous zero dimensional heat equation is: 

	 (26)	

We use the following notation: the first argument is t then horizontal space, then a semicolon followed by the depth z.   The 325 

transfer is confined to the semi-infinite region z≤0 with boundary conditions:  (bottom).  The system is forced by 

the conductive - radiative surface boundary condition at z = 0 (the top): 

	 (27)	

For initial conditions, in this section, the forcing is “turned on” at t>0 (i.e. T(t;z) = 0 for t≤0), allowing use of Laplace transforms 

(see section 3.3 for Fourier methods).  330 

Performing a Laplace transform (“L.T.”) of the heat equation we obtain: 

	 (28)	

Where the circonflex indicates the Laplace transform in time (with conjugate variable p).  Solving: 

		 (29)	

Where A, B are determined by the BC’s.  Since we require the temperature at depth (z<<0) to remain finite, we must have B = 335 

0, hence: 

	 (30)	

To determine A(p), we Laplace transform the surface boundary condition: 

		 (31)	

 yielding: 340 
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		 (32)	

It is more convenient to determine the response  to the impulse forcing F(t) = d(t); the impulse Green’s function.   

Using eq. 30, 32 we obtain: 

	 (33)	

The above assumes that the subsurface is infinitely deep. If instead it has a finite thickness L, and we take the bottom boundary 345 

condition as  (rather than ), then  and 

 so that the influence of the bottom condition on the surface decreases 

exponentially fast as its depth L increases.  Physically, as long as the depth is of the order of a few diffusion depths (estimated 

as ≈ 100m in the ocean, ≈ 10m for land), the semi-infinite geometry assumption is unimportant.  In the following, we therefore 

ignore any finite thickness corrections. 350 

Taking the inverse Laplace transform of eq. 33 we obtain the integral representation: 

	 (34)	

(z≤0; where we have used contour integration on the Bromwich integral).    

3.1.4 The surface temperature 

For the surface, the integral (eq. 34) can be expressed with the help of higher mathematical functions: 355 

	 (35)		
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 is the H = 1/2 impulse response Green’s function, also denoted G0,1/2, the “0” for 0th integral of the impulse, the 

“1/2” for the order of the derivative for its equation, see below), it is sometimes called a “generalized exponential”,  itself 

expressed in terms of Mittag-Leffler functions. 360 

For long times after an impulse, the response  (t≫1, eq. 37 below) so that the system rapidly returns to its 

original temperature.  It is more interesting to consider the response of the system to a step (Heaviside) forcing  F(t) = Q(t) (= 

1, for t>0, = 0 for t≤0) after which the system eventually attains a new thermodynamic equilibrium.  Since , 

we have the step response  (also denoted G1,1/2, eq. 36), and  (eq. 37) i.e., a 

slow power law approach to thermodynamic equilibrium.   Figs. 3, 4 show this at different times and depths.  With unit step 365 

forcing, the boundary condition (eq.  27) indicates that the fraction of the heat flux that is transformed into long wave radiation 

is equal to the temperature with unit forcing.  Therefore the z = 0 curve in fig. 3 shows that at first, all the forcing flux is 

conducted into the subsurface, but that this fraction rapidly vanishes as the surface approaches equilibrium.  At equilibrium, 

the temperature has increased so that the short and long wave fluxes are once again in balance and there is no longer any 

conductive flux. 370 

For future reference, we give the corresponding step response G1,1/2 = GQ which is the integral of G0,1/2 that describes relaxation 

to energy balance (for this model, thermodynamic equilibrium) when F is a step function.  Similarly, the ramp (linear forcing) 

response G2,1/2 is the integral of the step response, the second integral of the Dirac: 

	 	(36)	

	 	375 

For small and large t: 

	 (37)	
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The asymptotic equation for the step response (G1,1/2) shows that equilibrium is approached slowly: as t-3/2.  It is this power 380 

law step response (empirically with ≈t-1.5) that was discovered semi-empirically by [Hebert, 2017], [Lovejoy et al., 2017], 

[Lovejoy et al., 2020] and was successfully used for climate projections through to 2100 [Hébert et al., 2020].  Similarly, ≈ t-

0.4 behaviour was used for macroweather (monthly, seasonal) forecasts close to the short time t-1/2 expansion [Lovejoy et al., 

2015], [Del Rio Amador and Lovejoy, 2019]. 

If we take this as a model of the global temperature, we can use the ramp Green’s function to estimate the ratio of the 385 

equilibrium climate response (ECS) to the transient climate response (TCR), we find:  where 

Dt is the nondimensional time over which (for the TCR) the linear forcing acts. Using t = 4 years, and the standard Dt = 70 

years for the TCR ramp, we find the plausible ratio TCR/ECS ≈ 0.78.   

3.1.5 Comparison with temperature forcing boundary conditions 

It is interesting to compare this with the classical surface boundary condition when the system is forced by the surface 390 

temperature, an alternative – periodic surface heat forcing - is discussed in section 3.3.  If the surface (z = 0) boundary condition 

 is imposed: 

		 (38)	

then there will be vertical surface gradients that imply that heat is conducted through the surface.  To obtain the impulse 

response Green’s function, we take  and repeating the Laplace transform approach, we obtain A(p) = 1 (eq. 395 

31 with no derivative term).   This yields the following Laplace Transform pairs for the impulse and step Green’s function: 
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2 t
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π
− t
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		 (39)	

In the context of the Earth’s temperature, using heat conduction, (not temperature) boundary conditions, [Brunt, 1932] obtained 

the analogous classical formula noting that “this solution is given in any textbook”.   

These classical Green’s functions provide useful comparisons with the conductive - radiative BC’s.  For example, integrating 400 

eq. 34 with respect to time and simplifying, we obtain: 

	 (40)	

Since the step response GQ describes the approach to thermodynamic equilibrium,  (fig. 5) succinctly expresses 

the differences between the temperature and conductive - radiative forced boundary conditions.  The leading large t 

approximation to the integral in eq. 40 is   so that as the figure shows, although they both slowly 405 

approach each other and eventually attain thermodynamic equilibrium, that the differences are important (especially in the 

diffusion layer, z ≈ <1) and they decay very slowly with time and depth, we discuss this further in section 3.3. 

3.1.6 Surface temperatures, Fractional derivatives and the HEBE 

Let us now introduce the Hth order fractional derivative  to represent the fractional derivative order H of an arbitrary 

function f over the domain from t0 to t: 410 

		 (41)	

Fractional derivatives of order H are most commonly interpreted in the Riemann-Liouville or Caputo sense ([Podlubny, 1999]) 

defined by t0 = 0 in the above (for H≤1, the main case of interest here, the distinction is not important).  Fractional derivatives 

and their inverses, fractional integrals (with H<0) are thus power law weighted convolutions; fractional integrals of noises are 

often associated with long memory stochastic processes.  Many studies have found long memories in macroweather ([Blender 415 

Gtemp,δ t;z( ) = ze− z
2t

2 π t3
↔
L.T .
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and Fraedrich, 2003], [Bunde et al., 2005], [Rybski et al., 2006], [Varotsos et al., 2013]) and a Gaussian noise forced 

model (fractional Gaussian noise)  have been proposed as models of internally forced (macroweather) temperature variability 

([Rypdal and Rypdal, 2014], [Lovejoy, 2015], [Del Rio Amador and Lovejoy, 2019], [Del Rio Amador and Lovejoy, 2020a]).   

Most applications of fractional derivatives are for forcings that start at t = t0 = 0 (i.e. F = 0 for t≤0), see [Miller and Ross, 

1993], [Podlubny, 1999] and are convenient for deterministic forcings, however they singularizes t = 0 whereas we often wish 420 

to include periodic or statistically stationary internal stochastic forcings so that  (or in the periodic case, the mean 

over a cycle = 0) is more convenient, in which case we take  and hence =0 (or periodic).  As discussed 

in [Lovejoy, 2019b], this corresponds to the semi-infinite range “Weyl” fractional derivative.  Deterministic, stochastic and 

periodic forcings can be combined into a single framework simply by using the Weyl derivatives with for example the 

deterministic part of the forcing starting at t = 0 (with the deterministic F(t) = 0 for t≤0) and the stochastic forcing at 425 

. These fractional derivatives have the following transformation properties: 

	 (42)	

Where w is the Fourier conjugate to t, (see e.g. [Miller and Ross, 1993], [Podlubny, 1999]).  In this part I (except for section 

3.3), we consider deterministic forcings, putting t0 = 0 in eq. 41, we using   (H = 1/2 in eq. 42), we obtain the 
HEBE for the surface temperature Green’s function: 430 

	 (43)	

This proves that the surface temperatures implied by the heat equation with conductive - radiative boundary conditions can be 

determined directly from the HEBE using the same Green’s function.  For the dimensional equations, the surface temperature 

therefore satisfies the dimensional HEBE: 

	 (44)	435 

(where the surface temperature is  ).   

This HEBE equation for the surface temperature could be regarded as a significant nonclassical example of the Mori-Zwanzig 

formalism, ([Gottwald et al., 2017], [Mori, 1965], [Zwanzig, 1973], [Zwanzig, 2001]), and empirical model reduction 
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formalisms [Ghil and Lucarini, 2020], whereby memory effects arise if we only look at one part of the system, ignoring the 

others.   In the HEBE, the surface temperature is analogously expressed directly in terms of the forcing, ignoring the subsurface 440 

degrees of freedom. Although such memories are usually considered exponential and hence small, the HEBE shows that the 

classical continuum heat equation has on the contrary, strong power law memories.  This points to serious limitations to 

conventional dynamical systems approaches to climate science that assume that the dynamical equations are integer ordered 

with exponential memories.  The HEBE shows that the fundamental radiatively exchanging components of the climate system 

will generally be characterized by long memories, associated with fractional rather than integer ordered derivatives.  We 445 

develop this insight elsewhere.   

3.2 The HEBE, zero dimensional and box models  and Newton’s law of Cooling 

Phenomenological models of the temperature based on the energy balance across a homogeneous surface may represent either 

the whole earth or only a subregion.  The former are global “zero dimensional” energy balance models (sometimes called 

“Global Energy Balance Models”, GEBMs (see the review [McGuffie and Henderson-Sellers, 2005 ]) whereas in the latter, 450 

they may represent the balance across the surface of a homogeneous subsection, a “box”.   The boxes have spatially uniform 

temperatures that store energy according to their heat capacity, density and size.  Often several boxes are used, mutually 

exchanging energy, and the basic idea can be extended to column models.  Since the average earth temperature can be modelled 

either as a single horizontally homogeneous box, or by two or more vertically superposed boxes, in the following, “box model” 

refers to both global and regional models. 455 

A key aspect of these models is the rate at which energy is stored and at which it is exchanged between the boxes.  Stored heat 

energy is transferred across a surface and it is generally postulated that its flux obeys Newton’s law of cooling (NLC).  The 

NLC is usually only a phenomenological model, it states that a body’s rate of heat loss is directly proportional to the difference 

between its temperature and its environment.  In these horizontally homogeneous models, it is only the heat energy/area (= S) 

that is important so that the NLC can be written:  460 

	 (45)		

S is the heat in the body and Q is the heat flux across the surface into the body (see fig. 6).  Teq is the equilibrium temperature, 

and Z is a transfer coefficient, the “thermal impedance” (units: m2K/W), its reciprocal Y is the surface “thermal admittance” 

see the next section).  Identifying the equilibrium temperature with Teq (t) = sF(t) and using the dimensional surface boundary 

condition (eq. 12), it is easy to check that a direct consequence of the HEBE’s conductive - radiative boundary condition is 465 

that it also satisfies the NLC: 

Qs =
dS
dt

= 1
Z
Teq −T( )
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		 (46)	

Unlike the usual phenomenological box applications that simply postulate the NLC, the HEBE satisfies it as a consequence of 

its energy conserving surface boundary condition.  Comparing eqs. 41, 42, we may also conclude that thermal impedance Z = 

s.    470 

While the HEBE and box models obey the NLC, their relationships between the surface heat flux Qs = dS/dt and the surface 

temperature T are quite different.  For example, for forcings starting at time t = t0 , using the HEBE we have: 

	 (47)		

Although this relation between surface heat fluxes and temperatures has been known for some time ([Babenko, 1986], 

[Podlubny, 1999], see e.g. [Sierociuk et al., 2013], [Sierociuk et al., 2015] for applications), to my knowledge, it has never 475 

been applied to conduction - radiative models, nor has it been combined with the NLC to yield the homogeneous HEBE.  In 

comparison, box models satisfy: 

	 (48)	

Where L is the effective thickness of the surface layer and C is the specific heat per area,  tbox is the classical EBE relaxation 

time.   [Geoffroy et al., 2013] used a two box model to fit outputs of a dozen GCM and found tbox  ≈ 4.1±1.1 years (the mean 480 

and spread of 12 models)  and ≈ 40 - 800 years for the second box whereas the [IPCC, 2013] recommends a 2 box model with 

relaxation scales tbox  = 8.4 and 409 years, with the FEBE, [Procyk et al., 2020] finds H = 0.38±0.05, t = 4.7±2.3 years.   

The HEBE and box heat transfer models can conveniently be compared and contrasted by placing them both in a more general 

common framework.  Define the Hth order heat storage as: 

	 (49)	485 

If we take T(t0) = 0 (this is equivalent to fixing the reference of our anomalies), then integrating by parts: 

	 (50)	
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Putting H = 1 yields the simple:  so that S1 = Sbox.  

Over the interval t0 to t, the fractional derivative of order H is defined as the ordinary derivative of the 1-H order fractional 

integral: 490 

	 (51)	

Therefore S1/2 = Sbox and:  

	 (52)	

Combining this with the NLC, in both cases we obtain: 

		 (53)	495 

Hence the box and HEBE models are special cases of the Fractional order Energy Balance Equation (FEBE [Lovejoy, 2019a], 

[Lovejoy, 2019b]).  Whereas the box model changes its heat content instantaneously with its current temperature (T(t)), at any 

moment, the energy stored in the HEBE model depends on the past temperatures, and since their weights fall off slowly – there 

is a long memory – it potentially depends on the temperature and hence energy stored in the distant past.   Box or column 

models all have surfaces that exchanges heat both radiatively and conductively so that – contrary to standard practice – these 500 

surfaces should instead exchange heat fractionally with H = 1/2 not H = 1.  Note that when we consider box interfaces with 

purely conductive heat exchanges (without radiative transfer e.g. between a “deep ocean” and “mixed layer” in global two box 

model), then the thermal contact conductance that characterizes the interface is needed. 

At a theoretical level, the advantage of the HEBE is that unlike the box models, it is a direct consequence of the standard 

(energy conserving) continuum heat equation combined with standard energy conserving surface boundary conditions.  It is 505 

therefore natural to ask if the H = 1 heat transfer (i.e. dS1/dt = (C/s)dT/dt) can be derived from the heat transport equation.   

Returning to the nondimensional boundary condition ( ) it is easy to verify, that in order to recover 

H = 1 heat transfer, one must instead use .   We therefore conclude that box model H = 1 transfer 

is not simultaneously compatible with heat equation and energy balance boundary conditions. 
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To summarize: we are currently in the unsatisfactory position of having zero and one dimensional (box and Budyko-Sellers) 510 

energy balance equations  neither of which satisfy the correct radiative - conductive surface boundary conditions.  For the box 

models, the consequence is that the energy storage processes have rapid (exponential) rather than slow (power law) relaxation.  

For the Budyko-Sellers models, the consequence is that at best, they are 1-D and even with this restriction, their time dependent 

versions have derivatives of the wrong order (part II, section 2.3).  In comparison, the zero dimensional HEBE is a consequence 

of correcting the Budyko-Sellers boundary conditions.  It satisfies the NLC and corrects the order H reducing it from the 515 

phenomenological value H = 1, to H = 1/2.  As a bonus, in part II we see that the HEBE can easily be extended from zero to 

two spatial dimensions, enlarging the scope of energy balance models while simultaneously eliminating these weaknesses.   

3.3 Thermal impedance and Complex climate sensitivities and the annual cycle 

3.3.1 Conductive versus conductive - radiative boundary conditions 

Up until now, we have discussed forcing that is “turned on” at t = 0, this allowed for convenient solutions using Laplace 520 

transform methods.  However, for forcing that is periodic or that is a stationary noise (i.e. the internal variability) Fourier 

techniques are more useful.   

The first applications of Fourier techniques to the problem of radiative and conductive heat transfer into the Earth, was by 

[Brunt, 1932] and [Jaeger and Johnson, 1953] who considered the (weather regime) diurnal cycle.  We already mentioned that 

[Brunt, 1932] also considered step function heat forcing, that he claimed might be a plausible model of the diurnal cycle near 525 

sunset or sunrise.  However, in zero - dimensional models, the long time temperatures after step heat flux forcings are divergent 

(but not in 2D models, see part II) so that later in his paper Brunt considered periodic diurnal heat flux forcing with no net heat 

flux across the surface and used Fourier methods instead.  In this classical diurnally forced problem, the periodic temperature 

response lags the forcing by a phase shift of p/4 = 3 hours.  If we apply the same shift to the annual cycle – assuming that the 

Earth is forced by heat flux into its subsurface – the corresponding lag is 1.5 months ≈ 46 days which is generally too long (we 530 

shall see that it corresponds to an infinite relaxation time). 

Following [Brunt, 1932] and [Jaeger and Johnson, 1953], let us consider the response to a single Fourier component forcing 

(this is equivalent to Fourier analysis of the equation).  In this case, assuming a periodic temperature response and substituting 

this into the 1-D dimensional heat equation (time and depth, i.e. the dimensional version of eq. 22), we find that the variation 

of amplitude with depth is: 535 

		 (54)	

Where Ts is the amplitude of the surface temperature oscillations, it depends on the nature of the forcing, here on the boundary 

conditions (“s” for “surface”).  Following Brunt, using the classical heat surface heat forcing as the surface boundary 

T t;z( ) = Tseiωte
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condition (with this forcing, Fs = Qs is the heat crossing the surface entering the system in the downward direction, see figs. 1, 

6) we find: 540 

		 (55)	

(“heat” for heat forcing), we obtain: 

	 (56)	

Where, Z(w) is the complex frequency dependent thermal impedance, the reciprocal of the thermal admittance.  For a given 

surface heat flux, Z(w) quantifies the surface temperature response (we have written the impedance with the help of s  in order 545 

to nondimensionalize the denominator).  Thermal impedance and admittance are standard in areas of heat transfer engineering 

and were introduced into the problem of diurnal Earth heating by [Byrne and Davis, 1980].  From Z(w), we can thus easily 

understand the key [Brunt, 1932], [Jaeger and Johnson, 1953] result: that arg(Z(w)) = arg(i-1/2) = -p/4 (“arg” indicates the 

phase).   

So far, this approach has only been applied to weather scales (the diurnal cycle).  Let’s now apply the same approach but with 550 

an eye to longer macroweather timescales, notably the annual cycle.  The climate sensitivity is an emergent macroweather 

quantity that is determined by numerous feedbacks that over the weather scales are quite nonlinear but over macroweather 

scales are considerably averaged (and at least for GCMs, [Hébert and Lovejoy, 2018]) are already fairly linear.  In any event, 

for the annual cycle we use radiative - conductive boundary conditions rather than the pure conductive ones used by Brunt.   

Using conductive - radiative surface BCs with external forcing  yields: 555 

	 (57)	
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Where here Fs is the radiative (downward) forcing radiative flux and Qs and Qs,rad are the surface conductive (into the 

subsurface) and long wave radiative emission (away from the surface) fluxes respectively.  Solving, we obtain the same depth 

dependence (eq. 54), but with the amplitude of the surface oscillations given by: 

	 (58)	560 

Where we have introduced the complex climate sensitivity s (w) which by definition is equal to the complex thermal impedance 

Z(w).  In the context of the Earth’s energy balance, it is more useful to think in terms of sensitivities than impedances so that 

below we use s(w).  With this, we obtain: 

	 (59)	

Since Arg(i1/2) = p/4 (= 45o), we see that as mentioned earlier, the conductive and long wave radiative fluxes are out of phase 565 

by 45o, but the phase of the temperature lags the forcing by Arg(l(w)), which only reaches 45o in the large t limit (see fig. 7).   

Note that we could have deduced eq. 59 directly by Fourier analysis of the HEBE using , but the 

above allowed us to compare the results with the classical model.  The Fourier method allows us to extend the complex climate 

sensitivity to the more general FEBE: 

	 (60)		570 

the usual EBE is the H = 1 special case. 

3.3.2 Empirical estimates of complex climate sensitivities 

Figs. 7, 8 compare the phases and amplitudes of l(w) for the classical and conductive - convective boundary conditions (H = 

1/2) HEBE as well as the H = 1 EBE.  The plots use w = 2p rad/yr.  From fig. 7, we see that taking the empirical value t ≈ 5 

years ([Procyk et al., 2020]), that the HEBE lag is a little over a month.   From the detailed maps in [Donohoe et al., 2020] 575 

(see also [Ziegler and Rehfeld, 2020]) we estimate that in the extratropical regions, over land, the summer temperature 

maximum is typically 30 - 40 days after the solstice, but only 20 - 30 days after the maximum forcing (insolation) and for 

ocean, 60 - 70 days after the solstice but only 30 - 40 days after the maximum insolation.  The HEBE result is thus close to the 

observed lag between the summer solstice and maximum temperatures over most land areas. 
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In contrast, if we use [Brunt, 1932]’s classical the heat forcing result we obtain p/4 = 1.5 months = 46 days which is 580 

already too long for most of the globe and the H = 1 EBE result (close to 3 months = 91 days) is much too long.  Over the 

ocean, the lag is typically longer than over land probably because of the strong albedo periodicity associated with seasonal 

ocean cloud cover [Stubenrauch et al., 2006],  [Donohoe et al., 2020].  This delays the summer solstice forcing maximum over 

the ocean, potentially explaining the extra lag. 

Although a complete analysis with modern data is out of our present scope, we can get a feel for the realism of this 585 

approach by using the zonally averaged [North and Coakley, 1979] Sellers model discussed in the review [North et al., 1981], 

updated in [North et al., 1983] where most of the earth follows the EBE phase lags of ≈90 days.  The model uses a 2nd order 

Legendre polynomial to take into account the latitudinal variations and a sinusoidal annual cycle with empirically fit parameters 

that effectively zonally average over land and ocean.  Empirical parameters are given for the albedo, top of the atmosphere 

insolation, temperature and outgoing IR radiation such that the global temperature maximum lags the solstice by 32.5 days 590 

[North and Coakley, 1979], [North et al., 1983].   An updated 2-D version of the Sellers model  has used it to estimate phase 

lags with respect to the solstice finding lags of ≈ 90 days over oceans and ≈30-40 days over land ([Zhuang et al., 2017], [Ziegler 

and Rehfeld, 2020]).   

 Before continuing, recall that the zero-dimensional theory discussed here assumes that all radiative flux imbalances 

are all stored, it ignores the divergence of the horizontal heat transport which according to [Trenberth et al., 2009] – is small 595 

even though the heat fluxes may be significant.  Although at least for temperature anomalies, we argue that this effect is mostly 

important at small scales, the magnitude of horizontal heat divergence at macroweather scales is not well known and is 

presumably quite variable from place to place depending on (inhomogeneous) local transport parameters (see part II).  A simple 

way to parameterize the transport is to maintain the assumption that the Earth has homogeneous parameters and to assume that 

the transport is due to horizontally inhomogeneous forcing.  In part II, we show that for a horizontal wavenumber k, the effect 600 

of horizontal transport is to modify the storage term as  , therefore for pure periodic horizontal 

forcing: 

	 (61)	

(“h” for “horizontal inhomogeneity; in [Lovejoy et al., 2020] there is an analogous calculation for the FEBE with H ≠ 1/2).  In 

North et al’s 1-D model, the top of the atmosphere forcing is exactly a cosine variation i.e. with a single wavenumber k = 1 605 

cycle around the Earth.  The only differences are that we neglected the curvature of the Earth and assumed that the Earth’s 

transport properties are constant.  We nevertheless use eq. 61 as an approximation for the horizontal transport.   

From the data in table 1 of [North et al., 1981] , we may deduce: 
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		 (62)	

Where the forcing Fs is the product of the solar constant with the co-albedo (= 1- albedo) and q is the latitude and the phases 610 

are taken with respect to the winter solstice.  The variation (about ±13%) in the amplitude of Fs is due to the latitudinal variation 

of the coalbedo.  In the model, the long wave radiation Qs,rad and the surface temperature response Ts have exact sinq 

dependencies.   The phases (in radians) are taken with respect to the winter solstice so that the summer solstice has a phase p 

= 3.14 rads, (in the northern hemisphere, June 21).  Due to the coalbedo variations,  the actual forcing has a phase  = 3.27 rads 

peaking on June 28th.   Also, the phase of the temperature and longwave emissions are larger = 3.70 rad, 3.65 rad corresponding 615 

to maxima on July 26th, July 23rd respectively (all results are appropriately symmetric for the southern hemisphere and for the 

cold lag following the winter solstice).  The near identity of the phases of temperatures and long wave responses (a three day 

difference, probably not empirically significant), is already support for the model that predicts that they should be in phase.   

We also note that these lags (of 28, 25 days) are considerably shorter than the 46 day lag (Aug 12th) that would have been 

obtained had we applied Brunt’s heat conductive forcing.   620 

We can use these data to estimate the climate sensitivity, relaxation time t and horizontal conduction term lhk by using the 

following: 

	 (63)	

From this (with w = 2p/yr), we obtain:  
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		 (64)	625 

The relaxation time is within the rough bounds deduced by considering atmosphere - ocean coupling time scale (≈ 2 years, 

Hebert et al 2020), low frequency climate records (≈ 4.7±2.3 years, [Procyk et al., 2020]), and the high frequency EBE 

relaxation times ≈ 4.1±1.1 years [Geoffroy et al., 2013].   We also see that the ratio of the storage to transfer is 17.3/13.2 ≈ 1.3 

so that most of the heat is indeed stored so that the above homogeneous theory is plausible.  The nondimensional lhk 

characterizes the typical horizontal transport over the period of a year.  Rather than interpreting it deterministically in terms of 630 

a global scale horizontal variation over a homogeneous earth, we consider it a nondimensional empirical parameter that we 

will try to clarify in future work.   In any case, the horizontal transport and storage are in quadrature so that the effect of the 

transport on the magnitude of sensitivity is smaller:  (i.e. about 12%) but the change in 

the phase is more substantive (≈ 15 days).   We can note that the EBE H = 1 value (ignoring transport, with t = 2.75 years) 

gives 87 days i.e. a maximum on September 21st which is much too late (fig. 7). 635 

The static climate sensitivity s should be purely real; its imaginary part is indeed small, it corresponds to 3 days and is probably 

within the error of the model and empirical estimates, it will be ignored below.   s  can be converted to K/(CO2eq doubling)  by 

multiplying it by the canonical value 3.71 W/m2/ (CO2eq doubling) to yield 1.51 K/(CO2eq doubling) which is at the lower part 

of the IPCC 90% confidence range (3±1.5 K/ (CO2eq doubling)).  Since both the methodology and the empirical parameter 

estimates could be updated and improved, the result is encouraging.  In future, instead of assuming latitudinal constancy with 640 

a sinusoidal latitudinal dependence, gridded data could be used and the horizontal conduction approximation (the lhk term) 

could be improved.  

4. Conclusions 

This first paper of two parts proposes a new 2D energy balance equation for macroweather scales: ten days and longer.  It 

follows the classical energy balance models pioneered by [Budyko, 1969] and [Sellers, 1969], and assumes that the dynamics 645 

can be adequately modelled by the continuum mechanics heat equation – by advection and diffusion.   As reviewed in 

[McGuffie and Henderson-Sellers, 2005 ], [North and Kim, 2017], the classical models treat the parts of the atmosphere and 

ocean that radiatively interact with outer space as a zero thickness, two dimensional surface.  The complex radiative processes 

that occur in the vertical direction are only treated implicitly.  The dimensionality is then further reduced by zonal averaging.    

While this original time independent model may be reasonable for the long term (time invariant) climate states, it is inadequate 650 

for treating time varying anomalies.   The key improvement in realism was by made explicitly introducing a vertical coordinate 

z.  Yet, when this was done, it turned out that a detailed vertical model was still unnecessary: all that was required was the 

τ = 2.75± 0.8yrs
lhk = 3.63± 0.64

iωτ( )1/2 +1 / iωτ + lhk( )2( )1/2 +1 ≈ 0.88
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existence of a surface layer whose thickness was of the order of the diffusion depth.  This is where most of the energy storage 

occurs and it determines vertical temperature derivative at the surface and hence the vertical conductive heat flux.   This 

sensible heat flux is the crucial link between  the local radiative imbalances that drive the system, the heat that is stored and 655 

the heat that is transported horizontally.   Whereas the Budyko-Sellers models have zero thicknesses, our model has a finite 

but possibly small thickness; it need only be thick enough to account for energy storage and to determine the surface vertical 

temperature derivative.   

In this first part, we considered only homogeneous zero-dimensional models.  These are completely classical, yet as far as we 

know, have not been solved with conductive – (linearized) radiative boundary conditions. Using standard Laplace and Fourier 660 

techniques, we solved the full depth-time heat equation and showed that it’s Green’s function was identical to a half-order 

fractional differential equation that directly gives the surface temperature.  Although half-order derivatives have occasionally 

been used in the context of the heat equation, (at least since [Oldham and Spanier, 1972; Oldham and Spanier, 1974], 

[Babenko, 1986]), the resulting half-order energy balance equation (the HEBE) is apparently new.  Mathematically, the result 

is a direct consequence of the heat equation, the semi-infinite medium and conductive - radiative surface boundary conditions. 665 

The consequences are surprisingly far reaching.  For example, the familiar integer ordered differential equations have 

exponential Green’s functions, short memories.  In contrast, the more general fractional ordered equations such as the HEBE 

have Green’s functions that are “generalized exponentials”, based on power laws and long memories.  A general consequence 

is that while the HEBE respects Newton’s law of cooling - i.e. that heat fluxes across a surface are proportional to temperature 

differences - that the relationship between this heat flux and the surface temperature is quite different: it involves a half order 670 

derivative rather than first order one.  The energy stored is no longer instantaneously determined by the surface temperature, 

but rather by the entire prior forcing history.   Irrespective of the details, we thus expect Earth heat storage processes to generally 

have long memories. 

We also obtained general results on the Earth’s response to periodic forcings.  Ever since [Brunt, 1932], Fourier techniques 

have used the heat equation to model the Earth’s temperature response when subjected to a diurnal heat flux forcing.  We 675 

extend this from the weather regime to macroweather regime, from diurnally periodic heat forcing to annually periodic 

radiative - conductive forcing.  An immediate consequence is that the surface thermal impedance - equal to the climate 

sensitivity – is a complex number whose phase determines the lag between the maximum of the forcing (shortly following the 

summer solstice) and the temperature maximum.  Using a simple latitudinally averaged model with empirical parameters, we 

estimated this complex climate sensitivity and showed how this could readily account for the observed 22-25 day lag, 680 

estimating the (static) climate sensitivity at s ≈ 0.41 K/(W/m2) and relaxation time t ≈ 2.75 years. 

In part II, we extend these zero dimensional results to the horizontal.   We first continue to use Laplace and Fourier techniques 

to treat the case of homogenous Earth parameters, but with inhomogeneous forcing.  We then – with the help of Babenko’s 

method, extend this to the full inhomogeneous problem with horizontally varying relaxation times, diffusivities, specific heats, 

climate sensitivities and forcings. 685 
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Figures 

 

Fig. 1: A schematic diagram showing the correct 3D energy balance equations with conductive - radiative surface boundary 
conditions.  Qs is the heat flux across the surface into the subsurface, S is the energy stored in the subsurface per unit surface area. 
The picture illustrates the thin surface layer (whose thickness is of the order of the diffusion depth, lv with relaxation time t, eq. 20) 825 
in which the radiative exchanges between the earth and outer space occur. 
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Fig. 2: A schematic diagram showing the Budyko-Sellers 1D energy balance equation obtained by latitudinal averaging and by 
redirecting the vertical imbalance away from the equator. 
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Fig. 3: The nondimensional temperature as a function of nondimensional time for various nondimensional depths with a step forcing; 
GQ(t;z) (obtained by integrating eq. 34 in time).  The (top) surface curve can be interpreted as the fraction of the forcing that is 
conductive.  At first all the forcing is conductive with no radiation, eventually all the fluxes are radiative, the system reaches a new 
thermodynamic equilibrium and there is no conductive heat flux. 835 
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Fig. 4:  Contours of nondimensional temperature as a function of nondimensional time and depth after a step function forcing 
(GQ(t;z)). 
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 840 

Fig. 5: The difference  between the classical (temperature forced) and radiative forced  step response functions over the 

diffusion depth (nondimensional z = 0 to -1).  The top is shows the surface (z = 0), the curves from top to bottom are at depths z =0., 
-0., -0.2, -0.3,…-1.  While the difference is large over the relaxation time (up to nondimensional t = 1),  we see that they both slowly 
converge to thermodynamic equilibrium at large t. 
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Fig. 6:  A schematic showing Newton’s law of cooling (NLC) that relates the temperature difference across a surface to the heat flux 
crossing the surface, Qs (into the surface).  Teq is the fixed outside temperature, heat will flow as long as the surface temperature Ts 
≠ Teq, Z is the thermal impedance (equal here to the climate sensitivity l).  To apply the NLC, we need to relate the heat flux to the 
surface temperature.  The lower left shows the consequence of applying heat equation with conductive – radiative BC’s, the lower 850 
right shows the phenomenological assumption made by box models.  The arrows represent heat fluxes, hence the factor l in the 
denominators.  The system is assumed to be horizontally homogeneous and that the subsurface is much thicker than the diffusion 
depth. 
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 855 

Fig. 7: The temperature phase lag (in months, the negative of  argument of the complex climate sensitivity), using the complex climate 
sensitivity and annual cycle forcing (i.e. with w = 2p rads/yr) with t in years.  The line  with short dashes (top) is the usual EBE (H = 
1), the solid line is the (H = 1/2) HEBE and the line with long dashes is the classical heat forcing model which is the large t HEBE 
limit.   All curves ignore any net horizontal heat transport.  The data analyzed here yield t ≈ 2.75±0.8 years but the actual phase is 
somewhat shorter due to horizontal heat transport. 860 
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Fig. 8: Same as fig. 7 except for the amplitude of the complex climate sensitivity to annual cycle forcing (i.e. with w = 2p rads/yr) with 
t in years.  The short dash line (bottom) is the usual EBE (H = 1), the top line with long dashes is the classical heat forcing model 
and the solid line is the (H = 1/2) HEBE.  865 
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