Supplementary Material: Variability of surface climate in simulations of past and future

Kira Rehfeld¹, Raphaël Hébert², Juan M. Lora³, Marcus Lofverstrom⁴, and Chris Brierley⁵

¹Institute of Environmental Physics, Ruprecht-Karls-Universität Heidelberg, INF 229, 69120 Heidelberg, Germany ²Alfred-Wegener Institute Helmholtz-Center for Polar- and Marine Research, Telegrafenberg A45, 14473 Potsdam, Germany ³Department of Geology and Geophysics, Yale University, 210 Whitney Ave, New Haven, CT 06520, US ⁴Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721, US

⁵Department of Geography, University College London, London, WC1E 6BT, UK

List of Figures

S 1	Areas considered in the calculation of the modes of variability (Sect. 2 in the manuscript).	2
S 2	As in Fig. 5, but for years of anomalously low precipitation (one standard deviation below the average)	3
S 3	Composite of the precipitation anomalies (in mm/day) associated with low precipitation (left) and high pre-	
	cipitation (right) extremes in five regions with Mediterranean climates as in Suppl. Fig. S2 and Fig. 5 in the	
	manuscript.	4
S 4	Shown are the scaling exponents β for the selected experiments (rows) and for three variables of interest	
	(columns), fitted between timescales of 4 months and 20 years. White regions indicate zero scaling (i.e., "white"	
	spectra), reddish colors indicate positive scaling ("red" spectra showing increasing variance with timescale) and	
	blue-ish colors indicating negative scaling ("blue" spectra indicating decreasing variance with timescale)	5
S5	Change in the scaling of the spectral exponent β , as shown on figure S4, in the experiments with respect to the	
	<i>piControl</i> experiment	6

10

Figure S1. Areas considered in the calculation of the modes of variability (Sect. 2 in the manuscript).

Figure S2. As in Fig. 5, but for years of anomalously low precipitation (one standard deviation below the average).

Figure S3. Composite of the precipitation anomalies (in mm/day) associated with low precipitation (left) and high precipitation (right) extremes in five regions with Mediterranean climates as in Suppl. Fig. S2 and Fig. 5 in the manuscript.

Figure S4. Shown are the scaling exponents β for the selected experiments (rows) and for three variables of interest (columns), fitted between timescales of 4 months and 20 years. White regions indicate zero scaling (i.e., "white" spectra), reddish colors indicate positive scaling ("red" spectra showing increasing variance with timescale) and blue-ish colors indicating negative scaling ("blue" spectra indicating decreasing variance with timescale).

Figure S5. Change in the scaling of the spectral exponent β , as shown on figure S4, in the experiments with respect to the *piControl* experiment.