Supplementary Material: Variability of surface climate in simulations of past and future

Kira Rehfeld¹, Raphaël Hébert², Juan M. Lora³, Marcus Lofverstrom⁴, and Chris Brierley⁵

¹Institute of Environmental Physics, Ruprecht-Karls-Universität Heidelberg, INF 229, 69120 Heidelberg, Germany
²Alfred-Wegener Institute Helmholtz-Center for Polar- and Marine Research, Telegrafenberg A45, 14473 Potsdam, Germany
³Department of Geology and Geophysics, Yale University, 210 Whitney Ave, New Haven, CT 06520, US
⁴Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721, US
⁵Department of Geography, University College London, London, WC1E 6BT, UK

List of Figures

S1 Areas considered in the calculation of the modes of variability (Sect. 2 in the manuscript). 2
S2 As in Fig. 5, but for years of anomalously low precipitation (one standard deviation below the average). 3
S3 Composite of the precipitation anomalies (in mm/day) associated with low precipitation (left) and high precipitation (right) extremes in five regions with Mediterranean climates as in Suppl. Fig. S2 and Fig. 5 in the manuscript. 4
S4 Shown are the scaling exponents β for the selected experiments (rows) and for three variables of interest (columns), fitted between timescales of 4 months and 20 years. White regions indicate zero scaling (i.e., "white" spectra), reddish colors indicate positive scaling ("red" spectra showing increasing variance with timescale) and blue-ish colors indicating negative scaling ("blue" spectra indicating decreasing variance with timescale). 5
S5 Change in the scaling of the spectral exponent β, as shown on figure S4, in the experiments with respect to the $piControl$ experiment. 6
Figure S1. Areas considered in the calculation of the modes of variability (Sect. 2 in the manuscript).
Figure S2. As in Fig. 5, but for years of anomalously low precipitation (one standard deviation below the average).
Figure S3. Composite of the precipitation anomalies (in mm/day) associated with low precipitation (left) and high precipitation (right) extremes in five regions with Mediterranean climates as in Suppl. Fig. S2 and Fig. 5 in the manuscript.
Figure S4. Shown are the scaling exponents β for the selected experiments (rows) and for three variables of interest (columns), fitted between timescales of 4 months and 20 years. White regions indicate zero scaling (i.e., "white" spectra), reddish colors indicate positive scaling ("red" spectra showing increasing variance with timescale) and blue-ish colors indicating negative scaling ("blue" spectra indicating decreasing variance with timescale).
Figure S5. Change in the scaling of the spectral exponent β, as shown on figure S4, in the experiments with respect to the piControl experiment.