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Interactive comment on 

“The Half-order Energy Balance Equation, Part 2:The 

inhomogeneous HEBE and 2D energy balance models” 
 

Overall Notes on the revised manuscript: 5 

In addition to making changing changes suggested by the referees, I also added a new section 

2.3 that makes a direct comparison with the 1-D Budkyo-Sellers equation.  This clarifies the 

similarities and differences.  Appendix C was removed, developments elsewhere make it less 

pertinent.   

 10 

Anonymous Referee #1 
Received and published: 10 July 2020 

 

General comments: I think this is a notable (two-part) paper. Its key message, that the heat flux 

at the earth’s surface is a derivative of order half of the temperature, and that this modifies the 15 

simplest EBMs in an important way is both significant in itself, and provides a foundation for the 

author’s concurrent work on fractional stochastic energy balance models. 

 

Au: Thank you for the enthusiastic review!   

 20 

I have only one gripe that needs attention. It relates to earlier work which needs to be more fully 

described and integrated into the manuscript. When this is done so it will actually reinforce the 

author’s message, I think.  

 

Au: The Oldham references are quite useful, thanks!  I respond in more detail below. 25 
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 Specific comment: Earlier work on half-order derivatives in heat transfer 
 The list of references on fractional calculus seems to me to be comprehensive in general, but 

to be missing a key reference. Podlubny [1999] notes in his preface that:... from the viewpoint 30 

of applications in physics, chemistry and engineering it was undoubtedly the book written by K. 

B. Oldham and J. Spanier [i.e. "The Fractional Calculus", Academic Press, 1974; now in a Dover 

Edition] which played an outstanding role in the development of the subject which can be called 

applied fractional calculus.  Moreover, it was the first book which was entirely devoted to a 

systematic presentation of the ideas, methods, and applications of the fractional calculus.  35 

 

Referring back to this book suggests to me that to say, as the manuscript presently does, that“... 

half-order derivatives have occasionally [sic] been used in the context of the heat equation, (at 

least since [Babenko, 1986]) "substantially underestimates the extent to which half order 

derivatives have already been studied in the heat equation context. Oldham and Spanier devote 40 

their chapter 11 to applications of what they call the semi differential operator, i.e. the fractional 

derivative of half order, to diffusion problems including heat transfer. 

 

The book built on their own papers, particularly Oldham KB, Spanier J (1972) A general solution 

of the diffusion equation for semi infinite geometries, J Math Anal Appl 39:665–669 and Oldham 45 

KB (1973) Diffusive transport to planar, cylindrical and spher-ical electrodes, J Electroanal 

Chem Interfacial Electrochem, 41:351–358. They give the diffusion equation as: 

 
 

and then note that in three special, semi-infinite, cases this can be simplified so that Laplacian 50 

depends only on the radial co-ordinate r and t. In the planar case they give: 



3 
 

 
They take the system is initially in equilibrium F(r,t) =F0, for t <0,r≥0. An unspecified perturbation 

occurs at t= 0, and for times of interest t <0 it does not affect regions remote from the r= 0 

boundary. Hence F(r,t) =F0, for t≤τ,r=∞, and in the case of planar geometry they derive the 55 

solution: 

 

 
They then go on to consider the problem of 1D heat conduction in a semi-infinite plane, and so 

look at the heat equation in the form:  60 

 
with appropriate boundary conditions of T(r,0) = 0 and T(∞,t) = 0.The heat flux sought is 

 

 
which they get from their earlier solution for ∂F(r,t)/∂r by putting T for F,K/ρσ for κ,and using 65 

 
Because this result, Oldham and Spanier’s equation 11.2.10 is closely related to equation 43 in 

part I of the present ms, I think that it should be explained clearly whether i) the present paper 
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is effectively an illustration of Oldham and Spanier’s result in the EBM context, or ii) whether it 

offers a derivation in a domain to which Oldham and Spanier’s result did not apply. Either 70 

situation will be important and publishable but readers need to know which applies. Interestingly, 

Oldham and Spanier noted that the equation had been obtained by Meyerin 1960 in a Canadian 

NRC technical report (“A heat-flux-meter for use with thin film surface thermometers"), but rather 

than being written as a half order derivative it was then given in the alternative integral form: 

  75 

 
 

without explicitly using fractional calculus. It was thus known in the heat transfer context even 

before the first EBMs were derived, in a sense reinforcing the present author’s point. 

 80 

Au: There are several important differences w.r.t. to Oldham’s results.  

 

a) Oldham considers only a single spatial degree of freedom r corresponding to either the “zero-

dimensional” model (eq. 22 part 1) or cylindrical or spherical geometries that we do not consider.  

He nowhere considers fractional space-time operators as in part 2.  I.e. he neither treats 85 

homogeneous operators but with inhomogeneous boundary conditions,  nor does Oldham treat 

inhomogeneous media (inhomogeneous transport operators). In other words essentially all of 

part 2 (eq. 3 and later) is outside his scope. 

 

b)  Our boundary radiative-conductive boundary conditions are special cases of “Robin” 90 

boundary conditions i.e. they involve a linear combination of the field and it’s normal gradient 

over a surface.  Although Robin boundary conditions are occasionally used in insulating 

boundary condition problems in convective diffusive equations, they are not identical to the 

radiative-conductive conditions used here.   Oldham mentions Cauchy, Neumann and Dirichlet 
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boundary conditions and says that “any other type” could be used.  In other words he realized 95 

that his formalism was more general than the applications he developped, but did not pursue 

these.  I will add this information in the revised ms. 

 

c). Although it is not essential,  Oldham’s application of the method was to use more or less 

standard boundary conditions (Dirichlet) and then deduce the heat flux across surfaces from 100 

this.  As far as I can tell,  since then, this is almost invariably the way the method has been 

applied. 

 

d) A final more minor difference is that we also treated the Weyl derivative and used the 

corresponding Fourier techniques.   105 

 

We added references to these difference in the new ms.  
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Anonymous Referee #2 110 

 

Received and published: 13 July 2020 

 

This second part reviewed here extends the approach of Part 1 to higher spatial dimension and 

inhomogeneous thermal models of the earth’s response to radiative forcing.There is an 115 

appropriate summary of Part 1 that puts the new contribution into context. The full model 

considered here includes varying horizontal and vertical thermal diffusivities, thermal capacities, 

sensitivities and spatio-temporal forcing. By a heuristic method of Babenko, the author expands 

the inhomogeneous operator to give 2D energy balance equations that will be useful for studying 

spatio-temporal responses to forcing. The manuscript includes a number of appendices that 120 

examine horizontal structures, cross-correlations, space-time factorization of quantities such as 

autocorrelation and that extends the results from flat space to the sphere. The analysis seems 

to be carefully done, and care is taken to distinguish cases where there may not be a rigorous 

justification. 

 125 

Au:  I thank the referee for the very positive review! 

 

 I would be interested to see a bit more discussion of the “bottom boundary condition” T=0 at 

z=-infinity. I think it would also be useful to include some discussion of how atmosphere/ocean 

convection is/is not represented in the model. 130 

 

Au:  The role of the bottom boundary condition was addressed in part I where (just after eq. 29) 

it is shown that the influence of the bottom BC decays exponentially quickly with depth so that 

below a few diffusion depths it is essentially irrelevant.  In oceans this would likely imply depths 

of hundreds of meters.  In part I I added some new material clarifying the nature of the surface.  135 
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Abstract:  In part I, we considered the zero-dimensional heat equation showing quite generally that conductive – radiative 

surface boundary conditions lead to half-ordered derivative relationships between surface heat fluxes and temperatures: the 145 

Half-ordered Energy balance Equation (HEBE).  The real Earth – even when averaged in time over the weather scales (up to 

≈ 10 days) – is highly heterogeneous, in this part II, we thus extend our treatment to the horizontal direction.  We first consider 

a homogeneous  Earth but with spatially varying forcing, both on a plane and also on the sphere: we compare our new equations 

with the canonical 1-D Budyko-Sellers equations.  Using Laplace and Fourier techniques, we derive the Generalized HEBE 

(the GHEBE) based on half-ordered space-time operators.  We analytically solve the homogeneous GHEBE, and show how 150 

these operators can be given precise interpretations. 

We then consider the full inhomogeneous problem with horizontally varying diffusivities, thermal capacities, climate 

sensitivities and forcings.  For this we use Babenko’s operator method which generalizes Laplace and Fourier methods.  By 

expanding the inhomogeneous space-time operator at both high and low frequencies, we derive 2-D energy balance equations 

that can be used for macroweather forecasting, climate projections and for studying the approach to new (thermodynamic 155 

equilibrium) climate states when the forcings are all increased and held constant. 

1 Introduction 

In part I, we showed that when the surface of a body exchanges heat both conductively and radiatively, that its flux depends 

on the half order derivative of the surface temperature.  This implies that energy stored in the subsurface effectively has a huge 

power law memory.  This contrasts with the usual phenomenological assumption used notably in box models (including zero 160 

dimensional global energy balance models) that the order of derivative is an integer (one) and that on the contrary, the memory 

is only exponential (short).  The result followed directly by assuming that the continuum mechanics heat equation was obeyed 

and the depth of the media was of the order of a few diffusion depths, ; for the Earth, perhaps several hundred meters.   The 

basic result was a classical application of the heat equation barely going beyond results that [Brunt, 1932] already found “in 

any textbook”. 165 

A consequence was that although Newton’s law of cooling is obeyed, that the temperature obeyed the half-order 

energy balance equation (HEBE) rather than the phenomenological first order Energy balance Equation (EBE).  When applied 

to the Earth, the HEBE and its implied long memory explains the success of both climate projections through to 2100 [Hebert, 

2017], [Lovejoy et al., 2017], [Hébert et al., 2020] and macroweather (monthly, seasonal) temperature forecasts [Lovejoy et 

al., 2015], [Del Rio Amador and Lovejoy, 2019], [Del Rio Amador and Lovejoy, 2020a; Del Rio Amador and Lovejoy, 2020b].  170 

We also considered the responses to periodic forcings showing that surface heat fluxes and temperatures are related by a 

complex thermal impedance (Z(w), w is the frequency).  In the Earth system, Z(w) = sl(w) where sl(w) is the complex climate 

sensitivity that we estimated from a simple semi-empirical model. 

Although in part 1 we discussed the classical 1-D application of the heat equation to the Earth’s latitudinal energy balance 

(Budyko-Sellers models) - especially their ad hoc treatment of the surface boundary condition – we restricted the discussion 175 

Formatted: Font: Italic
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to zero horizontal dimensions.  In this part II, we first (section 2) extend the part I treatment to horizontally systems with 

homogeneous properties but with inhomogeneous forcings, first in the horizontal plane (section 2.1, 2.2), then - following 

Budyko-Sellers - latitudinally varying on the sphere (section 2.3).   systems but with inhomogeneous forcings, we then consider 

the more realistic case of horizontally inhomogeneous media.  The homogeneous case is quite classical and can be treated with 

standard Laplace and Fourier techniques, it leads to the (horizontally) Generalized HEBE: the GHEBE.  Although the GHEBE 180 

has a more complex (space-time) fractional derivative operator that is unlike anything we know of in the literature,  - like the 

HEBE, it can nevertheless be given precise meaning via its Green’s function.   

In section 3, we derive the inhomogeneous GHEBE and HEBE needed for applications.  This is done by using of 

Babenko’s method [Babenko, 1986] which is essentially a generalization of the Laplace and Fourier transform techniques.  

The challenge with Babenko’s method is to interpret the inhomogeneous space-time fractional operators.  Following Babenko, 185 

we do this using both high and low frequency expansions corresponding respectively to processes dominated by storage and 

by horizontal heat transport.  The long time limit describes the new energy balance climate state that results when the forcing 

is increased everywhere and held fixed: for the model this corresponds to equilibrium.   We also include several appendices 

focused on empirical parameter estimates (appendix A), the implications for two point and space-time temperature statistics 

(when the system is stochastically forced, internal variability, appendixces B, C), and finally (appendix Dappendix C), the 190 

changes needed to account for the Earth’s spherical geometry, including the definition of fractional operators on the sphere. 

2. The two-dimensional homogeneous heat equation 

2.1 The homogeneous GHEBE 

In part I we recalled the heat equation for the time-varying temperature anomalies (T) with diffusive and (horizontal) effective 

advective velocity (v): 195 

	 (1)	

 (This is written in the still general form of eq. 19, part I).  kh, kv are horizontal and vertical thermal diffusivities, z the vertical 

coordinate (pointing upwards, the Earth is z≤0), t the time, x = (x,y) the horizontal coordinates,  (the 

circonflexes indicate unit vectors).  These equations must now be solved using the conductive-radiative surface boundary 

condition: 200 

	 (2)	

∂
∂t

−κ v
∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
T = −v ⋅∇hT +κ h∇h

2T

∇h = x
! ∂/ ∂x + y! ∂/ ∂y

T x ,z ,t( )
s

+ ρcκ
v

∂T x ,z ,t( )
∂z

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
z=0

= F x ,t( )
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r, c are the fluid densities and specific heats s l  is the climate sensitivity and F is the anomaly forcing.  The initial 

conditions are T = 0 at (all t), and  (Riemann-Liouville) or below,  (Weyl).  

 

In part I, we nondimensionalized the zero-dimensional homogeneous operators by nondimensionalizing time by the relaxation 205 

time:  (with ) and nondimensionalizing the vertical distance by the vertical diffusion depth:

, with .  Considering now the full equation with advective and diffusive transport, we 

nondimensionalize the horizontal coordinates by the horizontal diffusion length: , (with )  and use 

the nondimensional advection velocity  (with speed  ).  If we now take sl = 1 (equivalent to using dimensions 

of temperature for the forcing F), we obtain: 210 

 

	 (3)		

For the heat equation and the conductive-radiative surface boundary condition respectively.  For initial conditions such that T 

= 0 for t≤0, as in part I, we take Laplace transforms in time, but we now take Fourier transforms in the horizontal:  

		 (4)	215 

Where “F.T.” is the Fourier transform in horizontal space, k for the conjugate of x,  (the vector modulus) with  

conjugate variable  (as usual, ).  Fourier transforms in space are convenient for either infinite horizontal 

media, or media with periodic horizontal boundary conditions.  In appendix Dappendix C, we consider the changes needed to 

account for spherical geometry.   

When , the solution  and  where Gd is the impulse 220 

(Dirac) response Green’s function, part I, eq. 30.  From eq. 4, we see that this is the same as the zero dimensional equation 

(eq. 24, part I) but with   i.e. for the corresponding Green’s function: 

z = −∞ T x ,z ,t =0( )=0 T x ,z ,t = −∞( )=0

t→ t / τ τ =κ v ρcs( )2

z→ z / lv lv = τκ v( )1/2

x→ x / lh lh = τκ h( )1/2

α = v
V

V =
lh
τ

∂2

∂z2
− ∂

∂t
+ −∇h

2( )−α ⋅∇h

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
T = 0

∂T
∂z z=0

+T t,x;0( ) = F t,x( )

∂2

∂z2
− ∂

∂t
+ −∇h

2( )−α ⋅∇h

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
T = 0 ↔

L.T .(t ),F .T .( x ) d 2

dz2
− p + k 2 − iα ⋅ k( )⎛

⎝⎜
⎞
⎠⎟
T̂ = 0

k = k

r = x ∇h↔
F .T .

ik

F t, x( ) = δ t( )δ x( ) T t, x( )→Gδ t, x( ) T̂ p,k( )→ Ĝδ p,k( )

p→ p + k 2 − iα ⋅ k
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		 (5)	

A note on notation: the first argument is time, with the vertical separated by a semi-colon.  When there is a horizontal coordinate 

it comes after time, before the semicolon.  With this notation, the right hand side of eq. 5 is the L.T. of the zero-dimensional 225 

(time-depth) Green’s function , the left hand side is the Laplace (time) and Fourier transform (horizontal, space) 

transform. 

We can now use the basic Laplace shift property: 

	 (6)	

To conclude that: 230 

	 		 (7)	

Decomposing this into a circularly symmetric diffusion part  and a factor  that shifts phases, we obtain: 

	 (8)	

By circular symmetry of , its inverse (2-D) Fourier transform reduces to an inverse Hankel transform (“H.T.”).   

Using: 235 

		 (9)	

We therefore obtain for the diffusive part of the surface impulse response (i.e. the response with source spatial forcing 

):  

	 (10)	

Where is the zero-dimensional impulse response.  If needed, its integral representation is given in eq. 3034, part I.  240 

The last step is to take into account the advective term associated with the phase shift .  For this final step, we use the 

Fourier shift theorem to obtain:  

Gδ
! p,k;z( ) = Gδ

! p + k 2 − iα ⋅ k;z( )

Gδ t;z( )

e −k2+iα ⋅k( )tGδ t;z( ) ↔
L.T .(t )

Gδ
! p + k 2 − iα ⋅ k;z( )

Ĝδ t,k;z( ) = e −k2+iα ⋅k( )tGδ t;z( )

G!δ ,dif t,k;z( ) eik⋅αt

Ĝδ t,k;z( ) = eik⋅αtG!δ ,dif t,k;z( ); G!δ ,dif t,k;z( ) = e−k2tGδ t;z( )

G!δ ,dif t,k;z( )

e−r
2 / 4t( )

2t
↔
H .T .

e−k
2t

δ x( ) = δ r( ) / 2πr( )

Gδ ,dif t,r;z( ) = e
−r2 / 4t( )

2t
Gδ t;z( )

Gδ t;z( )
k ⋅αt
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	 (11)	

This is the general surface result for the diffusive-advective transport part of the spatially homogeneous case.  As 

expected, the advective transport simply displaces the center centre of the impulse response with nondimensional velocity a.  245 

As usual, the solutions for arbitrary forcing F(t,x) can be obtained by convolution.   

For the surface we obtain the simpler expressions: 

	

	 (12)	

 (see eq. 3135, part I).  From these, the general surface results including advection are obtained with , i.e.  250 

.   

Since the advection term has this simple consequence, below we take a = 0, considering only diffusive transport, advection 

can easily be included if needed (i.e. below, we take ).    

To better understand the impulse response, fig. 1 shows this surface  for various radial distances r and fig. 2 shows 

the corresponding time dependence of the time integral of Gd; the unit step response GQ for various distances r, illustrating the 255 

power law approach to thermodynamic equilibrium at large t (discussed in section 2.2).  The corresponding long time, short 

distance expansions are: 

;	

	 (13)	

Gδ t, x;z( ) = Gδ ,dif t, x −αt ;z( ) = e
− x−αt 2 / 4t( )

2t
Gδ t;z( )

Gδ ,dif t,r;0( ) = e
−r2 / 4t( )

2t
1
π t

− eterfc t
⎛
⎝⎜

⎞
⎠⎟

GΘ,dif t,r;0( ) = Gδ ,dif t,r;0( )dt =
0

t

∫
1
r
erfc r

2 t
⎛
⎝⎜

⎞
⎠⎟
−
0

t

∫
e
− r

2

4s
+s

2s
erfc s1/2( )ds

r→ x −αt

Gδ t, x;0( ) = Gδ ,dif t, x −αt ;0( )

Gδ t,r;0( ) = Gδ ,dif t,r;0( )
Gδ t,r;0( )

Gδ t,r;0( ) ≈ t
−5/2

4 π
−
6+ r 2( )
16 π

t−7/2 +O t−9/2( )

GΘ t,r;0( ) ≈Gtherm,δ r;0( )− t
−3/2

6 π
+
6+ r 2( )
40 π

t−5/2 +O t−7/2( )
t >>1
r <<1
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Where  is the Green’s function for the (spatial Dirac) “hotspot” thermodynamic   equilibrium response 260 

discussed below (eq. 20).  Note that the leading term in  is independent of r, and the leading term in the 

approach to thermodynamic   equilibrium  is also independent of r.   

Just as we derived the zero-dimensional HEBE by showing that it had the same Green’s function as the z = 0 transport equation 

Green’s function, we can likewise derive the homogeneous Generalized Half-Order Energy Balance Equation (GHEBE) which 

is the space-time surface equation whose Green’s function is given in eq. 12. Following the derivation of the HEBE, in part I 265 

eq. 29, and replacing  we obtain: 

	 (14)	

Hence, for z = 0:  

(15)	

The left hand equation is the homogeneous GHEBE whose Green’s function is given by eq. 12.  We have therefore found a 270 

surprisingly simple explicit formula for the (inverse) half-order space-time GHEBE operator: 

		 (16)	

where “ ” indicates convolution.   This allows us to give a precise interpretation of the half-order operator.  Therefore the 

dimensional, homogeneous,  GHEBE and its full solution are:  

		 (17)	275 

Gtherm,δ r,0( )
Gδ t,r;0( )

GΘ t,r;0( )

p→ p + k 2 − iα ⋅ k

Ĝδ p,k;z( ) = e p+k2−iα ⋅k z

p + k 2 − iα ⋅ k +1

∂
∂t

+ −∇h
2( )− iα ⋅∇h

⎛
⎝⎜

⎞
⎠⎟

1/2

+1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Gδ t,x;0( ) = δ t( )δ x( ) ↔

L.T .(t ),F .T . x( )( )
p + k 2 − iα ⋅ k +1( )Ĝδ p,k;0( ) = 1

∂
∂t

+ −∇h
2( )− iα ⋅∇h

⎛
⎝⎜

⎞
⎠⎟

1/2

+1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= Gδ t, x;0( )∗

∗

τ ∂
∂t

+ −lh
2∇h

2( )− ilhα ⋅∇h

⎛
⎝⎜

⎞
⎠⎟

1/2

Ts t, x( )+Ts t, x( ) = sF t,x( )

Ts t, x( ) = s Gδ
t − ′t
τ
,
x − ′x
lh

;0
⎛

⎝
⎜

⎞

⎠
⎟ F ′t , ′x( ) d ′t

τ
d ′x
lh
2

0

t

∫
surf
∫

= s
lh
2

e
−τ x− ′x −lhα t− ′t( )/τ 2 / 4lh2 t− ′t( )( )

2 t − ′t( )
τ

π t − ′t( ) − e
t− ′t( )/τerfc

t − ′t( )
τ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
F ′t , ′x( )d ′t d ′x

0

t

∫
surf
∫

Field Code Changed
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 (“surf” is the surface over which the forcing acts, the bottom line uses the explicit eq. 12 for Gd).   

The above shows that even with the purely classical integer-ordered Budyko-Sellers type heat equation, that surface 

temperatures already obey long memory, half order equations.  However, it is not certain that the classical heat equation is in 

fact the most appropriate model.  Straightforward generalizations to fractional heat equations - where  

lead directly to fractional energy balance equations for surface temperatures, we investigate fractional heat equations 280 

elsewhere.  Physically, this  generalization from the classical fractional value H = 1/2 could be a consequence of turbulent 

diffusive transport which since at least Richardson been known to have anomalous diffusion. 

 

2.2 Energy balance, Thermodynamic equilibrium 

If F(t,x) = 0 then there is a radiative energy balance at time t, point x, but the temperature may be changing.  However, iIf 285 

F(t,x) = 0 for a long enough time, and for all xF(t) = 0, then the time derivatives ( ) vanish and Earth is in a steady 

energy balance (“climate”) state, Tclim(x), so that the temperature anomaly T(t,x) = 0. Now consider a step function increase 

.  Then as  , the time derivatives will vanish and a new (steady) climate state (with temperature 

) will be reached in which the horizontal transport and anomalous black body emission balance the new forcing: 

.  The new state is steady in time and is in energy balance with outer space and its local 290 

surroundings, but it is not strictly correct to describe  as one of thermal equilibrium.  This is because thermal  

equilibrium would imply that the temperature everywhere is constant (thermodynamic equilibrium is an even more stringent 

condition).   Nevertheless the term “radiative equilibrium” is commonly used in the context of planetary energy balance, so 

we will use the terms energy balance and equilibrium synonymously. 

Let us now investigate the equilibrium state.  Since, then the system is at equilibrium and will stay there.  However, if F is a 295 

step function in time, then as  , a new equilibrium will be established.   At equilibrium, d/dt = 0, so that the conjugate 

variable p = 0, .  Wwith this and a = 0 in eq. 15, we obtain the equation for the (spatial) surface impulse response 

for thermodynamic  equilibrium (subscript “thermeq”): 

		 (18)	

τ ∂T
∂t

→τ2H ∞Dt
2HT

∂
∂t

= 0

F t,x( ) =Θ t( )F0 x( ) t→∞

T0 x( )

−∇h
2( )1/2 +1( )T0 x( ) = F0 x( )

T0 x( )

t→∞

Geq,δ r;0( )

−∇h
2( )1/2 +1( )Geq,δ = δ x( )↔

F .T .

k +1( )Ĝeq,δ = 1
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i.e. the same as eq. 4 but with p = 0 (and a = 0) hence: 300 

	 (19)	

The equilibrium surface temperature (spatial) impulse (Dirac “hotspot”) Green’s function is therefore: 

	 (20)	

Where H0 is the zeroth order Struve function and Y0 is the zeroth order Bessel function of the second kind.  For large r, we 

have the expansions: 305 

	 (21)	

;	

	 r	≈	0		

The 1/r3 asymptotic decay is fast and implies that  spatial hotspots remain fairly localized; indeed, it is easy to show that if 

instead we had a Dirac surface heat flux source driving the system (i.e. with surface BC  i.e. without radiation) 310 

that the decay would be the much faster (1/r).   Forcing inhomogeneities thus remain much more localized than would otherwise 

be the case. 

 To study the convergence to thermodynamic equilibrium, consider a simple model of a surface “hot spot” where the forcing 

is confined to a unit circle and turned on and held at a constant unit temperature at t = 0.  This is the spatial equivalent of a step 

forcing in space, we combine it with a step (Heaviside) in time: 315 

	 (22)	

P1(r) is the corresponding indicator function. We now use the transform pair  to perform the convolution: 

Ĝeq,δ k;z( ) = ekz

1+ k

Geq,δ r,0( ) = 1r +
π
2
Y0 r( )− H0 r( )( ) ↔

H .T .( )
Ĝeq,δ k;0( ) = 1

1+ k

Geq,δ r;0( ) ≈ 1
r3

− 9
r5

+O r −7( ); r >> 0

Geq,δ r;0( ) ≈ 1r + log r + γ E − log2− r +
r 2

4
1+ log2− γ E( )− r

2

4
log r + ...

∂T
∂z z=0

= δ x( )

F t,r( ) =Θ t( )Π1 r( ); Π1 r( ) = 1 r ≤1
0 r >1

Π1 r( )↔
H .T . J1 k( )

k
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		 (23)	

 (J1 is the first order Bessel function of first kind).  Taking the limit  we obtain the thermodynamic  equilibrium 

temperature distribution.  Alternatively we could find it directly by from eq. 19: 320 

		 (24)	

Fig. 4 shows the cross section as a function of the distance from the circle’s center at various times (the inverse Hankel 

transforms were done numerically).  We note that the temperature rises very quickly at first, then slowly reaches equilibrium 

(thick).  The figure also shows (dashed) the thermodynamic   equilibrium when the forcing is purely due to unit conductive 

heating over the unit circle.  The difference between the dashed  and the thick thermodynamic  equilibrium curves are purely 325 

due to the radiative loses in the latter.   (Note that in the zero-dimensional case (part I), using pure heating forcing boundary 

conditions leads to diverging temperatures, there is no thermodynamic   equilibrium.  This explains why Brunt instead used 

temperature forcing boundary conditions.  Here, in two horizontal dimensions, boundary conditions that impose a fixed 

temperature over the circle are problematic since they imply infinite horizontal temperature gradients and infinite horizontal 

heat fluxes). 330 

Figs. 5, 6 shows the same evolution but with temperature as a function of time for various distances (fig. 5) and as contours in 

space-time (fig. 6).  We see that equilibrium is largely established in the first two relaxation times (here t = 1) and most of the 

perturbation is confined to two horizontal diffusion distances (here, lh = 1).   

 

2.3 Comparison of the HEBE with the standard 1-D Budyko - Sellers model on a sphere 335 

It is helpful to clearly understand the similarities and differences between the HEBE and the usual 1-D (latitudinal) B-S 

approach (see the comprehensive monograph [North and Kim, 2017], and see [Zhuang et al., 2017], [Ziegler and Rehfeld, 

2020] for recent applications, development).  Since the latter model is on a sphere but with only latitudinal dependence, we 

write the horizontal transport term  using gradient and divergence operators: 

 with q  = colatitude	and	µ = cos q.   In standard notation [North and 340 

Kim, 2017]) the B-S equation is thus written: 

Ts t,r( ) = GΘ t,r;0( )∗Θ t( )Π1 r( )↔
H .T . J1 k( )

k
ĜΘ t,k;0( )

t→∞

Teq,s r( ) = Ts ∞,r( )↔
H .T . J1 k( )
k 1+ k( )

∇h ⋅DB−S∇h

∇h⋅= − 1
R
d
dµ

1− µ2 ; ∇h = −
1− µ2

R
d
dµ
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	 (25)	

Where C is the specific heat per area,   the thermal conductivity per radian of arc, B is the climate feedback parameter, 

the inverse of climate sensitivity (B =1/s),  Q0, the solar constant, H the heat function, S is the insolation distribution function, 

a is the co-albedo and A is the constant term from the linearization of the black-body emission. If we measure temperatures 345 

with respect to the mean (reference) Earth temperature so that the A term balances the mean forcing), then the B-S equation 

with dimensionless operators can be written: 

	 (26)	

(the product sDB-S is dimensionless, t = C/B) where F is the anomaly with respect to the global average.   

In part I section 3.1.1, we expressed the horizontal transport operator in terms of the transport coefficient DF that allows us to 350 

write the HEBE in the form: 

	 (27)	

where .   Using  for the transport operator, we obtain the 1-D HEBE on 

the sphere: 

	 (28)	355 

In the case of constant thermal diffusion coefficients we may solve both equations using Legendre polynomials Pn(µ) 

that are eigenfunctions of the Laplacian:  (with boundary conditions at the 

poles being zero horizontal heat flux, see also appendix C for more general results on the sphere).  Expanding the temperature 

and forcing in terms of the Legendre polynomials and taking Laplace transforms of the coefficients in time, we obtain: 

C ∂T
∂t

− ∂
∂µ

DB−S µ( ) 1− µ2( ) ∂
∂µ
T

⎛
⎝⎜

⎞
⎠⎟
+ B µ( )T + A µ( ) = Q0H µ( ); H µ( ) = S µ( )a µ( )

DB−S

τ ∂
∂t

− s ∂
∂µ
D
B−S µ( ) 1−µ2( ) ∂

∂µ
⎛
⎝⎜

⎞
⎠⎟
T +T = sF

τ ∂
∂t

+ζ
⎛
⎝⎜

⎞
⎠⎟

1/2

T +T = sF ; ζ = −sR∇
h
⋅D

F
∇
h
; D

F
x( )= l

h
x( )

Rs x( ) = κh

βρc
R

β = κ v /κ h( )1/2 ζ = −s d
dµ
DF µ( ) 1− µ2( ) ddµ

τ ∂
∂t

− s ∂
∂µ
D
F
µ( ) 1−µ2( ) ∂

∂µ
⎛
⎝⎜

⎞
⎠⎟

1/2

T +T = sF

− ∂
∂µ

1−µ2( ) ∂
∂µ

⎛
⎝⎜

⎞
⎠⎟
P
n
µ( )= n n+1( )Pn µ( )
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 360 

	 (29)	

We then obtain equations for the Laplace transform of the nth Legendre coefficients: 

	 (30)	

So that: 

 (31) 365 

In real space: 

	 (32)	

(note that the generalization to the FEBE is obtained by the replacement  so that 

 whereas  so that  is not a special 

case of the FEBE).  Using: 370 

T t,µ( ) = Tn t( )Pn µ( )↔
L.T .

T! p,µ( ) = T! n p( )Pn µ( )
n=0

∞

∑
n=0

∞

∑

F t,µ( ) = Fn t( )Pn µ( )↔
L.T .

F! p,µ( ) = F! n p( )Pn µ( )
n=0

∞

∑
n=0

∞

∑

τp+ ξ
B−S ,n( )Tn! +Tn! = sF

n

! ; ξ
B−S ,n = sDB−Sn n+1( )

τp+ ξ
F ,n( )1/2Tn! +Tn! = sF

n

! ; ξ
F ,n = sDFn n+1( )

T! n p( ) = sG!δ
n( )
p( )F! n p( );

G!δ ,B−S
n( )

p( ) = G!δ ,1 τ p + ξB−S ,n( );
G!δ ,F

n( )
p( ) = G!δ ,1/2 τ p + ξF ,n( );

G!δ ,H p( ) = 1
1+ pH

τ −1e−ξB−S ,nt /τG0,B−S
n( ) t / τ( )↔

L.T .

G! 0,1
n( )
pτ + ξB−S ,n( )

τ −1e−ξ1/2,nt /τG0,F
n( ) t / τ( )↔

L.T .

G! 0,1/2
n( )

pτ + ξF ,n( )

τ p→ τ p( )2H

G!δ ,H
n( )
p( ) = 1/ 1+ τ p( )2H + ξF ,n( )1/2⎛

⎝⎜
⎞
⎠⎟

G!δ ,B−S
n( )

p( ) = 1/ 1+τ p + ξB−S ,n( ) G!δ ,B−S
n( )
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	 (33)	

(eq. 35, part I), combining this with eq. 32, we obtain for the impulse responses: 

	 (34)	

Integrating these with respect to t, we obtain the step responses: 

	 (35)	375 

The long time limit represents Earth energy balance (equilibrium):  

	 (36)	

If x<0, then there is an unphysical divergence so that sDF  must be >0.  Since Pn(µ) has n zeroes, n plays the role of wavenumber, 

it specifies structures of horizontal size ≈ pR/n.  Therefore we see that the B-S model (where G falls off as n-2) will yield a 

much smoother equilibrium temperature than the HEBE where it falls off as n-1.  Note that when generalized from the HEBE 380 

to the FEBE (with p→p2H), this equilibrium result is unchanged. 

For the HEBE, the short and long time behaviours are:  

e− t↔
L.T . 1
1+ p

1
π t

− et /τerfc t↔
L.T . 1
1+ p1/2

Gδ ,B−S
n( ) t( ) = τ −1e− 1+ξB−S ,n( )t /τ

Gδ ,F
n( ) t( ) = τ −1e−ξF ,nt /τ τ

π t
− et /τerfc t

τ
⎛

⎝
⎜

⎞

⎠
⎟

GΘ,B−S
n( ) t( ) = 1

ξB−S ,n +1
1− e− ξB−S ,n+1( )t /τ( )

GΘ,F
n( ) t( ) =

ξF ,nerf ξF ,n
t
τ
−1+ e

− t ξ
F ,n

−1( )/τerfc t
τ

ξF ,n −1

Geq,B−S
n( ) = GΘ,1

n( ) ∞( ) = 1
1+ ξB−S ,n

= 1
1+ sDB−Sn n+1( )

Geq,F
n( ) = GΘ,F

n( ) ∞( ) = 1
1+ ξ

F ,n

= 1

1+ sDFn n+1( )
; ξ ≥ 0
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	 (37)	

The asymptotic response for  is interesting because it tells us how quickly equilibrium is reached.  When n = 0 we 

have P0(µ) = 1, so that this component corresponds to the mean.  Since  we see that it is identical to the zero-385 

dimensional result in part I: equilibrium is approach in a power law fashion (t-1/2 for large t), whereas for n = 0, the B-S model 

approach to equilibrium is exponential.  However for n≥1, HEBE power law terms are exponentially damped, with exponential 

decay time:  whereas the B-S model is exponentially damped for all n with . 

In order to make a more detailed comparison between the models, we can follow [North and Kim, 2017] who consider a model 

with constant DS-B and that is north-south symmetric so that the odd numbered polynomials vanish.  They empirically give the   390 

climate equilibrium values for n = 0, 2, 4; the (constant) n = 0 term is used to obtain the mean  temperature 288K.  Other 

pertinent empirical data are  s = 1/B = 0.50 KW-1m2, F2 = -180.7 W/m2, F4 = 20.8K, T2 = -30K, T4 = -4K.  From eq. 36 for the 

equilibrium temperature Green’s function, we obtain: .  The n = 2 relationship is use to estimate 

 = 0.67 Wm-2K-1, with this estimate, we obtain ≈ 

1.35K which is not far from the empirical estimate T4 = -4K ([North and Kim, 2017]), it also yields the dimensionless quantity 395 

sDB-S = 0.33.   If we follow the same procedure for the HEBE, we estimate  , comparing this with the 

B-S relation, we  find: sDF = 6(sDS-B)2  the dimensionless sDF = 0.67, and DF = 1.33 Wm-2K-1 , T4 = 2.23K (again not far from 

the data).   We note that the ratio DF / DB-S ≈2 so that the estimates are close.   

GΘ,F
n( ) t( ) = 2t

1/2

πτ
− t
τ
−
2 ξF ,n − 2( )
3 π

t
τ

⎛
⎝⎜

⎞
⎠⎟

3/2

+ 1
2
ξF ,n −1( ) tτ

⎛
⎝⎜

⎞
⎠⎟

2

+ ...; t << τ ; n ≥ 0

GΘ,F
0( ) t( ) = 1− 1

π t
+ 1
2t π t

− ...; t >> τ ; n = 0

GΘ,F
n( ) t( ) = 1

1+ ξF ,n
− e−ξF ,nt /τ

2 πξF ,n

t
τ

⎛
⎝⎜

⎞
⎠⎟

−3/2

1− 3
2
1+ ξF ,n
ξF ,nt / τ

⎛

⎝
⎜

⎞

⎠
⎟ + ...

⎛

⎝
⎜

⎞

⎠
⎟ ; t >> τ ; n ≥1

GΘ,F
n( ) t( )

ξF ,0 = 0

τ F ,n = τ / ξF ,n τ B−S ,n = τ / 1+ ξB−S ,n( )

Teq,n = sGeq,B−S
n( ) Fn

DB−S =
1
6s

sF2
T2

−1
⎛

⎝⎜
⎞

⎠⎟
T4 = F4 / 1+ ξB−S ,n( ) = F4 / 1+ 20DB−Ss( )

DF =
1
6s

sF2
T2

−1
⎛

⎝⎜
⎞

⎠⎟

2
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We can use this information to estimate lh in the HEBE.  From the definition of DB-S as a thermal conduction coefficient 

per radian we obtain DB-S = K/R so that .  To find the transport length, we can use 400 

, , to obtain: 

	 (38)	

Alternatively, we can estimate lh from the global scale DH: 

	 (39)	

We see that these lh estimates differ by a factor of bDB-S/DF ≈ b/2.  Since typical numerical models with resolutions of hundreds 405 

of kilometers use kv ≈ 10-4 m2/s, and kh ≈ 1m2/s, at least at these scales b ≈10-2 so that the difference in the estimates may be 

large.  For example since sDB-S  ≈ 0.33, we find that the former yields lh ≈ 20km,  while the latter yields, lh ≈ 4000 km.  One 

way to reconcile the difference is to assume that b - that characterizes the horizontal-vertical effective diffusivity ratio - has a 

systematic scale dependence due to a difference in the scaling properties of kh and kv so that at global scales b ≈ 1 (this may 

arise as a consequence of the scaling anisotropic horizontal structure of the atmosphere at weather scales, notably of the 410 

horizontal wind field, the 23/9D model, [Schertzer and Lovejoy, 1985]).   

A different (possibly additional) way of reconciling the estimates is to consider the potentially large (multifractal) intermittency 

of the diffusivities that introduces s strong scale effect.  For example, 0 [Havlin and Ben-Avraham, 1987], [Weissman, 1988], 

[Lovejoy et al., 1998]) show that in 1-D, the large scale effective thermal resistance rT – the inverse diffusivity - is the average 

of the small scale resistances.  If we denote the spatial averages over a scale L by a subscript, and assume that the resistivity is 415 

scaling (scale invariant) up to planetary scales (denote this by R), then it will generally follow the following multifractal 

statistics: 

	 (40)	

Where the angle brackets denote statistical averages and Kr(q) is the moment scaling function that characterizes the scaling of 

the qth order statistical moment order of the thermal resistance. 420 

The thermal resistance is proportional to the inverse thermal diffusivity, therefore the effective HEBE diffusive transport 

coefficient at scale L satisfies: 

κ h = K / ρc = RDB−S / ρc ≈1m
2 / s

lh = βκ hρcs β =
κ v
κ h

⎛

⎝⎜
⎞

⎠⎟

1/2

lh
R
= βsDB−S

lh
R
= sDF

ρT ,L
q = R

L
⎛
⎝⎜

⎞
⎠⎟

Kρ q( )
ρT ,R
q
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	 (41)	

Finally, using  we obtain: 

	 (42)	425 

Which relates the transport length at small scales L and planetary scales R.  Depending on Kr(-1), the ratio   can be 

quite small.  For example, if the thermal resistivity statistics are taken as log-normal, then: so that 

 so that .  As discussed in appendix A, C1 ≈ 0.16 for the temperature in space (see also 

[Lovejoy, 2018]).  Using this value as a guide, we find  so that depending on the small scale resolution 

L, we can easily explain a factor of 10 or more increase in the effective transport length at large scales.   Clearly the scale 430 

dependence of kh, kv is an important topic for future FEBE research.  

 

3. The inhomogeneous heat equation 

3.1 Babenko’s method 

The homogeneous heat equation in a semi-infinite domain is a classical problem and conductive - radiative surface boundary 435 

conditions naturally lead to fractional order operators, the HEBE and GHEBE.  Although we have seen that fractional operators 

appear quite naturally, their advantages are much more compelling for the more realistic inhomogeneous equations relevant 

for the Earth.  We will therefore now proceed to derive the inhomogeneous HEBE and GHEBE using Babenko’s method.  The 

more usual application is to find the surface heat flux given a solution to the conduction equation (see for example [Magin et 

al., 2004],  [Chenkuan and Clarkson, 2018]), the following application appears to be original.   440 

In the inhomogeneous case with t = t (x), lh = lh(x), lv = lv(x), a = a(x), there is no unique nondimensionalization.  Therefore, 

we express the inhomogeneous anomaly heat equation with nondimensional operators as: 

DF ,L ∝κ h,L ∝ ρT
−( )
L

−1
≈ R
L

⎛
⎝⎜

⎞
⎠⎟

−Kρ −1( )
DF ,R

lh,L ∝ DF ,L

lh,L ∝
L
R

⎛
⎝⎜

⎞
⎠⎟

Kρ −1( )
lh,R

lh,L / lh,R

Kρ q( ) = C1q q −1( )

Kρ −1( ) = 2C1 lh,L ∝ L / R( )2C1 lh,R
lh,L ∝ L / R( )0.32 lh,R
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	 (4325)	

Where we have used  and z is a time independent horizontal transport operator allowing for 

both advective and diffusive transport.  Under the fairly general conditions, when z  operates on the temperature field, it is 445 

proportional to the nondimensional divergence of the horizontal heat flux (discussed in part I, see eq. 4).  Since the forcing is 

via the surface boundary condition rather than by an inhomogeneous term, eq. 25 43 is mathematically homogeneous.  

The first step in Babenko’s method (see e.g. [Podlubny, 1999], [Magin et al., 2004]), is to factor the differential operator: 

		 	(4426)	

As usual, the general solution of a homogeneous equation is a linear combination of elementary solutions A+ and A-: 450 

		 (4527)	

The A+ solution leads to solutions that diverge at  whereas A- leads to the required physical solutions with 

, ([Podlubny, 1999]).  Therefore we are interested in solutions to: 

		 (4628)	

putting z = 0 and using  (part I,  eq. 22)6, we obtain: 455 

	 (4729)	

where Ts(t ,x) is the surface temperature anomaly and   is the heat flux into the surface (the negative of which is the 

z component of the surface conductive (sensible) heat flux).  Before interpreting the half order operator on the left, we can 

τ ∂
∂t

+ lhζ − lv
∂
∂z

⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
T = 0; ζ = α ⋅∇h + lh −∇h

2( )( )

κ v x( ) = lv2 ∂2

∂z2
= lv

∂
∂z

⎛
⎝⎜

⎞
⎠⎟

2

Λ+ l
v

∂
∂z

⎛

⎝⎜
⎞

⎠⎟
Λ− l

v

∂
∂z

⎛

⎝⎜
⎞

⎠⎟
T =0; Λ = τ ∂

∂t
+ l

h
ζ

⎛
⎝⎜

⎞
⎠⎟

1/2

Λ+ l
v

∂
∂z

⎛

⎝⎜
⎞

⎠⎟
A+ t ,x;z( )=0; Λ− l

v

∂
∂z

⎛

⎝⎜
⎞

⎠⎟
A− t ,x;z( )=0

	z =−∞ 		T −∞( ) =0

Λ− l
v

∂
∂z

⎛

⎝⎜
⎞

⎠⎟
T t ,x;z( )=0

Q
z
= − l

v
/ s( )∂T /∂z

τ ∂
∂t

+ lhζ
⎛
⎝⎜

⎞
⎠⎟

1/2

Ts = lv
∂T
∂z z=0

= sQs;
Ts t,x( ) = T t,x;0( )

Qs t,x( ) = − Q
d
t,x;0( )( )

z

Qs Qs,d ,z
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already give this equation a physical interpretation.  When >0, sensible heat is forced into the Earth, some of it is stored in 

the subsurface (the  term, the same horizontal position x but stored by heating up the subsurface, z<0), and some of the 460 

heat (the  term), is transported horizontally to neighbouring regions (and conversely when <0).  We can also 

understand the basic difference between the A+ and A- solutions: whereas the physically relevant A- solution correspond to 

energy storage and horizontal transport in the region z<0, the A+ solutions correspond to the region z>0 assumed to be devoid 

of conducting material.   

The final step is to use the fact that the conductive heat flux  is equal to the radiative imbalance (part I, fig. 1): 465 

	 (4830)	

Combining the equations 29, 30 we obtain the inhomogeneous Generalized Half-order Energy Balance Equation (GHEBE): 

	 (4931)	

If needed, the internal field T(t,x;z), can be found by solving eq. 31 49 for Ts(t, x) which is the z = 0  boundary condition for 

the full eq. 2543.  We see that eq. 31 49 reduces to the homogeneous GHEBE (eq. 17) when t, lh, sl, a are constant.   470 

By comparing this derivation with that of the homogeneous GHEBE via the classical Laplace-Fourier transform method 

(section 2.1), it is clear that Babenko’s method is very similar, but is more general.  Whereas in the homogeneous equation, 

where the transforms reduce the derivative operations to algebra, the difficulty with Babenko’s method is to find proper 

interpretations of the fractional operators.   However, in the above, we assumed that t was only a function of position, so that 

Laplace (or Fourier) transform methods still apply in the time domain, in the next section we discuss the more challenging 475 

interpretation of the fractional inhomogeneous spatial operators. 

3.2 The zeroth order high frequency GHEBE: the HEBE 

Before discussing the inhomogeneous GHEBE, consider the case where the horizontal term lhz is small compared to ; 

below we argue that this is a good approximation for scales up to years and decades and greater than tens of kilometers (table 

1, appendix A).  Recall that the this horizontal transport term is in fact proportional to the divergence of the horizontal heat 480 

flux so that it may be small even when heat fluxes are significant [Trenberth et al., 2009]. Alternatively, in globally averaged 

Qs

τ ∂
∂t

lhζ Qs

Qs

Qs = R↑ − R↓ =
Ts
s
− F

τ x( ) ∂∂t + lh x( )ζ x( )⎛
⎝⎜

⎞
⎠⎟

1/2

Ts t,x( )+Ts t,x( ) = s x( )F t,x( )

τ ∂
∂t

Field Code Changed

Field Code Changed

Field Code Changed

Formatted: Font: Italic



25 
 

models, there are no horizontal inhomogeneities so that z = 0.  In these cases ; and we obtain the 

inhomogeneous HEBE as a special case of the inhomogeneous FEBE: 

	 (5032)	

We	have	written	it	with	a	general	H	since	as	in	part	I,	an	inhomogeneous	version	of	the	EBE	may	be	obtained	with	H	=	485 

1.	 We	 have	 also	 used	 the	 Weyl	 derivative	 (i.e.	 from	 )	 since	 this	 accommodated	 periodic	 or	 statistically	

stationary	forcing	as	well	as	forcing	starting	at	t	=	0	(I	this	case	we	simply	consider	F	=	0	for	t≤0).		Eq.	32	50	shows	
that	the	HEBE	only	depends	on	the	local	climate	sensitivity	and	the	local	relaxation	time.		We’ll	see	below	that	explicit	

dependence	on	the	horizontal	transport	(v,	kh)	and	specific	heat	per	volume	rc	is	only	important	at	scales	somewhat	

smaller	than	the	transport	length	scale	(or	alternatively	at	extremely	long	time	scales,	section	3.56).		Before	solving	the	490 

HEBE,	 it	 is	 instructive	 to	 introduce	 the	notation	 .	 	 	 	is	 the	equilibrium	temperature	 that	

would	be	reached	at	time	t,	if	at	each	location	x,	F	was	suddenly	stopped	and	fixed	at	that	value.			With	this	notation,	we	

may	integrate	both	sides	of	eq.	32	50	by	order	H,	and	multiply	by	t-H	to	obtain:	

	 (5133)	

Written in this form, it is obvious that the temperature is constantly relaxing in a power law manner to  (although if F and 495 

is time dependent, equilibrium will in general never in fact be established).  In the usual EBM special case (H = 1), the power 

law must be replaced by an exponential, the HEBE is obtained with H = 1/2.  Since , physically the deviation from 

 - the term  (eq. 3250) - physically corresponds to the energy imbalance, as before, it is a power law, long 

memory energy storage term. 

The FEBE is a linear differential equation that can be solved using Green’s functions [Miller and Ross, 1993], [Podlubny, 500 

1999].  The solution is: 

		 (5234)	
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where G0Gd,H is the H order Mittag-Leffler impulse response Green’s function ([Lovejoy, 2019a]).  In general, Gd0,H is only 

expressible in terms of infinite series, exceptions are the H = 1 EBE (Gd0,1 = e-t);  and the H = ½ HEBE (eq. 33with in the 

notation above  (eq. 31, part I).  505 

The corresponding step response GQ,1/2 = G1,1/2 = GQ is the integral of G0,1/2 Gd,1/2 (respectively G1,1/2, G0,1/2 in the notation of 

eq. 3236, part I)), it describes relaxation to thermodynamic   equilibrium when F is a step function; similarly, the ramp (linear 

forcing) response G2,1/2 (eq. 3236, part I), is the integral of the step response. 

 

3.3 Some features of stochastic forcing 510 

The FEBE and the HEBE are examples of fractional relaxation equations; these have primarily been discussed in the context 

of deterministic forcings that start at t = 0.  The corresponding stochastic fractional relaxation processes (in physics, “fractional 

Langevin equations”, (FLE) see the references in [Lovejoy, 2019a]) - here corresponds to stochastic internal forcing.  The FLE  

have has received little attention, although [Kobelev and Romanov, 2000], [West et al., 2003] discuss the corresponding 

nonstationary random walks.  The statistically stationary stochastic case that results when Weyl rather than Riemann-Liouville 515 

fractional derivatives are used is treated in [Lovejoy, 2019a], including the HEBE autocorrelation function and prediction 

problem (and its limits) when F is a Gaussian white noise.   

To understand the noise driven HEBE, it is helpful to Fourier analyze it using  [Lovejoy, 2019a], section 

3.3 part I and appendix C.   At high frequencies, the derivative (energy storage) term dominates so that the temperature is a 

fractional integral (order H) of the forcing.  At low frequencies, the derivative term can be neglected so that T ≈ slF implying 520 

that the equilibrium temperature follows the forcing and that sl is indeed the usual climate sensitivity.   

Alternatively, in real space, if F(t) is a unit step function Q(t) and s l = 1, then for H ≠ 1 the long time relaxation to the 

equilibrium temperature response, is a power law:  (part I eq. 33).  Similarly, for small t, for H < 1, the 

impulse response  is singular  (part I eq. 33).   Due to this singularity, when F(t) is a Gaussian white noise, at 

high frequencies, T will be a fractional Gaussian noise (fGn) with exponent HfGn = H - ½; averages over time Dt will behave 525 

as .  When H ≤1/2 (HfGn≤0) and the resolution is increased ( ), this implies strong resolution 

dependencies (mathematically, small scale divergences) when the resolution is increased ( ) and so it is important in 

data analysis, including the estimation of the temperature of the Earth [Lovejoy, 2017]. When forced by a white noise, the 

HEBE is exactly at the critical value HfGn = 0 corresponding to a “1/f” noise (note that the Earth’s internal variability forcing 

is not necessarily a white noise, it might have a different scaling behaviourresearch in progress indicates that it is at least close 530 

G0,1/2 t( ) = Gδ t;0( ) = 1
π t

− eterfc t

−∞Dt
H( ) →

Fourier

iω( )H

GΘ,H t( ) ≈1− t−H
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to a white noise).  A particularly relevant aspect is that the correlation function and spectrum change very slowly from high to 

low frequencies [Lovejoy, 2019a].  With data over a limited ranges of scales – e.g. months to decades – then, depending on the 

relaxation time t, the HEBE could mimic the FEBE with any H in the range 0< H ≤ ½ (hence -1/2≤ HfGn ≤0).  It can therefore 

potentially account for the geographical variations in H reported in [Lovejoy et al., 2017] as being spurious consequences of 

geographical variations in t(x). 535 

 At global scales, the high and low frequency HEBE behaviours are close to observations.  For example, the global value H = 

0.5±0.2 was found for the long time behaviour needed to project the earth’s temperature to 2100 [Hebert, 2017], [Hébert et 

al., 2020], and [Procyk et al., 2020] also using centennial scale global temperature estimates but using the FEBE directly, 

found the less uncertain H = 0.38±0.05; and using data at monthly and seasonal scales [Del Rio Amador and Lovejoy, 2019] 

found the value H = 0.42±0.03 and used itfor the internal macroweather variability needed to make monthly and seasonal 540 

forecasts [Del Rio Amador and Lovejoy, 2019] (note that this was inferred by make the usual assumption that the internal 

forcing F is a Gaussian white noise, and this may not be the case).  Appendix B discusses the spatial cross correlation matrix  

implied by the HEBE that is needed for example in calculating Empirical Orthogonal Functions (EOFs, or for the space-time 

macroweather model developped in [Del Rio Amador and Lovejoy, 2020b]). 

We could also mention that if F is spatially statistically homogeneous and independent of the parameters l, t, then not only 545 

will the macroweather temperature fluctuations be well reproduced, but also, up to the relaxation time, the temperature may 

easily respect a space-time symmetry called space-time statistical factorization, (“STSF”; e.g. 

 where R represents the autocorrelation function), see appendix C.  Empirically, the STSF 

is at least approximately obeyed by space-time temperature and precipitation fluctuations ([Lovejoy and de Lima, 2015]), and 

if respected, the STSF has important implications for macroweather temperature forecasting. 550 

Although the HEBE was derived for anomalies, these were not defined as small perturbations but rather as time-varying 

components of the full solution of the temperature (energy) equation with the time independent part corresponding to the 

climate state.  The only point at which T was assumed to be small was with respect to the absolute local climate temperature 

about which the black body radiation was linearized, a fairly weak restriction on T.  We could also mention that by allowing 

the albedo or other parameters to change in time, the HEBE could easily be extended to the study of past or future climates 555 

where it would broaden the spectrum potentially improving the modeling of glacial cycles. 

An important feature of fractional differential operators is that they imply long memories, this is the source of the skill in 

macroweather forecasts ([Lovejoy et al., 2015], [Del Rio Amador and Lovejoy, 2019]).  The fractional term with the long 

memory corresponds to the energy storage process.   In contrast,  [Lionel et al., 2014] introduced a class of ad hoc Energy 

Balance Models with Memory (EBMM) whose (nonfractional) time derivative depends on integrals over the past state of the 560 

system.   

 

R
space−time Δx ,Δt( )= Rspace Δx( )Rtime Δt( )
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3.4 The first order in space GHEBE 

The HEBE is the GHEBE limit where horizontal transport effects are dominated by temporal relaxation processes and are 

ignored.   Although this spatial scale depends on the time scale, appendix A estimates that at monthly time scales, this spatial 565 

scale is of the order ofless ≈10 km and even at centennial scales it may only be only 100km or so.  For these small spatial 

scales, we follow [Babenko, 1986], [Kulish and Lage, 2000],  [Magin et al., 2004], and expand the square root operator using 

the binomial expansion: 

  

		 (5335)	570 

(for the expansion to be strictly valid, t must be a constant in time and in space; we have already assumed that  is 

independent of time).  As usual with Babenko’s method, a rigorous  mathematical justification is not available ([Podlubny, 

1999]), although recall that t, and lh are only functions of position so that for the temporal operator, Laplace and Fourier 

transforms techniques still work. 

Considering the spatial part of the fractional operator, we see that it is weighted by the effective heat transport velocity V; as 575 

shown below, it plays the role of a small parameter (table 1, appendix A estimate it as  ≈10-4m/s).  Therefore, dropping the 

subscript “s” here and below, the GHEBE is: 

		 (5436)	

with the Weyl fractional derivatives (these are partial fractional derivatives).   

Keeping only the spatial terms leading in the small parameter V, we have the first order (in space) GHEBE: 580 

	 (5537)	
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		 (5638)	

This equation is apparently similar to the usual transport equation.  To see this, operate on both sides by  , to 

obtain: 585 

	 (5739)	

		

Except for the factor ½, the half order derivative term and the “effective”, (roughened) forcing, this is the usual transport 

equation.  Nevertheless, although tempting, it would be wrong to think of this simply as a usual transport equation with an 

extra fractional term.  The reason is that the extra term is not a small perturbation, it is dominant except at small spatial scales.  590 

On the contrary, it is rather the classical transport terms that are small perturbations to the main HEBE.  Alternatively, without 

the  term, eq. 41 59 is a generalized fractional diffusion equation (e.g. [Coffey et al., 2012]), although still with a key 

difference being that the fractional derivative is Weyl, not Riemann-Liouville (i.e. over the range to t, not 0 to t). 

3.5 Climate states, Thermodynamic equilibrium and the low frequency GHEBE 

3.5.1 The equilibrium temperature distribution: The the HEBE thermodynamic  climateequilibrium 595 

The HEBE applies to time scales sufficiently short and to spatial scales sufficiently large that the horizontal temperature fluxes 

are too slow to be important, they are neglected.  The first order correction (eqs. 3856, 3957) makes a small improvement by 

giving a more realistic treatment of the small scale horizontal transport.  However, a long time after performing a step increase 

of the forcing, the time derivatives vanish and a new climate state is reached.  If the temperature followed the pure HEBE, the 

spatial pattern for thermodynamic equilibrium temperature distribution would be determined by setting the HEBE time 600 

derivative to zero: 

	 (5840)	

Where the subscript “ceq” indicates the long time equilibrium (climate) FEBE limit.  However, appendix A shows that – 

depending on the nature of the horizontal transport - at scales perhaps  of the order of millenniacenturies, the horizontal heat 

fluxes will dominate the relaxation processes so that for very long times, this HEBE estimate is only approximate.  605 

τ 1/2 −∞Dt
1/2T +T + 1

2
τ 1/2 −∞Dt

−1/2 v ⋅∇hT −κ h∇h
2T( ) = sF

τ −1/2
−∞Dt

1/2

∂T
∂t

+ v ′ ⋅∇T − ′κ ∇2T +τ −1/2
−∞Dt

1/2T = s ′F

v ′ = 1
2
v; ′κ = 1

2
κ ; ′F = τ −1/2

−∞Dt
1/2F

∂T
∂t

−∞

Teq,HEBE x( ) = F0s x( ); F t, x( ) = F0Θ t( )

Field Code Changed

Field Code Changed



30 
 

 

3.5.2 Equilibrium and approach to equilibrium in the inhomogeneous GHEBE 

To understand the long time behaviour, we return to the GHEBE but perform a (long-time) binomial expansion of the half-

order operator assuming that the transport terms dominate: 

	 (5941)	610 

 (from here on we drop the “h” subscripts on l and the gradient operator).  Again, to be strictly valid, t must be a constant so 

that  and  commute).  We have to be careful since the advection length and relaxation times are functions of 

position (but not time) so that the spatial operators don’t commute.   Keeping terms to first order in time, we obtain: 

		 (6042)	

To make progess, let’s choose the transport operator so that its half powers are easy to interpret.  The simplest approach is 615 

consider only diffusive transport and to use an isotropic fractional operator defined over the surface of the earth.  For an 

arbitrary test function r, the corresponding order H fractional integral is: 

	 (6143)	

 (for 0≤H≤d, where d is the dimension of space, here d = 2, see e.g. [Schertzer and Lovejoy, 1987], appendix A).  This can be 

understood  since in Fourier space, the Laplacian is  and its inverse is  , the “Poisson solver”.  620 

Note that eqs. 4260, 43 61 involve ½  order inverse Laplacians which are H = 1 (rather than H = ½) isotropic integrals (eq. 

4361).   With the help of spherical harmonics, Appendix DAppendix C generalizes the results of section 2.3 gives the 

corresponding operators and their fractional extensions on the surface of the sphere. 

Applying eq. 43 61 to the case d = 2 and H = 1 we have: 
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	 (6244)	625 

 Therefore, let us define a diffusive type transport operator and its inverse implicitly from its inverse half-order 

power: 

	 (6345)	

Hence let us define the half-order operator by: 

		 (6446)	630 

With this definition the surface temperature equation 60 becomes:  

		 (6547)	

Where the range of the integration W = E  is the entire surface of the earth.  This equation has only superficial links to equations 

studied in the literature such as the “generalized fractional advection-dispersion equation” (e.g. [Meerschaert and Sikorskii, 

2012], [Hilfer, 2000]).  We can now consider the system reaching equilibrium after a step forcing F(x,t) = F0(x)Q(t), (increase 635 

by F0 (x) “turned on” at t = 0).  At long enough times, the earth reaches thermodynamic  equilibrium and, the time derivative 

term vanishes and we obtain the equation for the equilibrium (climatological) temperatures:  

		 (6648)	

To obtain an approximate solution, let’s now assume that  differs from the climatological FEBE climate temperature 

TcTeq,FEBE(x) by a small perturbation dT(x).  640 

	 (6749)	

then, using TcTeq(x) ≈ s l(x)F0(x) in the integral, we obtain the approximation:  
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		 (6850)	

 is the slow, diffusive correction to the “instantaneous” (fast, high frequency),  HEBE climate sensitivity sl(x) that is 

estimated at usual (e.g. decadal) scales.  As expected, since this is the long time solution after a step perturbation, it doesn’t 645 

depend on t. 

Horizontal transport of heat redistributes the energy fluxes locally, but since the GHEBE is linear, it shouldn’t affect the overall 

(global) energy balance.  Let us check this by direct calculation of the globally averaged temperature.  Averaging  eq. 4866, 

we obtain: 

	(6951)	650 

Where the spatial averaging operator (overbar) is defined for an arbitrary function f.  The average of the horizontal heat flux 
term yields: 

		 (7052)	

Where KE is an unimportant constant from the x integration, independent of x’.  The far right equality is an application of the 

divergence theorem on the surface E whose boundary is dE, ds is a vector parallel to the bounding line.  But since the integration 655 

is over the whole earth surface (E), there is no boundary, hence the result.  We conclude that while horizontal diffusion 

transports heat over the earth’s surface, it does not affect the overall global radiation budget: .  

4. Conclusions 

Up until now, at macroweather and climate scales, the Earth’s energy balance has been modelled using two classical 

approaches.  On the one hand, Budyko - Sellers models assume the continuum mechanics heat equation holds, this yields 660 

yielding a 1-D latitudinally varying climate state.  On the other hand, there are the zero-dimensional box models that combine 

Newton’s law of cooling with the assumption of an instantaneous temperature-storage relationship.  Both models avoid the 

critical conductive - radiative surface boundary conditions; the former by ignoring heat storage, redirecting radiative 
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imbalances meridionally away from the equator, the latter by postulating a surface heat flux that is not simultaneously 

consistent with the heat equation and energy conservation across a conducting and radiating surface (part I).   665 

This two part paper re-examined the classical heat equation with classical semi-infinite geometry.  In the horizontally 

homogeneous case (part I), the fundamental novelty is the treatment of the conductive - radiative boundary conditions, here 

(part II), it is the use of Babenko’s method to extend this to the more realistic horizontally inhomogeneous problem.   In both 

cases, the semi-infinite subsurface geometry is only important over a shallow layer of the order of the diffusion depth where 

most of the storage occurs (roughly estimated as ≈ 100m in the ocean, ≈<10m over land, see table 1 and appendix A).   670 

The key result was obtained by using standard Laplace and Fourier techniques.  It was shown quite generally that the surface 

temperatures and heat fluxes are related by a half-order derivative relationship.  This means that if Budyko-Sellers models are 

right - that the continuum mechanics heat equation is a good approximation to the Earth averaged over a long enough time – 

then that a consequence is that the energy stored is given by a power law convolution over its past history.  This is a general 

consequence of the conductive - radiative surface boundary conditions in semi-infinite geometry and is very different from the 675 

box models that assume that the relationship between the temperature and heat storage is instantaneous.   Although the system 

itself is classical, this result may be viewed as a nonclassical example of the Mori-Zwanzig mechanism in which system 

parameters that are not modelled explicitly (here, the subsurface temperatures) imply long (power law) memories for the 

modelled parameters (here, the surface temperatures). This is in contrast to conventional short (exponential) memory 

assumption.  It implies that any part of the Earth system that exchanges energy both radiatively and conductively into a surface 680 

should be modelled with fractional rather than integer ordered derivatives.  A far reaching consequence is that classical 

dynamical systems approaches based on integer ordered differential equations are not necessarily pertinent to the climate 

system. 

If we ignore horizontal heat transport (part I), an immediate consequence of half order storage is that the temperature obeys 

the Half-order Energy Balance Equation (HEBE) rather than the classical first order one EBE.  Depending on the space-time 685 

statistics of the anomaly forcing, the HEBE justifies the current Fractional EBE (FEBE) based macroweather (monthly, 

seasonal) temperature forecasts [Lovejoy et al., 2015], [Del Rio Amador and Lovejoy, 2019], [Del Rio Amador and Lovejoy, 

2020a; Del Rio Amador and Lovejoy, 2020b] that are effectively high frequency approximations to the FEBE).  Similarly, the 

low frequency (asymptotic) power law part can produce climate projections with significantly lower uncertainties than current 

GCM based alternatives ([Hebert, 2017], [Hébert et al., 2020] and work in progress directly using the HEBE, [Procyk et al., 690 

2020]). 

The implied long time storage behaviour explains the success of scaling based climate projections[Hébert et al., 2020; Procyk 

et al., 2020] and, the implied short time behaviour potentially explains the success of macroweather forecasts that exploit it[Del 

Rio Amador and Lovejoy, 2019; 2020a; Del Rio Amador and Lovejoy, 2020b].  When the system is periodically forced, the 

response is shifted in phase - and borrowing from the engineering literature -  the surface is characterized by a complex thermal 695 

impedance that we showed is equal to the (complex) climate sensitivity.  In part I, we gave evidence that this quantitatively 

explains the phase lag (typically of about 25 days) between the annual solar forcing and temperature response. 
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In this second part, we investigated the consequences of horizontal heat transport, first in a homogeneous medium with 

inhomogeneous forcing (section 2) first on a plane and then – permitting a direct comparison with the usual Budyko-Sellers 

approach - on the sphere (section 2).   In section 3 and thenwe considered, more generally with inhomogeneous material 700 

properties (including variable diffusion lengths, relaxation times, and climate sensitivities, section 3).  While Laplace and 

Fourier techniques can still be used in time, they cannot be used in space.  and not so useful here, but theHowever, the extension 

to inhomogeneous media was nevertheless possible thanks to Babenko’s powerful (but less rigorous) operator method.   

Whereas in part I, the homogeneous fractional space-time operator was given a precise meaning, here - following Babenko - 

the corresponding inhomogeneous operator was interpreted using binomial expansions for both the short and long time limits 705 

and yield 2D energy balance models.  Part II thus allows us for the first time to extend energy balance models to 2-D, allowing 

the treatment of regional temporal anomalies.   

The expansions depend both on the space and time scale and on a dimensional parameter: the typical horizontal transport speed 

(V), estimated as ≈ 10-4m/s (appendix A).  The zeroth order expansion in time limit yielded the inhomogeneous HEBE, the 

first order correction yielded an equation that superficially resembled the usual heat equation but instead had a leading half - 710 

order time derivative term.  Based on the analysis of NCEP reanalyses (appendix A), it was argued that at spatial scales larger 

than hundreds of kilometers, that these approximations are likely to be useful for years, decades, and perhaps longer.  However, 

for studying climate states – defined for example as the thermodynamic equilibrium state for forcings that are increased 

everywhere in step function fashion – we required low, not high frequency expansions and these are based on fractional spatial 

operators.   We defined inhomogeneous fractional diffusion operators in both flat space and on the sphere (appendix Dappendix 715 

C), and derived equations for both the therm equilibriumodynamic limit and the approach to the limit.  We showed that (as 

expected) they conserved energy and that the low frequency climate sensitivity is somewhat different from that estimated at 

higher frequencies (from the EBE or HEBE).   

The EBE and HEBE are the H = 1, H = 1/2 special cases of the Fractional EBE (FEBE) that was recently introduced as a 

phenomenological model [Lovejoy et al., 2020]. (see also  [Lovejoy, 2019a], [Lovejoy, 2019b]) with empirical estimates H ≈ 720 

0.4 - 0.5, i.e. very close to the HEBE.   Although only a special case, the HEBE illustrates the general features of the FEBE 

fractional-order energy storage term and power law long memories, in [Lovejoy et al., 2020].  [Lovejoy, 2019a]  discussed the 

statistical properties of the FEBE driven by Gaussian white noise (a model for the internal variability forcing) showing that 

the high frequency limit is a process called fractional Gaussian noise (fGn).  In the special HEBE case with H = 1/2, the fGn 

temperature response has exactly a high frequency 1/f spectrum that is cut-off at the relaxation time (empirically of the order 725 

of a few years).  [Lovejoy, 2019a] developed optimal predictors and determined the predictability skill.   

Whereas the more general FEBE is essentially a phenomenological model up untitl now justified by the hypothesized scale 

invariance of the energy storage mechanisms ([Lovejoy et al., 2020]), the HEBE follows directly and quite generally from the 

continuum mechanics heat equation, thus giving it a more solid theoretical basis.  However, the work here suggests another 

way to obtain the FEBE: to replace the classical heat equation by its fractional generalization, the fractional heat equation, a 730 

possibility that we explore elsewhere.  Part II allowed us for the first time to extend energy balance models to 2-D, allowing 
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the treatment of regional temporal anomalies.  Depending on the space-time statistics of the anomaly forcing, the HEBE 

justifies the current Fractional EBE (FEBE) based macroweather (monthly, seasonal) temperature forecasts [Lovejoy et al., 

2015], [Del Rio Amador and Lovejoy, 2019].  Similarly, the low frequency (asymptotic) power law part can produce climate 

projections with significantly lower uncertainties than current GCM based alternatives ([Hebert, 2017; Hébert et al., 2020] 735 

and work in progress directly using the HEBE [Procyk et al., 2020]with R. Procyk). 

This work was performed in the spirit of Budyko-Sellers models in which the Earth system is averaged over scales longer than 

typical lifetimes of planetary scale weather structures.  Following Budyko-Sellers, the key physical assumption was that the 

resulting averaged system is a continuum system, thus justifying use of the general continuum mechanics heat equation.  From 

this, the GHEBE and HEBE follow from the surface conductive-radiative boundary condition.  In as much as GCMs (that are 740 

based on continuum mechanics) reproduce the same statistics as the noise – or anthropogenically forced FEBE and HEBE, 

the continuum hypothesis is plausible. 

As a final comment, we should mention that although this paper focused on the time varying anomalies with respect 

to a time independent climate state, our approach opens the door to new methods for determining full 2-D climate states 

(generalizations of the 1-D Budyko-Sellers type climates) but also to determining past and future climates and the transitions 745 

between them.  This is because the definition of temperature “anomalies” is very flexible.  For example, we could first apply 

the method to determining the existing climate by fixing the forcing at current values and solving the time independent transport 

equations.  Then, the long term effect of changes such as step function increases in forcing could be determined from the 

GHEBE anomaly equation (section 3.5) which regionally corrects the local climate sensitivities for (slow) horizontal energy 

transport effects.  Nonlinear effects that can be modelled by temperature dependent forcings (i.e. 750 

)  can easily be introduced.  Other  nonlinear effects needed to account for Milankovitch cycles 

could thus easily be made, the primary difference being the half-order derivatives and the scaling that they imply.  Indeed, the 

power law relaxation processes implied by the GHEBE suggests straightforward explanations for the observed power law 

climate regime spanning the range from centennial to Milankovitch scales.    
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Appendix A: Empirical analysis of the horizontal structure  

In order to apply our results to the Earth, we need some idea of the magnitudes of various terms in our equations.  To 760 

start with, recall that our model is of the Earth system at macroweather and climate time scales i.e. all relevant quantities are 

averaged over the weather scales ≈ 10 days or longer.   The resulting averaged system is then treated as a continuum and the 

general continuum mechanics heat equation is applied.  In this, we essentially follow the Budyko - Sellers approach and 

consider that the diffusive transport is characterized by eddy (not molecular) diffusivities and that the vertical structure of this 

averaged continuum is homogeneous (although it may vary considerably from place to place in the horizontal, see section 2.3 765 

for a scaling (multifractal) model).  Unlike Budyko - Sellers that treat the vertical as negligibly thick – they don’t consider it 

at all – our key main difference is that we assume that it has a thickness of the order of a few diffusion depths, and then we 

apply the key conductive- radiative surface boundary condition. 

Probably the most important aspect is to estimate the relative importance of the temporal relaxation (and storage) 

terms in comparison to the horizontal transport terms  with ( (see eq. 2543).  Indeed, 770 

for judging their relative importance, the key parameter is the ratio of the transport to relaxation terms r: 

		 (7153)	

Where a is the magnitude of the dimensionless advection velocity vector a = v/V.  When r≪1, the transport term is small 

compared to the temporal term, conversely when r≫1.  In order to quantify this, it is convenient to consider the advective 

(“a”) and diffusive (“d”) terms as well as their derivatives individually: 775 

		 (7254)	

In the macroweather regime, the temporal temperature fluctuation at time scale Dt is  where  is the anomaly 

averaged over scale Dt; empirically this is valid over the macroweather regime i.e. up to 10 - 30 years in the industrial epoch 
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(see e.g. [Lovejoy and Schertzer, 2013], [Lovejoy, 2013], [Lovejoy et al., 2017]).  The typical fluctuation can be estimated by 

the RMS anomaly: 780 

			 (7355)	

Where the overbar is the average over all the anomalies in a time series at a single location x.  Dt1 is a convenient reference 

time, here taken as 1 month.  Empirically, the exponent Ht ≈ 0 to -0.2; this is similar to the high frequency result Ht = 0 (i.e. 

for Dt<t) predicted from the HEBE with white noise forcing, valid for Dt ≈<t.  Hence for our present purposes the typical time 

derivative is: 785 

	 (7456)	

This is the resolution Dt time derivative.  Since typical north-south gradients are larger than typical east-west ones, the 

meridional (y) component of the transport is dominant, so that we will focus on it: 

	 (7557)	

Hence the meirdional contributions to the ratios ra, rd are:  790 

	 (7658)	

Where  , is the relative fluctuation in the RMS temperature at time scale Dt, spatial scale Dy and 

- since we are only interested in an order of magnitude - we took a ≈ ay. The estimate of the diffusive term uses a finite 

difference approximation to the Laplacian.  lh is horizontal anomaly relaxationdiffusion length and a is the nondimensional 

advection speed v/V (V = lh/t, see below).  To gauge the order of magnitudes, in the far right term of eq. 5876, we took the 795 

absolute value so that the result is an upper boundsuppressed the signs.   
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To estimate lh, consider the volumetric specific heat rc.   Ocean and land values are similar (respectively water: rc ≈ 4x106 

and soil: rc ≈ 1x106 J/m3).  For l, the global mean value is ≈ 0.8±0.4 K/W/m2, (using the CO2 doubling value 3±1.5C, 90% 

confidence interval and 3.71 W/m2 for CO2 doubling) with regional values a factor of ≈ 2 higher or lower (IPCC AR5) yielding 

rcl ≈ 3x106 s/m.  The horizontal (eddy) diffusivity is kh  ≈ 1 m2/s ([Sellers, 1969], [North et al., 1981]).  The vertical diffusivity 800 

is not used in the usual energy balance models, however in climate models, ocean values of kv ≈ 10-4 m2/s are typical [Houghton 

et al., 2001].  For soil, rough values of  kv ≈ 10-6 m2/s (wet) and kv ≈ 10-7 m2/s (dry) are measured in [Márquez et al., 2016] so 

that for soils, lv ≈ 3 – 10m.   

Alternatively we can use kv =  t/(rcl)2 and the global estimates of t ≈ 108s ([Hebert, 2017], [Procyk et al., 2020]work in 

progress with R. Procyk, or part I, section 3.3).  From these, we obtain kv ≈ 10-5 m2/s which is close to the model values.  In 805 

conclusion, using kv ≈ 10-5 – 10-4 m2/s yields lv ≈ 30 - 100m, lh ≈ 10 km.  Consequently, the diffusive based velocity parameter 

is V ≈ lh/t ≈ 10-4 m/s.  

The best transport model – diffusive, advective – or both - is not clear, therefore let us estimate the magnitude of the advective 

velocity v assuming that it dominates the transport.   The appropriate value is not obvious since most models just use eddy 

diffusivity – not advection - for transport.  One way - for example [Warren and Schneider, 1979] - is to note that typical 810 

meridional heat fluxes are of the order of 100 W/m2 over meridional bands whose temperature gradients DT are several degrees 

K.  If this heat is transported by advection, it implies v ≈ Qa/(rcDT) ≈ 10-5 - 10-4m/s (eq. 4, part I), hence, using V ≈ 10-4m/s 

(above), we find a = v/V ≈ 0.1 - 1.   

Quantity Symbol Values 

Volumetric specific heat  rc water ≈ 4x106 , soil ≈ 1x106 J/(m3K). 

 

Climate sensitivity  s water  ≈ 4x106 , soil ≈ 1x106 J/(m3K) 

Relaxation time  t global t ≈ 108s 

Horizontal Diffusivity  kh 1 m2/s  

Vertical diffusivity  kv ocean ≈10-4 m2/s, soil ≈10-6 m2/s, global ≈10-5 m2/s 

Diffusion depth lv ocean 300m, soils ≈ 3 – 10m, global ≈ 30 - 100m 

Diffusion length  lh ocean ≈ 30 km, land 3 km, global ≈ 10 km.   

 

Diffusive velocity parameter  V 3x 10-3 – 3x 10-4 m/s 

Nondimensional advection 

velocity  
a 0.1 - 1 

Table 1: Parameter estimates from part 1 section 3.1.2, see section 2.3 for some planetary scale estimates. 
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 815 

Table 1 summarizes theWith these dimensional and nondimensional parameter estimates, the final step is to estimate values 

of the gradient and Laplacian terms (eq. 5876).  Since s - and hence log s  - are the amplitudes of temporal noises; these 

amplitudes vary stochastically from one spatial location to another.  Due to the space-timetial scaling of the temperature 

anomalies (analysed in [Lovejoy and Schertzer, 2013]), we expect that their the statistics of the logarithms (eq. 76) to follow 

power laws up to large scales.  To quantify this, we used NCEP reanalysis data at 2.5o resolution from 1948 to present, and 820 

after removing the low frequency anthropogenic trend, we estimated the RMS temperature anomalies at each pixel; s(x).  In 

fig. 6, we then calculated spatial zonal and meridional fluctuations Dlogs(Dx), Dlogs(Dy), and from these their root mean square 

(RMS) values.  From the figure, we see that to a good approximation: 

(7759)	

The fluctuations we used are Haar fluctuations, but because Hx ≈ Hy > 0, they are nearly equal to difference fluctuations 825 

[Lovejoy and Schertzer, 2012].  We see that the zonal and meridional lines are roughly parallel: with a “trivial” horizontal 

anisotropy factor ≈ 5 (typical north-south fluctuations are 5 times larger than typical east-west ones).  Although, H = 1/2 is the 

value corresponding to Brownian motion, the actual variability is highly intermittent (spiky), so that unlike the temporal 

fluctuations, these spatial increments are far from Gaussian; it is not Brownian motion.   Multifractal analysis indicates that 

the intermittency parameter (the codimension of the mean) C1 ≈ 0.16 which is very high, reflecting the strong spatial 830 

fluctuations as we move from one climate zone to another [Lovejoy and Schertzer, 2013], [Lovejoy, 2018],  [Lovejoy, 2019b].  

Since the north-south gradients are much stronger than the east-west ones, we can estimate the gradients and Laplacians 

by using the y direction  fluctuations: at scale Dy:  

	 (7860)	

	 (7961)	835 
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Since LNS ≈ 3x106m , over most of the range of Dy, so that the ratio of advection to diffusion is 

 so that advection dominates diffusion for .  Taking a ≈ 1, it is dominant for . 

  
Using lh  ≈104m, LNS ≈ 3x106m, Hy = 1/2, V =10-4 m/s we find approximately critical length scales that yields unit ratios: 

		 (8062)	840 

Where Dt is measured in seconds, Dy in meters.  When the typical distances exceed these critical distances (i.e. when Dy>Dyc), 

we have r<1 so that the temporal derivative terms dominate over the horizontal transport.  For Dt = 1 month, we have Dyc,a ≈ 

0.1m, and Dyc,d ≈ 200m, so that unless the distances are very small, the temporal (storage) terms are indeed dominant.  Even 

over much longer time scales - e.g. Dt ≈30 years (1010s109s), they dominate for distances greater than ≈Dyc,a ≈ Dyc,d ≈ 10 km.   

Alternatively, we could estimate the time scales needed so that the critical transport scale is 1000km.  From the same equations, 845 

we obtain estimates of 300 years (advection), 30,000 years (diffusion).  Note however that in the anthropocene, for periods Dt 

≈> 10 years, that the temporal fluctuations start to grow (i.e. the empirical relations eqs. 6078, 61 79 will break down); 

nevertheless, the above scaling relations for the internal variability may hold to much longer times [Lovejoy et al., 2013]. 

In summary, from eq. 6280, we conclude that for the larger scales >>≈10 km, that r≪1 and that the HEBE may apply 

except for time scales ≫t: the only explicit role of kh, kv, r, c is to determine the limits of validity of the HEBE via lh, a.  850 

When the HEBE is valid, only the relaxation time t and the climate sensitivity sl are relevant.  

Appendix B:  The HEBE cross-correlations  

The temperature anomaly cross-correlation function (a matrix when the temperature is discretized on a grid), is commonly 

used in climate science, notably to determine Empirical Orthogonal Functions (EOFs).  These can be determined from the 

HEBE (or GHEBE if needed) once a forcing model is given.  Let us first consider that the climate sensitivities and relaxation 855 

times are deterministic characterizations of the local properties at points x1, x2.  In this case, for the HEBE, any correlations 

between the temperature anomalies at those points will arise because of correlations in the forcing F(x,t).   We now consider 

simple deterministic and stochastic forcings. 
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a) Deterministic forcing, temporal averaging: 

The simplest model is to take complete spatial correlation correlations obtained by temporally averaging,  following with a 860 

step function (Q(t)) forcing at t = 0, but different at each position x: 

		 (8163)	

The temporally averaged cross-correlation can be determined by: 

 

		 (8264)	865 

 

Recalling that G1,1/2 (= GQ) is the step response, , is the integral of Gd0,1/2 (= Gd)and since we have: 

		 (8365)	

Hence: 

	 (8466)	870 

b) Stochastic forcing: 

A convenient model of pure internal variability, is to assume that the forcing is statistically stationary in time with the following 

forcing cross-correlations: 

		 (8567)	

(the “<.>” symbol indicates ensemble, statistical averaging).  This The corresponding implies a stationary temperature cross-875 
correlation: 

		 (8668)	
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Note the general symmetry property ;  so that we only 

need to determine R for Dt>0. For statistically stationary forcing,  is the anomaly cross-correlation needed - 

for example - for constructing Empirical Orthogonal Functions (EOFs).  880 

The easiest way to relate RF and RT is via their spectra.  Let us define the transform pairs:  

	 (8769)	

similarly for the forcing F (the circonflex indicates Fourier Transform).  Then: 

	 (8870)	

(this is true for the Weyl fractional derivatives used here, [Podlubny, 1999]).  So that the impulse response is: 885 

		 (8971)	

	

The solution to the HEBE at two different points x1, x2 is: 

		 (9072)	

Where the asterix indicates complex conjugate.  Multiplying and taking ensemble averages and assuming that the forcing – 890 

and hence responses -  are statistical stationary, we obtain: 

		

		 (9173)	

Where: 
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		 (9274)	895 

Therefore: 

	 (9375)		

 

A special case that is useful later, is when x1 = x2 = x, which yields the spectrum ET at the point x: 

	900 

	 (9476)	

Using a partial fraction expansion of eq. 7593, we obtain:  

	

	 (9577)	

By inverting the Fourier transform, this can be used to determine the real space transfer function .  Using 905 

contour integration, it is convenient to convert the inverse Fourier transforms into Laplace transforms for Dt > 0: 

		

	 (9678)		

For Dt<0, use .  The spatial cross-correlation, temporal autocorrelation function of the 
temperature is therefore: 910 
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Where the “*” indicates convolution. 
The basic Laplace transforms in eq. 78 96 can be expressed in terms of higher mathematical functions as follows (all for t>0): 

		 (9880)	

		915 

		

     

The ip comes from integrating half way around the pole at the origin.  Note that both the Exponential Integral (EI)  and the 

incomplete Gamma functions have log divergences at the origin.  If needed, these formulae can be combined to obtain a 

complete analytic expression for , which can then be used to determine the temperature correlations if the 920 

forcing correlations are known:  where the asterix is the 

temporal convolution. 

The special case x1 = x2 i.e.	with	t1	=	t2 = t, is a little simpler: 

		 (9981)	

Whose Fourier transform is: 925 

	 (10082)	

Evaluating the integral for g(Dt) using the Laplace transform formulae (eq. 8098): 
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ĜT x, x,ω( ) = 1

1+ 2Re −iωτ( )1/2⎡
⎣⎢

⎤
⎦⎥ +ωτ



45 
 

		 (10183)	

 (Dt>0).  The small scale and asymptotic limits are thus: 

		930 

		 (10284)	

Note the small scale log divergence, this is important when the forcing is a white noise, see [Lovejoy, 2019a].   The temporal 

autocorrelation at the point x is thus: 

	

	 (10385)	935 

However, in general, the Fourier relations are easier to deal with.   

Appendix C: Statistical Space-Time Factorization 

At high frequencies (i.e. Dt<t), and empirically over the macroweather regime up to a decade or more ([Lovejoy and de Lima, 

2015]), both precipitation and temperature anomalies (at least approximately) respect a space-time symmetry called “space-

time statistical factorization” (“STSF”).  For example, for the autocorrelation function R, this implies 940 

.  If obeyed, this factorization implies important simplications in regional macroweather 

forecasting: it is therefore interesting to investigate the implications HEBE for the STSF hypothesis. 

The easiest way to approach the STSF is to consider that the forcing and relaxation times t(x) and sensitivities l(x) are 

stochastic fields that are statistically homogeneous in space so that the correlation functions can be written: .  If we assume 

that the forcing is statistically independent of the temperature, then, taking the high frequency limit of in eq. 75:  945 
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		 (86)	

we obtain: 

	

	 (87)	

From this, see that if the forcing factorizes  then the temperature autocorrelation function also factorizes: 950 

		 (88)	

Where is the autocorrelation function of lt-1/2 (the term in square brackets in eq. 87).  From here, the inverse 

Fourier transform of  and  gives the real space version of the STSF symmetry.  Notice that at the STSF hinges on the 
factorization approximation for  and at low w, it breaks down.  

Appendix DC: Fractional Integration on the sphere 955 

At long enough time scales, the spatial transport of heat is important and the spherical geometry of the Earth must be taken 

into account.  The standard way (see section 2.3 and e.g. the reviews [North et al., 1981], [North and Kim, 2017]) is to use 

spherical harmonics.  In Appendix 5D of [Lovejoy and Schertzer, 2013] these were used to define fractional integrals on 

the sphere, necessary in order to produce the corresponding multifractal cloud and topography models (see also [Landais et 

al., 2019]).  Spherical harmonics are particularly convenient when the heat transport is diffusive, involving fractional 960 

Laplacians.  In section 3.5.2, these were defined in real space by taking the domain of integration to be a sphere.  In this 

appendix we discuss an alternative method of spherical fractional integration that may have theoretical and practical 

advantages.  

The Laplacian on a sphere ( ) is the angular part of the Laplacian in spherical coordinates, it is obtained by expressing the 

Laplacian in spherical coordinates and setting the radial derivatives to zero: 965 

	 (10489)	
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where	q is the colatitude and f is the longitude.  The normalized eigenfunctions of are the spherical harmonics Yn,m: 

 

 

	 (10590)	970 

With m, n integer, n ≥0 and Pn,m is the associated Legendre polynomial.  Yn,m satisfies: 

	 (10691)	

So that n(n+1) are the eigenvalues.  Since  there are 2n+1 degenerate eigenvalues and functions for each n. 

The spherical harmonics form a complete orthogonal basis, so that any function on the sphere can be uniquely 

expressed in terms of a spherical harmonic expansion: 975 

	 (10792)	

Where the  are the coefficients of the expansion without fractional integration (i.e. of order 0, indicated in the superscript).  

This suggests the following definition for a fractional spherical integration order H of a spherical harmonic: 

,	 (10893)	

for the HEBE, we take H = 1 which corresponds to the ½ power of the inverse Laplacian (see section 2.3 for the zonally 980 

averaged case that depends only on n).  We have excluded the value n = 0 since when H>0, the filter 

divergences; since , this component corresponds to the mean.   Therefore the above definition is adequate 

for mean zero anomalies.  Alternatively, the mean can be removed and taken care of separately, see below.  With this definition, 

the fractional integral of the zero mean function f is: 
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	 (10994)	985 

i.e. a filter in spherical harmonic space, analogous to the Fourier filter  for an isotropic fractional integration in Cartesian 

coordinates. 

The definition of the fractional Laplacian (eq. 93111, 94112) is adequate when the horizontal transport coefficients are 

constant, but in section 3.5, we saw that more generally, the half order divergence operator was written:  

i.e. there was an extra multiplication by the spatially varying diffusion length .  In flat (Cartesian) coordinates, such 990 

real space multiplications correspond to Fourier space convolutions so that this operator can also be conveniently expressed in 

Fourier space.  However, with spherical harmonics, this simplicity is lost: although isotropic real space convolutions can still 

be performed by filtering the harmonics, real space multiplications no longer correspond to convolutions of harmonic 

coefficients, the closest spherical harmonic equivalent is much more complicated, it involves Clebsch-Gordon coefficients. 

A method of fractionally integrating the mean (n = 0) component was developed for the purpose of multifractal 995 

modeling in Appendix 5D of [Lovejoy and Schertzer, 2013].  There, a different definition of fractional integrals on the 

sphere was proposed: a convolution with the function Q-(2-H), where Q is the angle between two points subtended at the center 

of the sphere.  The function Q-(2-H) / G(H/2) was numerically expanded in spherical harmonics and the convolution was again 

performed by filtering the coefficients (the constant G(H/2) is needed so that the normalization is the same as for the definition 

eq. 92107).  The main difference between the two definitions is that the latter can be directly applied to fields with nonzero 1000 

means.  With this definition, the H order fractional integral of a constant function on the sphere (representing the nonzero 

mean), is simply the value multiplied by   which for the HEBE H =1 case, reduces to 

(1/2)1/2Si(2p) where Si is the standard sine integral function.  However for the coefficients n≥1, numerical tests show that the 

two definitions are almost exactly the same; for example with H = 1, the spherical harmonic coefficients of  Q-(2-H) are within 

3% for all n≥1 and the ratio converges rapidly to 1 for large n.  The conclusion is that filtering the anomaly by   1005 

and then multiplying the mean by the above factor is a practical method of fractionally integrating a function on the sphere. 
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Figures 

 1095 

 

Fig. 1:  The surface impulse response function ( , eq. 12, i.e. Dirac in time and Dirac in space) as a function of 

nondimensional time (t) for nondimensional distance from the source increasing from r = 0 (top) to r = 1 in steps of 0.2 (top to 
bottom). 
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Fig. 2: The surface step response (time), Dirac (space) function ( , eq. 12) as a function of nondimensional time, each 

curve is for a different nondimensional distance from the source increasing from r = 0.2 (top) to r = 1 in steps of 0.2 (top to bottom).  
At each distance r, the temperature approaches thermodynamic   equilibrium (= Gtherm,d(r), eq. 20) at large t (shown by dashed 
horizontal lines). 1105 
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Fig. 3: A comparison of the spatial impulse response Green’s functions for thermal equilibrium with surface forcing via conduction 

only (i.e. , no radiation), top = r-1),  and bottom, the same but with conduction – radiative forcing  via the surface 

BC ( ) that is asymptotically ≈ r-3 (eq. 21). 1110 
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 Fig. 4:  This is the step response in time and (circular) step in space for conductive-radiative forcing.  Lines for t = 0.01 (bottom),  
0.2, 0.4, ... 1.6  (black, bottom to top, the thick black line is for  (therm odynamic equilibrium).  The nondimensional forcing 1115 
is the rectangle (from unit circular forcing).  Also shown (top dashed) is the thermodynamic   equilibrium when the forcing is purely 
due to unit conductive heating over the unit circle.   
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Fig. 5: The response to a unit intensity forcing in the unit circle.  The temperature as a function of nondimensional time is given for 
different distances from the center top (r = 0) to bottom (r = 3), from the same data as before… red every 1/2, black every 0.1 (top, r 
= 0, bottom, r = 3). 1125 
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Fig. 6: Space - time contours for unit circle forcing as a function of nondimensional time (left to right) and nondimensional horizontal 
distance (vertical axis) and nondimensional time left to right.  
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  1130 
 

Fig. 7: The RMS fluctuations (at Dt = 1 month resolution)     (zonal, bottom),  (meridional, top) 

from NCAR reanalyses.  The vertical scale is dimensionless, the horizontal scale is in log10 (degrees) with the minimum (5o) and 
maximum (180o) indicated in large, bold font.  The black lines are reference lines (not regressions) with slopes Hx = Hy =0.5.   
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Parameters Symbol Estimated Value 
   
Specific heat per volume rc ≈106 J/m3 
Climate sensitivity sl ≈ 1 K/(W/m2) 
Vertical diffusivity (ocean) kv ≈10-4 m2/s 
Vertical diffusivity (soil) kv ≈10-6 m2/s 
Horizontal diffusivity kh ≈1 m2/s 
Vertical Diffusion depth 
(oceans) 

 ≈100 m 

Vertical Diffusion depth (soil)  ≈ 3 – 10m 
Relaxation time   ≈108 s 

Horizontal Diffusion length  ≈104 m 
Effective horizontal heat 
transport velocity 

V = lh/t ≈10-4 m/s 

Effective advection velocity vh ≈10-4 m/s 
Nondimension advection 
velocity 

a 0.1 - 1 

Characteristic Zonal variation 
length 

LEW ≈1.5x107 m 

Characteristic Meridional 
variation length 

LNS ≈3x106 m 

Table 1: Empirical estimates of the parameters used in this paper; see appendix A for details.   1135 

l
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Overall	Author	Response	to	comments	on	“The Half-order Energy Balance Equation, Part 1: 
The homogeneous HEBE and long memories”:	

 5 
The	referees	have	made	some	suggestions	for	improvement,	these	will	be	made	as	indicated	in	the	

detailed	responses	below	(in	italics).		I	hope	that	the	revised	paper	will	be	acceptable	for	publication.			In	

addition,	I	have	added	4	equations	in	section	3.1.1	that	clarify	the	relationship	with	the	usual	Budyko-Sellers	

model,	 and	 also	 in	 the	 interest	 of	 clarity,	 I	 have	 added	 a	 short	 section	 3.1.2	 on	 the	 empirical	 model	

parameters.	10 

Thanks,	

Shaun	Lovejoy	

	

Anonymous	Referee	#1	

	15 

Earth	Syst.	Dynam.	Discuss.,https://doi.org/10.5194/esd-2020-12-RC1,	2020©	Author(s)	2020.	This	work	

is	distributed	underthe	Creative	Commons	Attribution	4.0	License.Interactive	comment	on“The	Half-order	

EnergyBalance	Equation,	Part	1:	The	homogeneous	HEBE	and	long	memories”	by	Shaun	Lovejoy	

	

Peter	Ashwin	(Referee)	p.ashwin@exeter.ac.ukReceived	and	published:	15	June	2020	20 

	

This	is	an	interesting	and	innovative	manuscript	that	proposes	the	appropriate	energy	balance	model	that	

relates	heat	(S)	and	surface	temperature	(T)	should	involve	a	half	order	time	derivative	of	T.	It	is	a	half-order	

energy	balance	equation	(HEBE),	a	special	case	of	a	fractional	order	energy	balance	equation	(FEBE)	rather	

than	the	usual	full	order	time	derivative	traditionally	used	for	box	(0D)	and	Budyko-Sellers	(1D)	models.		25 

The	 author	 convincingly	 argues	 that	 it	 this	model	 is	 appropriate	 for	 longer	 timescale(10	 day	 or	more)	

variability,	 both	 empirically	 and	 from	physical	 principles.	 	 This	 has	 consequences	 in	 expecting	 a	 longer	

memory	of	imposed	forcing	than	one	would	expect	of	an	integer	order	EBE;	more	precisely	the	response	to	



2 
 

step	forcing	has	power	law	rather	than	exponential	decay.	The	derivation	assumes	forcing	at	a	conductive-

radiative		30 

boundary	 condition	 and	 advection-diffusion	 of	 heat	 a	 semi-infinite	 domain:	 by	 using	 a	 Laplace-Fourier	

analysis	the	author	obtains	an	integral	form	for	the	surface	temperature	that	can	be	interpreted	as	a	solution	

of	a	fractional	differential	equation.	The	case	of	periodic	(annual/diurnal)	forcing	also	considered	and	the	

surface	thermal	impedance	is	interpreted	as	a	complex	climate	sensitivity	–	this	is	used	to	account	for	the	

observed	phase	lag	between	summer	maximum	forcing	and	surface	maximum	temperature.	35 

	

Interactive	comment	on	Earth	Syst.	Dynam.	Discuss.,	https://doi.org/10.5194/esd-2020-12,2020.	

	

Author:		We	thank	the	referee	for	his	strong,	positive	review.		As	far	as	I	can	tell,	he	has	understood	the	paper	

very	well.		He	has	no	specific	suggestions	for	changes.	40 
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Anonymous	Referee	#2	

	45 

ESDDInteractivecommentPrinter-friendly	 versionDiscussion	 paper	 Earth	 Syst.	 Dynam.	 Discuss.,	

https://doi.org/10.5194/esd-2020-12-RC2,	 2020©	 Author(s)	 2020.	 This	 work	 is	 distributed	 underthe	

Creative	Commons	Attribution	4.0	License.	

	

Interactive	comment	on	“The	Half-order	Energy	Balance	Equation,	Part	1:	The	homogeneous	HEBE	and	long	50 

memories”	by	Shaun	Lovejoy	

Anonymous	Referee	#2	

Received	and	published:	28	June	2020	

	

Review	of	“The	Half-order	Energy	Balance	Equation,	Part	1:	The	homogeneous	HEBE	and	long	memories”	55 

by	Lovejoy	

	

Recommendation:	Major	revisions	

	

This	 study	derived	 a	 new	version	of	 the	 energy	balance	model	 based	on	non-integer	 derivatives.	 These	60 

models	 seamlessly	 contain	 long	 memory	 characteristics.	 This	 manuscript	 might	 be	 acceptable	 for	

publication	in	ESM	after	a	major	revision.	

	

Author:	We	thank	the	referee	for	his/her	comments	that	suggest	a	few	clarifications.		These	are	indicated	in	the	

detailed	responses	below	(in	italics).	65 

	

	

1)	Certain	parts	of	the	paper	are	confusing.	For	instance,	the	model	 is	called	a	“zero	dimensional”	model	

though	it	has	a	vertical	dimension.	I	assume	this	is	because	traditionally	the	vertical	axis	has	been	neglected	

and	only	a	horizontal	average	considered.	I	strongly	suggest	to	find	a	different	terminology	for	this.	70 
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Author:	We	apologize	for	the	admittedly	confusing	jargon,	but	we	did	not	invent	it!		“Zero-dimensional”	is	the	

standard	term	for	climate	models	without	HORIZONTAL	degrees	of	freedom.		We	do	indicate	this	but	we	will	

gladly	underline	it	and	use	alternative	expressions	when	possible.	

	75 

2)	You	refer	many	times	to	Part	II.	I	think	this	is	distracting;	in	my	opinion	it	would	make	the	paper	easier	

to	read	to	remove	those	references	or	to	just	have	a	short	outlook	on	Part	II	in	the	conclusions	section.	

	

Author:	We	apologize	if	references	to	the	second	part	of	the	paper	are	distracting.		Many	of	these	references	

were	added	after	the	initial	submission	at	the	explicit	request	of	the	editor	Anders	Levermann	who	thought	that	80 

the	linkage	between	the	two	parts	was	not	strong	enough.		Since	the	editor	was	mostly	concerned	about	adding	

linkages	near	the	beginning	of	the	paper,	I	tried	to	remove	a	few	later	on,	although	most	of	the	references	to	

the	second	part	are	quite	pertinent.	

	

	85 

The	specific	correspondence	is	on	the	site,	I	reproduce	it	here:	

	

Editor Initial Decision: Start review and discussion after technical corrections (02 Apr 2020) by Anders 

Levermann 

Comments to the Author: 90 

Dear Shaun 

See my comment to part no. 2. The two papers need to be clearly linked. 

Bests, 

Anders 

	95 

The initial comment in part II alluded to above: 

Editor Initial Decision: Start review and discussion after technical corrections (19 Mar 2020) by Anders 

Levermann 

Comments to the Author: 

Dear Shaun, 100 

you have to reference the first part of the paper clearly in the very beginning of the paper, so that the reader can 

easily find it. I would actually prefer if you could reference it already in the abstract. I did not look very hard, but 
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I was not able to find the reference to the part 1 in the paper. Please help us here. 

Bests, 

Anders 105 

	

	

3)	Is	your	approach	valid	for	all	time	scales?	A	long	memory	climate	response	should	lead	to	infinite	climate	

sensitivity.	So	your	climate	response	operator	is	probably	only	valid	for	certain	time	scales.	

	110 

Authors:	 	As	discussed	in	the	paper,	while	the	model	 itself	may	well	be	valid	over	a	very	wide	range	of	time	

scales,	it	has	two	regimes:	one	shorter	than	the	relaxation	time	and	one	longer.		Both	regimes	are	scaling	and	

therefore	both	 could	be	 considered	 to	have	 long	memories.	 	However	 there	 is	 a	 common	 -	 but	 restrictive	 -	

definition	of	long	memory	processes	that	is	often	applied	to	Gaussian	processes	(a	divergent	integral	time	scale).			

If	this	definition	is	used	for	the	HEBE,	and	the	forcing	is	assumed	to	be	a	Gaussian	white	noise,	this	definition	115 

will	only	apply	to	the	scales	below	the	relaxation	scale.		 	According	to	this	definition,	the	different	long-time	

scaling	regime	has	short	memory.		Therefore	we	will	clarify	this	distinction	in	the	revised	manuscript.	

	

4)	Line	15:	BC	needs	to	be	defined.	

	120 

Author:	OK.	

	

5)	Line	26:	I	do	not	think	“macroweather”	is	a	widely	known	term.	So	please	define.	

	

Author:	OK.	125 

	

6)	Line	32:	“latitudinally”	probably	should	be	“zonally”	

	

Author:	OK.	

	130 

7)	I	am	confused	by	the	z-coordinate	system.	It	is	not	clear	to	me	what	z=0	means?	Surface	or	top	of	the	

atmosphere?	Also	all	z	values	seem	to	be	negative.	Also	Figure1	does	not	help	at	all	in	that	respect.	
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Author:	On	line	114	it	was	stated:	

	135 

“We consider that vertical (radiative and conductive), and horizontal (conductive and advective) heat transport occurs on the 

surface and in the half-volume (x,y,z<0) respectively.  Although physically, this means that the atmosphere and ocean are 

modelled as regions with z≤0, as mentioned, only the vertical surface temperature derivative is ultimately needed and this is 

well defined if the surface layer is of the order of a few diffusion depths (hundreds of meters).”	

	140 

As	for	figure	1,	it	clearly	shows	the	positive	z	direction	as	“up”	with	radiation	only	in	this	region	and	with	heat	

conduction	into	the	z<	region.		Could	the	referee	be	more	specific	about	how	to	clarify	this	further?	

	

In	any	case,	I	will	add	a	short	discussion	about	the	physical	meaning	of	z=0:	the	surface.	

	145 

We	have	now	rewritten	the	corresponding	paragraph,	we	hope	that	it	is	clearer.	

	

	

8)	Line	175:	Your	linearization	is	either	accurate	or	not,	but	not	both.	

	150 

Author:		I	reworked	the	sentence.	

	

9)	Line	266:	What	do	you	exactly	mean	by	“top”?	

	

Author:		I	mean	at	z	=	0.		However	this	was	already	stated	in	the	parentheses	following	the	word	“top”:	155 

 

“At the top (z = 0), the system is forced by the conductive - radiative surface boundary condition…” 

 

The sentence was reworked to make this clearer.	

	160 

10)	in	(33)	you	develop	an	asymptotic	expansion.	Why	do	you	stop	at	the	1/2	term?	There	are	also	higher	

order	term	which	might	lead	to	different	orders	on	fractional	derivatives.		
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Author:	Eq.	33	does	not	stop	at	½	order	terms	but	rather	at	orders	3/2,	5/2	(G0,1/2),	3,	3/2	(G1,1/2),	3,	3/2	(G2,1/2),	

they	are	consequences	of	the	HEBE	that	has	derivatives	of	orders	½	and	0,	the	terms	are	not	associated	with	165 

other	fractional	derivatives.			In	any	case,	I	could	easily	have	given	the	general	nth	order	term	since	it	is	in	the	

literature.			The	high	order	terms	are	simply	high	and	low	frequency	corrections	to	the	scaling	-		they	do	not	

define	 their	 own	 separate	 scaling	 regimes.	 I	 will	 state	 this	 in	 the	 revised	 ms.	 However,	 the	 high	 and	 low	

frequencies	are	dominated	by	the	½	order	part	and	this	is	supported	by	empirical	analyses	performed	prior	to	

the	discovery	of	the	HEBE.		Indeed,	the	text	immediately	following	eq.	33	states	this:	170 

	

“The asymptotic equation for the step response (G1,1/2) shows that thermodynamic equilibrium is approached 

slowly: as t-1/2.  It is this power law step response (with empirical exponent 0.5±0.2) that was discovered 

semi-empirically by [Hebert, 2017], [Lovejoy et al., 2017] and was successfully used for climate projections  

through to 2100.  Similarly, ≈ t0.4 behaviour was used for macroweather (monthly, seasonal) forecasts close 175 

to the short time t1/2 expansion [Lovejoy et al., 2015], [Del Rio Amador and Lovejoy, 2019].” 

	

11)	Line	350:	I	am	not	sure	many	ESM	readers	are	very	familiar	with	long	memory.		I	suggest	that	explain	

why	(37)	implies	long	memory.	

	180 

Author:	Eq.	37	is	simply	the	definition	of	a	fractional	derivative.		Since	such	derivatives	are	based	on	power	laws,	

it	is	common	for	fractional	derivatives	to	be	used	in	the	context	of	long	memory	processes.		I	have	added	some	

material	to	clarify	this.	

	

Interactive	comment	on	Earth	Syst.	Dynam.	Discuss.,	https://doi.org/10.5194/esd-2020-12,2020.	185 
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Abstract: The original Budyko-Sellers type 1-D energy balance models (EBMs) consider the Earth system averaged over long 

times and applies the continuum mechanics heat equation.  When these and the more phenomenological zero (horizontal) - 

dimensional box models are extended to include time varying anomalies, they have a key weakness: neither model explicitly 

nor realistically treats the surface radiative - conductive - radiative surface boundary condition that is necessary for a correct 200 

treatment of energy storage.   

In this first of a two part series, we apply standard Laplace and Fourier techniques to the continuum mechanics heat equation, 

solving it with the correct radiative - conductive boundary conditions BC’s  obtaining an equation directly for the surface 

temperature anomalies  in terms of the anomalous forcing.  Although classical, this equation is half – not integer – ordered: 

the “Half - ordered Energy Balance Equation” (HEBE).  A quite general consequence is that although Newton’s law of cooling 205 

holds, that the heat flux across surfaces is proportional to a half (not first) ordered time derivative of the surface temperature.  

This implies that the surface heat flux has a long memory, that it depends on the entire previous history of the forcing, the 

temperature- heat flux relationship is no longer instantaneous.  

We then consider the case where the Earth is periodically forced.  The classical case is diurnal heat forcing; we extend this to 

annual conductive – radiative forcing and show that the surface thermal impedance is a complex valued quantity equal to the 210 

(complex) climate sensitivity.  Using a simple semi-empirical model of the forcing, we show how this the HEBE can account 

for the phase lag between the summer maximum forcing and maximum surface temperature Earth response.   

In part II, we extend all these results to spatially inhomogeneous forcing and to the full horizontally inhomogeneous problem 

with spatially varying specific heats, diffusivities, advection velocities, climate sensitivities.  We consider the consequences 

for macroweather (monthly, seasonal, interannual) forecasting and climate projections. 215 

1 Introduction 

Ever since [Budyko, 1969] and [Sellers, 1969] proposed a simple model describing the exchange of energy between the earth 

and outer space, energy balance models (EBMs) have provided a straightforward way of understanding past, present and 

possible future climates.  The models usually have either zero or one spatial dimension representing respectively the globally 

or latitudinally averaged meridional temperature distribution (for a review, see e.g. [McGuffie and Henderson-Sellers, 2005 ], 220 

and [North and Kim, 2017]).    

The fundamental EBM challenge is to model the way that imbalances in incoming short wave and outgoing long wave radiation 

are transformed into changes in surface temperatures.  In an equilibrium energy balanced climate state, the vertical flux 

imbalances are transported horizontally.  Here we are primarily interested in the anomalies with respect to this state.  When an 

external flux (forcing) is added, some of this anomalous imbalance is radiated to outer space while some is converted into 225 

sensible heat and conducted into (or out of) the subsurface.  This latter flux accounts for both energy storage as well as for 

surface temperature changes and attendant changes in long wave emissions.  EBMs avoid explicit treatment of this critical 

surface boundary condition, treating it phenomenologically in ways that are flawed; in this two part paper, we show how they 
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can easily be improved with significant benefits: first, the (idealized) homogeneous case (part I), and then the general 

horizontally inhomogeneous (2D) case (part II). 230 

First consider zero dimensional box EBMs with zero horizontal dimensions, a model of the mean Earth temperature.  These 

are based on two distinct assumptions: a) that the rate that heat (S) is exchanged between the earth and outer space (dS/dt) is 

proportional to the difference between the surface temperature (T) and its long term equilibrium value (Teq): dS/dt  (Teq-T)  

(Newton’s Law of Cooling, NLC) and b) that this rate is also proportional to the rate of change of surface temperature: 

.   Budyko-Sellers models are on firmer ground: they start with the basic continuum mechanics heat 235 

equation with advective and diffusive heat transport.  Yet they  have no vertical coordinate, and so are unable to correctly treat 

the surface conduction – radiation - energy storage issue.  By restricting explicit treatment of energy transport to the horizontal, 

they resort to the ad hoc assumption that the vertical flux imbalances are redirected horizontally and meridionally.  The original 

Budyko-Sellers models were of time independent climate states, there was no energy storage at all: the radiative imbalances 

were completely redirected.  While this approximation may be reasonable for these long term states, they become problematic 240 

as soon the original models were extended to include temporal variations ([Dwyers and Petersen, 1975]).  While these time 

varying extensions implicitly allow for subsurface energy storage, this implicit treatment is both unnecessary and 

unsatisfactory.  

The basic physical problem is that anomalous radiative flux imbalances partly lead to heat conduction fluxes into the subsurface 

and partly to changes in longwave radiative fluxes.  The part conducted into the subsurface is stored and may re-emerge, 245 

possibly much later.  Starting with the heat equation, realistic and mathematically correct treatments, involve the introduction 

of a vertical coordinate and the use of conductive - radiative surface boundary conditions (BCs).  If one considers the 

horizontally homogeneous 3-D problem in a semi-infinite medium with these mixed BCs and linearized long wave emissions, 

the problem is classical and can be straightforwardly solved using Laplace and Fourier techniques.  Mathematically it turns 

out that the key is the surface layer that defines the surface vertical temperature gradient.  The influence of the the subsurface 250 

conditions are only importantis only over a thin layer of the order of a few diffusion depths (where most of the energy storage 

occurs).  This depth depends on the specific heat per volume as well as the diffusivity and is estimated to be typically of the 

order of 100m for the ocean (depending its turbulent diffusivity), and less over land (see appendix A, part 2). 

The exact treatment of this homogeneous problem confirms that Newton’s law of cooling holds, but shows that the classical 

box model relation between heat flux and the surface temperature is wrong: symbolically the correct relation is 255 

 with H = 1/2 -  not the phenomenological value H = 1.  Physically, these fractional derivatives are 

simply convolutions, in this case involving power law storage (hence “memories”).  The corresponding half-order energy 

balance equation (HEBE) has qualitatively much stronger storage than the short exponential memories associated with the 

standard integer ordered (H = 1) box model derivatives.  

Half-order	derivatives	have	appeared	in	heat	and	diffusion	problems	since	at	least	[Meyer,	1960],	[Oldham	and	260 

Spanier,	 1972],	 [Oldham,	 1973],	 and	 [Oldham	 and	 Spanier,	 1974].	 	 An	 equation	 mathematically	 identical	 to	 the	

∝

dS / dt ∝ dT / dt

dS / dt ∝ d HT / dtH
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homogeneous	H	 =	 1/2	 special	 case	 of	 the	 FEBE	was	 derived	 by	 [Oldham,	 1973]	 as	 a	 short	 time	 approximation	 to	

electrolyte	diffusion	in	a	spherical	geometry,	and	[Oldham	and	Spanier,	1974]	anticipate	our	present	application	by	

noting	that	half-order	derivatives	can	be	applied	to	“not	one	but	an	entire	class	of	boundary	value	problems…”.			Later,	

half-order	 derivatives	were	 developed	by	 [Babenko,	 1986],	 and	 have	 been	 regularly	 exploited	 in	 engineering	 heat	265 

transfer	 problems,	 see	 e.g.	 [Sierociuk	 et	 al.,	 2013],	 [Sierociuk	 et	 al.,	 2015]	 and	 references	 therein.	 	 The	method	 is	

probably	not	more	generally	known	since	most	applications	are	with	fairly	standard	heat	flux	boundary	conditions	and	

other	more	familiar	techniques	can	be	used.		

More	generally,	fractional	derivatives	and	their	equations	[Podlubny,	1999],		have	a	history	going	back	to	Leibniz	in	the	

17th	century	and	their	development	has	exploded	in	the	last	decades	(for	books	on	the	subject,	see	e.g.	[Miller	and	Ross,	270 

1993],	[Podlubny,	1999],	[Hilfer,	2000],	[West	et	al.,	2003],	[Tarasov,	2010],	[Klafter	et	al.,	2012],	[Klafter	et	al.,	2012],	

[Baleanu	et	al.,	2012],	[Atanackovic	et	al.,	2014]).			

Although – perhaps surprisingly - the exact problem discussed here does not appear to have been treated until now, the 

mathematical origin and application of half order derivatives in heat transfer problems has been known since at least [Babenko, 

1986], [Podlubny, 1999], and has been regularly exploited in engineering heat transfer problems, see e.g. [Sierociuk et al., 275 

2013], [Sierociuk et al., 2015] and references therein.  More generally, fractional derivatives and their equations have a history 

going back to Leibniz in the 17th century and their development has exploded in the last decades (for books on the subject, see 

e.g. [Miller and Ross, 1993], [Podlubny, 1999], [Hilfer, 2000], [West et al., 2003], [Tarasov, 2010], [Klafter et al., 2012], 

[Klafter et al., 2012], [Baleanu et al., 2012], [Atanackovic et al., 2014]).   

Interestingly, the explicit or implicit application of fractional derivatives to model the Earth’s temperature - and more 280 

recently energy budget - has several antecedents arising from the wide range spatial scaling symmetries of atmospheric fields 

respected by the fluid equations, models and (empirically) by the atmospheric fields themselves (see the reviews [Lovejoy and 

Schertzer, 2013], [Lovejoy, 2019b]).  Since this includes the velocity field - whose spatial scaling implies scaling in time - it 

implies that power laws should be more realistic than exponentials.  At first, this led to power law Climate Response Functions 

(CRFs), [Rypdal, 2012; van Hateren, 2013], [Rypdal and Rypdal, 2014], [Rypdal	et	al.,	2015]	,	[Hebert, 2017], [Hébert et al., 285 

2020].  However, without truncations, pure power law CRFs lead to divergences: the “runaway Green’s function effect” 

[Hébert and Lovejoy, 2015], a model unstable to infinitesimal step function increases in forcing: the Equilibrium Climate 

Sensitivity is infinite.  These can be tamed either by a high frequency truncation ([Hebert, 2017], [Hébert et al., 2020]), or by 

restricting forcings to only those that return to	zero	[Rypdal,	2016],		[Myrvoll-Nilsen	et	al.,	2020].  

However, [Lovejoy, 2019b], [Lovejoy, 2019a], [Lovejoy et al., 2020], argued that it is not the CRF itself, but rather the earth’s 290 

heat storage mechanisms that respect the scaling symmetry.  This hypothesis implies that the corresponding storage (the 

derivative term) in the energy balance equation (EBE) is of fractional rather than integer order: the fractional energy balance 

equation (FEBE).  Denoting the order of the derivative term in the equation by H, it was shown empirically that if the derivative 

was of order H ≈ 0.4 - 0.5 (rather than the classical EBE value H = 1), that it could account for both the low frequency 

multidecadal memory [Hebert, 2017], [Hébert et al., 2020] needed for climate projections, as well as the high frequency 295 
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macroweather (i.e. the regime at longer time scales than the lifetime of planetary structures, here, monthly to decadal) memory 

needed for monthly, seasonal and annual macroweather forecasts, [Lovejoy et al., 2015], [Del Rio Amador and Lovejoy, 2019; 

2020a; Del Rio Amador and Lovejoy, 2020b].   Indeed, the FEBE CRF can be used directly to make climate projections  that 

are compatible with the Coupled Model Intercomparison Project 5 (CMIP5) multi-model ensemble mean projections but with 

substantially smaller uncertainties ([Procyk et al., 2020]work in progress with R. Procyk).  Finally, it is possible to generalize 300 

the classical (3D) continuum equation to the Fractional Heat Equation from which the (inhomogeneous, 2D) FEBE governs 

the surface temperature (work in progress)[Lovejoy et al., 2020].  

In spite of empirical and theoretical support, the FEBE is essentially a phenomenological global model; in this paper we show 

how – at least for the H = 1/2 special case-  it can be placed on a firmer theoretical basis while simultaneously extending it to 

two spatial dimensions.  Our model is for macroweather temperature anomalies i.e. at time scales longer than the lifetimes of 305 

planetary structures, typically 10 days.  Following Budyko and Sellers, the system averaged over weather scales is considered 

to be a continuum justifying the application of the continuum mechanics heat equation. Our starting point is thus the same as 

the classical EBMs: radiative, advective and conductive heat transport using the standard continuum mechanics energy 

equation.  Also following the classical approaches, the longwave black body radiation is treated in its linearized form.  

This work is divided into two parts.  The first part is quite classical, it focuses on the homogeneous heat equation pointing out 310 

the consequence that with semi-infinite geometry (depth) and with (realistic) conductive - radiative boundary conditions, that 

the surface temperature satisfies the homogeneous HEBE.  We relate this to the usual box models, Budyko-Sellers models, 

and classical diurnal heating models including the notions of thermal admittance and impedance and complex climate 

sensitivities useful in understanding the annual cycle.  We underscore the generality of the basic (long memory) storage 

mechanism.  The second part extends this work to the horizontal, first to the homogeneous case (but with inhomogeneous 315 

forcing, including a direct comparison with the classical latitudinally varying 1-D Budyko-Sellers model on the sphere), and 

then - using Babenko’s method - to the general inhomogeneous case.  Part II also contains several appendices that discuss 

empirical parameter estimates, spatial statistics useful for Empirical Orthogonal Functions and understanding the horizontal 

scaling properties as well as the changes needed to account for spherical geometry. 

2. The Transport Equations 320 

2.1 Conductive and advective heat fluxes 

In most of what follows, the earth’s spherical geometry plays no role, we use Cartesian coordinates with the z axis pointing 

upwards and horizontal coordinates x = (x,y) (see however in section II.2.3 and appendix II.C of part II), we treat the 

latitudinally varying case on a sphere appendix D, part II).  The horizontal is essentially the same the Budyko-Sellers model: 

horizontal diffusive and advective heat fluxes are atmospheric column averages lying on the surface (z = 0).  What is new is 325 

We consider thatthe treatment of the vertical with (radiative and conductive) fluxes crossing the surface either into the 

subsurface (downward, the negative z direction where it can propagate to ), or to outer space (upward, z >0) so that heat −∞
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is effectively stored , in the half-volume (x,y,z <0)and horizontal (conductive and advective) heat transport occurs on the 

surface and in the half-volume (x,y,z<0) respectively.  Although physicallyin principle, this means that allthe atmosphere and 

ocean are modelled as the semi-infinite regions with  z≤0 is modelled, we will see that ultimately as mentioned, only the 330 

vertical surface temperature derivative is ultimately needed and this is well defined if as long as the surface layer is of the order 

of a few diffusion depths (tens or hundreds of meters).  Later, we show that the main equations only explicitly depend on the 

local relaxation times and climate sensitivities, the vertical and horizontal transport details are only implicit.  Finally, the fields 

are assumed to be in the macroweather regime i.e. they have been averaged over the weather – macroweather transition scale 

(about 10 days) or longer, and possibly for tens or hundreds of kilometers in space (the space-time limits are not yet clear).  335 

Since ten this days is the typical lifetime of planetary atmospheric structures, much of the actual turbulent atmospheric transport 

processes are averaged out, giving some justification to the parametrization.   

We start with energy transport by diffusion: Fick’s law  where Qd is the diffusive heat flux vector, k is the 

thermal diffusivity, r the density, c the specific heat, and T(x,z,t) the temperature.  Following standard energy balance models, 

we use eddy diffusivities that are different in we use differentthe horizontal (“h”)  and vertical (“v”), coefficients kh(x), kv(x): 340 

		 (1)	

(the circonflex indicates unit vectors).  To include advection, we consider the heat equation for a fluid in a horizontal velocity 

field vh: 

		 (2)	

Where D/Dt is the advective derivative.  The heat equation is therefore: 345 

		 (3)	

If cr = constant and using the continuity equation,  and we can write: 

	 (4)	
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Qa is the advective heat flux and T0 is a constant reference temperature (it disappears when the divergence is taken).  Taking v 

= vh, we made the standard assumption that the advection is in the horizontal plane.  This is the classical fluid heat equation, it 350 

can readily be verified that it conserves energy (integrate both sides over a volume and then use the divergence theorem).   

kh(x), kv(x), vh(x) are taken to be independent of t and z, they are part of the climate state and are empirically determined so as 

to reproduce the time independent climate temperature distribution.  In future work, they could be given their own time-varying 

anomalies.    

2.2 Radiative heat fluxes   355 

At the surface, there is an incoming energy flux : 

		 (5)	

Where F is the anomalous forcing and Q0 (x) is the local solar radiation: 

	 (6)	

Q is the mean top of the atmosphere flux (≈341 W/m2), S(x) is the dimensionless local solar constant with local coalbedo a 360 

a(x) (in the notation of [North and Kim, 2017]) and the time dependent part of the radiative balance is specified by the 

additional incoming energy flux, the “forcing” F(x,t).  Although in this paper we mostly ignore temporal albedo variations (see 

however section 3.3), they are important for studying temperature-albedo feedbacks and climate transitions. If needed,  even 

if they include a (potentially nonlinear) temperature dependence, they are easy to incorporate.  For example, they could be 

included in F by using  in place of a a(x) in eq. 6 and365 

 in place of F in eq. 5. 

As usual, F(x,t) includes solar, volcanic and anthropogenic forcings.  However since macroweather includes random internal 

variability, F(x,t) also includes a stochastic internal variability component.  Finally, for macroweather scales shorter than a 

year, F could also include the annual cycle and therefore possible cyclical albedo variations due to seasonally varying 

cloudiness (section 3.3).  Alternatively T and F can be deseasonalized in the usual way to yield standard monthly climate 370 

“normals” so that the mean anomalies are zero over the climate normal reference period.   

 is partially balanced by the outgoing  that  depends on the surface temperature and the effective emissivity 

e(x): 

		 (7)	

R↓

R↓ x ,t( )=Q0 x( )+F x ,t( )

		Q0 x( ) = S x( ) 1−α x( )( ) Q0 x( ) = QS x( )a x( )

a x,t( ) = a0 x( )+ a1 x,t,T x,t( )( )
F x,t( ) = F0 x,t( )+QS x( )a1 x,t,T x,t( )( )

R↓ x ,t( ) 		R↑ x ,t( )

R↑ x ,t( )= σε x( )T x ,0,t( )4
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where	s is Stefan-Boltzmann constant.  The ,  imbalance drives the system, it implies that heat diffuses across the 375 
surface which is the top boundary condition needed to solve eq. 3 for T(x,z<0,t): 

	 (8)	

The derivative term  is the conductive (sensible) heat flux across the surface, into the earth, see fig. 

1.   The radiative fluxes thus impose a “mixed” conductive - radiative boundary condition  involving both T and  
(they are a special case of “Robin” boundary conditions [Hahn and Ozisk, 2012 ]).   If we add the initial condition 380 

 (or later, ) and the Dirichlet boundary condition at great depth 

and assume that the system is periodic or infinite in the horizontal, then, in principle, these are enough 

to determine the temperature for T(x,z<0,t>0) (or eventually, ).  Instead of avoiding this conductive - 

radiative BC below we show how it directly yields an equation for the surface temperature. 

2.3 The Climatological and anomaly fields 385 

Let us now decompose the heat flux and temperature into time independent (climatological) and  time varying (anomaly) 

components: Qc, Tc and Q, T.   As usual, we linearize the outgoing black body radiation, although we do so around the spatially 

varying surface temperature Tc(x,z = 0) (i.e. not the global average temperature) which yields spatially varying coefficients:   

		 (9)	

(Tc+T is the actual temperature), with climate sensitivity: 390 

		 (10)	

The linearization is accurate sSince typical macroweather temperature anomalies are only a few degrees, the black body 

emission is quite linear with the temperature anomaly.  However  due to feedbacks, this formula for the proportionality 

coefficient – the climate sensitivity -– as estimated in eq. 10 is not accurate; below, we simply consider sr l((x) to be an 

empirically determined function of position.  395 

The incoming radiation at the location x drives the system.  The radiative imbalance DR going into the subsurface is therefore 

equal to the conductive flux Qs into the surface; it specifies the conductive-radiative surface boundary condition for Tc and the 

anomalies T: 
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		 (11)	

Where Qd,z is the (upward) vertical component of the heat flux at the surface given by Fick’s law: .  The 400 

conductive - radiative surface boundary conditions for the time independent climate and anomaly temperatures  is therefore:  

 

	 (12)	

sl, r, c and k are all presumed to be functions of x.   Note: the conductive heat flux is a sensible heat flux; the boundary 

condition involves its vertical component that represents heat stored in the subsurface.   While eqs. 11, 12 involve the vertical 405 

temperature derivative at the surface (i.e. over an infinitesimal layer), lv = slrckv defines the diffusion depth (typically ≈ 10 - 

100m in thickness, see part II); so that physically the model need only be realistic over this fairly shallow depth where most 

of the heat is stored. 

Now, in the temperature eq. 3, replace T by Tc+T.  The equation for the time independent climate part is: 

	 (13)	410 

and for the time-varying anomalies: 

		 (14)	

These equations must now be solved using boundary conditions eqs. 11, 12 for respectively Tc, T and Tc = T = 0 at 

(all t), and  (or see below, ).  

The separation into one equation for the time invariant climate state and another for the time-varying anomalies is done for 415 

convenience.  As long as the outgoing long wave radiation is approximately linear over the whole range of temperatures (as is 

commonly assumed in EBMs), this division involves no anomaly smallness assumptions nor assumptions concerning their 

time averages; the choice of the reference climate depends on the application.  Below, we choose anomalies defined in the 

standard way (although not necessarily with the annual cycle removed, section 3.3), this is adequate for monthly and seasonal 
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forecasts as well as 21st century climate projections.  However, a different choice might be more appropriate for modelling 420 

transitions between different climates including possible chaotic behaviours. 

  

2.4 The climatological temperature distribution and Budyko-Sellers models 

In order to simplify the problem, starting with [Budyko, 1969] and [Sellers, 1969], the usual approach to obtaining Tc is 

somewhat different.  First, the climatological temperature field is only defined at z = 0, i.e. Tc(x) = Tc(x,0).   Without a vertical 425 

coordinate, the climatological radiative imbalance no longer forces the system via the vertical surface 

derivative (eq. 11), instead the imbalance is conventionally redirected in the meridional direction away from the equator (fig. 

2).   

To see how this works, return to eq. 4  for the climatological component and put : 

	 (15)	430 

(in this formulation, one usually uses the latitude angle instead of the meridional coordinate y see part II, section 2.3appendix 

D).  The direction of the redirected vertical flux is always away from the equator (y = 0; hence sign(y)), in any event, zonal 

fluxes will cancel when averaged over latitudinal bands.   

The usual Budyko-Sellers type models then average Qc over lines of constant latitude yielding a 1-D model: 

		 (16)	435 

(overbar indicates averaging over all longitudes, x).   

In the more popular Seller’s version, the basic horizontal transport is due to the eddy  thermal diffusivity, the kh term.   There 

may also be a small advection velocity v but it is not considered to be a true physical velocity but only an ad hoc parameter 

needed to prevent kh from being negative ([Sellers, 1969], [Sellers, 1969]), the standard presentation (see also [North et al., 

1981], ) avoids the problem by using the diffusivity, see section 3.1).  The horizontal eddy diffusivity kh is often taken as the 440 

sum of contributions from water, water vapor and air.   In the pure Budyko version, there is no eddy diffusivity, the heat flux 

is assumed to be proportional to the temperature difference with respect to a reference (e.g. mean) value; .  

Comparing this with eq. 4 for Qa, we see that this implies that Budyko horizontal heat fluxes are purely advective.  

The final step to obtaining the energy equation is to take the divergence: 

Q0 x( )−R↑ Tc x( )( )

∂
∂z

= 0

Qc x( ) = Qc,a x( )+Qc,d x( )+ sign y( ) Q0 x( )− R↑ Tc x( )( )( ) ŷ

Q
c
y( )= ρc v

y
Tc −κh

∂Tc

∂ y

⎛

⎝
⎜

⎞

⎠
⎟ + sign y( ) Q0 y( )−R↑ Tc( )( )⎛
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⎜
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	 (17)	445 

Budyko and Sellers only considered the time independent case and obtained: 

		 (18)	

By appropriately choosing a reference temperature (usually the global average), the constant can be adjusted for convenience.  

Somewhat later, [Dwyers and Petersen, 1975] considered the time independent case (eq. 17) which is second order in y.  

Subsequently the model has been widely used for studying different past and future climates and the corresponding transitions.  450 

Note that the  term corresponds to energy storage; in the time independent case there is no storage.    

3.  The classical origin of the fractional operators: conductive-radiative boundary conditions in a semi-infinite domain   

3.1 The zero dimensional homogeneous heat equation 

3.1.1 The nondimensional anomaly equationskey parameters 

 455 

No matter how the climate temperature equation is solved, the equation for the time dependent anomaly temperature remains 

eq. 14.   We now rewrite it in a way that brings out the critical mathematical properties.  Since rc and kv are only functions of 

x, eq. 14 can be rewritten: 

		

	 (19)	460 

Where we have defined an effective diffusion velocity vd and effective advection velocity v.  Eq. 19 must be solved with the 

boundary conditions in eq. 12. 

	
∇⋅Q

c
=
∂Qc

∂ y
=−ρc

∂Tc

∂t

		

∂Q
c
y( )

∂ y
=0

Q
c
y( ) = const

ρc
∂Tc
∂t

∂
∂t

−κ v
∂2

∂z2
⎛
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⎞
⎠⎟
T = −v ⋅∇hT +κ h∇h

2T ;
v = vh − vd
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1
ρc
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The roles of the various terms are clearer if the equation is nondimensionalized.  For this,  we note that if we include the 

boundary conditions, the anomaly temperature is entirely determined by the dimensional quantities k, sl, r and c.  From these, 

there exists a unique dimensional combination t(x) with dimensions of time, we will see that this controls the relaxation of the 465 

system back to thermodynamic equilibrium, it is a “relaxation time”.  Using kv yields: 

		 (20)	

where lv(x) is the vertical relaxation length of the surface energy balance processes.    In the next section, part II, table 1and 

section 3.3 we give some rough parameter estimates.   We may also define the horizontal diffusion length lh, speed V , 

nondimensional (square root) diffusivity ratio b and nondimensional advection vector a: 470 

	 	 (21)	

The continuity equation for energy becomes .  For global (zero dimensional) models, t has been estimated as 

2 – 5 years which is comparable to the classical exponential relaxation time scales mentioned above ([Hebert, 2017], [Procyk 

et al., 2020] ) [Lovejoy et al., 2018]work in progress with R. Procyk), and in section 3.3 we estimate t ≈ 2.75 years. 

In order to understand the classical origin of fractional derivatives, it is helpful to consider the homogeneous Seller-type 475 

(diffusive transport) heat equation where t,  lv and lh are constants and can thus be used to nondimensionalize the operators.  t 

is therefore in units terms of relaxation times, x in terms of diffusion lengths lh and  z in units terms of diffusion depths lv.  By 

taking s l = 1, we effectively have a forcing F with dimensions of temperature.  In part I, we consider only the “zero 

dimensional” equation where the “zero” refers to the number of horizontal dimensions (i.e. only vertical, z and time t).  We 

use the following notation: the first argument is t then horizontal space, then a semicolon followed by the depth z.   Circonflexes 480 

denote Laplace (time) and Laplace-Fourier (time and horizontal space) transforms. 

With these dimensional parameters, we can write the equations as: 

	 (22)	

τ =κ
v
ρcλ( )2 ; l

v
= τκ

v( )1/2 =κ v
ρcλ

α = v
V
; V =

lh
τ
; lh = τκ h( )1/2 = βκ hρcs; β =

κ v
κ h

⎛

⎝⎜
⎞
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	 (23)	

Where z is the dimensionless horizontal transport operator.  We have ignored the reference temperature T0 by either taking it 485 

to be zero or by assuming  which is true if b = constant.    

If the advection is chosen appropriately, then we may write the horizontal transport operator in the form: 

	 (24)	

This is convenient for comparing the HEBE with the 1-D B-S equations on a sphere in part II section 2.3, and avoids the 

unphysical negative diffusivities reported by Sellers.  490 

	 (25)	

Where	DF		is	a	HEBE	diffusion	constant	per	radian	and	R	is	the	earth	radius.	

3.1.2 Parameter estimates 

Before proceeding, it is useful to get a feel for typical values of the parameters in the equations.  In part II, section 2.3 

and appendix II.A we combine these parameter estimates with analyses of monthly space-time temperature anomalies in order 495 

to analyse which terms in the equations are dominant at different time scales, the following are order of magnitude estimates. 

A key parameter is the horizontal diffusion length  (eq. 21).  It can be estimated from the 

horizontal diffusivity kh, and the volumetric specific heat rc, the sensitivity s, and vertical diffusivity kv, or alternatively from 

kh  and t.    

a) Volumetric specific heat rc:  Ocean and land values are similar: water and soil: respectively rc ≈ 4x106 , ≈ 1x106 500 

J/(m3K). 

b) Climate sensitivity s: Using the CO2 doubling value 3±1.5K, 90% confidence interval and 3.71 W/m2 for CO2 

doubling, the global mean value is s ≈ 0.8±0.4 K/W/m2, with regional values a factor of ≈ 2 higher or lower (IPCC AR5) 

yielding rcs ≈ 3x106 s/m.   
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∇
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c) Relaxation time t:  Based on responses to anthropogenic forcings since 1880,  [Hebert, 2017], [Hébert et al., 2020; 505 

Procyk et al., 2020], give the global estimate t ≈ 108s (≈ 4 years).  This is comparable to the relaxation times for global box 

models.  

d) Horizontal Diffusivity kh: As detailed in Part II, section 2.3,  [North et al., 1981], [North and Kim, 2017] uses a 

diffusion constant per radian analogous to DF eq. 25 combined with global scale climatological forcing and temperature data 

to estimate a global thermal conductivity K = 4.1x106 Wm-1K-1 from which we estimate the horizontal (eddy) diffusivity as kh  510 

= K /(rc) ≈ 1 m2/s.  [Sellers, 1969] gives values about 100 times larger for the ocean.   

e) Vertical diffusivity kv: The vertical diffusivity is not used in the usual energy balance models, however in climate 

models, ocean values of kv ≈ 10-4 m2/s are typical [Houghton et al., 2001].  For soil, rough values are  kv ≈ 10-6 m2/s (wet) and 

kv ≈ 10-7 m2/s (dry) are measured in [Márquez et al., 2016].  Alternatively we can use kv =  t/(rcs)2 and the global estimates 

of t ≈ 108s to obtain kv ≈ 10-5 m2/s which is close to the model values.   515 

f) Diffusion depth lv:  Using  we find for the ocean and soils respectively lv ≈ 300m, ≈ 3 – 10m.  Using the 

global estimates kv ≈ 10-5 – 10-4 m2/s yields lv ≈ 30 - 100m.  

g) Diffusion length lh: Using , lh ≈ 30 km (ocean), 3 km (land).  Using and kh ≈1 m2/s 

yields a global estimate lh ≈ 10 km.   

h) Diffusive based velocity parameter V:  V ≈ lh/t ≈ 3x 10-3 – 3x 10-4 m/s.  520 

i) Nondimensional advection velocity a:  The best transport model – diffusive, advective – or both - is not clear, 

therefore let us estimate the magnitude of the advective velocity v assuming that it dominates the transport.   The appropriate 

value is not obvious since most models just use eddy diffusivity – not advection - for transport.  One way - for example [Warren 

and Schneider, 1979] - is to note that typical meridional heat fluxes are of the order of 100 W/m2 over meridional bands whose 

temperature gradients DT are several degrees K.  If this heat is transported by advection, it implies v ≈ Qa/(rcDT) ≈ 10-5 -        525 

10-4m/s (eq. 4), hence, using V ≈ 10-4m/s (above), we find a = v/V ≈ 0.1 - 1.   

3.1.3 The nondimensional equations 

With z, t in dimensionless form, the homogeneous zero dimensional heat equation is: 

	 (2623)	

We use the following notation: the first argument is t then horizontal space, then a semicolon followed by the depth z.   530 

Circonflexes denote Laplace (time) and Laplace-Fourier (time and horizontal space) transforms.The transfer is confined to the 

lv =κ vρcs

lh = κ hκ v( )1/2 ρcs lh = τκ h( )1/2
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semi-infinite region z≤0 with boundary conditions:  (bottom).  At the top (z = 0), tThe system is forced by the 

conductive - radiative surface boundary condition at z = 0 (the top): 

	 (2724)	

For initial conditions, in this section, the forcing is “turned on” at t>0 (i.e. T(t;z) = 0 for t≤0), allowing use of Laplace transforms 535 

(see section 3.3 for Fourier methods).  

Performing a Laplace transform (“L.T.”) of the heat equation we obtain: 

	 (2825)	

Where the circonflex indicates the Laplace transform in time (with conjugate variable p).  Solving: 

		 (2926)	540 

Where A, B are determined by the BC’s.  Since we require the temperature at depth (z<<0) to remain finite, we must have B = 

0, hence: 

	 (3027)	

To determine A(p), we Laplace transform the surface boundary condition: 

		 (3128)	545 

 yielding: 

		 (3229)	

It is more convenient to determine the response  to the impulse forcing F(t) = d(t); the impulse Green’s function.   

Using eq. 2630, 28 32 we obtain: 

T t;−∞( ) = 0

∂T
∂z z=0

+T t;0( ) = F t( )

d 2

dz2
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⎛
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T̂ p;z( ) = A p( )e pz + B p( )e− pz

T̂ p;z( ) = A p( )e pz

dT̂
dz

z=0

+ T̂ p;0( ) = F̂ p( ); F t( )↔
L.T .

F̂ p( )

A p( ) = F̂ p( )
1+ p

Gδ t;z( )

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed



23 
 

	 (3330)	550 

The above assumes that the subsurface is infinitely deep. If instead it has a finite thickness L, and we take the bottom boundary 

condition as  (rather than ), then  and 

 so that the influence of the bottom condition on the surface decreases 

exponentially fast as its depth L increases.  Physically, as long as the depth is of the order of a few diffusion depths (estimated 

as ≈ 100m in the ocean, ≈ 10m for land), the semi-infinite geometry assumption is unimportant.  In the following, we therefore 555 

ignore any finite thickness corrections. 

Taking the inverse Laplace transform of eq. 29 33 we obtain the integral representation: 

	 (3431)	

(z≤0; where we have used contour integration on the Bromwich integral).    

3.1.2 4 The surface temperature 560 

For the surface, the integral (eq. 3034) can be expressed with the help of higher mathematical functions: 

	 (3532)		

 is the H = 1/2 impulse response Green’s function,Mittag-Leffler function (sometimes called a “generalized 

exponential”,  also denoted G0,1/2, the “0” for 0th integral of the impulse, the “1/2” for the order of the derivative for its equation, 565 

see below), it is sometimes called a “generalized exponential”,  itself expressed in terms of Mittag-Leffler functions. 

For long times after an impulse, the response  (t≫1, eq. 33 37 below) so that the system rapidly returns to its 

original temperature.  It is more interesting to consider the response of the system to a step (Heaviside) forcing  F(t) = Q(t) (= 

Gδ
! p;z( ) = e pz

1+ p
; F t( ) = δ t( )↔
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1, for t>0, = 0 for t≤0) after which the system eventually attains a new thermodynamic equilibrium.  Since , 

we have the step response  (also denoted G1,1/2, eq. 3236), and  (eq. 3337) 570 

i.e., a slow power law approach to thermodynamic equilibrium.   Figs. 3, 4 show this at different times and depths.  With unit 

step forcing, the boundary condition (eq.  2327) indicates that the fraction of the heat flux that is transformed into long wave 

radiation is equal to the temperature with unit forcing.  Therefore the z = 0 curve in fig. 3 shows that at first, all the forcing 

flux is conducted into the subsurface, but that this fraction rapidly vanishes as the surface approaches equilibrium.  At 

equilibrium, the temperature has increased so that the short and long wave fluxes are once again in balance and there is no 575 

longer any conductive flux. 

For future reference, we give the corresponding step response G1,1/2 = GQ which is the integral of G0,1/2 that describes relaxation 

to energy balance (for this model, thermodynamic equilibrium) when F is a step function.  Similarly, the ramp (linear forcing) 

response G2,1/2 is the integral of the step response, the second integral of the Dirac: 

	 	(3633)	580 

	 	

For small and large t: 

	 (3734)	
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  585 

The asymptotic equation for the step response (G1,1/2) shows that thermodynamic equilibrium is approached slowly: as t-13/2.  

It is this power law step response (with empirically with exponent ≈t-01.5±0.2) that was discovered semi-empirically by [Hebert, 

2017], [Lovejoy et al., 2017], [Lovejoy et al., 2020] and was successfully used for climate projections  through to 2100 [Hébert 

et al., 2020].  Similarly, ≈ t-0.4 behaviour was used for macroweather (monthly, seasonal) forecasts close to the short time t-1/2 

expansion [Lovejoy et al., 2015], [Del Rio Amador and Lovejoy, 2019]. 590 

If we take this as a model of the global temperature, we can use the ramp Green’s function to estimate the ratio of the 

equilibrium climate response (ECS) to the transient climate response (TCR), we find:  where 

Dt is the nondimensional time over which (for the TCR) the linear forcing acts. Using t = 4 years, and the standard Dt = 70 

years for the TCR ramp, we find the plausible ratio TCR/ECS ≈ 0.78.   

3.1.3 5 Comparison with temperature forcing boundary conditions 595 

It is interesting to compare this with the classical surface boundary condition when the system is forced by the surface 

temperature, an alternative – periodic surface heat forcing - is discussed in section 3.3.  If the surface (z = 0) boundary condition 

 is imposed: 

		 (3835)

	 	600 

then there will be vertical surface gradients that imply that heat is conducted through the surface.  To obtain the impulse 

response Green’s function, we take  and repeating the Laplace transform approach, we obtain A(p) = 1 (eq. 

27 31 with no derivative term).   This yields the following Laplace Transform pairs for the impulse and step Green’s function: 

		 (3936)	
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In the context of the Earth’s temperature, using heat conduction, (not temperature) boundary conditions, [Brunt, 1932] obtained 605 

the analogous classical formula noting that “this solution is given in any textbook”.   

These classical Green’s functions provide useful comparisons with the conductive - radiative BC’s.  For example, integrating 

eq. 30 34 with respect to time and simplifying, we obtain: 

	 (4037)	

Since the step response GQ describes the approach to thermodynamic equilibrium,  (fig. 5) succinctly expresses 610 

the differences between the temperature and conductive - radiative forced boundary conditions.  The leading large t 

approximation to the integral in eq. 36 40 is   so that as the figure shows, although they both slowly 

approach each other and eventually attain thermodynamic equilibrium, that the differences are important (especially in the 

diffusion layer, z ≈ <1) and they decay very slowly with time and depth, we discuss this further in section 3.3. 

3.1.4 6 Surface temperatures, Fractional derivatives and the HEBE 615 

Let us now introduce the Hth order fractional derivative  to represent the fractional derivative order H of an arbitrary 

function f over the domain from t0 to t: 

		 (4138)	

Fractional derivatives of order H are most commonly interpreted in the Riemann-Liouville or Caputo sense ([Podlubny, 1999]) 

defined by t0 = 0 in the above (for H≤1, the main case of interest here, the distinction is not important).  Fractional derivatives 620 

and their inverses, fractional integrals (with H<0) are thus power law weighted convolutions; fractional integrals of noises are 

often associated with long memory stochastic processes.  Many studies have found long memories in macroweather ([Blender 

and Fraedrich, 2003], [Bunde et al., 2005], [Rybski et al., 2006], [Varotsos et al., 2013]) and a Gaussian noise forced 

model (fractional Gaussian noise)  have been proposed as models of internally forced (macroweather) temperature variability 

([Rypdal and Rypdal, 2014], [Lovejoy, 2015], [Del Rio Amador and Lovejoy, 2019], [Del Rio Amador and Lovejoy, 2020b]).   625 

This Most Riemann-Liouville (R-L) formulationapplications of fractional derivatives is are useful for forcings that start at t = 

t0 = 0 (i.e. F = 0 for t≤0), see [Miller and Ross, 1993], [Podlubny, 1999].  [Podlubny, 1999] and are The R-L definition is 

convenient for deterministic forcings, however it they singularizes t = 0 whereas we often wish to include periodic or 
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statistically stationary internal stochastic forcings so that  (or in the periodic case, the mean over a cycle = 0) is 

more convenient, in which case we take  and hence =0 (or periodic).  As discussed in [Lovejoy, 2019a], 630 

this corresponds to the semi-infinite range “Weyl” fractional derivative.  Deterministic, stochastic and periodic forcings can 

be combined into a single framework simply by using the Weyl derivatives with for example the deterministic part of the 

forcing starting at t = 0 (with the deterministic F(t) = 0 for t≤0) and the stochastic forcing at . These R-L and Weyl 

fractional derivatives have the following transformation properties: 

	 (4239)	635 

Where w is the Fourier conjugate to t, (see e.g. [Miller and Ross, 1993], [Podlubny, 1999]).  In this part I (except for section 

3.3), we consider deterministic forcings, putting t0 = 0 in eq. 3741, we using   (H = 1/2 in eq. 3842), we obtain 

the HEBE for the surface temperature Green’s function: 

	 (4340)	

This proves that the surface temperatures implied by the heat equation with conductive - radiative boundary conditions can be 640 

determined directly from the HEBE using the same Green’s function.  For the dimensional equations, the surface temperature 

therefore satisfies the dimensional HEBE: 

	 (4441)	

(where the surface temperature is  ).   

This HEBE equation for the surface temperature could be regarded as a significant nonclassical example of the Mori-Zwanzig 645 

formalism, ([Gottwald et al., 2017], [Mori, 1965], [Zwanzig, 1973], [Zwanzig, 2001]), and empirical model reduction 

formalisms [Ghil and Lucarini, 2020], whereby memory effects arise if we only look at one part of the system, ignoring the 

others.   In the HEBE, the surface temperature is analogously expressed directly in terms of the forcing, ignoring the subsurface 

degrees of freedom. Although such memories are usually considered exponential and hence small, the HEBE shows that the 

classical continuum heat equation has on the contrary, strong power law memories.  This points to serious limitations to 650 

conventional dynamical systems approaches to climate science that assume that the dynamical equations are integer ordered 
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with exponential memories.  The HEBE shows that the fundamental radiatively exchanging components of the climate system 

will generally be characterized by long memories, associated with fractional rather than integer ordered derivatives.  We 

develop this insight elsewhere.   

[Gottwald et al., 2017; Mori, 1965] 655 

3.2 The HEBE, zero dimensional and box models  and Newton’s law of Cooling 

Phenomenological models of the temperature based on the energy balance across a homogeneous surface may represent either 

the whole earth or only a subregion.  The former are global “zero dimensional” energy balance models (sometimes called 

“Global Energy Balance Models”, GEBMs (see the reviews [McGuffie and Henderson-Sellers, 2005 ]) whereas in the latter, 

they may represent the balance across the surface of a homogeneous subsection, a “box”.   The boxes have spatially uniform 660 

temperatures that store energy according to their heat capacity, density and size.  Often several boxes are used, mutually 

exchanging energy, and the basic idea can be extended to column models.  Since the average earth temperature can be modelled 

either as a single horizontally homogeneous box, or by two or more vertically superposed boxes, in the following, “box model” 

refers to both global and regional models. 

A key aspect of these models is the rate at which energy is stored and at which it is exchanged between the boxes.  Stored heat 665 

energy is transferred across a surface and it is generally postulated that its flux obeys Newton’s law of cooling (NLC).  The 

NLC is usually only a phenomenological model, it states that a body’s rate of heat loss is directly proportional to the difference 

between its temperature and its environment.  In these horizontally homogeneous models, it is only the heat energy/area (= S) 

that is important so that the NLC can be written:  

	 (4542)		670 

S is the heat in the body and Q is the heat flux across the surface into the body (see fig. 6).  Teq is the equilibrium temperature, 

and Z is a transfer coefficient, sometimes called the “thermal impedance” (units: m2K/W), its reciprocal Y is the surface 

“thermal admittance” see the next section).  Identifying the equilibrium temperature with Teq (t) = s lF(t) and using the 

dimensional surface boundary condition (eq. 12), it is easy to check that a direct consequence of the HEBE’s conductive - 

radiative boundary condition is that it also satisfies the NLC: 675 

		 (4643)	

Unlike the usual phenomenological box applications that simply postulate the NLC, the HEBE satisfies it as a consequence of 

its energy conserving surface boundary condition.  Comparing eqs. 41, 42, we may also conclude that thermal impedance Z = 

s l.    

Qs =
dS
dt

= 1
Z
Teq −T( )

Qs,HEBE =
dSHEBE
dt

= ρcκ v
∂T
∂z z=0

=
Teq −T( )

λ
; Teq = λF
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While the HEBE and box models obey the NLC, their relationships between the surface heat flux Qs = dS/dt and the surface 680 

temperature T are quite different.  For example, for forcings starting at time t = t0 , using the HEBE we have: 

	 (4744)		

Although this relation between surface heat fluxes and temperatures has been known for some time ([Babenko, 1986], 

[Podlubny, 1999], see e.g. [Sierociuk et al., 2013], [Sierociuk et al., 2015] for applications), to my knowledge, it has never 685 

been applied to conduction - radiative models, nor has it been combined with the NLC to yield the homogeneous HEBE.  In 

comparison, box models satisfy: 

	 (4845)	

Where L is the effective thickness of the surface layer and C is the specific heat per area,  tbox is the classical EBE relaxation 690 

time.   [Geoffroy et al., 2013] used a two box model to fit outputs of a dozen GCM and found tbox  ≈ 4.1±1.1 years (the mean 

and spread of 12 models)  and ≈ 40 - 800 years for the second box whereas the [IPCC, 2013] recommends a 2 box model with 

relaxation scales tbox  = 8.4 and 409 years, with the FEBE, [Procyk et al., 2020] finds H = 0.38±0.05, t = 4.7±2.3 years.   

The HEBE and box heat transfer models can conveniently be compared and contrasted by placing them both in a more general 

common framework.  Define the Hth order heat storage as: 695 

	 (4946)	

If we take T(t0) = 0 (this is equivalent to fixing the reference of our anomalies), then integrating by parts: 

	 (5047)	
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Putting H = 1 yields the simple:  so that S1 = Sbox.  

Over the interval t0 to t, the fractional derivative of order H is defined as the ordinary derivative of the 1-H order fractional 700 

integral: 

	 (5148)	

Therefore S1/2 = Sbox and:  

	 (5249)	

Combining this with the NLC, in both cases we obtain: 705 

		 (5350)	

Hence the box and HEBE models are special cases of the Fractional order Energy Balance Equation (FEBE [Lovejoy, 2019b], 

[Lovejoy, 2019a]).  Whereas the box model changes its heat content instantaneously with its current temperature (T(t)), at any 

moment, the energy stored in the HEBE model depends on the past temperatures, and since their weights fall off slowly – there 

is a long memory – it potentially depends on the temperature and hence energy stored in the distant past.   Box or column 710 

models all have surfaces that exchanges heat both radiatively and conductively so that – contrary to standard practice – these 

surfaces should instead exchange heat fractionally with H = 1/2 not H = 1.  Note that when we consider box interfaces with 

purely conductive heat exchanges (without radiative transfer e.g. between a “deep ocean” and “mixed layer” in global two box 

model), then the thermal contact conductance that characterizes the interface is needed. 

At a theoretical level, the advantage of the HEBE is that unlike the box models, it is a direct consequence of the standard 715 

(energy conserving) continuum heat equation combined with standard energy conserving surface boundary conditions.  It is 

therefore natural to ask if the H = 1 heat transfer (i.e. dS1/dt = (C/sl)dT/dt) can be derived from the heat transport equation.   

Returning to the nondimensional boundary condition ( ) it is easy to verify, that in order to recover 

H = 1 heat transfer, one must instead use .   We therefore conclude that box model H = 1 transfer 

is not simultaneously compatible with heat equation and energy balance boundary conditions. 720 
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To summarize: we are currently in the unsatisfactory position of having zero and one dimensional (box and Budyko-Sellers) 

energy balance equations  neither of which satisfy the correct radiative - conductive surface boundary conditions.  For the box 

models, the consequence is that the energy storage processes have rapid (exponential) rather than slow (power law) relaxation.  

For the Budyko-Sellers models, the consequence is that at best, they are 1-D and even with this restriction, their time dependent 

versions have derivatives of the wrong order (see the discussion in part II, section 2.3).  In comparison, the zero dimensional 725 

HEBE is a consequence of correcting the Budyko-Sellers boundary conditions.  It satisfies the NLC and corrects the order H 

reducing it from the phenomenological value H = 1, to H = 1/2.  As a bonus, in part II we see that the HEBE can easily be 

extended from zero to two spatial dimensions, enlarging the scope of energy balance models while simultaneously eliminating 

these weaknesses.   

3.3 Thermal impedance and Complex climate sensitivities and the annual cycle 730 

3.3.1 Conductive versus conductive - radiative boundary conditions 

Up until now, we have discussed forcing that is “turned on” at t = 0, this allowed for convenient solutions using Laplace 

transform methods.  However, for forcing that is periodic or that is a stationary noise (i.e. the internal variability) Fourier 

techniques are more useful.   

The first applications of Fourier techniques to the problem of radiative and conductive heat transfer into the Earth, was by 735 

[Brunt, 1932] and [Jaeger and Johnson, 1953] who considered the (weather regime) diurnal cycle.  We already mentioned that 

[Brunt, 1932] also considered step function heat forcing, that he claimed might be a plausible model of the diurnal cycle near 

sunset or sunrise.  However, in zero - dimensional models, the long time temperatures after step heat flux forcings are divergent 

(but not in 2D models, see part II) so that later in his paper Brunt considered periodic diurnal heat flux forcing with no net heat 

flux across the surface and used Fourier methods instead.  In this classical diurnally forced problem, the periodic temperature 740 

response lags the forcing by a phase shift of p/4 = 3 hours.  If we apply the same shift to the annual cycle – assuming that the 

Earth is forced by heat flux into its subsurface – the corresponding lag is 1.5 months ≈ 46 days which is generally too long (we 

shall see that it corresponds to an infinite relaxation time). 

Following [Brunt, 1932] and [Jaeger and Johnson, 1953], let us consider the response to a single Fourier component forcing 

(this is equivalent to Fourier analysis of the equation).  In this case, assuming a periodic temperature response and substituting 745 

this into the 1-D dimensional heat equation (time and depth, i.e. the dimensional version of eq. 22), we find that the variation 

of amplitude with depth is: 

		 (5451)	T t;z( ) = Tseiωte
iω
κ v
z

; z ≤ 0
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Where Ts is the amplitude of the surface temperature oscillations, it depends on the nature of the forcing, here on the boundary 

conditions (“s” for “surface”).  Following Brunt, using the classical heat surface heat forcing as the surface boundary 750 

condition (with this forcing, Fs = Qs is the heat crossing the surface entering the system in the downward direction, see figs. 1, 

6) we find: 

		 (5552)	

(“heat” for heat forcing), we obtain: 

	755 

	 (5653)	

Where, Z(w) is the complex frequency dependent thermal impedance, the reciprocal of the thermal admittance.  For a given 

surface heat flux, Z(w) quantifies the surface temperature response (we have written the impedance with the help of s l in 

order to nondimensionalize the denominator).  Thermal impedance and admittance are standard in areas of heat transfer 

engineering and were introduced into the problem of diurnal Earth heating by [Byrne and Davis, 1980].  From Z(w), we can 760 

thus easily understand the key [Brunt, 1932], [Jaeger and Johnson, 1953] result: that arg(Z(w)) = arg(i-1/2) = -p/4 (“arg” 

indicates the phase).   

So far, this approach has only been applied to weather scales (the diurnal cycle).  Let’s now apply the same approach but with 

an eye to longer macroweather timescales, notably the annual cycle.  The climate sensitivity is an emergent macroweather 

quantity that is determined by numerous feedbacks that over the weather scales are quite nonlinear but over macroweather 765 

scales are considerably averaged (and at least for GCMs, [Hébert and Lovejoy, 2018]) are already fairly linear.  In any event, 

for the annual cycle we use radiative - conductive boundary conditions rather than the pure conductive ones used by Brunt.   

Using conductive - radiative surface BCs with external forcing  yields: 

Fse
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	 (5754)	770 

Where here Fs is the radiative (downward) forcing radiative flux and Qs and Qs,rad are the surface conductive (into the 

subsurface) and long wave radiative emission (away from the surface) fluxes respectively.  Solving, we obtain the same depth 

dependence (eq. 5054), but with the amplitude of the surface oscillations given by: 

	 (5855)	775 

Where we have introduced the complex climate sensitivity s l(w) which by definition is equal to the complex thermal 

impedance Z(w).  In the context of the Earth’s energy balance, it is more useful to think in terms of sensitivities than impedances 

so that below we use sl(w).  With this, we obtain: 

	 (5956)	

Fs = Qs +Qs,rad = λ −1 1+ iωτ( )1/2( )Ts
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Since Arg(i1/2) = p/4 (= 45o), we see that as mentioned earlier, the conductive and long wave radiative fluxes are out of phase 780 

by 45o, but the phase of the temperature lags the forcing by Arg(l(w)), which only reaches 45o in the large t limit (see fig. 7).   

Note that we could have deduced eq. 55 59 directly by Fourier analysis of the HEBE using , but the 

above allowed us to compare the results with the classical model.  The Fourier method allows us to extend the complex climate 

sensitivity to the more general FEBE: 

	 (6057)		785 

the usual EBE is the H = 1 special case. 

3.3.2 Empirical estimates of complex climate sensitivities 

Figs. 7, 8 compare the phases and amplitudes of l(w) for the classical and conductive - convective boundary conditions (H = 

1/2) HEBE as well as the H = 1 EBE.  The plots use w = 2p rad/yr.  From fig. 7, we see that taking the empirical value of t in 

the range 2 -≈ 5 years ([Procyk et al., 2020]), that the HEBE lag is a little over a month, .  a result that is close to the observed 790 

lag between the summer solstice and maximum temperatures over most land areas.  From the detailed maps in [Donohoe et 

al., 2020] (see also [Ziegler and Rehfeld, 2020]) we estimate that in the extratropical regions, over land, the summer 

temperature maximum is typically 30 - 40 days after the solstice, but only 20 - 30 days after the maximum forcing (insolation) 

and for ocean, 60 - 70 days after the solstice but only 30 - 40 days after the maximum insolation.  The HEBE a result that is 

thus close to the observed lag between the summer solstice and maximum temperatures over most land areas. 795 

In contrast, if we use [Brunt, 1932]’s classical The the heat forcing result (p/we obtain p/4 = 1.5 months = 46 days 

which), is already too long for most of the globe and the H = 1 EBE result (close to 3 months = 91 days) is much too long.  

[North et al., 1983; North and Kim, 2017]Over the ocean, the lag is typically longer than over land probably because of the 

strong albedo periodicity associated with seasonal ocean cloud cover.  [Stubenrauch et al., 2006],  [Donohoe et al., 2020].  This 

delays the summer solstice forcing maximum over the ocean, potentially explaining the extra lag. 800 

This delays the summer solstice forcing maximum over the ocean, potentially explaining the extra ocean lag. 

Although a complete analysis with modern data is out of our present scope, we can get a feel for the realism of this 

approach by using the latitudinally zonally averaged  [North and Coakley, 1979] Sellers model discussed in the review [North 

et al., 1981], updated in [North et al., 1983] where most of the earth follows the EBE phase lags of ≈90 days.  The model uses 

a 2nd order Legendre polynomial to take into account the latitudinal variations and a sinusoidal annual cycle with empirically 805 

fit parameters that effectively latitudinally zonally average over land and ocean.  Empirical parameters are given for the albedo, 

top of the atmosphere insolation, temperature and outgoing IR radiation such that the global temperature maximum lags the 

solstice by 32.5 days.  [North and Coakley, 1979], [North et al., 1983].   An [Zhuang et al., 2017; Ziegler and Rehfeld, 

F.T . −∞Dt
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2020]updated 2-D version of the Sellers model  has used it to estimate phase lags with respect to the solstice finding lags of ≈ 

90 days over oceans and ≈30-40 days over land ([Zhuang et al., 2017], [Ziegler and Rehfeld, 2020]).   810 

  

Before continuing, recall that the zero-dimensional theory discussed here assumes that all radiative flux imbalances are 

all stored, it ignores the divergence of the horizontal heat transport which according to [Trenberth et al., 2009] – is small even 

though the due to the meridional gradientsheat fluxes – may be significant.  Although at least for temperature anomalies, we 

argue that this effect is mostly important at small scales, the magnitude of horizontal heat divergence at macroweather scales 815 

transport is not well known and is presumably quite variable from place to place depending on (inhomogeneous) local 

horizontal transport parameters (see part II).  A simple way to parameterize the transport is to maintain the assumption that the 

Earth has homogeneous parameters and to assume that the transport is due to horizontally inhomogeneous forcing.  In part II, 

we show that for a horizontal wavenumber k, the effect of horizontal transport is to modify the storage term as 

 , therefore for pure periodic horizontal forcing: 820 

	

(6158)	

(“h” for “horizontal inhomogeneity; in [Lovejoy et al., 2020] there is an analogous calculation for the FEBE with H ≠ 1/2).  In 

North et al’s 1-D model, the top of the atmosphere forcing is exactly a cosine variation i.e. with a single wavenumber k = 1 

cycle around the Earth.  The only differences are that we neglected the curvature of the Earth and assumed that the Earth’s 825 

transport properties are constant.  We nevertheless use eq. 57 61 as an approximation for the horizontal transport.   

From the data in table 1 of [North et al., 1981] , we may deduce: 

		 (6259)	

iωτ( )1/2 → iωτ + lhk( )2( )1/2
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sh ω( ) iωτ + lhk( )2( )1/2

s
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Where the forcing Fs is the product of the solar constant with the co-albedo (= 1- albedo) and q is the latitude and the phases 

are taken with respect to the winter solstice.  The variation (about ±13%) in the amplitude of Fs is due to the latitudinal variation 830 

of the coalbedo.  In the model, the long wave radiation Qs,rad and the surface temperature response Ts have exact sinq 

dependencies.   The phases (in radians) are taken with respect to the winter solstice so that the summer solstice has a phase p 

= 3.14 rads, (in the northern hemisphere, June 21).  Due to the coalbedo variations,  the actual forcing has a phase  = 3.27 rads 

peaking on June 28th.   Also, the phase of the temperature and longwave emissions are larger = 3.70 rad, 3.65 rad corresponding 

to maxima on July 26th, July 23rd respectively (all results are appropriately symmetric for the southern hemisphere and for the 835 

cold lag following the winter solstice).  The near identity of the phases of temperatures and long wave responses (a three day 

difference, probably not empirically significant), is already support for the model that predicts that they should be in phase.   

We also note that these lags (of 28, 25 days) are considerably shorter than the 46 day lag (Aug 12th) that would have been 

obtained had we applied Brunt’s heat conductive forcing.   

We can use these data to estimate the climate sensitivity, relaxation time t and horizontal conduction term lhk by using the 840 

following: 
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	 (6360)	

From this (with w = 2p/yr), we obtain:  

		 (6461)	845 

The relaxation time is within the rough bounds deduced by considering atmosphere - ocean coupling time scale (≈ 2 years, 

Hebert et al 2020), low frequency climate records (≈ 5 4.7±2.3 years , [Procyk et al., 2020]work with R. Procyk), and the high 

frequency EBE relaxation times ≈ 4.1±1.1 years [Geoffroy et al., 2013].   We also see that the ratio of the storage to transfer 

is 17.3/13.2 ≈ 1.3 so that most of the heat is indeed stored so that the above homogeneous theory is plausible.  The 

nondimensional lhk characterizes the typical horizontal transport over the period of a year.  Rather than interpreting it 850 
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deterministically in terms of a global scale horizontal variation over a homogeneous earth, we consider it a nondimensional 

empirical parameter that we will try to clarify in future work.   In any case, the horizontal transport and storage are in quadrature 

so that the effect of the transport on the magnitude of sensitivity is smaller:  (i.e. about 

12%) but the change in the phase is more substantive (≈ 15 days).   We can note that the EBE H = 1 value (ignoring transport, 

with t = 2.75 years) gives 87 days i.e. a maximum on September 21st which is much too late (fig. 7). 855 

The static climate sensitivity sl should be purely real; its imaginary part is indeed small, it corresponds to 3 days and is 

probably within the error of the model and empirical estimates, it will be ignored below.   sl  can be converted to K/(CO2eq 

doubling)  by multiplying it by the canonical value 3.71 W/m2/ (CO2eq doubling) to yield 1.51 K/(CO2eq doubling) which is at 

the lower part of the IPCC 90% confidence range (3±1.5 K/ (CO2eq doubling)).  Since both the methodology and the empirical 

parameter estimates could be updated and improved, the result is encouraging.  In future, instead of assuming latitudinal 860 

constancy with a sinusoidal latitudinal dependence, gridded data could be used and the horizontal conduction approximation 

(the lhk term) could be improved.  

4. Conclusions 

This first paper of two parts proposes a new 2D energy balance equation for macroweather scales: ten days and longer.  It 

follows the classical energy balance models pioneered by [Budyko, 1969] and [Sellers, 1969], and assumes that the dynamics 865 

can be adequately modelled by the continuum mechanics heat equation – by advection and diffusion.   As reviewed in 

[McGuffie and Henderson-Sellers, 2005 ], [North and Kim, 2017], the classical models treat the parts of the atmosphere and 

ocean that radiatively interact with outer space as a zero thickness, two dimensional surface.  The complex radiative processes 

that occur in the vertical direction are only treated implicitly.  The dimensionality is then further reduced by zonal averaging.    

While this original time independent model may be reasonable for the long term (time invariant) climate states, it is inadequate 870 

for treating time varying anomalies.   The key improvement in realism was by made explicitly introducing a vertical coordinate 

z.  Yet, when this was done, it turned out that a detailed vertical model was still unnecessary: all that was required was the 

existence of a surface layer whose thickness was of the order of the diffusion depth.  This is where most of the energy storage 

occurs and it determines vertical temperature derivative at the surface and hence the vertical conductive heat flux.   This 

sensible heat flux is the crucial link between  the local radiative imbalances that drive the system, the heat that is stored and 875 

the heat that is transported horizontally.   Whereas the Budyko-Sellers models have zero thicknesses, our model has a finite 

but possibly small thickness; it need only be thick enough to account for energy storage and to determine the surface vertical 

temperature derivative.   

In this first part, we considered only homogeneous zero-dimensional models.  These are completely classical, yet as far as we 

know, have not been solved with conductive – (linearized) radiative boundary conditions. Using standard Laplace and Fourier 880 

techniques, we solved the full depth-time heat equation and showed that it’s Green’s function was identical to a half-order 

iωτ( )1/2 +1 / iωτ + lhk( )2( )1/2 +1 ≈ 0.88
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fractional differential equation that directly gives the surface temperature.  Although half-order derivatives have occasionally 

been used in the context of the heat equation, (at least since [Oldham and Spanier, 1972; Oldham and Spanier, 1974], 

[Babenko, 1986]), the resulting half-order energy balance equation (the HEBE) is apparently new.  Mathematically, the result 

is a direct consequence of the heat equation, the semi-infinite medium and conductive - radiative surface boundary conditions. 885 

The consequences are surprisingly far reaching.  For example, the familiar integer ordered differential equations have 

exponential Green’s functions, short memories.  In contrast, the more general fractional ordered equations such as the HEBE 

have Green’s functions that are “generalized exponentials”, based on power laws and long memories.  A general consequence 

is that while the HEBE respects Newton’s law of cooling - i.e. that heat fluxes across a surface are proportional to temperature 

differences - that the relationship between this heat flux and the surface temperature is quite different: it involves a half order 890 

derivative rather than first order one.  The energy stored is no longer instantaneously determined by the surface temperature, 

but rather by the entire prior forcing history.   Irrespective of the details, we thus expect Earth heat storage processes to generally 

have long memories. 

We also obtained general results on the Earth’s response to periodic forcings.  Ever since [Brunt, 1932], Fourier techniques 

have used the heat equation to model the Earth’s temperature response when subjected to a diurnal heat flux forcing.  We 895 

extend this from the weather regime to macroweather regime, from diurnally periodic heat forcing to annually periodic 

radiative - conductive forcing.  An immediate consequence is that the surface thermal impedance - equal to the climate 

sensitivity – is a complex number whose phase determines the lag between the maximum of the forcing (shortly following the 

summer solstice) and the temperature maximum.  Using a simple latitudinally averaged model with empirical parameters, we 

estimated this complex climate sensitivity and showed how this could readily account for the observed 22-25 day lag, 900 

estimating the (static) climate sensitivity at sl ≈ 0.41 K/(W/m2) and relaxation time t ≈ 2.75 years. 

In part II, we extend these zero dimensional results to the horizontal.   We first continue to use Laplace and Fourier techniques 

to treat the case of homogenous Earth parameters, but with inhomogeneous forcing.  We then – with the help of Babenko’s 

method, extend this to the full inhomogeneous problem with horizontally varying relaxation times, diffusivities, specific heats, 

climate sensitivities and forcings. 905 
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Figures 

 

Fig. 1: A schematic diagram showing the correct 3D energy balance equations with conductive - radiative surface boundary 
conditions.  Qs is the heat flux across the surface into the subsurface, S is the energy stored in the subsurface per unit surface area. 
The picture illustrates the thin surface layer (whose thickness is of the order of the diffusion depth, lv with relaxation time t, eq. 20) 1045 
in which the radiative exchanges between the earth and outer space occur. 
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Fig. 2: A schematic diagram showing the Budyko-Sellers 1D energy balance equation obtained by latitudinal averaging and by 
redirecting the vertical imbalance away from the equator. 
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Fig. 3: The nondimensional temperature as a function of nondimensional time for various nondimensional depths with a step forcing; 
GQ(t;z) (obtained by integrating eq. 30 34 in time).  The (top) surface curve can be interpreted as the fraction of the forcing that is 
conductive.  At first all the forcing is conductive with no radiation, eventually all the fluxes are radiative, the system reaches a new 
thermodynamic equilibrium and there is no conductive heat flux. 1055 
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Fig. 4:  Contours of nondimensional temperature as a function of nondimensional time and depth after a step function forcing 
(GQ(t;z)). 
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 1060 

Fig. 5: The difference  between the classical (temperature forced) and radiative forced  step response functions over the 

diffusion depth (nondimensional z = 0 to -1).  The top is shows the surface (z = 0), the curves from top to bottom are at depths z =0., 
-0., -0.2, -0.3,…-1.  While the difference is large over the relaxation time (up to nondimensional t = 1),  we see that they both slowly 
converge to thermodynamic equilibrium at large t. 
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Fig. 6:  A schematic showing Newton’s law of cooling (NLC) that relates the temperature difference across a surface to the heat flux 
crossing the surface, Qs (into the surface).  Teq is the fixed outside temperature, heat will flow as long as the surface temperature Ts 
≠ Teq, Z is the thermal impedance (equal here to the climate sensitivity l).  To apply the NLC, we need to relate the heat flux to the 
surface temperature.  The lower left shows the consequence of applying heat equation with conductive – radiative BC’s, the lower 1070 
right shows the phenomenological assumption made by box models.  The arrows represent heat fluxes, hence the factor l in the 
denominators.  The system is assumed to be horizontally homogeneous and that the subsurface is much thicker than the diffusion 
depth. 
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 1075 

Fig. 7: The temperature phase lag (in months, the negative of  argument of the complex climate sensitivity), using the complex climate 
sensitivity and annual cycle forcing (i.e. with w = 2p rads/yr) with t in years.  The line  with short dashes (top) is the usual EBE (H = 
1), the solid line is the (H = 1/2) HEBE and the line with long dashes is the classical heat forcing model which is the large t HEBE 
limit.   All curves ignore any net horizontal heat transport.  The data analyzed here yield t ≈ 2.75±0.8 years but the actual phase is 
somewhat shorter due to horizontal heat transport. 1080 
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Fig. 8: Same as fig. 7 except for the amplitude of the complex climate sensitivity to annual cycle forcing (i.e. with w = 2p rads/yr) with 
t in years.  The short dash line (bottom) is the usual EBE (H = 1), the top line with long dashes is the classical heat forcing model 
and the solid line is the (H = 1/2) HEBE.  1085 
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