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Abstract. Partitioning uncertainty in projections of future climate change into contributions from internal variability, model 

response uncertainty, and emissions scenarios has historically relied on making assumptions about forced changes in the mean 

and variability. With the advent of multiple Single-Model Initial-Condition Large Ensembles (SMILEs), these assumptions 15 

can be scrutinized, as they allow a more robust separation between sources of uncertainty. Here, the framework from Hawkins 

and Sutton (2009) for uncertainty partitioning is revisited for temperature and precipitation projections using seven SMILEs 

and the Climate Model Intercomparison Projects CMIP5 and CMIP6 archives. The original approach is shown to work well 

at global scales (potential method bias <20%), while at local to regional scales such as British Isles temperature or Sahel 

precipitation, there is a notable potential method bias (up to 50%) and more accurate partitioning of uncertainty is achieved 20 

through the use of SMILEs. Whenever internal variability and forced changes therein are important, the need to evaluate and 

improve the representation of variability in models is evident. The available SMILEs are shown to be a good representation of 

the CMIP5 model diversity in many situations, making them a useful tool for interpreting CMIP5. CMIP6 often shows larger 

absolute and relative model uncertainty than CMIP5, although part of this difference can be reconciled with the higher average 

transient climate response in CMIP6. This study demonstrates the added value of a collection of SMILEs for quantifying and 25 

diagnosing uncertainty in climate projections. 

 

1 Introduction 

Climate change projections are uncertain. Characterizing this uncertainty has been helpful for scientific interpretation and 

guiding model development, but also for science communication (e.g., Hawkins and Sutton 2009; Rowell 2012; Knutti and 30 
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Sedláček 2012). With the advent of Coupled Model Intercomparison Projects (CMIPs), a systematic characterization of 

projection uncertainty became possible, as a number of climate models of similar complexity provided simulations over a 

consistent time period and with the same set of emissions scenarios. Uncertainties in climate change projections can be 

attributed to different sources - in context of CMIP to three specific ones (Hawkins and Sutton 2009): 

- Uncertainty from internal unforced variability, i.e., the fact that a projection of climate is uncertain at any given point 35 

in the future due to the chaotic and thus unpredictable evolution of the climate system. This uncertainty is inherently 

irreducible on time scales after which initial condition information has been lost (typically a few years or less for the 

atmosphere, e.g., Lorenz 1963, 1996). Internal variability of a climate model can be best estimated from a long control 

simulation or a large ensemble, including how variability might change under external forcing (Brown et al. 2017; 

Maher et al. 2018).  40 

- Climate response uncertainty (hereafter “model uncertainty”, for consistency with historical terminology), i.e., 

structural differences between models and how they respond to external forcing. Arising from choices made by 

individual modeling centers during the construction and tuning of their model, this uncertainty is in principle reducible 

as the differences between models (and between models and observations) are artifacts of model imperfection. In 

practice, reduction of this uncertainty progresses slowly and might even have limits imposed by the positive feedbacks 45 

that determine climate sensitivity (Roe and Baker 2007). To be able to distinguish model uncertainty from internal 

variability uncertainty, a robust estimate of a model’s “forced response”, i.e., its response to external radiative forcing 

of a given emissions scenario, is required. Again, a convenient way to obtain a robust estimate of the forced response 

is to average over a large initial-condition ensemble from a single model (Deser et al. 2012; Frankcombe et al. 2018; 

Maher et al. 2019). 50 

- Radiative forcing uncertainty (hereafter “scenario uncertainty”), i.e., lack of knowledge of future radiative forcing 

that arises primarily from unknown future greenhouse gas emissions. Scenario uncertainty can be quantified by 

comparing a consistent and sufficiently large set of models run under different emissions scenarios. This uncertainty 

is considered irreducible from a climate science perspective, as the scenarios are socio-economic ‘what-if’ scenarios 

and do not have any probabilities assigned (which does not imply they are equally likely in reality).  55 

Another important source of uncertainty not explicitly addressable within the CMIP context is parameter uncertainty. Even 

within a single model structure, some response uncertainty can result from varying model parameters in a perturbed-physics 

ensemble (Murphy et al. 2004; Sanderson et al. 2008). Such parameter uncertainty is sampled inherently but non-systematically 

through a set of different models, such as CMIP. Thus, it is currently convoluted with the structural uncertainty as described 

by “model uncertainty” and a proper quantification for CMIP is not possible due to the lack of perturbed-physics ensembles 60 

from different models. 

 

In a paper from 2009, Hawkins and Sutton (hereafter HS09) made use of the most comprehensive CMIP archive at the time 

(CMIP3; Meehl et al. 2007) to perform a separation of uncertainty sources for surface air temperature at global to regional 
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scales. Such a separation helps identify where model uncertainty is large and thus where investments in model development 65 

and improvement might be most beneficial (HS09). A robust quantification of projection uncertainty will also benefit multi-

disciplinary climate change risk assessments, which often rely on quantified likelihoods from physical climate science (Sutton 

2019; King et al. 2015). Due to the lack of large ensembles or even multiple ensemble members from individual models in 

CMIP3, it was necessary to make an assumption about the forced response of a given model. In HS09, a 4th order polynomial 

fit to global and regional temperature time series represented the forced response, while the residual from this fit represented 70 

the internal variability. Using 15 models and 3 emissions scenarios, this enabled a separation of sources of uncertainty for 

temperature projections, which was later expanded to precipitation (Hawkins and Sutton (2011); hereafter HS11).  

 

However, the HS09 approach is likely to conflate internal variability with the forced response in cases where there exists low-

frequency (decadal-to-multi-decadal) internal variability, after large volcanic eruptions, or when the forced signal is weak, 75 

making the statistical fit a poor estimate of the forced response (Kumar and Ganguly 2018). HS09 tried to circumvent this 

issue by focusing on large enough regions and a future without volcanic eruptions, such that there was reason to believe that 

the spatial averaging would dampen variability sufficiently for it not to alias into the estimate of the forced response described 

by the statistical fit.  

 80 

An alternative to statistical fits to estimate the forced response in a single simulation is a Single-Model Initial-Condition Large 

Ensemble (SMILE). A SMILE enables the robust quantification of a model’s forced response and internal variability via 

computation of ensemble statistics, provided the ensemble size is large enough. Due to their computational costs, SMILEs 

have not been wide-spread even in the latest CMIP6 archive. Nevertheless, since HS09, a number of modeling centers have 

conducted SMILEs (Selten et al. 2004; Deser et al. 2012; Kay et al. 2015; Deser et al. 2020 and references therein). Thanks to 85 

their sample size, SMILEs have been applied most successfully to problems of regional detection and attribution (Deser et al. 

2012; Sanderson et al. 2015c; Frölicher et al. 2016; Rodgers et al. 2015; Mankin and Diffenbaugh 2015; Lehner et al. 2017a, 

2018; Kumar and Ganguly 2018; Schlunegger et al. 2019; Marotzke 2019), extreme and compound events (Fischer et al. 2014, 

2018; Schaller et al. 2018; Kirchmeier-Young et al. 2017), and as testbeds for method development (Lehner et al. 2017b; 

McKinnon et al. 2017; Frankignoul et al. 2017; Wills et al. 2018; Sippel et al. 2019; Barnes et al. 2019). 90 

 

The availability of a collection of SMILEs (Deser et al. 2020) now provides the ability to scrutinize and ultimately drop the 

assumptions of the original HS09 approach. Further, it allows for a separation of the sources of projection uncertainty at smaller 

scales and for noisier variables. With multiple SMILEs, one can directly quantify the evolving fractional contributions of 

internal variability and model structural differences to the total projection uncertainty under a given emissions scenario. A 95 

SMILE gives a robust estimate of a model’s internal variability and multiple SMILEs thus also enable differentiating robustly 

between magnitudes of internal variability across models. Maher et al. (2020) used multiple SMILEs to show that the 

magnitude of internal variability differs between models to the point that it affects whether internal variability or model 
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uncertainty is the dominant source of uncertainty for 30-year temperature projections. Building on that, one can also assess the 

contribution of any forced change in internal variability by comparing the time-evolving variability across ensembles members 100 

with the constant variability from present-day or a control simulation (Pendergrass et al. 2017; Maher et al. 2018). Here, we 

revisit the HS09 approach using temperature and precipitation projections from multiple SMILEs, CMIP5 and CMIP6 to 

illustrate where it works, where it has limitations, and how SMILEs can be used to complement the original approach. 

 

2. Data and Methods 105 

2.1 Model simulations 

We make use of seven publicly available SMILEs that are part of the Multi-Model Large Ensemble Archive (MMLEA; Table 

1), centrally archived at the National Center for Atmospheric Research (Deser et al. 2020). All use CMIP5-class models (except 

MPI, which is closer to its CMIP6 version), although not all of the simulations were part of the CMIP5 submission of the 

individual modeling centers and were thus not accessible in a centralized fashion until recently. All SMILEs used here were 110 

run under the standard CMIP5 ‘historical’ and Representative Concentration Pathway 8.5 (RCP8.5) forcing protocols and are 

thus directly comparable to corresponding CMIP5 simulations (Taylor et al. 2007). The models range from ~2.8° to ~1° 

horizontal resolution and from 16 to 100 ensemble members. For model evaluation and other applications, the reader is referred 

to the references in Table 1. We also use all CMIP5 models for which simulations under RCP2.6, RCP4.5 and RCP8.5 are 

available (28; Supplementary Information Table S1) and all CMIP6 models for which simulations under SSP1-2.6, SSP2-4.5, 115 

SSP3-7.0 and SSP5-8.5 are available (21 [as of November 2019]; Supplementary Information Table S1; Eyring et al. 2016; 

O’Neill et al. 2016). A single ensemble member per model is used from the CMIP5 and CMIP6 archives. All simulations are 

regridded conservatively to a regular 2.5°´2.5° grid. 

 

 120 
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Table 1: Single-Model Initial-Condition Large Ensembles (SMILEs) used in this study. Table reproduced from Deser et al. (2020). See also 
http://www.cesm.ucar.edu/projects/community-projects/MMLEA/ 

Modeling 
center 

Model 
version 

Resolution (atm/ocn) Years Initialization  

(Methods)  

# 
member
s 

Forcing Reference 

CCCma CanESM2 ~2.8°x2.8°/~1.4°x0.9° 1950-
2100 

Macro and 
Micro 

50 historical, 
rcp85 

(Kirchmeier
-Young et 
al. 2017) 

CSIRO MK3.6 ~1.9°x1.9°/~1.9°x1.0° 1850-
2100 

Macro 30 historical, 
rcp85 

(Jeffrey et 
al. 2013) 

GFDL ESM2M 2.0°x2.5°/1.0°x0.9° 1950-
2100 

Macro 30 historical, 
rcp85 

(Rodgers et 
al. 2015) 

GFDL CM3 2.0°x2.5°/1.0°x0.9° 1920-
2100 

Micro 20 historical, 
rcp85 

(Sun et al. 
2018) 

MPI MPI-ESM-
LR 

~1.9°x1.9°/ nominal 
1.5° 

1850-
2099 

Macro 100 historical, 
rcp26, 
rcp45, 
rcp85 

(Maher et al. 
2019) 

NCAR CESM1 ~1.3°x0.9°/nominal 1.0° 1920-
2100 

Micro 35* 

 

historical, 
rcp85 

(Kay et al. 
2015) 

SMHI/KN
MI 

EC-
EARTH 

~1.1°x1.1°/nominal 1.0° 1860-
2100 

Micro 16 historical, 
rcp85 

(Hazeleger 
et al. 2010) 

* CESM1: only the first 35 members of 40 available are used, since members 36-40 are slightly warmer (see 
http://www.cesm.ucar.edu/projects/community-projects/LENS/known-issues.html), which can affect the variability estimates 
when calculated across the ensemble. 125 

 

2.2 Uncertainty partitioning 
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We partition three sources of uncertainty largely following HS09, such that the total uncertainty (T) is the sum of the model 

uncertainty (M), the internal variability uncertainty (I) and the scenario uncertainty (S), each of which can be estimated as 

variance for a given time t and location l: 130 

 

 𝑇(𝑡, 𝑙) = 𝑀(𝑡, 𝑙) + 𝐼(𝑡, 𝑙) + 𝑆(𝑡, 𝑙)	
 

with the fractional uncertainty from a given source calculated as !(#,%)
'(#,%)

, ((#,%)
'(#,%)

, and )(#,%)
'(#,%)

. This formulation assumes the sources 

of uncertainty are additive, which strictly speaking is not valid due the terms not being orthogonal (e.g., model and scenario 135 

uncertainty). In practice, an ANOVA formulation with interaction terms yields similar results and conclusions (Yip et al. 

2011).  

 

There are different ways to define M, I and S, in part depending on the information obtainable from the available model 

simulations (e.g., SMILEs versus CMIP). For the SMILEs, the model uncertainty M is calculated as the variance across the 140 

ensemble means of the seven SMILEs (i.e., across the “forced responses” of the SMILEs). The internal variability uncertainty 

I is calculated as the variance across ensemble members of a given SMILE, yielding one estimate of I per model. Prior to this 

calculation, time series are smoothed with the running mean corresponding to the target metric (here mostly decadal means). 

Averaging across the seven I yields the multi-model mean internal variability uncertainty Imean. Alternatively, to explore the 

assumption that Imean does not change over time, we use the 1950-2014 average value of Imean throughout the calculation (i.e., 145 

Ifixed). We also use the model with the largest and smallest I, i.e., Imax and Imin, to quantify the influence of model uncertainty in 

the estimate of I. 

 

The uncertainties M and I for CMIP, in turn, are calculated as in HS09: the forced response is estimated as a 4th order 

polynomial fit to the first ensemble member of each model. The model uncertainty M is then calculated as the variance across 150 

the estimated forced responses. To be comparable with the SMILE calculations, only simulations from RCP8.5 and SSP5-8.5 

are used for the calculation of M in CMIP; this neglects the fact that, for the same set of models, model uncertainty is typically 

slightly smaller in weaker emissions scenarios. The internal variability uncertainty I is defined as the variance over time from 

1950 to 2099 of the residual from the forced response of a given model. Prior to this calculation, time series are smoothed with 

the running mean corresponding to the target metric. Historical volcanic eruptions can thus affect I in CMIP, while for SMILEs 155 

I is more independent of volcanic eruptions since it is calculated across ensembles members. In practice, this difference was 

found to be very small (Supplementary Information Section S1). Averaging across all I in CMIP yields the multi-model mean 

internal variability uncertainty Imean, which, unlike the SMILE-based Imean, is time-invariant. We also apply the HS09 approach 

to each ensemble member of each SMILE to explore the impact of the method choice. 

 160 
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Estimating the scenario uncertainty S relies on the availability of an equal set of models that were run under divergent emissions 

scenarios. Since only few of the SMILEs were run with more than one emissions scenario, we turn to CMIP5 for the scenario 

uncertainty. Following HS09, we calculate S as the variance across the multi-model means calculated for the different 

emissions scenarios, using a consistent set of available models. We use the CMIP5-derived S in all calculations related to 

SMILEs. There are alternative ways to calculate S that are briefly explored here but not used in the remainder of the paper (see 165 

Supplementary Information Section S2): (1) Use the scenario uncertainty from a SMILE that provides ensembles for different 

scenarios (e.g., MPI-ESM-LR or CanESM5). The benefit would be a robust estimate of scenario uncertainty (since the forced 

response is well known for each scenario), while the downside would be that a single SMILE is not representative of the 

scenario uncertainty as determined from multiple models (Fig. S2). (2) Calculate scenario uncertainty first for each model by 

taking the variance across the scenarios of a given model and then average all of these values to obtain S (Brekke and Barsugli 170 

2013). The benefit would be a better quantification of scenario uncertainty in case of a small multi-model mean signal with 

ambiguous sign (Fig. S3). 

 

In addition to the fractional uncertainties, the total uncertainty for a multi-model multi-scenario mean projection is also 

calculated following HS09: 90% uncertainty ranges are calculated additively and symmetrically around the multi-model multi-175 

scenario mean as ± *.,-.∙√(
1

, ± *.,-.∙(√(2√!)
1

, and ± *.,-.∙(√(2√!2√))
1

, with 𝐹 = √(2√!2√)
√(2!2)

. Note that the assumption of symmetry 

is an approximation, which is violated already by the skewed distribution of available emissions scenarios (e.g., 2.6, 4.5, and 

8.5 Wm-2 in CMIP5) and possibly also by the distribution of models, which constitute an ensemble of opportunity rather than 

a particular statistical distribution (Tebaldi and Knutti 2007). Thus, the figures corresponding to this particular calculation 

should only be regarded as an illustration rather than a quantitative depiction of the multi-model multi-scenario uncertainty. 180 

Also, the original depiction in HS09 was criticized for giving the impression of a “best estimate” projection resulting from 

averaging the responses across all scenarios. That impression is false since the scenarios are not assigned any probabilities, 

thus their average is not more likely to occur than any individual scenario. To avoid giving this false impression, here we 

rearrange the depiction of absolute uncertainty as compared to HS09 and HS11. 

 185 

3. Results 

3.1 Global mean temperature and precipitation projection uncertainty 

We first consider global area-averaged temperature and precipitation projections and their uncertainties (Figs. 1-2). Under 

RCP8.5 and SSP5-8.5, decadal global mean annual temperature is projected to increase robustly in the SMILEs and CMIP5/6 

(Fig. 1a-c). Other scenarios result in less warming, as expected. These projections are then broken out by the different sources 190 

of uncertainties (Fig. 1d-f). Finally, the different uncertainties are expressed as time-evolving fraction of the total uncertainty 

(Fig. 1g-i). Note that Fig. 1d-f and Fig. 1g-i essentially show absolute and relative uncertainties. Thus, Fig. 1d-f is most useful 
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to answer the question ‘how large is the uncertainty of a projection for year X and what sources contribute how much?’, while 

Fig. 1g-i is most useful to answer the question ‘which sources are most important to the projection uncertainty from now to 

year X?’. This nuance is easily appreciated when thinking about internal variability uncertainty, which remains roughly 195 

constant in an absolute sense, but approaches zero in a relative sense for longer lead times. 

 

The projection uncertainty in decadal global mean temperature shows a familiar breakdown (HS09): internal variability 

uncertainty is important initially, followed by model uncertainty increasing and eventually dominating the first half of the 21st 

century, before scenario uncertainty becomes dominant by about mid-century (Fig. 1g-i). SMILEs and CMIP5 behave very 200 

similarly, attesting that the seven SMILE models are a good representation of the 28 CMIP5 models for global mean 

temperature projections. This holds for other variables and large-scale regions subsequently investigated (Fig. S4), which is 

also consistent with the coincidental structural independence between the seven SMILEs (Knutti et al. 2013; Sanderson et al. 

2015a). CMIP6, in turn, shows a larger model uncertainty, both in an absolute (Fig. 1f) and relative (Fig. 1i) sense. Since the 

scenario uncertainty in CMIP6 is by design similar to CMIP5 (spanning radiative forcings from 2.6 to 8.5 Wm-2), this result is 205 

indeed attributable to larger model uncertainty – consistent with the wider range of climate sensitivities and transient responses 

reported for CMIP6 compared to CMIP5 (Tokarska et al. 2020), a point we will return to in Section 3.5. The lack of high 

sensitivity models in CMIP5 compared to CMIP6 results in the 90% uncertainty range intersecting with zero in CMIP5 (Fig. 

1e), but not CMIP6 (Fig. 1f). Absolute internal variability is slightly smaller in CMIP6 (Fig. 1f) compared to CMIP5, but not 

significantly so, and therefore this factor is not responsible for the relatively smaller contribution to total uncertainty from 210 

internal variability in CMIP6 (Fig. 1i).  

 

Projections of global mean precipitation largely follow the breakdown found for temperature (Fig. 2). Again, SMILEs and 

CMIP5 behave remarkably similarly, while CMIP6 shows larger model uncertainty compared to CMIP5; model uncertainty 

dominates CMIP6 throughout the 21st century, still contributing >60% by the last decade (compared to ~45% in SMILEs and 215 

CMIP5). 
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Figure 1: (a-c) 10-year running means of global annual mean temperature time series from (top) SMILEs, (middle) CMIP5, and (bottom) 
CMIP6, with observations (Rohde et al. 2013) superimposed in black, all relative to 1995-2014. For SMILEs, the ensemble mean of each 220 
model and the multi-model average of those ensemble means are shown; for CMIP the polynomial fit for each model and the multi-model 
average of those fits are shown. (d-f) Illustration of the sources of uncertainty for the multi-model multi-scenario mean projection. (g-i) 
Fractional contribution of individual sources to total uncertainty. Scenario uncertainty for SMILEs in (g) is taken from CMIP5, since not all 
SMILEs offer simulations with multiple scenarios. (d-i) In all cases, the respective multi-model mean estimate of internal variability (Imean) 
is used. 225 
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Figure 2: As Figure 1, but for precipitation (observations from Adler et al. 2003). 

 

3.2 Spatial patterns of temperature and precipitation projection uncertainty 230 

We recreate the maps from figure 6 in HS09 for decadal mean temperature, showing the spatial patterns of different sources 

of uncertainty for lead times of one, four, and eight decades, relative to the reference period 1995-2014 (Fig. 3). The patterns 

of fractional uncertainty contributions generally look similar for SMILEs and CMIP5/6 (and also similar to CMIP3 in HS09; 

not shown). In the first decade, internal variability contributes least in the tropics and most in the high latitudes. By the 4th 

decade, internal variability contributes least almost everywhere. Scenario uncertainty increases earliest in the tropics, where 235 
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signal-to-noise is known to be large for temperature (HS09; Mahlstein et al. 2011; Hawkins et al. 2020). By the 8th decade, 

scenario uncertainty dominates everywhere except over the subpolar North Atlantic and the Southern Ocean, owing to the 

documented model uncertainty in the magnitude of ocean heat uptake as a result of forced ocean circulation changes (Frölicher 

et al. 2015). While the patterns are largely consistent between the model generations (see also Maher et al. 2020), there are 

differences in magnitude. As noted in Section 3.1, CMIP6 has a larger model uncertainty than CMIP5 (global averages of 240 

model uncertainty for the different lead times in CMIP6: 40%, 65%, 45%, in CMIP5: 14%, 26%, 24%). CMIP6 also has a 

longer consistent forcing period than CMIP5, as ‘historical’ forcing ends in 2005 in CMIP5 and 2014 in CMIP6. These two 

factors lead to the fractional contribution from scenario uncertainty being smaller in CMIP6 compared to CMIP5 and SMILEs 

throughout the century (global averages of scenario uncertainty for different lead times in CMIP6: 2%, 26%, 54%, in CMIP5: 

31%, 65%, 74%). Thus, the forcing trajectory and reference period need to be considered when interpreting uncertainty 245 

partitioning and when comparing model generations. An easy solution would be to ignore scenario uncertainty or normalize 

projections in another way (see Section 3.5). 

 

The spatial patterns for precipitation generally also look similar between SMILEs and CMIP5/6 (and CMIP3 in HS11; Fig. 4). 

Internal variability dominates world-wide in the 1st decade, and remains important during the 4th decade, in particular in the 250 

extratropics, while the tropics start to be dominated by model uncertainty. The North Atlantic and Arctic also start to be 

dominated by model uncertainty by the 4th decade. Scenario uncertainty remains unimportant throughout the century in most 

places. While there is agreement on the patterns, there are notable differences between the SMILEs and CMIP5/6 with regard 

to the magnitude of a given uncertainty source: substantially more uncertainty gets partitioned towards model uncertainty in 

CMIP compared to SMILEs (global averages for model uncertainty for 1st and 4th decade in CMIP5/6: 17/17% and 59/59%; 255 

in SMILEs: 9% and 34%) despite the good agreement between the global multi-model mean precipitation projections from 

SMILEs and CMIP (Fig. 2). Consequently, internal variability appears less important in CMIP than in SMILEs. This result is 

consistent with the expectation that, at small spatial scales (here 2.5°x2.5°), the HS09 polynomial fit tends to wrongly interpret 

internal variability as part of the forced response, thus artificially inflating model uncertainty. We quantify this “bias” through 

the use of SMILEs in the next Section.  260 
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Figure 3: Fraction of variance explained by the three sources of uncertainty in projections of decadal mean temperature changes in 2015-

2024, 2045-2054 and 2085-2094 relative to 1995-2014, from (a) SMILEs, (b) CMIP5 models, and (c) CMIP6 models. Percentage numbers 

give the area-weighted global average value for each map. 

 265 
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Figure 4: As in Fig. 3, but for precipitation. 

 

 

3.3 Role of choice of method to estimate the forced response 270 
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One of the caveats of the HS09 approach is the necessity to estimate the forced response via a statistical fit to each model 

simulation rather than using the ensemble mean of a large ensemble. Here, we quantify the potential bias that stems from using 

a 4th order polynomial to estimate the forced response in a perfect model setup. Specifically, we use one SMILE and treat each 

of its ensemble members as if it were a different model, applying the polynomial fit to estimate each ensemble member’s 

forced response. By design, “model uncertainty” calculated from these forced response estimates should be zero (since they 275 

are all from a single model) and any deviation from zero will indicate the magnitude of the method bias. We calculate this 

potential method bias using each SMILE in turn. For global temperature, this bias is small but clearly non-zero, and peaks 

around year 2020 at a contribution of about 10% to the total uncertainty (comprised of potential method bias, internal variability 

and scenario uncertainty) and a range from 8-20% depending on which SMILE is used in the perfect model setup (Fig. 5a). 

The bias decreases to <5% by 2040. For global precipitation, the bias is larger, peaking at about 25% in the 2020s and taking 280 

until 2100 to reduce to <5% in all SMILEs (Fig. 5b). These potential biases are visible even in global mean quantities, where 

the spatial averaging should help in estimating the forced response from a single member. Consequently, potential biases are 

even larger at regional scales. For example, and to revisit some cases from HS09 and HS11, for decadal temperature averaged 

over the British Isles, the bias contribution can range between 10% and 50% at its largest (Fig. 5c). For decadal monsoonal 

precipitation over the Sahel, the method bias is also large and – due to the small scenario uncertainty and gradually diminishing 285 

internal variability contribution over time – contributes to the total uncertainty throughout the entire century (Fig. 5d).  
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Figure 5: Decadal mean projections from SMILEs and fractional contribution to total uncertainty (using scenario uncertainty from CMIP5) 
for (a) global mean annual temperature, (b) global mean annual precipitation, (c) British Isles annual temperature, and (d) Sahel June-August 290 
precipitation. The pink color indicates the potential method bias and is calculated the same way as model uncertainty in the HS09 approach, 
except instead of different models we only use different ensemble members from a SMILE, thus if the HS09 method were perfect, the bias 
would be zero. This potential method bias is calculated using each SMILE in turn and then the mean value from the seven SMILEs is used 
for the dark pink curve, while the slightly transparent white shading around the pink curve is the range of the potential method bias based 
on different SMILEs. 295 

 

The potential method bias from using a polynomial fit has a spatial pattern, too (Fig. 6). For temperature, it is largest in the 

extratropics and smallest in the tropics (Fig. 6a). In regions of deep water formation, where the forced trend is small and an 

accurate estimate of it is thus difficult, the potential bias contribution to the total uncertainty can be >50% even in the 4th 

decade. For precipitation, the potential method bias is almost uniform across the globe and remains sizable throughout the 300 

century (Fig. 6b), consistent with the Sahel example in Fig. 5d. By the 8th decade, the contribution from potential method bias 

starts to decrease and does so first in regions with a clear forced response (subtropical dry zones getting drier and high latitudes 

getting wetter), as there, scenario uncertainty ends up dominating the other uncertainty sources. 

 

 305 
Figure 6: Fraction of variance explained by internal variability, potential method bias, and scenario uncertainty in projections of decadal 

mean changes in 2015-2024, 2045-2054 and 2085-2094 relative to 1995-2014, for (a) temperature and (b) precipitation. The potential method 

bias is calculated the same way as model uncertainty in the HS09 approach, except instead of different models we only use different ensemble 

members from one SMILE, thus if the HS09 method were perfect, the bias would be zero. The potential method bias is calculated using each 

SMILE in turn and then the mean value from the seven SMILEs is used for the maps here. Percentage numbers give the area-weighted global 310 
average value for each map. 
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The potential method bias portrayed here can largely be reduced using SMILEs, at least if the ensemble size of a SMILE is 

large enough to robustly estimate the forced response (Coats and Mankin 2016; Milinski et al. 2019). To test for ensemble size 

sufficiency, we calculate the potential method bias as the variance of 100 different ensemble means, each calculated by 315 

subsampling the largest SMILE (MPI; n=100) at the size of the smallest SMILE (EC-EARTH; n=16). We find the potential 

method bias from an ensemble mean of 16 members to be substantially smaller than with the HS09 approach (Fig. S5). 

 

If there are such large potential biases in estimating model uncertainty and internal variability, why are the results for SMILEs 

and CMIP5 still so similar (see Fig. 1 and 2)? Despite the imperfect separation of internal variability and forced response in 320 

HS09, the central estimate of variance across models is affected less if a large enough number of models is used (here, 28 from 

CMIP5). A sufficient number of models can partly compensate for the biased estimate of the forced response in any given 

model and – consistent with the central limit theorem – overall still results in a robust estimate of model uncertainty. The 

number of models needed varies with the question at hand and is larger for smaller spatial scales. For example, the potential 

method bias for British Isles temperature appears to be too large to be overcome completely by the CMIP5 sample size, 325 

resulting in a biased uncertainty partitioning there (see also Section 3.5). HS09 used 15 CMIP3 models and large spatial scales 

to circumvent much of this issue, although it is important to remember that the potential bias in estimating the variance of a 

population increases exponentially with decreasing sample size. In the special case of climate models, which can be 

interdependent (Masson and Knutti 2011; Knutti et al. 2013; Abramowitz et al. 2019), the potential bias might grow slower or 

faster than that. 330 

 

 

3.4 Role of model uncertainty in, and forced changes of, internal variability 

Model uncertainty in internal variability itself can have an effect on some climate indices (Deser et al. 2020; Maher et al. 

2020). The fraction of global temperature projection uncertainty attributable to internal variability varies by almost 50 335 

percentage points around Imean at the beginning of the century, depending on whether Imax or Imin is used from the pool of 

SMILEs (range of white shading in Fig. 7a). This fraction diminishes rapidly with time as importance of internal variability 

generally decreases, but model differences in internal variability remain important over the next few decades (consistent with 

Maher et al. 2020). Global precipitation behaves similarly to temperature, except the range of internal variability contributions 

from the different SMILEs is smaller (Fig. 7b). Another example of uncertainty in internal variability itself is the magnitude 340 

of decadal variability of summer monsoon precipitation in the Sahel, which varies considerably across the SMILEs, resulting 

in internal variability contributing anywhere between about 40% and 80% in the first half of the century (range of white shading 

in Fig. 7c). The wide spread in the magnitude of variability across models suggests that at least some models are biased in their 

variability magnitude. Understanding and resolving biases in variability in fully coupled models is important for attribution of 

observed variability as well as for efforts of decadal prediction. Sahel precipitation, for example, has a strong relationship with 345 
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the Atlantic Ocean’s decadal variability, which is one of few predictable climate indices globally (Yeager et al. 2018). In case 

such decadal variability originates from an underlying oscillation, the SMILE-sampling of different oscillation phases 

contributes to ensemble spread and also complicates the evaluation of simulated internal variability with short observational 

records. Similar issues have been documented for the Indian monsoon (Kodra et al. 2012). Thus, a realistic representation of 

variability together with initialization on the correct phase of potential oscillations are prerequisites for skillful decadal 350 

predictions. 

 

Internal variability can change in response to forcing, which can be assessed more robustly through the use of SMILEs. 

Comparing Ifixed (which assumes no such change) with Imean shows that there is no clear forced change in decadal global annual 

temperature variability over time (Fig. 7a). Forced changes to precipitation variability are expected in many locations (Knutti 355 

and Sedláček 2012; Pendergrass et al. 2017), although robust quantification – in particular for decadal variability – has 

previously been hampered by the lack of large ensembles. Here, we show that forced changes in variability can now be detected 

for noisy time series and small spatial scales, such as winter precipitation near Seattle, USA (Fig. 7d). Note, however, that in 

this example the increase in variability is small relative to the large internal variability, which is responsible for over 70% of 

projection uncertainty even at the end of the century. Forced changes in temperature variability are typically less wide-spread 360 

and less robust than those in precipitation, but can be detected in decadal temperature variability in some regions, for example 

the Southern Ocean (Fig. 7e). The projected decrease in temperature variability there could be related to diminished sea ice 

cover in the future, akin to the Northern Hemisphere high latitude cryosphere signal (Screen 2014; Holmes et al. 2016; Brown 

et al. 2017), and around mid-century reduces the uncertainty contribution from internal variability by more than half compared 

to the case with fixed internal variability. Another example is the projected increase in summer temperature variability over 365 

parts of Europe (Fig. 7f; note that we have not applied the 10-year running mean to this example in order to highlight 

interannual variability), which is understood to arise from a future strengthening of land-atmosphere coupling (Seneviratne et 

al. 2006; Fischer et al. 2012; Borodina et al. 2017). All SMILEs agree on the sign of change in internal variability for the cases 

discussed here. 

 370 
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Figure 7: Sources of uncertainty from SMILEs (using scenario uncertainty from CMIP5) for different regions, seasons and variables. The 
solid black lines indicate the borders between sources of uncertainty; the slightly transparent white shading around those lines is the range 
of this estimate based on different SMILEs. The dashed line marks the dividing line if internal variability is assumed to stay fixed at its 1950-375 
2014 multi-SMILE mean. All panels are for decadal mean projections, except (f) Southern Europe Jun-Aug temperature, to which no decadal 
mean has been applied. 

 

 

3.5 Uncertainties normalized by climate sensitivity 380 

One of the emerging properties of the CMIP6 archive is the presence of models with higher climate sensitivity than in 

CMIP5 (Zelinka et al. 2020; Tokarska et al. 2020). As seen in Fig. 1 and 2, this can result in larger absolute and relative 

model uncertainty for CMIP6 compared to SMILEs and CMIP5. However, it could be that this is merely a result of the 

higher climate sensitivity and stronger transient response rather than indicative of increased uncertainty with regard to 

processes controlled by (global) temperature. To understand whether this is the case, we express sources of uncertainties as a 385 
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function of global mean temperature (Fig. 8). For example, global mean precipitation scales approximately linearly with 

global mean temperature under greenhouse gas forcing (Fig. 8a). Indeed, the absolute uncertainties from model differences 

and internal variability are entirely consistent across SMILEs, CMIP5 and CMIP6 when normalized by global mean 

temperature (Fig. 8b-c). Thus, uncertainty for global mean precipitation projections remains almost identical between the 

different model generations, despite the seemingly larger uncertainty depicted in Fig. 2 for CMIP6. A counterexample is 390 

projected temperature over the British Isles, where model uncertainty remains slightly larger in CMIP6 than in CMIP5 even 

when normalized by global mean temperature (Fig. 8d-f). This example also illustrates once again the challenge of correctly 

estimating the forced response from a single simulation, as the HS09 approach erroneously partitions a significantly larger 

fraction of total uncertainty into model uncertainty compared to the SMILEs (Fig. 8b-c; see also Fig. 5b). 

 395 

 
Figure 8: (a) Decadal means of global mean precipitation change as a function of global mean temperature change. Thin lines are forced 
response estimates from individual models, and thick lines are multi-model means for SMILEs, CMIP5 and CMIP6. The last decade of each 
multi-model mean is marked with a circle. (b) Uncertainty in global mean precipitation changes from model differences and internal 
variability for SMILEs, CMIP5 and CMIP6 as a function of global mean temperature. (c) Fractional contribution of global mean precipitation 400 
changes from model uncertainty and internal variability to total uncertainty as a function of global mean temperature. The colors indicate 
the fractional uncertainties from internal variability and model uncertainty in SMILEs, while the solid and dotted lines indicate where the 
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dividing line between these two sources of uncertainty (i.e., between orange and blue colors) would lie for CMIP5 and CMIP6. (d-f) Same 
as (a-c) but for British Isles temperature. 

 405 

Alternatively, models can be weighted or constrained according to performance metrics that are physically connected to their 

future warming magnitude (Hall et al. 2019). The original HS09 paper proposed using the global mean temperature trend 

over recent decades as an emergent constraint to determine if a model warms too much or too little in response to greenhouse 

gas forcing. This emergent constraint is relatively simple and more comprehensive ones have since been proposed 

(Steinacher and Joos 2016). However, the original idea has recently found renewed application to overcome the challenge of 410 

estimating the cooling magnitude from anthropogenic aerosols over the historical record (Jiménez-de-la-Cuesta and 

Mauritsen 2019; Tokarska et al. 2020). Despite regional variations, the aerosol forcing has been approximately constant 

globally after the 1970s, such that the global temperature trend since then is more likely to resemble the response to other 

anthropogenic forcings, chiefly greenhouse gases (GHGs), which have steadily increased over the same time. Thus, this 

period can be used as an observational constraint on the model sensitivity to GHGs. The correlation between the recent 415 

warming trend (1981-2014) and the longer trend projected for this century (1981-2100; using RCP8.5 and SSP5-8.5) is 

significant in CMIP5 (r=0.53) and CMIP6 (r=0.79), suggesting the existence of a meaningful relationship (Tokarska et al. 

2020). Following HS09, a weight 𝑤3 can be calculated for each model 𝑚: 

𝑤3 = *
4!"#2|4$64!"#|

 , 

with 𝑥789 and 𝑥3 being the observed and model-simulated global mean temperature trend from 1981 to 2014. We apply the 420 

weighting to CMIP5 and CMIP6, but only to the data used to calculate model uncertainty – scenario uncertainty and internal 

variability remain unchanged for clarity. The weighting results in an initial reduction of absolute and relative model 

uncertainty for global mean temperature projections (Fig. 9). The reduction is larger for CMIP6 than for CMIP5, consistent 

with recent studies suggesting that CMIP6 models overestimate the response to GHGs (Tokarska et al. 2020). Consequently, 

the weighting brings CMIP5 and CMIP6 global temperature projections into closer agreement, although remaining 425 

differences and questions, such as how aggressively to weigh models or how to deal with model interdependence (Knutti et 

al. 2017), are still to be understood. 
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Figure 9: (a) Sources of uncertainty for the multi-model multi-scenario mean projection of global annual decadal mean temperature in 
CMIP5. (b) Fractional contribution of individual sources to total uncertainty. Observationally-constrained projections are given by the dotted 430 
lines (see text for details). (c-d) Same as (a-b) but for CMIP6. 

 

4. Discussion and conclusions 

We have assessed the projection uncertainty partitioning approach of Hawkins and Sutton (2009; HS09), in which a 4th order 

polynomial fit was used to estimate the forced response from a single model simulation. We made use of Single-Model Initial-435 

Condition Large Ensembles (SMILEs) with seven different climate models (from the MMLEA) as well as the CMIP5/6 

archives. The SMILEs facilitate a more robust separation of forced response and internal variability and thus provide an ideal 

testbed to benchmark the HS09 approach. We confirm that for averages over large spatial scales (such as global temperature 

and precipitation), the original HS09 approach provides a reasonably good estimate of the uncertainty partitioning, with 

potential method biases generally contributing less than 20% to the total uncertainty. However, for local scales and noisy 440 

targets (such as regional or grid-cell averages), the original approach can erroneously attribute internal variability to model 

uncertainty, with potential method biases at times reaching 50%. It is worth noting that a large number of models can partly 

compensate for this method bias. Still, a key result of this study is the need for a robust estimate of the forced response. There 

are different ways to achieve this – utilizing the MMLEA as done here is one of them. Alternatively, techniques to quantify 

and remove unforced variability from single simulations, such as dynamical adjustment or signal-to-noise maximization can 445 

be used (Hasselmann 1979; Allen and Tett 1999; Wallace et al. 2012; Smoliak et al. 2015; Deser et al. 2016; Sippel et al. 2019; 

Wills et al. in review) and should provide an improvement over a polynomial fit. 
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Along with a better estimate of the forced response, SMILEs also enable estimating forced changes in variability if a 

sufficiently large ensemble is available (Milinski et al. 2019). While this study focused mainly on decadal means and thus 450 

decadal variability – showing wide-spread increases in precipitation variability and high latitude decreases in temperature 

variability – , changes in variability can be assessed at all time scales (Mearns et al. 1997; Pendergrass et al. 2017; Maher et 

al. 2018; Deser et al. 2020; Milinski et al. 2019). Whether variability changes matter for impacts needs to be assessed on a 

case-by-case basis. For example, changes in daily temperature variability can have a disproportionate effect on the tails and 

thus extreme events (Samset et al. 2019). However, there is a clear need to better validate model internal variability, as we 455 

found models to differ considerably in their magnitude of internal variability (consistent with Maher et al. 2020), a topic that 

has so far received less attention (Deser et al. 2018; Simpson et al. 2018). SMILEs, in combination with observational large 

ensembles (McKinnon et al. 2017; McKinnon and Deser 2018), are opening the door for that. 

 

SMILEs are still not widespread, running the risk of being non-representative of the “true” model diversity (see Abramowitz 460 

et al. 2019 for a review). Thus, to make inferences from SMILEs about the entire CMIP archive, it is necessary to test the 

representativeness of SMILEs. Fortunately, the seven SMILEs used here are found to be reasonably representative for several 

targets investigated, but a more systematic comparison is necessary before generalizing this conclusion. For example, while 

the seven SMILEs used here cover the range of global aerosol forcing estimates in CMIP5 reasonably well (Forster et al. 2013; 

Rotstayn et al. 2015), their representativeness for questions of regional aerosol forcing remains to be investigated. In any case, 465 

further additions to the MMLEA will continue to increase the utility of that resource (Deser et al. 2020). 

 

Finally, we found that the seemingly larger absolute and relative model uncertainty in CMIP6 compared to CMIP5 can to 

some extent be reconciled by either normalizing projections by global mean temperature or by applying a simple model 

weighting scheme that targets the emerging high climate sensitivities in CMIP6, consistent with other studies (Jiménez-de-470 

la-Cuesta and Mauritsen 2019; Tokarska et al. 2020). Constraining the model uncertainty in this way brings CMIP5 and 

CMIP6 into closer agreement, although differences remain that need to be understood. More generally, continued efforts are 

needed to include physical constraints when characterizing projection uncertainty, with the goal of striking the right balance 

between rewarding model skill, honouring model consensus, and guarding against model interdependence (Giorgi and 

Mearns 2002; Smith et al. 2009; O’Gorman and Schneider 2009; Sanderson et al. 2015b). Global, regional and multi-variate 475 

weighting schemes show promise in aiding this effort (Knutti et al. 2017; Lorenz et al. 2018; Brunner et al. 2019). Improving 

the reliability of projections will thus remain a focal point of climate research and climate change risk assessments, with 

methods for robust uncertainty partitioning being an essential part of that effort. 
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