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Supplementary Table 1: CMIP5 and CMIP6 models and ensemble members used.

CMIPS model Ensemble member CMIP6 model Ensemble member
bee-csml-1-m rlilpl BCC-CSM2-MR rlilplfl
bee-csm1-1 rlilpl CAMS-CSM1-0 2ilplfl
BNU-ESM rlilpl CESM2 rlilplfl
CanESM2 rlilpl CESM2-WACCM rlilplfl
CCSM4 rlilpl CNRM-CM6-1 rlilplf2
CESM1-CAMS5 rlilpl CNRM-ESM2-1 rlilplf2
CNRM-CM5 rlilpl CanESMS5 r10ilp1fl
CSIRO-Mk3-6-0 rlilpl EC-Earth3 rllilplfl
EC-EARTH r8ilpl EC-Earth3-Veg rlilplfl
FGOALS-g2 rlilpl FGOALS-f3-L rlilplfl
FIO-ESM rlilpl FGOALS-g3 rlilplfl
GFDL-CM3 rlilpl GFDL-ESM4 rlilplfl
GFDL-ESM2G rlilpl INM-CM4-8 rlilplfl
GFDL-ESM2M rlilpl INM-CMS5-0 rlilplfl
GISS-E2-H rlilpl IPSL-CM6A-LR rlilplfl
GISS-E2-R rlilpl MCM-UA-1-0 rlilplf2
HadGEM2-A0 rlilpl MIROC-ES2L rlilplf2
HadGEM2-ES rlilpl MIROC6 rlilplfl
IPSL-CM5A-LR rlilpl MPI-ESM1-2-HR rlilplfl
IPSL-CM5A-MR rlilpl MRI-ESM2-0 rlilplfl
MIROCS rlilpl UKESM1-0-LL rlilplf2
MIROC-ESM-CHEM rlilpl

MIROC-ESM rlilpl

MPI-ESM-LR rlilpl

MPI-ESM-MR rlilpl

MRI-CGCM3 rlilpl

NorESM1-ME rlilpl

NorESM1-M rlilpl
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S1. Time period over which to estimate internal variability

Explosive volcanic eruptions can significantly affect global and regional climate in subsequent years
(Swingedouw et al. 2015; Lehner et al. 2016). If internal variability / of a quantity is calculated over time and
including volcanic eruptions (for example over 1950-2014), it might be larger than when calculated without
volcanic eruptions (for example over 2015-2099). Here, we quantify this potential effect by calculating / over
different time periods. In the Supplementary Information here, / is given in standard deviations for legibility,
while in the main text variance is used. For a simulation from a single model (like in CMIP), [ is calculated as
the standard deviation of the residual of the HS09 approach applied to historical and future simulations (Zesiduat).
For global decadal mean annual temperature in the SMILEs, the multi-model mean /residuar over 1950-2014
(0.063 K) is indeed larger than over 1950-2099 (0.054 K), which is again larger than 2015-2099 (0.047 K; Fig.
S1a). However, the differences are small and fall within the range of L esiquar across models (Fig. S1a). Very
similar results are found for CMIP5 (0.066 K, 0.057 K, 0.048 K) and CMIP6 (0.057 K, 0.052 K, 0.047 K),

except the range of lresiauar across models is even larger than in SMILEs (Fig. S1b-c).

In SMILEs, internal variability / can be calculated as the across-member standard deviation (Zucross), thus 7 at any
point in time might be expected to be independent from (or at least less affected by) volcanic eruptions, as all
members experience the impact of the eruption simultaneously. Comparing Zresidual and Lacross shows that this is
not necessarily the case, with Zucross for 1950-2014 being largest and lucross for 2015-2099 being smallest (Fig.
S1a), however, the differences are even smaller than for Lesiauwa (0.067 K, 0.065 K, 0.062 K). The similarity of
Lresidual and Lucross also confirm again that the HS09 approach for separating forced response and internal

variability works well for global temperature.

Finally, the variability from ‘piControl” simulations Zconror is shown. In this case, variability is calculated over the
last 252 years of each model’s piControl simulation (a common length among models) after linearly detrending
and applying a 10-year running mean. lconrror is generally comparable to Iresiduat (and Zacross in case of the SMILES),
except for a few models (e.g., GFDL-ESM2M, bcc-csm1-1m, BCC-CSM2-MR, CNRM-ESM2-1, EC-Earth3,
EC-Earth3-Veg, GFDL-ESM4) which show large unforced decadal variability in piControl that remains to be
explored. The clustering of such high-variability piControl simulations in CMIP6 yields a multi-model mean

Lconor that is substantially higher in CMIP6 than in CMIP5 or SMILEs (Fig. Slc).

In summary, there exists a sensitivity to the choice of period over which variability is estimated, but it is of
secondary importance compared to differences in variability magnitude between models. In the main text, we

use 1950-2099 as the time period to estimate internal variability (/residuar) for CMIPS and CMIP6.
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50 Figure S1: Standard deviation of global decadal mean annual temperature from (a) SMILEs, (b) CMIPS5, and (c) CMIP6. In
case of SMILEs, the average of all ensemble members is shown for each model. The multi-model mean and 10-90% range is

given on the right end of the bar plots.
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S2. Role of choice of scenario uncertainty

Estimating scenario uncertainty S is complicated by several factors. First, the scenarios that climate model are run
with represent only a subsample of available scenarios (Riahi et al. 2017). Although the representative scenarios
chosen in CMIP5 and CMIP6 span a large range of possible future radiative forcing pathways, this subjective
choice will always limit the CMIP archives to be “an ensemble of opportunity” rather than a true probabilistic
assessment of future climate change. As discussed in the main text, the scenarios are also not symmetrically
distributed in radiative forcing space. Second, and more tangible to explore, not all modelling centers ran each of
the chosen scenarios. Even rarer is the case where a modelling center ran a SMILE for each scenario (e.g., MPI-
LE with CMIP5 scenarios and CanESMS5 with CMIP6 scenarios). Thus, a compromise is necessary when one
wants to estimate S from the available model simulations: either use (i) a consistent set of multiple models which
ran at least one simulation per scenario, which means the forced response in any given model needs to be estimated
via a statistical fit to the one or few ensemble members available, or use (ii) a model with a SMILE for each
scenario, which means the forced response for each scenario can be estimated robustly, but the resulting S is model-

specific. Here, we explore these two approaches at the example of global decadal mean temperature.

In the main paper, we use S from CMIP5 (Scazps) for the uncertainty breakdown with SMILEs, using one
simulation per CMIP5 model and scenario (green shading in Fig. S2a). We can also subselect the CMIPS5 archive
to just use the seven models that we have SMILEs for (see Table 1 in main paper) to calculate S (SsmiLes), but still
just using one simulation per model and scenario (dashed lines and flat hatching in Fig. S2a). It can be seen that
Scuips and SsmiLes are very similar, suggesting that the SMILEs are a good representation of CMIPS. Then, we use
the MPI-LE (Mabher et al. 2019), which has 100 ensemble members for each of the CMIPS scenarios RCP2.6,
RCP4.5 and RCP8.5, to estimate S (Suprre; dotted lines and steep hatching in Fig. S2a). Suprre results in a smaller
contribution from S to the total uncertainty. This is due to the relatively lower transient climate response of MPI
compared to the CMIP5 or SMILEs multi-model mean. Consequently, the trajectories of global temperature fan
out slower across the different scenarios in MPI-LE than in more sensitive models, resulting in a smaller S. This
is confirmed when just using data from CMIPS5 (Fig. S2b), where Supi.e is also smaller than Scaips. The same
exercise can be repeated for CMIP6, where the CanESMS-LE provides 50 ensemble members for each of the
CMIP6 scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 (Swart et al. 2019). In this case, however, the S
from CanESMS5-LE (Scanesus-2E) is almost always larger than the S from CMIP6 (Scazps), as CanESMS constitutes
a higher-sensitivity model among its CMIP6 cohort.

In summary, while any of the here presented approaches to estimate S for SMILEs is imperfect, we chose to use
Scarps in the main text due to it representing the expected true Ssazes well. It also facilitates a clean comparison of
SMILEs with CMIP5 with regards to the other sources of uncertainty (internal variability and model uncertainty),
as S is kept consistent between SMILEs and CMIPS5.
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Figure S2: Fractional contribution of individual sources to total uncertainty in (a) SMILEs, (b) CMIP5, and (c) CMIP6.
Scenario uncertainty for SMILEs in (a) is taken from (green shading) CMIPS5, (dotted lines and steep hatching) MPI-LE, and
(dashed lines and flat hatching) the models of the seven SMILEs. Scenario uncertainty in (b) is taken from (green shading)
CMIPS and (dotted line and steep hatching) MPI-LE. Scenario uncertainty in (c) is taken from (green shading) CMIP6 and
(dotted line and steep hatching) CanESMS5-LE.
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