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Supplementary Table 1: CMIP5 and CMIP6 models and ensemble members used. 

CMIP5 model Ensemble member CMIP6 model Ensemble member 

bcc-csm1-1-m r1i1p1 BCC-CSM2-MR r1i1p1f1 

bcc-csm1-1 r1i1p1 CAMS-CSM1-0 r2i1p1f1 

BNU-ESM r1i1p1 CESM2 r1i1p1f1 

CanESM2 r1i1p1 CESM2-WACCM r1i1p1f1 

CCSM4 r1i1p1 CNRM-CM6-1 r1i1p1f2 

CESM1-CAM5 r1i1p1 CNRM-ESM2-1 r1i1p1f2 

CNRM-CM5 r1i1p1 CanESM5 r10i1p1f1 

CSIRO-Mk3-6-0 r1i1p1 EC-Earth3 r11i1p1f1 

EC-EARTH r8i1p1 EC-Earth3-Veg r1i1p1f1 

FGOALS-g2 r1i1p1 FGOALS-f3-L r1i1p1f1 

FIO-ESM r1i1p1 FGOALS-g3 r1i1p1f1 

GFDL-CM3 r1i1p1 GFDL-ESM4 r1i1p1f1 

GFDL-ESM2G r1i1p1 INM-CM4-8 r1i1p1f1 

GFDL-ESM2M r1i1p1 INM-CM5-0 r1i1p1f1 

GISS-E2-H r1i1p1 IPSL-CM6A-LR r1i1p1f1 

GISS-E2-R r1i1p1 MCM-UA-1-0 r1i1p1f2 

HadGEM2-AO r1i1p1 MIROC-ES2L r1i1p1f2 

HadGEM2-ES r1i1p1 MIROC6 r1i1p1f1 

IPSL-CM5A-LR r1i1p1 MPI-ESM1-2-HR r1i1p1f1 

IPSL-CM5A-MR r1i1p1 MRI-ESM2-0 r1i1p1f1 

MIROC5 r1i1p1 UKESM1-0-LL r1i1p1f2 

MIROC-ESM-CHEM r1i1p1   

MIROC-ESM r1i1p1   

MPI-ESM-LR r1i1p1   

MPI-ESM-MR r1i1p1   

MRI-CGCM3 r1i1p1   

NorESM1-ME r1i1p1   

NorESM1-M r1i1p1   
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S1. Time period over which to estimate internal variability 15 

Explosive volcanic eruptions can significantly affect global and regional climate in subsequent years 

(Swingedouw et al. 2015; Lehner et al. 2016). If internal variability I of a quantity is calculated over time and 

including volcanic eruptions (for example over 1950-2014), it might be larger than when calculated without 

volcanic eruptions (for example over 2015-2099). Here, we quantify this potential effect by calculating I over 

different time periods. In the Supplementary Information here, I is given in standard deviations for legibility, 20 

while in the main text variance is used. For a simulation from a single model (like in CMIP), I is calculated as 

the standard deviation of the residual of the HS09 approach applied to historical and future simulations (Iresidual). 

For global decadal mean annual temperature in the SMILEs, the multi-model mean Iresidual over 1950-2014 

(0.063 K) is indeed larger than over 1950-2099 (0.054 K), which is again larger than 2015-2099 (0.047 K; Fig. 

S1a). However, the differences are small and fall within the range of Iresidual across models (Fig. S1a). Very 25 

similar results are found for CMIP5 (0.066 K, 0.057 K, 0.048 K) and CMIP6 (0.057 K, 0.052 K, 0.047 K), 

except the range of Iresidual across models is even larger than in SMILEs (Fig. S1b-c). 

 

In SMILEs, internal variability I can be calculated as the across-member standard deviation (Iacross), thus I at any 

point in time might be expected to be independent from (or at least less affected by) volcanic eruptions, as all 30 

members experience the impact of the eruption simultaneously. Comparing Iresidual and Iacross shows that this is 

not necessarily the case, with Iacross for 1950-2014 being largest and Iacross for 2015-2099 being smallest (Fig. 

S1a), however, the differences are even smaller than for Iresidual (0.067 K, 0.065 K, 0.062 K). The similarity of 

Iresidual and Iacross also confirm again that the HS09 approach for separating forced response and internal 

variability works well for global temperature. 35 

 

Finally, the variability from ‘piControl’ simulations Icontrol is shown. In this case, variability is calculated over the 

last 252 years of each model’s piControl simulation (a common length among models) after linearly detrending 

and applying a 10-year running mean. Icontrol is generally comparable to Iresidual (and Iacross in case of the SMILEs), 

except for a few models (e.g., GFDL-ESM2M, bcc-csm1-1m, BCC-CSM2-MR, CNRM-ESM2-1, EC-Earth3, 40 

EC-Earth3-Veg, GFDL-ESM4) which show large unforced decadal variability in piControl that remains to be 

explored. The clustering of such high-variability piControl simulations in CMIP6 yields a multi-model mean 

Icontrol that is substantially higher in CMIP6 than in CMIP5 or SMILEs (Fig. S1c). 

 

In summary, there exists a sensitivity to the choice of period over which variability is estimated, but it is of 45 

secondary importance compared to differences in variability magnitude between models. In the main text, we 

use 1950-2099 as the time period to estimate internal variability (Iresidual) for CMIP5 and CMIP6. 
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Figure S1: Standard deviation of global decadal mean annual temperature from (a) SMILEs, (b) CMIP5, and (c) CMIP6. In 50 
case of SMILEs, the average of all ensemble members is shown for each model. The multi-model mean and 10-90% range is 

given on the right end of the bar plots. 
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S2. Role of choice of scenario uncertainty 

Estimating scenario uncertainty S is complicated by several factors. First, the scenarios that climate model are run 55 

with represent only a subsample of available scenarios (Riahi et al. 2017). Although the representative scenarios 

chosen in CMIP5 and CMIP6 span a large range of possible future radiative forcing pathways, this subjective 

choice will always limit the CMIP archives to be “an ensemble of opportunity” rather than a true probabilistic 

assessment of future climate change. As discussed in the main text, the scenarios are also not symmetrically 

distributed in radiative forcing space. Second, and more tangible to explore, not all modelling centers ran each of 60 

the chosen scenarios. Even rarer is the case where a modelling center ran a SMILE for each scenario (e.g., MPI-

LE with CMIP5 scenarios and CanESM5 with CMIP6 scenarios). Thus, a compromise is necessary when one 

wants to estimate S from the available model simulations: either use (i) a consistent set of multiple models which 

ran at least one simulation per scenario, which means the forced response in any given model needs to be estimated 

via a statistical fit to the one or few ensemble members available, or use (ii) a model with a SMILE for each 65 

scenario, which means the forced response for each scenario can be estimated robustly, but the resulting S is model-

specific. Here, we explore these two approaches at the example of global decadal mean temperature. 

 

In the main paper, we use S from CMIP5 (SCMIP5) for the uncertainty breakdown with SMILEs, using one 

simulation per CMIP5 model and scenario (green shading in Fig. S2a). We can also subselect the CMIP5 archive 70 

to just use the seven models that we have SMILEs for (see Table 1 in main paper) to calculate S (SSMILEs), but still 

just using one simulation per model and scenario (dashed lines and flat hatching in Fig. S2a). It can be seen that 

SCMIP5 and SSMILEs are very similar, suggesting that the SMILEs are a good representation of CMIP5. Then, we use 

the MPI-LE (Maher et al. 2019), which has 100 ensemble members for each of the CMIP5 scenarios RCP2.6, 

RCP4.5 and RCP8.5, to estimate S (SMPI-LE; dotted lines and steep hatching in Fig. S2a). SMPI-LE results in a smaller 75 

contribution from S to the total uncertainty. This is due to the relatively lower transient climate response of MPI 

compared to the CMIP5 or SMILEs multi-model mean. Consequently, the trajectories of global temperature fan 

out slower across the different scenarios in MPI-LE than in more sensitive models, resulting in a smaller S. This 

is confirmed when just using data from CMIP5 (Fig. S2b), where SMPI-LE is also smaller than SCMIP5. The same 

exercise can be repeated for CMIP6, where the CanESM5-LE provides 50 ensemble members for each of the 80 

CMIP6 scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 (Swart et al. 2019). In this case, however, the S 

from CanESM5-LE (SCanESM5-LE) is almost always larger than the S from CMIP6 (SCMIP6), as CanESM5 constitutes 

a higher-sensitivity model among its CMIP6 cohort. 

 

In summary, while any of the here presented approaches to estimate S for SMILEs is imperfect, we chose to use 85 

SCMIP5 in the main text due to it representing the expected true SSMILEs well. It also facilitates a clean comparison of 

SMILEs with CMIP5 with regards to the other sources of uncertainty (internal variability and model uncertainty), 

as S is kept consistent between SMILEs and CMIP5. 
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 90 
Figure S2: Fractional contribution of individual sources to total uncertainty in (a) SMILEs, (b) CMIP5, and (c) CMIP6. 

Scenario uncertainty for SMILEs in (a) is taken from (green shading) CMIP5, (dotted lines and steep hatching) MPI-LE, and 

(dashed lines and flat hatching) the models of the seven SMILEs. Scenario uncertainty in (b) is taken from (green shading) 

CMIP5 and (dotted line and steep hatching) MPI-LE. Scenario uncertainty in (c) is taken from (green shading) CMIP6 and 

(dotted line and steep hatching) CanESM5-LE. 95 
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