Impact of environmental changes and land-management practices on wheat production in India

Shilpa Gahlot¹, Tzu-Shun Lin², Atul K Jain², Somnath Baidya Roy¹, Vinay K Sehgal³, Rajkumar Dhakar³

¹Centre for Atmospheric Science, Indian Institute of Technology Delhi, New Delhi, 110016 India,

²Department of Atmospheric Science, University of Illinois, Urbana, IL, 61801 USA,

³Department of Agricultural Physics, Indian Agricultural Research Institute, New Delhi, 110012, India

Correspondence to: Somnath Baidya Roy (drsbr@iitd.ac.in)

Online Supplementary Material

Dynamic C3 crop model in ISAM

There are six stages in the growth of C3 crop that are modeled in ISAM (Song et al. 2013). The concept of Growing Degree Days (GDD) is used to define wheat growth and divide the wheat-growing season into different phenological stages. Daily GDD is calculated as the difference between daily average air temperature and base temperature since the planting day. Each stage is governed by heat requirement range (fraction of maximum GDD) and switches to the next stage when the heat unit index (=accumulated GDD/maxGDD) exceeds the maximum limit for that stage. GDD is calculated daily and accumulated GDD is calculated as cumulative GDD that increases along the growing season.

During emergence, the seeds stay below the ground, increase in size and gain weight. The emergence of the shoot from the ground marks the beginning of the second stage, the initial vegetative stage. Maximum carbon assimilated is allocated to the shoot in this stage and leads to rapid increase in LAI and a small increase in length of the stem. The third stage, normal vegetative stage, is marked with a rapid increase in length of the stem and the roots to support vertical growth of the plant. The maximum LAI of the crop is reached by the end of the third stage. The fourth stage, initial reproductive stage, marks the onset of reproductive stage in the crop and development of storage organs. Allocation of assimilated carbon to storage organs begins and vegetative development of the plant stops. The fifth stage, post-reproductive stage, marks the solidification of grains and increased nutrient allocation to the grains while ensuring capable roots to support the plant. There are other factors like light availability, temperature stress and nitrogen availability that act as limiting factors to the crop growth and nutrient allocation is promoted in the crop in a way that the impact of these factors is minimized. For instance, there is a greater allocation of carbon to the roots when the crop experiences water stress to ensure more vertical development of roots to extract water from deeper soil levels. Finally, the crop is ready to be harvested when the heat requirement of the crop is fulfilled (GDD=

maxGDD). Each growth stage is also marked with a maximum number of days that the plant can spend in each stage to ensure that wheat grown in all climatological regions enters each stage based on the defined conditions for each phenology stage.

Total carbon assimilation by vegetation is calculated at hourly intervals using the C3 photosynthesis (Song et al., 2013) after taking into account the water, nutrient and light availability. Maintenance respiration and growth respiration losses are considered as a part of carbon lost to the environment. Fractions of net carbon assimilated after accounting for respiratory losses are allocated to different plant pools (leaves, stem, coarse root, fine root, and grain) based on the growth stage.

Table S1: List of all variables/parameters and their values for the spring wheat model. The model equations for C3 crops are described in Song et al. 2013.

Symbol	Definition	Value	Source
V_{cmax25}	Maximum carboxylation rate at the	130	
	reference temperature of 25°C	$\mu mol \ m^{-2}s^{-1}$	
T_{high}	$\frac{1}{2}$ point of high temperature	308 K	Lokupitiya et al. 2009
	inhibition function in carbon		
	assimilation		
T_{base}	Base atmospheric temperature for	278.15 K	Gill et al. 2014
Бизс	calculating daily GDD		
$T_{soil_{critical}}$	Base soil temperature for crop	290.52 K	
Soverilleat	planting		
GDD_{max}	Required total heat above base	1800 [°C]	
	temperature		
HUI_{day}	Heat Unit Index of the <i>i</i> th day	variable	
T_{avg}	Average daily air temperature	variable	
HUI_{v1}	Minimum heat unit index during	0.07	This study
7.1	the initial vegetative period		
HUI_{v2}	Minimum heat unit index during	0.27	This study
	the normal vegetative period		
HUI_{r1}	Minimum heat unit index during	0.51	This study
	the reproductive period		
HUI_{r2}	Minimum heat unit index during	0.70	This study
	the post-reproductive period		
$D_{max_{emer}}$	Maximum number of days in	7	This study (calibrated)
	emergence period	20	m 1 (11 1)
$D_{max_{v1}}$	Maximum number of days in initial	30	This study(calibrated)
-	vegetative period	1.6	TE1: + 1 (1:1 + 1)
$D_{max_{v2}}$	Maximum number of days in	46	This study(calibrated)
D	normal vegetative period	16	This study (solibrated)
$D_{max_{r_1}}$	Maximum number of days in reproductive period	10	This study(calibrated)
ת	Maximum number of days in post-	35	This study(calibrated)
$D_{max_{r2}}$	reproductive period		This study (canorated)
$C_{storage_ref}$	Initial carbon storage in seed as	15 gC	
ostorage_rej	referenced seeding rate	13 80	
R_{seed_ref}	Referenced seeding rate	1011715	
seeu_rej	8	seeds/acre	
CN_{leaf}	C:N ratio of leaf	15	Dreqniak et al. 2013
CN_{stem}	C:N ratio of stem	50	Dregniak et al. 2013
CN_{root}	C:N ratio of root	30	Dreqniak et al. 2013
CN_{grain}	C:N ratio of grain	40	Dregniak et al. 2013
Ashoot _e	Allocation fraction for shoot during	0.60	This study(calibrated)
110.1000e	emergence period	3.00	inis stady (cariorated)
$Aroot_{e}$	Allocation fraction for root during	0.40	This study(calibrated)
	emergence period		(
Al_{v1}	Allocation fraction for leaves	0.45	This study(calibrated)
VI	during initial vegetative period		
As_{v1}	Allocation fraction for stem during	0.35	This study(calibrated)
	initial vegetative period		
Ar_{v1}	Allocation fraction for roots during	0.20	This study(calibrated)

	initial vegetative period		
Al_{v2}	Allocation fraction for leaves	0.58	This study(calibrated)
$A^{\iota}v^{2}$	during normal vegetative period	0.38	This study(canorated)
A.c.	Allocation fraction for stem during	0.32	This study(calibrated)
As_{v2}	normal vegetative period	0.32	This study(canorated)
Ana	Allocation fraction for roots during	0.10	This study(calibrated)
Ar_{v2}	_	0.10	This study(canbrated)
A 7	normal vegetative period Allocation fraction for leaves	0.00	This study (solib mate d)
Al_{r1}		0.00	This study(calibrated)
_	during reproductive period	0.05	
As_{r1}	Allocation fraction for stem during	0.05	This study(calibrated)
_	reproductive period	0.10	
Ar_{r1}	Allocation fraction for roots during	0.10	This study(calibrated)
	reproductive period	0.05	
$Ag_{r1_{max}}$	Maximum allocation fraction for	0.85	This study(calibrated)
	grains during reproductive period		
Ag_{r1}	Allocation fraction for grains	variable	This study
	during reproductive period		
Al_{r2}	Allocation fraction for leaves	0.00	This study(calibrated)
	during post-reproductive period		
As_{r2}	Allocation fraction for stem during	0.00	This study(calibrated)
	post-reproductive period		
Ar_{r2}	Allocation fraction for roots during	0.05	This study(calibrated)
	post-reproductive period		
$Ag_{r2_{max}}$	Allocation fraction for grains	0.95	This study(calibrated)
	during post-reproductive period		
Ag_{r2}	Allocation fraction for grains	variable	This study
	during post-reproductive period		
T_{min}^{stress}	Minimum temperature for inducing	25°C	Deryng et al. 2014
	heat stress in the crop		
T_{max}^{stress}	Maximum temperature for wheat to	35°C	Deryng et al. 2014
	have non-zero daily grain growth		
	rate		
Rt _{high}	Daily death rate of leaves from heat	variable	This study
	stress		
SLA	Specific Leaf Area	45 m ² /kgC	This study
H_a	Maximum canopy height	0.95 m	Dreqniak et al. 2013
phen	Phenology Stage	variable	
$T_{stress_{fact}}$	Daily heat stress factor due to high	variable	
ser ess fact	T_{avg}		
day	Julian day	variable	
Rt_{max}	Maximum death rate of green	variable	
mux	leaves due to heat stress		
LAImax	Maximum LAI	7.0	Dregniak et al. 2013
mux		1	=104

Table S2: Climatology based planting day criteria for each grid cell. (*Average minimum temperature based on 1901-1950 climatology).

Minimum temperature* of region $(T_{air_{min}}, K)$	Criteria	Notation	Spatial regions represented
$T_{air_{min}} < 275.0$	- Julian day > 260 (September 17) - Average of last 7 day air temperature < 24.81°C	day > 260 $T_{air}(7 \ days) < 297.96 \ K$	- Northern parts of India - Indo-Gangetic Plains
$275.0 \le T_{air_{min}}$ < 277.5	- Julian day > 260 (September 17) - Average of last 7 day air temperature < 22.81°C - Average of last 30 days precipitation < 20 mm	day > 260 $T_{air} (7 \ days) < 295.96 \ K$ $Prec(30 \ days) < 20 \ mm$	- Parts of eastern India where rice is harvested a few months ahead of wheat plantation on the same land.
$T_{air_{min}} \ge 277.5$	- Julian day > 260 (September 17) - Average of last 7 day air temperature < 32.01°C - Average of last 30 days precipitation < 100 mm	day > 260 $T_{air}(7 \ days) < 305.16 \ K$ $Prec(30 \ days)$ $< 100 \ mm$	- Central India and parts of southern India.

Table S3: List of equations for spring wheat specific processes and variables used in this study. The variables used here are defined in Table S4.

Dataset/Proces s/Variable	Equation	
Heat Stress	$Ag_{r1/r2_{max}}(phen),$	if $T_{ava} < T_{min}^{stress}$
	$Ag_{r1/r2}(phen) = egin{cases} Ag_{r1/r2_{max}}(phen), \ Ag_{r1/r2_{max}}(phen) * rac{(35-T_{avg})}{10}, \ 0, \end{cases}$	$T_{min}^{stress} \le T_{avg} \le T_{max}^{stress}$
		$if T_{avg} > T_{max}^{str} ss$
	Eq. A1	
	(1,	$if \ T_{avg} < T_{min}^{stress}$
	$T_{stress_{fact}}(day) = \begin{cases} 1, \\ \frac{(35 - T_{avg})}{10}, \\ 0, \end{cases}$	$T_{min}^{stress} \le T_{avg} \le T_{max}^{stress}$
	Eq. A2	$if T_{avg} > T_{max}^{stress}$
	$Rt_{high}(day) = Rt_{max} * (1 - T_{stress_{fact}}(day))^{3}$	
	Eq. A3	
Annual nitrogen	$frac_i = \frac{fert_{wheat_i}(2000)}{fert_{total_i}(2000)}$	
fertilizer data $(0.5^{\circ} \times 0.5^{\circ})$ from $(0.5^{\circ} \times 0.5^{\circ})$ from 1900 to 2005Eq. A4		
	$fert_{wheat_i}(yr) = frac_i * fert_{total_i}(yr)$ Eq. A5	
Annual wheat area	$Area_{wheat_{state}}(yr) = \sum_{k=1}^{all\ districts} Area_{wheat_k}(yr)$	
data (0.5° X 0.5°)	Eq. A6	
from 1997 to 2014	$fr_{state_{yr}} = \frac{Area_{wheat_{state}}(yr)}{Area_{heat_{state}}(2000)}$	
	Eq. A7	
	$TWA_i(yr) = fr_{state_{yr}} * TWA_i(2000), \forall i \in state$ Eq. A8	
Annual area	$AEI_{avg_i}(yr)$	
equipped for irrigation	$ \left((AEI_{HYDE_{FINAL_i}}^{IR}(yr) + AEI_{HYDE_{FINAL_i}}^{CP}(yr) + AEI_{EA}^{I} \right) $	$ARTHSTAT_i(yr) + AEI_{EARTHSTAT_i}^{CP}(yr))/4$,
$(0.5^{\circ} \text{ X } 0.5^{\circ})$		$if 1997 \le yr \le 2005$
from 1997 to 2014	$= \begin{cases} fr_{IRRI_AR_{yr}} = \frac{Area_{IRRI_AR}(yr)}{Area_{wheat_{state}}(2005)} \\ AEI_{avg_i}(yr) = AEI_{avg_i}(2005) * fr_{IRRI_AR}(yr) \end{cases}$, if $yr > 2005$
Annual actual wheat production	$Prod_{act}(yr) = \frac{\sum_{i=1}^{all\ grids} \{ \left[Prod_{S_{CON}}(yr)_i * AEI \ vg(yr)_i \right] + \left[Prod_{S_{CON}}(yr)_i * AEI \ vg(yr)_i * AEI \ vg(yr)_i \right] + \left[Prod_{S_{CON}}(yr)_i * AEI \ vg(yr)_i * A$	$od_{S_{IRRI}}(yr)_{i^{*}}[TWA(yr)_{i}-AEI_{avg}(yr)_{i}]$
	$\sum_{l=1}^{\infty} TW$	/A(YT)į
Impact of each		
factor on wheat production	$ Impact_{factor}(yr) = Prod(S_{CON}(yr)) - Prod(S_{fact}) $ Eq. A11	tor>(yr)

Table S4: Definition of all variables and parameters used in the equations presented in Table S3.

Symbol	Definition	Source
yr	Year	
i	Variable representing number of grids in study	
k	area	
K	Variable representing number of districts in a state	
$Prod_{act}$	Actual annual wheat production of India	
S_{CON}	Control run with all input forcings (atmospheric	
	CO ₂ , temperature, nitrogen fertilizer, irrigation) varying with time	
$S_{< factor>}$	Simulations with all but one input forcing	
D J	(factor) varying with time	
$Prod_{S_{CON}}$	Wheat production from S_{CON} case (irrigated case)	
$Prod_{S_{< factor>}}$	Wheat production from $S_{}$ case	
$Area_{wheat_k}(yr)$	Annual wheat harvested area at district (k) level	MAFW, India
$Area_{wheat_{state}}$	Annual wheat harvested area at state level evaluated by summing up data from all districts in a state	
$fr_{state_{yr}}$	Fraction of annual wheat harvested area at	
J'state _{yr}	state-level for year <i>yr</i> with that of year 2000.	
TWA_i	Total wheat harvested area in <i>i</i> th grid	This study
$AEI_{HYDE_{FINAL_i}}^{IR}$	Gridded Area Equipped for Irrigation (AEI)	Siebert et al. 2015
TITITEFINALi	with HYDE 3.1 Final as dataset used for	
	downscaling and maximizing consistency with	
	AEI_IR	
$AEI_{HYDE_{FINAL_i}}^{CP}$	Gridded Area Equipped for Irrigation (AEI) with HYDE 3.1 Final as dataset used for	Siebert et al. 2015
	downscaling and maximizing consistency with AEI CP	
AEI ^{IR} _{EARTHSTA i}	Gridded Area Equipped for Irrigation (AEI)	Siebert et al. 2015
TELEARIHSIA i	with EARTHSTAT as dataset used for	
	downscaling and maximizing consistency with	
	AEI_IR	
$AEI_{EARTHSTAT_{i}}^{CP}$	Gridded Area Equipped for Irrigation (AEI)	Siebert et al. 2015
·	with EARTHSTAT as dataset used for	
	downscaling and maximizing consistency with	
	AEI_CP	
AEI_{avg}	Average AEI for each grid cell	
$frac_i$	Fraction of wheat to total fertilizer amount for <i>i</i> th grid	
$fert_{wheat_i}(yr)$	Fertilizer amount added to wheat for <i>i</i> th grid	
, wheat o	for the year yr	
$fert_{total_i}(yr)$	Total fertilizer amount added in <i>i</i> th grid for the	
, will o	year yr	
$Impact_{factor}$	Difference between production from S_{CON} and	
,	S _{{factor>}	