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The manuscript is well presented, scientifically rigorous, timely and in my estimation, 
certainly worthy of progressing towards rapid publication. However, I do have a few relatively 
minor comments and suggestions: 
We thank the reviewer for the positive and constructive review. Our replies to the individual 
points raised are in blue. 
 
1. In the introduction, while discussing the three sources of uncertainty, the authors discuss 
(a) uncertainty from internal unforced variability as well as (b) response uncertainty or model 
uncertainty. I would suggest the authors add at least a pointer (with a citation) to what has 
also been called "large ensemble of climate model simulations" which are obtained from 
"ensemble of model versions constructed by varying model parameters". One citation can be 
to Murphy et al. (2004), Nature 430, 768-772. How this multi-parameter uncertainty fits into 
(or not) the overall discussion here could be useful for a reader to understand. 
Thanks for this useful reminder. As the reviewer is probably aware, this source of uncertainty 
is difficult to quantify for CMIP, but we completely agree that a pointer to its existence and its 
partial overlap with “model uncertainty” is needed here. To that end, the following paragraph 
is now included in the introduction: 

• “Another important source of uncertainty not explicitly addressable within the CMIP 
context is parameter uncertainty. Even within a single model structure, considerable 
response uncertainty can result from varying model parameters in a perturbed-
physics ensemble (Murphy et al. 2004; Sanderson et al. 2008). Such parameter 
uncertainty is sampled inherently but non-systematically through a set of different 
models, such as CMIP. Thus, it is currently convoluted with the structural uncertainty 
as described by “model uncertainty” and a proper quantification for CMIP is not 
possible due to the lack of perturbed-physics ensembles from different models.” 

 
2. The skill versus consensus considerations when assigning uncertainties to projections 
may need to be discussed along with the need for physics consistency. Smith et al. (2009), 
Journal of the American Statistical Association, 104(485), pp.97-116, attempt to develop a 
statistical method for balancing skills versus consensus. An example of using physical basis 
for constraining uncertainty from models is provided in the context of precipitation extremes 
by O’Gorman and Schneider (2009), PNAS 106(35) 14773-14777. 
Thanks for raising this point. We have so far covered this very briefly in Section 3.5 and 
have now added a sentence in the Conclusions to stress this point more explicitly: 

• “More generally, continued efforts are needed to include physical constraints when 
characterizing projection uncertainty, with the goal of striking the right balance 
between rewarding model skill, honouring model consensus, and guarding against 
model interdependence (Giorgi and Mearns 2002; Smith et al. 2009; O’Gorman and 
Schneider 2009; Sanderson et al. 2015).” 

 
3. The Deser et al. (in review) paper is cited multiple times. Most journal allow authors to 
upload their manuscript on preprint servers such as arXiv without compromising novelty. Is 
that possible in this case? 
Apologies for the inconvenience. 

• Deser et al. (2020) is now published: https://www.nature.com/articles/s41558-020-
0731-2 

• Maher et al. (2020) is now published as well: 
https://iopscience.iop.org/article/10.1088/1748-9326/ab7d02 
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• The Wills et al. (in review) draft is accessible here: 
https://atmos.washington.edu/~rcwills/papers/2020_Wills_etal_Forced_Patterns.pdf 

 
4. Under uncertainty partitioning, the authors assume the three types of uncertainties are 
additive, without providing any context or caveats. The authors may need to clearly state 
whether this additive (and linearly separable) formulation for the three types of uncertainty is 
an assumption or a hypothesis, or if this is an assertion. In either case, the caveats of the 
assumption or a way to falsify the hypothesis or a rationale for the assertion should be 
provided. 
Indeed, this is an assumption and it is known to not be perfectly valid; for example, scenario 
and model uncertainty are not orthogonal, as discussed in, e.g., Yip et al. (2011). We agree 
that we did not emphasize this adequately. We have added a discussion of this caveat at the 
beginning of Section 2.2: 

• ”This formulation assumes the sources of uncertainty are additive, which strictly 
speaking is not valid due the terms not being orthogonal (e.g., model and scenario 
uncertainty). In practice, an ANOVA formulation with interaction terms results in 
similar results and conclusions (Yip et al. 2011).” 

 
5. While the manuscript makes a few distributional assumptions, I would suggest a more 
thorough discussion of a couple of points: first, the (assumed) asymptotic behavior (or the 
lack thereof) for the single-model initial condition ensembles (in other words, is there a 
reason to believe that with larger number of ensembles the distribution will converge or 
asymptote to a statistical distribution, and if so, is there any issue of ensemble sufficiency 
that needs to be investigated) and second, any assumption about the shape of the 
distributions (e.g., symmetric, or even Gaussian, etc.). I am not sure if there is enough basis 
to calculate the mathematical forms of the distributions from HS09. 
With regard to the first point: for the climate system the assumption is certainly that a 
sufficiently large ensemble converges to a statistical distribution and that this is very often a 
normal distribution. In fact, for the data in our study, the null hypothesis of a normal 
distribution cannot be rejected for large parts of the globe for both temperature and 
precipitation (not shown, but tested for the SMILEs), partly due to the temporal resolution 
(here annual or decadal means) and the coarse spatial resolution, but this is also consistent 
with more general expectations. All the regional examples discussed in the paper are 
normally distributed with high confidence (p<0.01; Shapiro-Wilk test) even when assessed 
across the ensemble dimension with the smallest ensemble size (n=16). 
 
However, we have added a test of the ensemble size sufficiency in context of Fig. 5. 
Specifically, we subsampled the largest SMILE (MPI), selecting 16 ensemble members at 
random (corresponding to the smallest SMILE size, EC-EARTH) 100 times, to calculate 100 
estimates of the forced response. Analogous to the current Fig. 5, the variance across those 
estimates quantifies the potential method bias when the forced response is calculated as an 
ensemble mean from a SMILE with only 16 ensemble members. It is shown that this too 
results in a non-zero method bias, but its magnitude is considerably smaller than with the 
HS09 approach shown in Fig. 5. This is now discussed in Section 3.3 and shown in 
supplementary Fig. S5. With ensemble sizes n>16 the bias decreases further, as expected 
(not shown). 
 



 3 

 
Fig. S5: Same as Fig. 5 in the main paper, except to estimate the potential method bias, we 
use different ensemble mean estimates from the same SMILE instead of different models 
and the 4th order polynomial. Specifically, we randomly select 16 members from the largest 
SMILE (MPI) to mimic the ensemble size of the smallest SMILE (EC-EARTH) and calculate 
the ensemble mean. We do this 100 times and calculate the variance across these 
ensemble means to be the potential method bias. Thus if the SMILE ensemble mean 
method were perfect, the bias would be zero. This bias here is also non-zero but 
substantially smaller than with the HS09 approach (see Fig. 5 in main text). 
 
With regard to the second point: we feel that the distributional assumptions are clearly stated 
in the last paragraph of Section 2.2, including a cautionary note that these assumptions are 
not perfectly valid in certain cases, for example due to the asymmetric distribution of forcing 
scenarios. Thanks to the robustness of variance as a metric, we still expect these 
distributional assumptions to be reasonable. We have added “…and possibly also by the 
distribution of models, which constitute an ensemble of opportunity rather than a particular 
statistical distribution (Tebaldi and Knutti 2007)”.  
 
6. The authors may need to discuss (and set appropriately in context) the visual intersection 
of the overall uncertainty with the zero-line in one case but not the other (Figure1: (e) and (f)) 
and the relative changes in model and scenario uncertainty in CMIP5 versus CMIP6 (Figure 
3: (b) and (c)). 
To clarify the first point, we added the following sentence to the first paragraph of Section 
3.1: 

• “The lack of high sensitivity models in CMIP5 compared to CMIP6 result in the 90% 
uncertainty range intersecting with zero in CMIP5 (Fig. 1e), but not CMIP6 (Fig. 1f).” 
 

The second point is discussed in detail already in the first paragraph in Section 3.2. 
 
7. The impact of internal variability on the phase difference of climate oscillators in model 
simulations may need to be discussed a bit more thoroughly. The others do provide an 
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example with the Sahel. One example is provided in the context of the Indian monsoon in 
Kodra et al. (2012), Environmental Research Letters7(1): 014012, especially in the 
supplement. 
We considered this comment carefully, but are not entirely sure what the reviewer is 
referring to. We agree, and state in the paper, that the representation of internal variability 
varies widely across models. We stress the need to evaluate model internal variability more, 
but consider such an evaluation beyond the scope of this study. We illustrate the issue at the 
example of Sahel precipitation, among others (monsoonal precipitation over India looks very 
similar in that models disagree on internal variability; not shown). Beyond that, it appears 
that the discussion about the presence and adequacy of oscillations in model simulations is 
ongoing (see also Mann et al. (2020) for a recent discussion, albeit on the topic of global 
temperature). However, we have revised and expanded the paragraph about internal 
variability, including a citation of Kodra et al. (2012) to read: 

• “The wide spread in the magnitude of variability across models suggests that at least 
some models are biased in their variability magnitude. Understanding and resolving 
biases in variability in fully coupled models is important for attribution of observed 
variability as well as for efforts of decadal prediction. Sahel precipitation, for example, 
has a strong relationship with the Atlantic Ocean’s decadal variability, which is one of 
few predictable climate indices globally (Yeager et al. 2018). In case such decadal 
variability originates from an underlying oscillation, the SMILE-sampling of different 
oscillation phases contributes to ensemble spread and also complicates the 
evaluation of simulated internal variability with short observational records. Similar 
issues have been documented for the Indian monsoon (Kodra et al. 2012). Thus, a 
realistic representation of variability together with initialization on the correct phase of 
potential oscillations are prerequisites for skillful decadal predictions.” 

 
8. As a stylistic matter, while I personally agree with the statement made by the authors that 
HS09 "created a powerful narrative of reducible and irreducible uncertainties inclimate 
projections", I would nevertheless suggest deletion of superlatives such as"iconic 
framework" and "landmark paper". I would especially recommend this since one of the two 
authors of HS09 is also an author of this manuscript, but even otherwise. 
In hindsight, we completely agree and have removed those statements. Thank you for 
pointing this out. 
 
9. As a "nice to have" suggestion, I am wondering if the value of this manuscript may be 
increased by a simplified exemplar. I am reminded of the ESM 2.0 paper: Schneider et al. 
(2017), Geo physical Research Letters, DOI: 10.1002/2017GL076101. That paper uses the 
Lorenz-96 model as an exemplar. While that GRL paper and this manuscript are very 
different indeed in scope and content, I was wondering if an exemplar such as a variant of 
the Lorenz model (with different initial conditions, different parameterizations as proxies for 
different "models", and a mock-up of different "forcing") may be developed here to clearly 
and concretely illustrate the basic points. 
We agree that this would be nice to have, but also clearly see it as beyond the scope of this 
study. Further, it is not immediately clear how the Lorenz-96 model would illustrate the basic 
points more clearly than what we have already provided. Specifically, in the Lorenz-96 
model, “forcing” acts to amplify an oscillatory behavior, while in the CMIP framework it acts 
to change the base state, so the initial framing is a bit different. Of course, this could be 
reformulated, but that seems unnecessarily complicated. Rather, one can think of a much 
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simpler linear toy model for a climate variable (e.g., temperature from one model 𝑇!) with 
one instantaneous response time scale: 
 

𝑇!(𝑡) = 𝜎!𝒩(𝑡) + 𝐹(𝑡) ∙ 𝜅!, 
𝜎 = 	𝒩(𝜎-, 𝜎"), 
𝜅 = 	𝒩(�̅�, 𝜅"), 

 
where a time-varying forcing 𝐹 (e.g., radiative forcing in W/m2 from RCPs) is scaled by a 
model-specific sensitivity 𝜅! and added to a model-specific random-normal time series 
𝜎!𝒩. The parameters for both 𝜎 and 𝜅 are themselves drawn from normal distributions with 
means 𝜎- and �̅� and standard deviations 𝜎" and 𝜅". The model makes the aforementioned 
distributional assumptions, does not allow for forced changes in internal variability, has no 
interaction between scenario and model uncertainty, and ignores response time scales 
slower than instantaneous, but those are not critical caveats when conveying the basic 
points here. 
 
The parameters means 𝜎-, �̅�, 𝜎" and 𝜅" can be chosen to mimic CMIP behavior for a given 
variable and spatial resolution (e.g., decadal mean global temperature, Fig. R1 top), and can 
then be varied to arbitrarily scale internal variability (Fig. R1 middle) and model uncertainty 
(Fig. R1 bottom). Further, the number of models and ensemble members can be varied to 
illustrate the performance of different methods of estimating the forced response, e.g., one 
can demonstrate again that when using a CMIP-sized pool of models to partition uncertainty 
in global mean temperature, the HS09 approach works almost as well as if we had a 100-
member SMILE for each CMIP model (Fig. R1 top). In turn, if internal variability is an order 
of magnitude larger, the HS09 approach tends to wrongly attribute internal variability to 
model uncertainty (Fig. R1 middle). 
 
Many more examples could be thought of, but we do not think they add much to the 
examples already shown in the paper based on actual climate model simulations. We have, 
however, included a reference to the work of Lorenz in the Introduction. 
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Fig. R1: Toy model results. Forced response estimates from (left column) HS09 approach 
and (middle column) SMILEs approach. (Right column) Fractional contribution to total 
uncertainty. The top row shows an example that closely matches CMIP5 global mean 
temperature. The middle row shows an example with much larger internal variability, 
representing something like a single grid cell at high latitudes. The bottom row has the same 
parameters as the top row except about three-times-as-wide of a distribution of model 
sensitivities. Model uncertainty is always estimated from the RCP8.5 scenario (red). The 
chosen parameters are given in the panels. 
 
 
10. Finally, since most readers may not be familiar with HS09, I would suggest a clearer and 
more easily understandable (to a broad audience) discussion on what this means for the 
climate community, both for understand the science and for translating (or even starting to 
develop a conceptual framework to translate) to risk-informed decisions. 
In the introduction, we now re-iterate and emphasize key points made in HS09 and 
elsewhere: 

• “Such a separation helps identify where model uncertainty is large and thus where 
investments in model development and improvement might be most beneficial 
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(HS09). A robust quantification of projection uncertainty will also benefit multi-
disciplinary climate change risk assessments, which often rely on quantified 
likelihoods from physical climate science (Sutton 2019; King et al. 2015).” 
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