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Abstract. Climate model biases in the representation of albedo variations between land cover types contribute to 10 

uncertainties on the climate impact of land cover changes since pre-industrial times, and especially on the associated 

Radiative Forcing. The recent publications of new observation-based datasets offer opportunities to investigate these biases 

and their impact on historical albedo changes in simulations from the fifth phase of the Coupled Model Intercomparison 

Project (CMIP5). Conducting such an assessment is however complicated by the non-availability of albedo values for 

specific land cover types, as well as the limited number of simulations isolating the land use forcing in CMIP. In this study, 15 

we demonstrate the suitability of a new methodology to extract the albedo of trees and crops/grasses in standard climate 

model simulations. We then apply it to historical runs from 13 CMIP5 models and compare the obtained results to satellite-

derived reference data. This allows us to identify substantial biases in the representation of the albedo of trees, crops/grasses, 

and the albedo change due to the transition between these two land cover types in the analysed models. Additionally, we 

reconstruct the local albedo changes induced by historical conversions between trees and crops/grasses for 15 CMIP5 20 

models. This allows us to derive estimates of the Radiative Forcing from albedo variations due to land cover changes since 

pre-industrial times ranging between 0 and -0.22 W/m2, with a mean value of -0.07 W/m2. Constraining the albedo response 

to transitions between trees and crops/grasses from the models with satellite-derived data leads to an increase in this range, 

however after excluding two models with unrealistic conversion rates from trees to crops/grasses we obtain a revised model 

mean estimate of -0.11 W/m2 (with individual model results between -0.04 and -0.16 W/m2). These numbers are at the lower 25 

end of the range provided by the IPCC AR5 (-0.15 +/- 0.10 W/m2). The approach described in this study can be applied on 

other model simulations, such as those from CMIP6, especially as a diagnostic enabling the reproduction of the model 

evaluation part has been included in the ESMValTool v2.0.  
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1 Introduction 30 

The landscape transformations imposed by anthropogenic activities have the potential to modify the climate (Foley et al., 

2005; Mahmood et al., 2014). Since pre-industrial times, important Land Cover Changes (LCC) have especially led to the 

replacement of forests by shorter vegetation types such as crops and grasses over large inhabited areas (Ramankutty and 

Foley, 1999; Pongratz et al., 2008; Hurtt et al., 2011; Kaplan et al., 2011). Associated alterations of land surface properties 

such as albedo, roughness and evaporative fraction have modified climate conditions through the so-called biogeophysical 35 

effects (Pongratz et al., 2010; de Noblet-Ducoudré et al., 2012; Lejeune, Seneviratne and Davin, 2017). The overall climate 

impact of the biogeophysical effects of historical LCC remains a matter of debate (Pitman et al., 2009; de Noblet-Ducoudré 

et al., 2012; Lejeune, Seneviratne and Davin, 2017; Duveiller et al., 2018) due to uncertainties regarding the magnitude of 

the imposed land-cover perturbations (Schmidt et al., 2012), the resulting alterations in land surface properties, the interplay 

between radiative (related to albedo) and non-radiative processes (related to changes in evaporative fraction and roughness), 40 

and the influence of atmospheric feedbacks and non-local effects (Winckler, Reick and Pongratz, 2017; Winckler et al., 

2019).  

Concerning the albedo more specifically, model studies concluded that historical LCC have led to large-scale increases in 

this variable (Betts et al., 2007; Boisier et al., 2013) because trees have a lower albedo than shorter vegetation types, 

especially in the presence of snow (Cescatti et al., 2012; Li et al., 2015). This has resulted in a cooling effect, and climate 45 

models have simulated an associated global Radiative Forcing (RF) close to -0.2 W/m2 (Betts et al., 2007; Edouard L. Davin, 

de Noblet-Ducoudré and Friedlingstein, 2007; Pongratz et al., 2009). However, Myhre, Kvalevåg and Schaaf (2005) and 

Kvalevåg et al. (2010) have argued that climate models usually overestimate the albedo difference between natural 

vegetation and croplands in comparison to satellite-derived observational evidence. By combining a radiative transfer model 

with reconstitutions of past albedo changes based on satellite observations of the current vegetation land cover and its 50 

surface albedo, as well as a data set for potential natural vegetation, Myhre, Kvalevåg and Schaaf (2005) rather found a RF 

due to anthropogenic vegetation changes of -0.09 W/m2 since pre-agriculture times. Consequently, the Fifth Assessment 

Report (AR5) of the IPCC estimated that LCC since 1750 have rather led to a RF of -0.15 +/- 0.10 W/m2 (Myhre et al., 

2013). A substantial spread in the albedo response to historical LCC has also been identified amongst the models 

participating in the LUCID project (de Noblet-Ducoudré et al., 2012). The diversity of model parameterisations was 55 

estimated to be responsible for about half of it, while the remaining uncertainties result from differences in the magnitude of 

the prescribed land cover.  

More recent model intercomparison efforts such as the fifth phase of the Coupled Model Intercomparison Project (CMIP5, 

Taylor, Stouffer and Meehl, 2012) offer new opportunities to assess the magnitude of these model disagreements, as well as 

our understanding of the impact of historical LCC on albedo and the associated RF. Nevertheless, such an investigation is 60 

complicated by the facts that the modelling groups participating in CMIP5 have not provided data on the albedo of specific 

land-cover types but only mean albedo values over grid cells accounting for land cover heterogeneity, and that few of them 
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have conducted experiments isolating the historical land use forcing. In parallel to recent model developments, studies giving 

insights from satellite data on the climate effect of LCC have been published (Li et al., 2015; Alkama and Cescatti, 2016; 

Duveiller, Hooker and Cescatti, 2018b). They provide high-resolution information on the potential changes in various 65 

surface variables in response to land-cover transitions, which constitutes a very good benchmark to evaluate how this aspect 

is represented in climate models. 

 This study is divided in several parts. First, we introduce a new methodology to extract the albedo of two specific land cover 

classes (trees and crops/grasses) in simulations for which information is only available at the grid cell level (Section 2). 

Second, we evaluate how well this methodology performs by using as a testbed climate model simulations that also provide 70 

sub-grid cell albedo values for specific land-cover types (Section 3). Third, we apply this approach to CMIP5 simulations to 

extract the albedo of trees and crops/grasses, as well as the albedo change due to transitions between these land cover 

classes, and compare the obtained results to satellite-derived reference data (Section 4). Fourth, we reconstruct the albedo 

changes since preindustrial times in CMIP5 models, and calculate the associated RF (Section 5). We also discuss the spread 

in the obtained model results in light of the biases identified in the previous step, and apply an observational constraint based 75 

on satellite-derived evidence to refine our estimates of the RF from historical LCC. Eventually, we compare our findings to 

those of previous studies, and discuss their limitations as well as potential for follow-up analyses (Section 6). 

 

 

 80 

2 Methods and Data 

2.1 Observational data for the albedo of land-cover classes and the albedo changes associated to land-cover 

transitions 

2.1.1 Albedo of land-cover classes 

In this study we evaluate the simulated albedo of crops/grasses (merged into one single land cover class) and trees against 85 

reference estimates obtained from satellite measurements. To derive them, we used the 300 meter-resolution land cover 

information provided by GlobCover v2.3 (Arino et al., 2012), collected between January 2005 and June 2006, in 

combination with the mean of the white-sky (bi-hemispherical) and black-sky (directional-hemispherical) shortwave albedo 

data at 0.05°-resolution from GlobAlbedo (Lewis et al., 2012), available at monthly timescale for the 1998-2011 period. To 

extract the albedo from specific land-cover types at a resolution of 2° (i.e., comparable to that of the model simulations), the 90 

GlobCover original data were first regridded at 0.0025°. For each spatial grid cell of the GlobAlbedo dataset which is 

occupied by at least 95% by either trees or crops/grasses according to the GlobCover product, the seasonal cycle of albedo 

for this specific land cover type was then approximated by the monthly albedo climatology for this grid cell, computed over 

the full period covered by GlobAlbedo. The results are then aggregated at 2° resolution, i.e. for each 2° grid cell the albedo 

climatology of a specific land cover type is derived by calculating area-weighted averages over the 0.05°-resolution grid 95 

cells it contains, and for which a land cover-specific seasonal cycle of albedo was previously identified. 
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2.1.2 Albedo changes associated to land-cover transitions 

The dataset of Duveiller, Hooker and Cescatti (2018a) – thereafter referred to as D18 – was used to evaluate the albedo 

changes associated to land-cover transitions between trees and crops/grasses in CMIP5 models. This observational dataset 100 

was derived by “unmixing” the monthly albedo climatology over the 2008-2012 period from collection v005 of the NASA 

MCD43C3 product (Schaaf et al., 2002), using land cover information for the year 2010 from the ESA-CCI land-cover 

dataset (ESA Land Cover CCI Product User Guide Version 2. Tech. Rep., 2017, available at: 
http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-PUG-v2.5.pdf). Their methodology is based on a “space-for-

time” analogy, i.e. it assumes that albedo changes that would arise from a land cover transition from trees to crops/grasses, 105 

for example, can be approximated by spatial differences between albedo values of trees and crops/grasses over neighbouring 

areas, which can therefore be assumed to experience similar background climates. We used the version of the dataset from 

D18 that is based on a generic vegetation classification (IGBPgen) in four land cover classes: trees, shrubs, crops/grasses and 

savannas.  

 110 

The spatial coverage of the data from D18 is limited to the areas where there is a joint presence of the two vegetation classes 

of interest for a given land cover transition (e.g. forests to grasslands/croplands when considering a typical deforestation) 

over a local area of roughly 5 by 5 km. This is often not an issue, since many LCC generally occur in regions where both 

target and source classes already occur. However, it does limit the area over which the data can be confronted with model 

results, and it precludes exploring the possibilities of analysing new land cover change trajectories (e.g. planting trees in 115 

areas where none currently exist). Therefore, for the part of the analysis in which we estimate the observation-constrained 

RF associated to historical LCC in CMIP5 simulations, we used an extended version of the dataset originally presented by 

D18 that has a broader spatial coverage (Duveiller et al., 2020). The gap-filling approach employed to derive it consisted in 

training a random forest classifier to reproduce the data according to similarities in local climate, and then using the climate 

information to predict the albedo changes due to specific land-cover transitions where gaps existed in the data. Some 120 

precautions were taken to ensure that these predicted outputs remain realistic. First, all areas in which neither of the two land 

cover types involved in a given transition are present were removed. Second, the random forest is only used for interpolation, 

i.e. only using combinations of climate indicator values that are actually observed for the considered transition. Finally, a 

clear systematic bias of the classifier was corrected by applying a simple linear regression.   

 125 

2.2 Climate model simulations from CMIP5 

We reconstruct the present-day albedo from trees as well as crops/grasses in the historical “all-forcings” simulations (Taylor, 

Stouffer and Meehl, 2012) of 13 CMIP5 models for which the required information on land cover, downwelling shortwave 

radiation, upwelling shortwave radiation and snow cover fraction is available (see Section 2.3.1 for a description of the 

reconstruction methodology). Land fractions covered by crops, grasses and pasture are provided separately by CMIP5 130 
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models, but were grouped within one same land cover class for consistency with the observational data from D18. Present-

day albedo values are extracted from the last five-year period common to all models (i.e., 2000-2004), to be as close as 

possible to the period covered by the observational data. If several ensemble members differing only in terms of their initial 

conditions were available for one specific model, the reconstruction method was applied to their ensemble mean. 

 135 

In Section 5, we present estimates of the RF associated to historical deforestation in fifteen CMIP5 models. For this purpose, 

we first reconstruct the albedo changes associated with transitions between trees and crops/grasses between pre-industrial 

conditions (equivalent to those of 1860 in CMIP5 and extracted from the first 200 years of the “piControl” experiments), and 

the 1981-2000 time period of historical “all-forcings” experiments. The reconstruction algorithm is applied to all CMIP5 

models for which the required information on land cover, downwelling and upwelling shortwave radiation is available for at 140 

least two ensemble members of the analysed experiments (see Section 2.3.2 for a description of the reconstruction 

methodology). In order to be able to compute the RF constrained by observations, both the reconstructed albedo changes 

associated with transitions between trees and crops/grasses and the data from D18 were regridded to 1°x1° resolution. We 

have focused on the transitions between trees and crops/grasses for consistency with the observational data of D18, but also 

assessed the sensitivity of our results when considering the historical impact of overall changes in tree cover (e.g., also 145 

including replacement of trees by shrubs or bare soil). 

 

 

2.3 Principle of the reconstruction method 

2.3.1 Reconstruction of the simulated present-day albedo of specific land-cover classes 150 

The present-day albedo values from trees and crops and grasses (atr and acg) are reconstructed in CMIP5 historical 

simulations using an “unmixing” method similar to those previously applied to satellite-derived observational data to extract 

the land surface characteristics of specific land cover types (e.g., Alkama and Cescatti, 2016), including albedo (Li et al., 

2015; Chen and Dirmeyer, 2019), and notably to obtain the data from D18 used as a reference for the evaluation of CMIP5 

models in this study. We include information on the land fraction covered by shrubs in the methodology, but do not 155 

reconstruct the albedo of this land cover type (ash) because of their limited spatial occurrence. 

 

Concretely, for every land grid cell i we considered big boxes of a size of 5 times 5 grid cells centered over i. Within each 

big box, for each month we thus have a sample of up to 25 values for albedo (a) and the land cover fractions occupied by 

each of the three considered land cover classes (𝑙𝑐𝑓%& , 𝑙𝑐𝑓'(, 𝑙𝑐𝑓)*) over the same simulation period. Multi-linear regressions 160 

of a against 𝑙𝑐𝑓%& , 𝑙𝑐𝑓'( and 𝑙𝑐𝑓)* are then performed in order to obtain atr, ash and acg.  
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Because snow cover has an important impact on albedo and especially on the albedo difference between forests and short 

vegetation types, two separated regressions are conducted for each big box: one among the grid cells with snow cover 

fraction inferior to 0.1 (considered as snow-free), and one for the grid cells where this variable is superior to 0.9 (considered 165 

as snow-covered): 

 

𝛼', = 𝛽/
', +	 𝑙𝑐𝑓%& × 𝛽3

', + 𝑙𝑐𝑓'( × 𝛽4
', + 𝑙𝑐𝑓)* × 𝛽5

', (1)	

𝛼') = 𝛽/') +	 𝑙𝑐𝑓%& × 𝛽3') + 𝑙𝑐𝑓'( × 𝛽4') + 𝑙𝑐𝑓)* × 𝛽5')      (2) 

 170 

where 𝑙𝑐𝑓%& , 𝑙𝑐𝑓'( and 𝑙𝑐𝑓)* are vectors containing up to 25 values, the b coefficients are specific to each big box and each 

month, and the superscript sf and sc refer to snow-free and snow-covered, respectively.  

 

atr, ash and acg over the central grid cell i of a big box are then computed by extrapolating the partial linear regression lines 

for cases where 𝑙𝑐𝑓%& , 𝑙𝑐𝑓'( or 𝑙𝑐𝑓)* are equal to 100%: 175 

 

𝛼%&
',(𝑖) = 𝛽/

', +	𝛽3
', × 100% (3) 

𝛼'(
',(𝑖) = 𝛽/

', +	𝛽4
', × 100% (4) 

𝛼)*
',(𝑖) = 𝛽/

', +	𝛽5
', × 100% (5) 

𝛼%&')(𝑖) = 𝛽/') +	𝛽3') × 100%  (6) 180 

𝛼'(')(𝑖) = 𝛽/') +	𝛽4') × 100%  (7) 

𝛼)*') (𝑖) = 𝛽/') +	𝛽5') × 100%  (8) 

 

The method can only perform well over big boxes with sufficient land cover information. Therefore, the predictors (𝑙𝑐𝑓%& , 

𝑙𝑐𝑓'(, 𝑙𝑐𝑓)*) are only included in the regression if the respective land cover classes are represented in at least two snow-free 185 

or snow-covered grid cells. Moreover, the regressions are only conducted in the big boxes with a minimum number of 15 

grid cells (either snow-free or snow-covered), and where the sum of all the included predictors exceeds 90%. Moreover, the 

few remaining reconstructed albedo values which are physically impossible (i.e., either inferior to 0 or superior to 1) are 

filtered out. As a last step to increase the quality of the results of the reconstruction method, grid cells for which the standard 

error of the regression is higher than 0.01, or where the land fraction covered by trees and crops/grasses is lower than 20% 190 

are discarded. The albedo change associated to a transition between trees and crops/grasses is eventually derived by looking 

at the difference between the reconstructed albedo of trees and crops/grasses. The filtering criteria differ slightly in this case, 

as we only discard grid cells for which both the land fraction covered by trees and crops/grasses are lower than 10% and 

where the standard error of the regression is higher than 0.001 (as the fraction covered by trees and crops/grasses covary, 
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when looking at the reconstructed difference between the albedo of these land cover types the standard error of the 195 

regression strongly decreases). A diagnostic has also been implemented in the ESMValTool v2.0, which allows the 

automated application of the reconstruction methodology described in this section to simulations following a similar output 

protocol as CMIP (more details available in Eyring et al., 2019). 

 

2.3.2 Reconstruction of the simulated albedo changes due to historical deforestation 200 

A similar approach based on local regression is used to derive the albedo changes associated to transitions between trees and 

crops/grasses between pre-industrial times and the 1981-2000 period (𝛿𝛼%&→)*). It has previously been used to reconstruct 

local changes in temperature due historical LCC in CMIP5 simulations (Lejeune et al., 2018). In this case, the spatial 

predictors used in the regression are the historical transition rate between trees and crops and grasses (𝑙𝑐𝑐%&→)*), latitude 

(𝑙𝑎𝑡), longitude (𝑙𝑜𝑛), and elevation (𝑒𝑙𝑒𝑣), such that: 205 

 

𝛿𝛼%&→)* = 𝛿/ +	 𝑙𝑐𝑐%&→)* × 𝛿3 + 𝑙𝑎𝑡 × 𝛿4 + 𝑙𝑜𝑛 × 𝛿5 + 𝑒𝑙𝑒𝑣 × 𝛿C    (9) 

 

where 𝑙𝑐𝑐%&→)*, 𝑙𝑎𝑡, 𝑙𝑜𝑛 and 𝑒𝑙𝑒𝑣 are vectors containing up to 25 values and the 𝛿 coefficients are specific to each big box. 

The historical albedo change associated to historical, local deforestation over the central grid cell i of a big box is then 210 

obtained by scaling the results of this local regression with the historical conversion rate from trees to crops/grasses 

experienced over i (compared with pre-industrial conditions): 

 

𝛿𝛼%&→)*(𝑖) = 𝑙𝑐𝑐%&→)*(𝑖) × 𝛿3    (10) 

 215 

We reconstruct 𝛿𝛼%&→)* over each land grid cell for which the corresponding big box contains at least 15 land grid cells. An 

uncertainty range for 𝛿𝛼%&→)* is also computed by applying the regression to each ensemble simulation of a given model. 

Additionally, for each ensemble simulation and each big box, a jackknife resampling is conducted: Alternatively, and as 

many times as there are land grid cells with non-missing values in the big box, an additional regression is computed after 

leaving out one grid cell (Efron, 1982). We thus obtain between 16 and 26 estimates of 𝛿𝛼%&→)*, depending on the number of 220 

land grid cells in the big box. We then retain the median of these estimates, which increases the robustness of our results by 

eliminating strong dependencies on single model grid cells. 

 

 

2.4 Computation of the Radiative Forcing of historical conversions between trees and crops/grasses 225 

The Radiative Forcing (RF), expressed here in W/m2, is defined as the net change in the energy balance of the Earth system 

due to some imposed perturbation (Myhre et al., 2013). In our case, this perturbation is a modification of albedo arising from 
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land-cover changes, in particular deforestation or re/afforestation, which affects the amount of reflected shortwave radiation 

leaving the Earth system at the top of the atmosphere. By how much this amount changes depends on a so-called radiative 

kernel (Soden et al., 2008), defined in this case as the differential response in outgoing shortwave radiation at the top of the 230 

atmosphere to an incremental change in surface albedo 𝛿𝛼' (Bright and O’halloran, 2019): 

 

𝑅𝐹 = 𝐾GH × 𝛿𝛼' (11) 

 

We employ here the empirical parameterisation of the radiative kernel 𝐾GH suggested by Lenton and Vaughan (2009) and 235 

Cherubini, Bright and Strømman (2012), who approximate it as a combination of incoming shortwave radiation at the 

surface 𝑆𝑊'
↓ and a temporally and spatially invariant one-way atmospheric transmittance 𝑘: 

 

𝑅𝐹 =	𝑆𝑊'
↓ × 𝑘 × 𝛿𝛼' (12). 

 240 

In this study, 𝑆𝑊'
↓ is obtained from the edition 4a of the CERES-SYN1deg dataset (Wielicki et al., 1996), using the monthly 

climatology (over the 2001-2016 period) of its 1°-resolution product. We employ the value of 0.854 for 𝑘, as previously 

suggested by Lenton and Vaughan (2009) following the clear-sky results of a radiative transfer model used by Lacis and 

Hansen (1974). The RF associated to historical conversions between trees and crops/grasses can thus be written as follows: 

 245 

𝑅𝐹%&→)* = 	0.854	 × 𝑆𝑊'
↓ × 𝛿𝛼%&→)* (13) 

We derive two types of RF estimates in the analysed CMIP5 models. For the first one (“unconstrained”), which is purely 

model-based, we used the 𝛿𝛼%&→)* from historical conversion rates between trees and crops/grasses that were derived using 

the reconstruction method described in Section 2.3.2. The second one is constrained by observations, and was computed by 

combining the LCC implemented in the models and the albedo change associated to a transition between trees and 250 

crops/grasses from D18 to obtain 𝛿𝛼%&→)*. 

 

2.5 Additional simulations to evaluate the reconstruction method 

In order to evaluate the ability of the reconstruction method presented in Section 2.3.1 to extract the simulated albedo of 

trees and crops/grasses, we apply it to additional offline simulations conducted with the Community Land Model version 4.5 255 

(CLM4.5; Oleson et al., 2013) and compare its results to the subgrid signal of the respective land cover change (e.g., 

Malyshev et al., 2015; Meier et al., 2018). The simulations were conducted at 1.9°x2.5° resolution, forced by the CRUNCEP 

v4 atmospheric forcing dataset (Harris et al., 2014) for the years 1997 to 2010, neglecting the first five years from the 

analysis. The default land cover map of CLM4.5 was kept constant at the state of 2000 throughout the simulation period 

(Lawrence and Chase, 2007). Grid cells in CLM4.5 are divided into tiles of different land units (glacier, wetland, vegetated, 260 
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lake, and urban). The vegetated land unit comprises tiles of different Plant Functional Types (PFTs), including several types 

of trees, shrubs, grasses and crops, all receiving the same atmospheric forcing. We analyse tile-level model output to extract 

a subgrid albedo value for each land cover class (trees or crops/grasses). For each pixel and each month, the albedo values 

for the different land cover classes are computed as the area weighted means albedo across each PFT pertaining to the 

respective class over the simulation period. This reference value, later referred to as “subgrid” estimate, can then be 265 

compared to the reconstructed albedo values. The results of this evaluation are described in Section 3. 

 

 

3 Evaluation of the methodology to reconstruct the albedo of individual land cover classes 

3.1 Reconstruction of the albedo of trees and crops/grasses 270 

The reconstructed July albedo estimates of trees and crops/grasses are close to the subgrid reference values in the CLM4.5 

simulations, for the grid cells where the reconstruction method yields results (Figure 1). The main patterns of the spatial 

variability of the albedo of both land cover classes of interest, such as their latitudinal variations, are captured by the 

reconstruction method. The “error” of the reconstruction is shown by the differences between the reconstructed and subgrid 

albedo estimates, thus a global Root Mean Square Error (RMSE) can be computed across all grid cells for which a 275 

reconstructed estimate could be derived. For the month of July, the global RMSE equals 0.009 in the case of trees and 0.010 

for crops/grasses (Table 1). Locally, the error is higher over some areas with stronger albedo gradients such as Western 

Europe, the Southeastern United States in the case of trees or Western Russia in the case of crops/grasses. Nevertheless, the 

absolute error rarely exceeds ~0.03, or ~20% of the subgrid values over these regions (Figure S1).  

In January, the reconstructed albedo estimates still resemble closely the reference values from the subgrid model outputs 280 

(Figure 2), although the global RMSEs are higher (0.019 for trees, and 0.013 in the case of crops/grasses, see Table 1). These 

higher errors are due to the presence of snow over larger areas, which leads to increases in both the mean value and the 

spatial variability of albedo. As a result, within one big box used for the reconstruction, the dispersion between the albedo 

values from individual grid cells is higher. This renders the extraction of the correct albedo values of specific land cover 

classes with the regression-based reconstruction method more difficult. The spatial coverage of the reconstruction method 285 

also diminishes during months with a higher snow cover, because our methodology excludes grid cells which are neither 

considered snow-free nor snow-covered from the reconstruction, as is the case in Western Europe or the Northeastern United 

States in January. The absolute error of the reconstruction method reaches a maximum of ~0.1 or ~30-40% over localised 

parts of Eastern Siberia during this month (Figure S2).  

Overall, the reconstruction method yields estimates of the albedo of trees and crops/grasses which are similar to the subgrid 290 

reference values in the analysed CLM4.5 simulations. This suggests that the reconstruction method can be applied to model 

runs produced with CMIP5 models, in order to estimate the albedo that they simulate for both of these land cover classes 

during present-day, and eventually compare it with observational reference data. 
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  295 

3.2 Reconstruction of the albedo change from deforestation 

Overall, the reconstructed estimates of the July albedo change associated to deforestation also show a good correspondence 

with the subgrid reference values (Figure 3). The global RMSE increases up to 0.019 in this case, because it is a combination 

of the errors associated to the reconstruction of the albedo of both trees and crops/grasses. The magnitude of this error needs 

to be assessed in relation to the local albedo difference between albedo and crops/grasses. Previous studies using satellite 300 

observations have shown that this difference roughly ranges between 0.03 and 0.07 over mid-latitudes during summer (Li et 

al., 2015; Duveiller, Hooker and Cescatti, 2018b). As a result, the local difference between the reconstructed and subgrid 

estimates can be as large as the overall albedo difference between forest and crops/grasses in some regions such as Western 

Europe or the Northeastern United States (Figure S3). 

For January, the reconstructed and subgrid estimates of the deforestation-induced albedo change remain similar (Figure 4), 305 

with a global RMSE that slightly increases to 0.025 (Table 1). The relative error between the reconstructed and subgrid 

albedo values can reach 80% over localised tropical or subtropical areas, however it mostly remains limited to +/-10% over 

snow-covered regions (Figure S4). This is because the absolute error remains of similar magnitude as in snow-free regions, 

while the albedo change induced by deforestation increases in the presence of snow due to the snow-masking effect of 

forests.  310 

Overall, these results suggest that the reconstruction method can be applied in order to estimate the simulated deforestation-

induced albedo change in CMIP5 models; however the interpretation of the results should be conducted with caution, 

keeping in mind the magnitude of the error associated to the reconstruction, especially over snow-free regions. 

 

 315 

4 Present-day potential albedo changes associated to a transition from trees to crops/grasses in CMIP5 models and 

observations 

4.1 Evaluation of the present-day albedo of trees and crops/grasses in CMIP5 models 

4.1.1 Albedo of trees 

The reconstructed albedo of trees varies considerably across the analysed CMIP5 models for the month of July, especially 320 

over the mid-to-high latitudes (Figure 5). Estimates derived from CanESM2 and the models from the MPI suite (MPI-ESM-

LR, MPI-ESM-MR, MPI-ESM-P) show the highest similarities with those obtained by combining the observational datasets 

GlobAlbedo and GlobCover. The climate models which use the CLM as a land surface scheme (CCSM4, CESM1-CAM5, 

CESM1-FASTCHEM, CESM1-WACCM, NorESM1-M, NorESM1-ME) as well as MIROC5 all underestimate the albedo 

of trees over mid-to-high latitudes. They indeed simulate values inferior to 0.1, whereas the estimates derived from 325 

observational data always remain above 0.1, and mostly range between 0.12 and 0.16 over these regions. The magnitude of 

the underestimation is in that case significantly higher than the reconstruction error which has been assessed from the 

analysis of the CLM4.5 simulations (global RMSE of 0.009, see Section 3.1). Lastly, our results indicate strong spatial 
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variations in the case of the MIROC-ESM and MIROC-ESM-CHEM models, with negative biases over the high latitudes 

and Southeast Asia. 330 

For January, observations show that the albedo of trees increases over the regions where snow is present (Figure 6). A 

latitudinal gradient can especially be noted, as the values derived from GlobCover and GlobAlbedo typically barely exceed 

0.15 in Western Europe, but are higher than 0.3 in Scandinavia and even reach ~0.5 in Northern Siberia. Our results show 

that CanESM2 and the climate models using the CLM also simulate higher albedo values over snow-covered regions, with 

values that remain within the range indicated by observations for this time of the year. On the other hand, MIROC5 tends to 335 

overestimate albedo under the presence of snow, with values exceeding 0.5 north of ~50°N, and even reaching ~0.7 in areas 

located close to the Arctic ocean. Unfortunately, in the case of MIROC-ESM, MIROC-ESM-CHEM and the models from 

the MPI suite the spatial coverage of the reconstruction method is too low to be able to draw meaningful comparisons with 

observations over snow-covered areas. 

 340 

 

4.1.2 Albedo of crops/grasses 

There are also important variations among the simulated albedo of crops and grasses in the CMIP5 models we have 

analysed, pointing to significant model biases in comparison to observation-derived reference estimates. Overall, the models 

that employ the CLM tend to underestimate this quantity over large parts of the tropics and the mid-latitudes in the Northern 345 

Hemisphere in July, with reconstructed albedo values of ~0.13-0.14 whereas observations rather indicate values of at least 

0.15 and even approaching 0.25 over the Sahel and Central Asia (Figure 6). This discrepancy appears less pronounced over 

the tropical parts of Africa and America located in the Southern Hemisphere, despite the lower availability of observational 

estimates over these regions. Our results also reveal that MIROC5 more systematically underestimates the albedo of 

crops/grasses, which remain inferior to 0.15 worldwide in this model. In contrast, the models from the MPI suite simulate 350 

albedo values that are consistently superior to those of the observations, exceeding 0.2 over large regions of the world. 

Importantly, the reported differences between the reconstructed model estimates and the reference values from observations 

are significantly higher than the error of the reconstruction method derived from the analysis of the CLM4.5 simulations 

(0.01 in the case of crops/grasses for the month of July, see Section 3.1). The albedo values simulated by MIROC-ESM and 

MIROC-ESM-CHEM appear closer to the observational estimates over the regions where those are available. Lastly, the 355 

spatial coverage of the reconstruction is low in the case of CanESM2, which prevents drawing robust conclusions for this 

model. 

Results for the month of January indicate that the models that include the CLM, as well as MIROC5 and those from the MPI 

suite all represent the increase in the albedo of crops/grasses over snow-covered areas which is indicated by observational 

estimates (Figure 8). The limited spatial coverage of the latter over the high latitudes however makes it difficult to evaluate 360 

whether the magnitude of this increase is correctly represented. Over the tropical regions, the models including the CLM 

simulate an opposite pattern compared to that shown for the month of July, namely an underestimation of the albedo of 
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crops/grasses in the Southern Hemisphere but more realistic estimates in the Northern Hemisphere. This suggests that these 

models simulate too high variations of the annual cycle for this variable over tropical regions. 

 365 

4.2 Evaluation of the albedo changes induced by a transition from trees to crops/grasses in CMIP5 models 

The observational dataset from D18 indicates that deforestation leads to a higher local albedo over each region of the world 

it covers, with some spatial variations. In July, this increase is lowest (<0.01) over Eastern Asia and Southwestern Siberia, 

and highest (~0.1) over the western part of North America (Figure 8). Our reconstructions indicate that most of the analysed 

CMIP5 models simulate the deforestation-induced albedo increase over most regions of the world. However, there are biases 370 

that are significantly higher than the error of the reconstruction method derived from its evaluation on CLM4.5 simulations 

(0.019 in July and 0.025 in January, see Section 3.2). 

For the month of July, the CanESM2 and MIROC5 models show the closest resemblance to the observational reference data, 

although they overestimate the albedo increase due to deforestation over some regions such as Eastern Asia and the eastern 

part of North America. As a result of their strong overestimation of the albedo of crops/grasses (see Section 4.1), the models 375 

from the MPI suite exhibit significant positive biases in the deforestation-induced albedo increases across the globe in July, 

with values reaching ~0.1 over large areas. Positive biases of a lower magnitude, although still significant, are also found 

over specific regions in the models using the CLM as a land surface scheme, consistently with the evaluation of the subgrid 

albedo difference in CLM4.5 of Meier et al. (2018). Over the mid-latitudes, this is due to the underestimation in the albedo 

of trees, whereas it can be related to the too high albedo of crops/grasses over the tropical regions of the Southern 380 

Hemisphere for this time of the year. Lastly, the MIROC-ESM and MIROC-ESM-CHEM models exhibit a strong spatial 

variability in the reconstructed signals. Contrary to the observational data which consistently indicate an increase in albedo 

after deforestation, our estimates suggest that both of these models simulate the opposite behaviour over extensive areas of 

Central Asia, but also the eastern parts of Canada and the United States and south of 25°S in Africa, America and Western 

Australia. 385 

Compared to July, the observations of D18 for the month of January indicate a higher albedo increase following 

deforestation over the mid-to-high latitudes where snow is present, the magnitude of which is overestimated by ~0.05-0.1 by 

the CMIP5 models including the CLM (Figure 10). These models also consistently simulate a localised albedo decrease 

following deforestation over Eastern Europe, while this feature is not present in the observations. Strikingly, our results 

suggest that the MIROC-ESM and MIROC-ESM-CHEM models simulate strong albedo decreases (inferior to -0.3) over 390 

large-snow covered regions at this time of the year, a behaviour that is in strong contradiction with what observational data 

indicate. In line with the overestimation of the albedo of trees over high latitudes represented by MIROC5, this model also 

simulates albedo decreases as a response to deforestation over parts of Europe. 

 

 395 

5 Implications for the Radiative Forcing from historical deforestation 
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Our reconstructions of the RF from transitions between trees and crops/grasses since preindustrial times indicate a large 

spread within the CMIP5 models which were considered in this analysis (Figure 11), with estimates of the global mean RF 

ranging between 0 and -0.22 W/m2. This dispersion is due to differences in two factors across the models: their local albedo 

responses to a transition between trees and crops/grasses, and the historical conversion rates between these two land cover 400 

classes that the models simulate or prescribe (depending on whether they used a dynamic vegetation module or not). In Eq. 

(10), the former factor is represented by 𝛿3, and the latter by 𝑙𝑐𝑐%&→)*. Observation-constrained estimates of the RF from the 

historical conversion rates in CMIP5 models were obtained by replacing the reconstructed values of 𝛿3 by those from D18 

(Figure 12, see also Sections 2.3.2 and 2.4 for more information on the methodology). The differences between the 

unconstrained and constrained RF values therefore reflect the model biases in the local albedo response to a present-day 405 

conversion from trees to crops/grasses, which have been described in Section 4.2 for a subset of the models considered here. 

Hence, the constrained global RF estimates from the models using the CLM as a land surface scheme (CCSM4, CESM1-

CAM5, CESM1-FASTCHEM, NorESM1-M) and those from the MPI suite (MPI-ESM-LR, MPI-ESM-MR, MPI-ESM-P) 

are less negative than the unconstrained estimates by 0.02, respectively 0.06-0.07 W/m2, reflecting the fact that these models 

overestimate the albedo increase by this land cover transition. On the other hand, the low albedo response exhibited by 410 

MIROC5 in snow-covered regions can be related to the more negative RF (by 0.02W/m2) obtained for this model after 

constraining it with the observational data from D18. Similarly, the mix of albedo decreases and increases following a 

present-day transition from trees to crops/grasses that have been identified for MIROC-ESM can also be linked to the fact 

that the global reconstructed RF equals zero for this model, whereas it reaches -0.29W/m2 after applying the same 

observational constraint. Our results also suggest that the albedo change following a transition from trees to crops/grasses 415 

simulated by GFDL-CM3 and GFDL-ESM2 is sensibly lower than in the observations from D18, as the constrained 

estimates are more negative that the constrained ones by as much as 0.09-0.1 W/m2 for these two models. We identify the 

opposite behaviour for HadGEM2-ES, for which the unconstrained global RF of -0.01 W/m2 is reduced to approximately 

zero once the observational constraint is applied. Lastly, the constrained and unconstrained estimates of the IPSL-CM5A-LR 

and IPSL-CM5A-MR models are very similar, revealing an albedo response to a conversion between trees and crops/grasses 420 

that is close to the observed values. 

Although it solely reflects the model spread in the historical conversion rates between trees and crops/grasses 𝑙𝑐𝑐%&→)*, the 

dispersion between the constrained estimates of the global RF is higher than between the unconstrained ones (Figure 13). 

This is due to two models in particular, for which the 𝑙𝑐𝑐%&→)* values are outliers among the whole set of models, but which 

at the same time exhibit significant biases in their albedo response to these land cover changes. Thus, in the HadGEM2-ES 425 

model the historical conversion rates from trees to crops/grasses are approximately equal to zero everywhere on the globe 

(Figure S5), hence the corresponding constrained global RF too. However, because the albedo sensitivity to a transition from 

trees to crops/grasses of this model is stronger than in the observations, the unconstrained RF is slightly more negative (and 

reaches -0.01W/m2). The unconstrained RF equals zero for MIROC-ESM, which is in line with a globally averaged albedo 
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response to transitions between trees and crops/grasses that is also equal to zero, as described above in this Section. In 430 

contrast, this model also exhibits the strongest constrained estimate (with -0.29 W/m2) because of the strong historical 

conversion rates it simulates, which exceed 50% over large areas of Australia, North America, southeastern Brazil, Central 

Asia and southern Africa.  

The extremely low, respectively high historical conversion rates from trees to crops/grasses in HadGEM2-ES and MIROC-

ESM cast doubt on the global RF obtained for these two models. In Figure 13 we therefore also show the model spread after 435 

omission of the maximum and minimum values of both the unconstrained and constrained RF estimates. It is reduced from 

0.2 to 0.12 W/m2 after applying the observational constraint, which also leads to a slightly more negative model mean value 

(-0.11 W/m2 instead of -0.07, note that the models including the same land surface scheme and land cover maps are 

considered as just one model for the computation of the mean).  

For most CMIP5 models, our reconstructions indicate that the historical impact of conversions between trees and 440 

crops/grasses on albedo is very similar to that arising from all changes in tree cover (i.e., also including for example the 

replacement of trees by shrubs and bare soil, or vice-versa, see Figures S6-20). Moreover, we also find a similar effect for 

albedo variations from all land-cover changes (i.e., also including transitions between shrubs, crops/grasses and bare soil) by 

comparing experiments with and without the land-cover forcing, available for four of the analysed models (CanESM2, 

CCSM4, GFDL-ESM2 and IPSL-CM5A-LR, see Figures S6, S7, S11 and S13). HadGEM2-ES is a notable exception 445 

(Figure S12), because it overall exhibits a decrease in tree cover comparable to that of other models, but which is not 

compensated by increases in the area covered by crops/grasses, shrubs or bare soil (not shown). Consequently, the 

reconstructed method does not capture the full RF from historical land-cover changes for this model. Since it solely 

considers the transition between trees and crops/grasses, this method likely also slightly overestimates the RF for MPI-ESM-

LR, MPI-ESM-MR and MPI-ESM-P (Figures S17-S19), because these three models represent expansion of both forest and 450 

crops/grasses over high latitudes. Despite these limitations, our analysis shows that the reconstructed RF from historical 

transitions between trees and crops/grasses are overall good approximations of the RF from all land-cover changes for most 

of the analysed CMIP5 models (see also Figure S21).  

 

 455 

6 Discussion and conclusions 

The conclusions that can be drawn from the presented analysis are manifold. First, we introduced a methodology to derive 

the albedo of trees and crops/grasses from Earth System model simulations that only provide mean albedo values over grid 

cells containing a mix of land cover classes. This “reconstruction” method employs multi-linear regressions to disentangle 

local information on land cover and albedo within moving windows (“big boxes”) encompassing several grid cells. It 460 

assumes that spatial albedo variations between neighbouring trees and crops/grasses within a big box are good proxies of the 

potential albedo change arising from a transition between these two land cover classes. We then demonstrated that the 

methodology gives estimates of the albedo of trees and crops/grasses that are close to the reference values provided at the 
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sub-gridcell level in simulations for which this information is available. Consequently, as a second step we reconstructed the 

present-day albedo of trees and crops/grasses in CMIP5 simulations for thirteen models, and compared the obtained results 465 

with reference values from observations. Despite the relatively low spatial coverage of the reconstructed estimates in some 

models, especially over regions where snow is present, we were able to identify substantial model biases which are 

significantly higher than the error of the reconstruction method. We found that they are reflected further in the representation 

of the albedo change induced by a transition between trees and crops/grasses in the same CMIP5 models. Finally, we 

investigated how such model biases influence the historical albedo change due to transitions between trees and crops/grasses 470 

as simulated by CMIP5 models, as well as the associated Radiative Forcing. To do so, we used a similar reconstruction 

methodology, already employed in previous studies, to assess how albedo has been modified as a result of the replacement of 

trees by crops/grasses since pre-industrial times in fifteen CMIP5 models (including most of those analysed in the previous 

step). We then derived the associated historical RF using a simple empirically based radiative kernel parametrisation. An 

observational constrain was also applied to these purely model-based estimates, by replacing the reconstructed albedo 475 

response to a conversion from trees to crops/grasses in the models by that of the observational dataset previously used for the 

model evaluation. The comparison of the unconstrained and observation-constrained RF in the individual models revealed 

differences reflecting some of the model biases that we had previously described. Moreover, if one omits the influence of 

two model outliers which have extremely low or high historical conversion rates between trees and crops/grasses, the model 

spread diminishes and the model mean value is slightly more negative due to the application of the observational constrain, 480 

overall leading to a mean estimate of -0.11 W/m2 (between -0.04 and -0.16) for the RF due to the historical replacement of 

trees by crops/grasses. Considering all variations in tree cover or even all land-cover changes gives very similar results, 

because of the simplified representation of land cover in CMIP5 models. 

 Our RF estimates are therefore directly comparable with those from previous model-based studies, although these 

considered the effect of all types of land-cover changes. In particular, the IPCC AR5 states that it is very likely that land use 485 

change since preindustrial times led to an increase of the Earth albedo with a RF of -0.15W/m2 (Figure 13), thereby 

suggesting that the climate model-based studies from Betts et al. (2007), E. L. Davin, de Noblet-Ducoudré and Friedlingstein 

(2007), and Pongratz et al. (2009) – which provided numbers closer to -0.2 W/m2 – had overestimated the simulated albedo 

response to historical land-cover changes (Myhre et al., 2013). Although our study reveals that such an overestimation is not 

systematic in the analysed CMIP5 models, it still suggests that the RF from historical land-cover changes is at the lower end 490 

of the range provided by AR5 (i.e., rather less negative than its best estimate). Our model mean result is very close to that of 

Myhre, Kvalevåg and Schaaf (2005), who also constrained past albedo changes with satellite data and found a RF of -0.09 

W/m2, but considered all LCC since pre-agricultural times. 

The remaining spread in our constrained RF estimates directly reflects the differences in the simulated historical conversion 

rates from trees to crops/grasses. It illustrates the various ways the analysed CMIP5 models interpreted the land use 495 

transition maps delivered by the Land Use History a product (LUHa, Hurtt et al., 2011). LUHa gives gridded information on 

annual transitions between four types of land use (primary land, secondary land, crop and pasture) for the 1500-2005 period, 
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which were derived with the Global Land use Model (GLM) based on historical data. These transitions were especially 

designed to provide common reference land use trajectories for all historical CMIP5 simulations. The CMIP5 models may 

have however considered that primary and secondary land were either forests or crops/grasses, or even shrubs or bare soil, 500 

depending on the land cover distributions that were prescribed or simulated in a given region or under a given climate. These 

different interpretations of common land use input data contribute substantially to the spread in the albedo variations due to 

historical land-cover changes, a result which had already been identified among the models participating to the LUCID 

project (Boisier et al., 2012), as well as more generally for the biogeophysical effect of future land-cover changes on climate 

in RCP4.5 and RCP8.5 simulations from CMIP5 (Brovkin et al., 2013; Davies-Barnard et al., 2014; Di Vittorio et al., 2014). 505 

Solutions have been put forward to reduce the room for interpretation of the imposed land cover forcing in future model 

intercomparison efforts, such as a direct coupling between the Integrated Assessment Models producing the land cover 

scenarios and the Earth System Models (Di Vittorio et al., 2014), or the provision of more detailed land cover information 

(including the land cover fractions allocated to several specific land-use states) in the frame of CMIP6 (Lawrence et al., 

2016). Nevertheless, a common dataset for land cover is still subject to uncertainties in land cover reconstructions, as 510 

Schmidt et al. (2012) have pointed at significant differences between those from Kaplan et al. (2011), Pongratz et al. (2008) 

and the HYDE3.1 dataset on which the LUHa product is based (Klein Goldewijk et al., 2011). 

A few more limitations need to be kept in mind when interpreting the findings presented in this study. For example, the 

albedo sensitivity to deforestation was stronger in pre-industrial times, when the background climate was colder and snow 

extended over larger land areas. Although Boisier et al. (2012) and de Noblet-Ducoudré et al. (2012) have shown that 515 

changes in background climate have had a very limited impact on the regionally averaged LCC-induced albedo changes, re-

calculating the observation-constrained RF with pre-industrial albedo sensitivities may give more negative values, especially 

locally over high-latitude regions. This interplay between different climate drivers can however not be captured with the RF 

framework, which assumes that their effects are additive (Myhre et al., 2013). It is also of limited use to investigate the 

impact of land-cover changes on other climate variables than albedo, as it cannot represent their non-radiative 520 

biogeophysical effects (i.e., that solely affect the partitioning between latent and sensible heat fluxes). Moreover, in this 

study we have focused our attention on local LCC-induced albedo changes, although those also led to an important remote 

cooling in global-scale deforestation experiments conducted with the IPSL model (Davin and de Noblet-Ducoudré, 2010).  

In conclusion, we demonstrated the suitability of a new methodology to extract the albedo of trees and crops/grasses in ESM 

simulations that only provide mean albedo values over grid cells containing a diversity of land cover types. After applying it 525 

to historical CMIP5 simulations, we identified significant model biases in the representation of the albedo of both trees and 

crops/grasses, as well as the albedo change arising from a transition between these two land cover types. Additionally, we 

reconstructed local albedo modifications due to historical LCC. Since these reconstructions are affected by model biases, we 

used the observed albedo response to transitions between trees and crops/grasses to derive an observation-constrained RF of 

historical LCC in CMIP5 models. Compared to IPCC AR5 estimates, our results point at a slightly less strong global mean 530 

RF, with some remaining uncertainty due to the various magnitudes of LCC implemented in the analysed models. With the 
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release of new ESM simulations within CMIP6 (Eyring et al., 2016), new opportunities arise to assess whether the biases 

identified in this study have been corrected in the latest generation of ESMs. In that respect, the reconstruction methodology 

developed for this analysis and which has been implemented as a diagnostic in the ESMValTool v2.0 (Eyring et al., 2019) 

should allow for a more straightforward model evaluation. Additionally, the new approach to harmonise the forcing from 535 

historical LCC in CMIP6 may enable to identify a refined estimate of their RF. We suggest that combining recently released 

observational evidence and model results as proposed in this study will be useful in this context, in order to further reduce 

uncertainties on the climate impact of historical LCC on both global and local scales. 
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RMSE trees Crops/grasses Trees to crops/grasses 
July 0.009 0.010 0.019 

January 0.019 0.013 0.025 
 

Table 1: Root Mean Square Errors associated to the reconstruction of the albedo of trees, crops/grasses and the transition between 
these two land cover classes, for the months of July and January. 665 

 

 
 
Figure 1: Subgrid (left) and reconstructed (right) estimates of the albedo of trees (upper row) and crops/grasses (lower row) in the 
CLM4.5 simulations, for the month of July. Note that absolute differences have been multiplied by 100 to facilitate readability. 670 
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Figure 2: Same as Figure 1, but for the month of January. Note that the scale is different. 

 675 

 
Figure 3: Subgrid (left) and reconstructed (right) estimates of the albedo change associated to a transition from trees to 
crops/grasses in the CLM4.5 simulations, for the month of July. Note that absolute differences have been multiplied by 100 to 
facilitate reading. 
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Figure 4: Same as Figure 3, but for the month of January. Note that the scale is different. 
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Figure 5: July albedo of trees retrieved from the combination of the observational data GlobAlbedo and GlobCover (top-left 685 
corner) and in the analysed CMIP5 models. Note that the albedo values have been multiplied by 100 to facilitate readability. 
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Figure 6: Same as Figure 5, but for the month of January. Note that the scale is different. 
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Figure 7: July albedo of crops/grasses according to the combined observational data GlobAlbedo and GlobCover (top-left corner) 690 
and in the analysed CMIP5 models.  

https://doi.org/10.5194/esd-2019-94
Preprint. Discussion started: 2 April 2020
c© Author(s) 2020. CC BY 4.0 License.



27 
 

 
Figure 8: Same as Figure 7, but for the month of January. Note that the scale is different. 
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Figure 9: July albedo change associated to a transition from trees to crops/grasses according to the observational dataset of 695 
(Duveiller, Hooker and Cescatti, 2018) (top-left corner) and in the analysed CMIP5 models. 
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Figure 10: Same as Figure 9, but for January. Note that the scale is different. 
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Figure 11: Radiative Forcing from historical deforestation in the analysed CMIP5 models (in W/m2), obtained by applying the 700 
reconstruction method. The numbers in the bottom-left corner of each map indicate the global mean Radiative Forcing from 
historical deforestation. 
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Figure 12: Observation-constrained Radiative Forcing from historical deforestation in the analysed CMIP5 models (in W/m2). The 
numbers in the bottom-left corner of each map indicate the global mean Radiative Forcing. To compute the Model Mean, if 705 
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several CMIP5 models contain the same Land Surface Model they were attributed a lower weight so that the sum of these weights 
equal 1.  
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Figure 13: Spread in the unconstrained (left bar) and observation-constrained (middle bar) estimates of the global Radiative 
Forcing from historical deforestation for the CMIP5 models shown in Figures 11 and 12 (in W/m2), as well as the IPCC AR5 710 
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estimate of the global Radiative Forcing from historical land-use changes (mean estimate and spread as in (Myhre et al., 2013)). 
The dots on the left and middle bars show the model mean results for the unconstrained and observation-constrained estimates, 
respectively, the asterisks mark the lowest and highest value for each category, while the lengths of the bars indicate the spread 
between the first and ninth deciles.  
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