
Dear editor 
 
We have considered all the major and minor comments by the reviewers and revised the 
manuscript accordingly. Following relevant changes were done to the manuscript: 
 

• More accurate bias correction of the absolute values for daily maximum temperature 
(TX) using quantile-mapping (shown in updated Figure 4a) 

• The bias corrected TX and hence, values for percentage of AgPop region affected by 
extremely hot temperatures, have changed due to the new bias correction method 

• Added verification of bias corrected TX for 2018 using observational data sets and 
reanalysis (e.g. Fig. A3) 

• Inclusion of the Eastern Asia SREX region in the figures and throughout the text 
• Added discussion of model biases and uncertainties in observations of regional TX 

trends 
• New Table A1 in the appendix showing observed regional TS trends and their 

uncertainties using two global mean temperature data sets (GISTEMPv4, 
HadCRUT4) and two regional land temperature data sets (CRU TSv4.03, Berkeley 
Earth) 

• Included observed TX trends in Fig. 7 
• Updated Fig. 7 also to show the study time period (13-27 July) for the nudged CESM 

simulations 
• Clarification of the choice for the end date for the study period and the nudging input 

files as well as expanded discussion of the implications for regions that were affected 
by heat waves after this end date 

 
Please find below a point-by-point reply to the comments made by the reviewers and a 
marked up manuscript version showing the changes made. 
 
Sincerely 
Kathrin Wehrli (on behalf of all authors) 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 



Response to Anonymous Referee #1 
 
The concept of asking how a given meteorological event might have been exacerbated by 
global warming has been growing in popularity as an alternative to the more common 
approach of probabilistic event attribution. As first proposed by Trenberth et al.(2015 doi: 
10.1038/NCLIMATE2657) and Shepherd (2016 doi: 10.1007/s40641-016-0033-y), this 
‘storyline’ approach takes the atmospheric flow configuration leading to the event as given, 
and quantifies the impact of global warming conditional on that flow configuration. The 
arguments for why this may be useful are given in those two papers,but the general concept 
is that generality is sacrificed in order to obtain a more detailed and hopefully more 
informative statement of impact (since tied to a particular event).The storyline approach was 
first applied to synoptic-timescale weather phenomena, e.g. tropical cyclones, where the 
conditionality was applied either through the initial conditions in a forecast, or through the 
boundary conditions in a regional model. Here the storyline approach is applied to a multi-
week heat wave event, nudging the circulation in a global model to reanalysis, following the 
methodology previously used by the authors in their 2019 JGR paper to understand the role 
of soil-moisture feedbacks in heat waves. It is important to document applications of the 
storyline approach in different contexts so that we can learn to understand its strengths and 
weaknesses. From that perspective this study is welcome, and for the most part the results 
are carefully explained and clearly presented. I find Figure 7 to be the most interesting of all. 
I am happy to recommend publication, provided the following points are addressed: 
 
A1: We thank the reviewer for the positive and thoughtful evaluation of the manuscript. We 
appreciate the comments on the selection of the study regions and the bias correction of 
absolute maximum daily temperatures. We have followed the recommendations and 
computed new figures that will be included and discussed in the revised manuscript. We now 
use quantile-mapping to bias-correct our model simulations. The area affected by maximum 
daily temperature > 40°C has changed due to the new bias correction method. The new 
results agree better with observations and are qualitatively still in-line with earlier results. 
Below we will answer the specific questions of the reviewer. 
 

1. Figure 3 shows only temperature anomalies. It would be good to also show absolute 
temperatures (e.g. in the maps), so that the reader can see the extent of the temperature 
bias of the model. 
 
A2: We agree with the reviewer that biases of absolute temperature of the model and their 
correction is important. It is well-known that the majority of CMIP5 models, including CESM, 
overestimate summer temperatures in Northern Hemisphere midlatitudes (e.g. Mueller and 
Seneviratne, 2014, GRL; Wehrli et al., 2018, GRL; also shown for TXx in CESM in the latter). 
In the revised manuscript we add plots of absolute TX (mean over Jul. 13-27 2018) to 
Appendix Figure A3, which show the bias-corrected (using quantile mapping) CESM 
historical simulation against different references. Since it is known that model biases are 
large, we do not think it is necessary to show the magnitude of the bias. It is, however, 
crucial to discuss the bias correction and check the bias-corrected model against reference 
data sets. For reference we show a comparison of TXx > 40°C for the original model output, 
mean bias correction and quantile mapping (using both Berkeley-Earth and ERA-Interim as 
reference) against ERA-Interim and Berkeley Earth (see attachment/below).  
 
References:  
Mueller, B., and Seneviratne, S. I. (2014), Systematic land climate and evapotranspiration 
biases in CMIP5 simulations, Geophys. Res. Lett., 41, 128-134, 
doi:10.1002/2013GL058055.  
 



Wehrli, K., Guillod, B. P., Hauser, M., Leclair, M., & Seneviratne, S. I. (2018). Assessing the 
dynamic versus thermodynamic origin of climate model biases. Geophysical Research 
Letters, 45, 8471-8479. https://doi.org/10.1029/2018GL079220 
 

2. In some periods and regions, the differences between the nudged run and ERA-Interim 
anomalies in the time series in Figure 3 can exceed 1°C for extended periods. Do you have 
any idea why this would be the case, given that generally the differences are much smaller? 
 
A3: We can only speculate about the reason for the large differences between the nudged 
run and ERA-Interim temperature anomalies in Figure 3. The most striking case is NEU and 
we verified that the difference is largest during two shorter periods in mid- and end of June 
and the period shown in Figure 3 in the beginning of July. For these periods warm anomalies 
are overestimated, whereas during the rest of the year the differences are generally smaller. 
One possibility is that during the NH2018 heatwave soil moisture got depleted even in 
regions that are usually rich in moisture (so-called wet regime), which causes the land 
surface to react very sensitive to a further decrease in soil moisture and to incoming radiation 
(i.e. change from wet to transitional regime). If the model dries faster or transitions to a 
radiation-sensitive state earlier than ERA-Interim this might result in a more sensitive and 
more pronounced response in temperature. With decreasing moisture availability more 
incoming radiation will contribute to sensible heat flux and hence to increased temperature.  
 

3. Comparing Figure 1 and Figure 3, with the exception of the southern portion of NEU the 
study areas seem almost to be orthogonal to the areas of maximum temperature anomaly, 
and one of the most striking AgPop regions where there is a high temperature anomaly, 
eastern Asia, is not included in the study. Thus the choice of study areas seems quite odd. It 
would surely be straightforward to include a relevant east Asian SREX region for 
completeness, which would mitigate the European/North American bias of this study. 
 
A4: We agree with the reviewer that our choice of regions was biased towards Europe and 
North America. In the revised manuscript we include the Eastern Asian SREX region (EAS) 
in the figures and analysis. The region of Neufundland/Québec would also be interesting to 
examine. However, there is no SREX region that would be suitable. The Canada/ Greenland/ 
Iceland SREX region (CGI) encompasses large areas with temperature anomalies of the 
opposite sign (e.g. Greenland). We decided to not define a new region specifically for this 
case.  
Apart from the just-mentioned region in north-eastern America, we believe that the 
interesting regions for the 2018 heat wave are addressed in this study. The Mediterranean 
was not strongly affected by heat waves during summer 2018, which was discussed in other 
studies (e.g. Toreti et al., 2019). Therefore, we thought it is interesting to include this region 
in the analysis. Except for the scaling plots (Figure 7) and time series in Figure 3, results 
always show the entire Northern Hemisphere north of 25°N and the discussion is not limited 
to the SREX regions. 
 
Reference: 
Toreti, A., Belward, A.,Perez-Dominguez, I., Naumann, G., Luterbacher, J., Cronie, O., et al. 
(2019). The exceptional 2018 European water seesaw calls for action on adaptation. Earth's 
Future, 7, 652–663. https://doi.org/10.1029/2019EF001170 
 

4. In all three SREX regions of North America, the difference between the nudged run and 
either ERA-Interim or Berkeley for the maximum daily temperature anomalies (Figure A4), 
especially for some of the largest values, can be much larger than the difference of the mean 
daily temperature anomalies (Figure 3). What is the reason for that? And how does it affect 



your estimates of extreme temperature? This feature suggests that using the climatological 
mean TX to bias-correct the TX values may not be adequate. 
 
A5: One reason why differences of maximum temperature are larger than differences of 
mean daily temperature is that in the latter biases during the night can be balanced out by 
biases during the day and vice versa (overestimated/underestimated diurnal cycle can still 
show as correct daily mean). Connected to that, biases of mean daily temperature anomalies 
can affect biases of extreme temperatures (and vice versa) but they don’t have to in a direct, 
linear way. We agree that the bias-correction of TX should be treated in more details and 
several methods should be evaluated for their adequacy. In the revised manuscript we apply 
a quantile-mapping that was tested for two reference data sets (see next answer A6). 
 

5. The left column of Figure 4 apparently includes a bias correction of the model output.This 
is only mentioned in the figure caption, not in the methods or anywhere else. Since the bias 
correction is almost certain to affect the results of the study, which are framed relative to a 
fixed temperature threshold of 40°C, a much more detailed assessment of its effect, and the 
potential error incurred thereby, is required. It appears that the bias correction was simply an 
adjustment of the mean, which assumes that the model TX distribution is perfect. Can you 
support this assumption with evidence? As noted in the previous comment, the assumption 
would appear to be contradicted by your own results. Why did you not use quantile mapping 
or some other more detailed method,which would treat the tails differently from the mean? 
 
A6: We agree with the reviewer that the bias correction was not addressed sufficiently in the 
manuscript. The presented method was a day-of-year dependent correction of the mean (TX) 
bias. We tested the presented method against a quantile-mapping bias correction using a 91-
day moving window (hence, making it also dependent on the day-of-year). As could be 
expected, the quantile-mapped results reveal that the bias correction method strongly 
influences the results and the mean bias correction is less appropriate in our case. We 
discuss this in the revised manuscript. Figure 4 and the numbers in the manuscript are 
replaced by the results from the quantile-mapping. We verified that the quantile mapping 
leads to better results: TX RMSE for the study period (Jul. 13-27 2018) and all land areas 
north of 25°N is reduced from 7.48°C in the original model to 1.95°C using mean bias 
correction and to 1.45°C using quantile mapping (Berkeley-Earth as reference; qualitatively 
the same is true for the RMSE of the AgPop region). The area affected by temperatures > 
40°C discussed in the conclusion better match the reference data sets (Berkeley, ERA-
Interim, MERRA-2) when using the quantile mapping. Below we included a figure (Figure 1) 
to show the effect of bias correction on TXx. The values for the AgPop region > 40°C are 
9.1% and 8.5% for ERA-Interim and Berkeley-Earth, respectively. The bias corrected model 
simulates 8.8% and 9.3% area affected (depending on the reference used for the calibration 
of the quantile mapping), which is more accurate than the 20% we obtain for the mean bias 
correction. 
 



 
Figure 1: TXx for 13-27 July 2018 and fraction of the AgPop region experiencing maximum 
daily temperatures larger than 40°C for the original and bias-corrected model output as well 
as two reference data sets. 
 



6. In lines 9-10, you should mention also the percentage value for the actual event, as a 
reference. 
 
A7: We agree and adjusted the last line of the abstract to include the percentage value for 
the actual event (now changed to the new value from the quantile-mapped simulations). 
 
 
 
 
 

Response to Geert Jan van Oldenborgh 
 
This paper analyses what the heat waves of the NH summer of 2018 would look like in pre-
industrial, current, 1.5°C, 2°C, 3°C and 4°C climates with the same circulation prescribed. 
This prescription makes it impossible to estimate probabilities, but the dependence of local 
heat wave temperatures and other properties such as drought and solar radiation can be 
shown, and a scaling with the global mean temperature established. The results look solid 
and are certainly interesting, giving the important message that local temperature effects 
may be much stronger than the global mean temperature rise. It does not address the 
possible interconnectedness of the heatwaves around the globe in that summer beyond 
citing Kornhuber (2019b). There is only one major comment I have on the analysis, namely 
that it is only analyses climate model data and does not make any connection to 
observations beyond showing the patterns agree. Trends in heat waves are notoriously badly 
simulated by climate models and some comparisons of the modelled trends to the observed 
trends would make the paper and a discussion on possible discrepancies and how these 
would affect future trends much more useful for readers who want to apply the results to the 
real world rather than the model world. As an example, I computed the observed trends 
corresponding to Fig.7 from CRU TS4.04. The observed scaling factors are very different 
from the modelled ones, lower in North America and higher in Europe: 
WNA: 0.9±0.2 K/K, CNA: 0.2±0.3 K/K (see eg https://doi.org/10.1038/s41467-020-16676-w), 
ENA: 0.6±0.2 K/K. 
NEU: 1.2±0.3 K/K, CEU: 1.5±0.3 K/K, MED: 1.8±0.2 K/K. 
With the addition of observed trends and a discussion on the differences with climate models 
(and the minor comments below) the paper would be a useful contribution to the literature. 
 
B1: We thank Geert Jan van Oldenborgh for his comment on observed trends and agree that 
it should be discussed in the paper. Therefore, we made additional analyses using maximum 
daily temperatures for CRU TS4.03 and the Berkeley Earth Surface Temperature (BEST) 
project. As a reference for global mean temperature change (land+ocean) we used 
HADCRUT4 and GISTEMP. We estimated the slope using a linear regression for the years 
1901-2017 for all combinations of the 4 data sets. The uncertainty of the fit for the slope is 
estimated using the covariance matrix.  
The results are shown in the figure and table given below, which will both be included in the 
manuscript (the table in the appendix). The results indicate that, especially for CNA and 
ENA, the CMIP5 models overestimate the regional warming compared to observations, as 
documented in previous articles (e.g. Alter et al., 2017; Donat et al. 2017). Further articles 
also showed that the CMIP5 models tend to overestimate soil moisture-temperature coupling 
(Sippel et al. 2017, Vogel et al. 2018), which can lead to an overestimation of projected 
changes in temperature extremes (Vogel et al. 2018). These biases appear smaller in the 
newer CMIP6 models (Seneviratne and Hauser 2020). On the other hand, there can be large 
differences of the observed trend for some of the regions depending on the observational 
data sets used (e.g. MED and CEU; see Figure 2 below). We discuss the systematic biases 
in CMIP5 models together with the differences and uncertainties of the observational data 
sets in the paper. 



We are not sure which exact method the reviewer used to estimate observed scaling factors, 
i.e. which reference he used for global mean temperature, whether linear regression was 
used, which time periods were considered, and whether he included ocean grid points within 
the given SREX regions (which we do not for the regional temperatures). Therefore, our 
results differ from the numbers given in the reviewer comment (see Table 1 below), although 
they agree on a general overestimation of regional warming per degree of global warming in 
the CMIP5 models for North America. 
 
Both global temperature data sets (GISTEMP and HadCRUT4) merge near-surface 
temperatures over land with SSTs over the ocean, which leads to an inconsistency with how 
global mean temperature is commonly determined for models by taking near surface 
temperature over ocean and land (as is also done here; see also Cowtan et al., 2015). 
Therefore, 1 degree of global mean temperature increase in the observations does not 
correspond to 1 degree from the models (see also IPCC, 2018). We discuss this issue in the 
paper. 
 
References:  
Alter, R. E., Douglas, H. C., Winter, J. M., & Eltahir, E. A. B. (2018). Twentieth century 
regional climate change during the summer in the central United States attributed to 
agricultural intensification. Geophysical Research Letters, 45, 1586-1594. 
https://doi.org/10.1002/2017GL075604 
 
Cowtan, K., Hausfather, Z., Hawkins, E., Jacobs, P., Mann, M. E., Miller, S. K., Steinman, B. 
A., Stolpe, M. B., and Way, R. G. (2015), Robust comparison of climate models with 
observations using blended land air and ocean sea surface temperatures, Geophys. Res. 
Lett., 42, 6526-6534, https://doi.org/10.1002/2015GL064888. 
 
Donat, M.G., A.J. Pitman, and S.I. Seneviratne (2017). Regional warming of hot extremes 
accelerated by surface energy fluxes, Geophys. Res. Lett., 44, 
https://doi.org/10.1002/2017GL073733 
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response to the threat of climate change, sustainable development, and efforts to eradicate 
poverty [Masson-Delmotte, V., P. Zhai, H.-O. P.rtner, D. Roberts, J. Skea, P.R. Shukla, A. 
Pirani, W. Moufouma-Okia, C. P.an, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. 
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Available from 
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Seneviratne (2017). Refining multi-model projections of temperature extremes by evaluation 
against land-atmosphere coupling diagnostics. Earth Syst. Dynam., 8, 387-403, 
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Figure 2: As Fig. 7 in the paper but added observed trends. The solid green lines correspond 
to the approximate observed warming while dashed green lines indicate the extrapolation 
beyond the observed warming. 
 
 
 

Table 1: The slopes for all combinations of the observational data sets and their uncertainties 
(one standard deviation). 

 



Minor comments 

l.16 The Koreas were also very badly affected. 
 
B2: We included the Korean Peninsula in the list of affected regions. 
 
 
l.78 How does the end date of July 27 affect the results? Although this captures the largest 
area with heat, individual regions had heat waves after this date: North Korea experienced its 
worst heat the first days of August. The Benelux had a second heatwave in early August and 
the heat on the North American west coast was most severe during the second week of 
August. 
 
B3: We agree that with the presented study we cannot make statements about heat waves 
after 27 July 2018, which were more intense in some locations. The choice was also made 
due to the availability of input files for the atmospheric nudging. Therefore, we cannot provide 
numbers on how the results are affected by the chosen time period. We changed the text in 
the results and discussion as well as the conclusions of the manuscript to mention the 
regions affected by heat waves after July 27 and to discuss this shortcoming of our study. 
 

l.162 I would propose "almost simultaneous", there were weeks differences between these 
heat waves. Please also mention that there were severe heat waves after the cut-off date. 
 
B4: We agree and use the term “almost simultaneous” as suggested. Also we mention that 
some regions experienced severe heat waves after the cut-off date (see also answer B3). 
 

l.174 My Newfie friends prefer "Newfoundland". 
 
B5: We thank the reviewer for spotting and correcting this. 
 

l.201 Please mention that in contrast to the CMIP5 model simulations, observed precipitation 
has increased in CNA over the last century. 
 
B6: We added that the simulated trends are of different sign than the observed summer 
precipitation trends for CNA. 
 

l.221 Why do you switch from a two-week period to a monthly period? The properties of 
short-duration heat waves are different from monthly anomalies. Please justify this choice. 
 
B7: For the CMIP5 models the monthly period was chosen for two reasons: First, as the 
CMIP5 models do not have a prescribed ocean or nudged atmosphere, there is more 
variability which is better represented using a longer sample and it is also not necessary to 
have the exact days as every day of July matches conditions of the study time period. 
Secondly, it is more practicable to process the monthly instead of the daily data. For the 
nudged experiments in our study we agree that the choice of the time period and its length 
could have been expected to affect the results, although we find that the effects are actually 
very small. To assess this point, we repeated the analysis plotting only July 13-27 for CESM 
nudged. The results show that changing the monthly to a two-week period for the nudged 
experiments does not substantially impact the results (see Figure 3 below). The change is 
largest for ENA where a reduction of the slope can be found. However, results are still 
qualitatively the same. 



 
Figure 3: Same as Figure 7 in the paper but showing July 13-27 for the nudged simulations 
(dark blue; stippled) and July 1-27 (dark blue; solid). 
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Abstract. Extreme temperatures were experienced over a large part of the Northern Hemisphere during the 2018 boreal summer

(hereafter referred to as “NH2018 event”), leading to major impacts to agriculture and society in the affected countries. Previous

studies highlighted both the anomalous atmospheric circulation patterns during the event and the background warming due to

human greenhouse gas emissions as main drivers for the event. In this study, we present Earth System Model experiments

investigating different storylines of the NH2018 event given the same atmospheric circulation and alternative background5

global warming for: no human imprint, the 2018 conditions, and different mean global warming levels (1.5◦C, 2◦C, 3◦C, and

4◦C). The results reveal that the human-induced background warming was a strong contributor to the intensity of the NH2018

event, and that resulting extremes under similar atmospheric circulation conditions at higher levels of global warming would

reach very dangerous levels. About 32% (61%
::::::::
Compared

::
to

:::
9%

::::::
during

:::
the

:::::::
NH2018

::::::
event,

:::::
about

::::
13%

:::::
(34%) of the inhabited

or agricultural area in the investigated region would reach
::::
daily maximum temperatures over 40◦C under 2◦C (4◦C) of global10

warming and similar atmospheric circulation conditions.

Copyright statement. TEXT

1 Introduction

During the 2018 boreal summer, large parts of the Northern Hemisphere experienced extreme temperatures, leading to major

impacts to agriculture and society in the affected countries (Vogel et al., 2019). The event (hereafter referred to as “NH201815

event”) was associated with near-simultaneous heat waves on three continents, including North America, Western and Northern

Europe, as well as Japan
:::
and

:::
the

:::::::
Korean

::::::::
Peninsula (Kornhuber et al., 2019b; Vogel et al., 2019). Previous studies highlighted

both the anomalous atmospheric circulation patterns during the event and the background
:::::
global warming due to human

greenhouse gas emissions as main drivers for the event (Drouard et al., 2019; Kornhuber et al., 2019b; Toreti et al., 2019; Vogel

et al., 2019). The NH2018 event was characterized by a hemisphere-wide wavenumber 7 circulation pattern, which was also20

observed during the European heat waves of 2003, 2006 and 2015 (Kornhuber et al., 2019b). A strong positive mode of the

North Atlantic Oscillation contributed significantly to the extreme summer conditions in Europe by amplifying the weather

1



anomalies induced by the wavenumber 7 pattern (Drouard et al., 2019). An analysis of simulations from the 5th phase of

the Coupled Model Intercomparison Project (CMIP5, Taylor et al., 2012) showed that the total area affected by hot extremes

during the NH2018 event, despite being unprecedented in the historical record, was actually consistent with the present-day25

level of global warming (Vogel et al., 2019). Indeed, it had approximately a 16% probability of occurrence under present

global warming in the CMIP5 simulations (Vogel et al., 2019). However, no studies were conducted so far to disentangle

the contribution of the anomalous circulation patterns vs. background global warming for the climate anomalies during the

NH2018 event.

In this study, we present numerical experiments investigating different storylines of the NH2018 event given alternative30

background global warming but the same atmospheric circulation anomalies. While it cannot provide information on prob-

ability, the storyline approach allows to explore uncertainty of future climate and the consequences of a specific event in

order
::
for

:::::::
different

:::::
levels

:::
of

:::::
future

::::::
climate

::::::::
warming to improve understanding of the driving factors involved (Hazeleger et al.,

2015; Shepherd et al., 2018). The alternative background global warming conditions applied in the experiments include: a)

no human imprint (i.e. natural/ pre-industrial climate conditions), b) 2018 conditions (corresponds to approximately 1.1◦C of35

global warming in the CMIP5 multi-model mean), c) 1.5◦C, d) 2◦C, e) 3◦C and, f) 4◦C of global warming. The atmospheric

circulation in the experiments is nudged to the observed wind patterns during the NH2018 event following the approach of

Wehrli et al. (2019)
:::::::::::::::
Wehrli et al. (2018). Hence, all of the experiments include the same circulation patterns but different back-

ground global warming. These experiments are of particular relevance since events associated with the type of circulation

patterns from the NH2018 events could lead to high risks of crop failures across several breadbasket regions of the world40

(Kornhuber et al., 2019a).

2 Model and methods

Global climate model simulations are conducted with the Community Earth System Model version 1.2 (CESM, Hurrell et al.,

2013). Historical sea surface temperatures (SSTs) and sea ice fractions are prescribed using transient monthly observations

from a merged product combining the Hadley Centre sea ice and SST data set, version 1 (HadISST1) up to 1981 with the45

weekly optimum interpolation SST analysis version 2 by the National Oceanic and Atmospheric Administration (NOAA

OIv2) thereafter (Hurrell et al., 2008)
::::::::::::::::::::::::::::::::::::
(Hurrell et al., 2008, NOAA OIv2 hereafter). We produce SSTs and sea ice consistent

with the different background climates as described in Sect. 2.4 and Sect. 2.5. To simulate the Earth’s atmosphere, CESM

utilizes the Community Atmosphere Model version 5.3 (CAM5, Neale et al., 2012). Here we couple CAM5 to a nudging

module to control the atmospheric circulation as described in Sect. 2.2. For the representation of land surface processes,50

CESM uses the Community Land Model version 4 (CLM4, Lawrence et al., 2011; Oleson et al., 2010). CAM5 and CLM4

are both run on 0.9◦ x 1.25◦ horizontal resolution with 30 layers up to 2 hPa for the atmospheric component (CAM5) and

10 hydrologically-active soil layers down to 3.8 m for the land component (CLM4). Solar forcing follows the model default

historical data until the end of 2005 and historical and future simulations of the forcing compiled for CMIP6 thereafter, as in

Wehrli et al. (2019) (see Matthes et al., 2017, for solar forcing)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Wehrli et al. (2019, for CMIP6 solar forcing see Matthes et al., 2017).55
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Aerosols and land use/ vegetation follow CMIP5 recommendations for the 20th century simulation until the end of 2005 and the

representative concentration pathway
::::::::::::
Representative

::::::::::::
Concentration

:::::::
Pathway

:
8.5 thereafter (RCP8.5, van Vuuren et al., 2011).

Likewise, greenhouse gases (GHGs) follow CMIP5 historical recommendations and then after 2006
::::
2005 they are prescribed

from observations for CO2, CH4, N2O, and RCP8.5 for other GHGs. Observed global means of CO2, CH4, and N2O were ob-

tained from NOAA (CO2: Dlugokencky and Tans, 2019; CH4: Dlugokencky, 2019; and N2O: NOAA Earth System Research60

Laboratory, 2019).

Each experiment is run for four years; the
:::
thus

:::
for

:::
the

:::::::::
historical

:::::::::
simulation

:::
the first three years (2015–2017) are used as

spin-up, and 2018 is analysed. A climatology for the historical simulations is obtained from a longer simulation that covers the

years 1981–2010.65

2.1 Natural and warming scenarios

The NH2018 event serves as a reference to investigate its resulting characteristics in hypothetical conditions, or storylines,

with the same atmospheric circulation but different levels of global warming. In addition to the historical simulation we run

one simulation with pre-industrial-like conditions (“natural”) and four simulations that follow global warming scenarios. An

overview is given in Table 1. For the natural simulation volcanic aerosols and solar radiation are set to historical conditions,70

whereas we use pre-industrial GHGs, aerosols and SSTs (Sect. 2.4). The four warming scenarios are designed to match 1.5◦C,

2◦C, 3◦C and 4◦C global mean warming with respect to pre-industrial conditions (1861–1880) of the CMIP5 multi-model-

mean (MMM). We will hereafter refer to these experiments as warming15, warming20, warming30 and warming40. Aerosols,

GHGs and SSTs follow RCP8.5. The actual warming of the scenarios slightly differs from the target values, which will be

discussed in Sect. 4. All simulations are nudged towards 2015–2018 atmospheric circulation (1981–2010 for the climatology).75

2.2 Nudging of the atmospheric circulation

To impose the large-scale circulation of the event year (2018) in the model, we use atmospheric nudging of the horizontal

winds. The approach is described and validated in Wehrli et al. (2018) and Wehrli et al. (2019). The horizontal winds are

relaxed toward observations using a height-dependent nudging function (for the profile see Wehrli et al., 2018). At the surface

the nudging strength is set to zero, meaning that the land surface can interact with the atmosphere through surface turbulent80

fluxes, resulting in balanced surface climate and winds. The large-scale circulation (mostly above 700 hPa) is forced to follow

the observations and thus ensures that the observed large-scale weather patterns are reproduced (see Kooperman et al., 2012;

Wehrli et al., 2018; Zhang et al., 2014). As a proxy for the observed winds, we use zonal and meridional 6-hourly wind fields

from the ERA-Interim reanalysis (Dee et al., 2011). The nudging of the circulation ends on July 27th 2018 due to availability

of the input fields.85
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Table 1. Overview of simulations

Name Year Atmospheric CMIP5 MMM Actual warming

forcing warming [◦C] [◦C]

climatology 1981–2010 historical+RCP8.5 – –

historical 2018 historical+RCP8.5 1.12 1.24

natural 2018 pre-industrial+historical 0.0
:::
0.00

:
0.0

:::
0.00

warming15 2028 RCP8.5 1.5
:::
1.50

:
1.60

warming20 2042 RCP8.5 2.0
:::
2.00

:
2.18

warming30 2064 RCP8.5 3.0
:::
3.00

:
3.27

warming40 2085 RCP8.5 4.0
:::
4.00

:
4.39

Year corresponds to the year analysed in this study and atmospheric forcing refers to the solar, aerosol, and greenhouse

gas forcing. The warming of the CMIP5 multi-model mean (MMM) is given relative to a pre-industrial time period

(1861–1880) and corresponds to the target warming level for the respective simulation years. Per design the temperature

for the natural simulation is set as reference for no global warming. The actual warming in the CESM simulations differs

from the CMIP5 MMM.

2.3 Determination of warming levels in CMIP5

To produce the ocean fields for the natural and warming scenarios we use model output from the historical and RCP8.5 emis-

sions scenarios from the CMIP5 data archive. We use one simulation per model (“r1i1p1”). To find the years corresponding

to the chosen warming scenarios in the CMIP5 ensemble we use near-surface air temperature (“tas”). The pre-industrial refer-

ence period is given as 1861–1880. Warming levels with respect to pre-industrial are then determined by taking the difference90

between annual global mean temperature from RCP8.5 and pre-industrial for each model individually. A 21-year centred run-

ning mean is applied to the differences and we then compute the MMM. Following this approach, we obtain a CMIP5 MMM

warming of 1.12◦C for 2018. The 1.5◦C, 2◦C, 3◦C and 4◦C MMM warming levels are reached in 2028, 2042, 2064 ,
:::
and 2085,

respectively.

2.4 Sea surface temperatures representative of prescribed warming levels95

To derive SSTs consistent with the different background climates we add delta SST fields to the observed monthly SSTs. The

delta SST fields are computed from the CMIP5 SST fields (“tos”), which were regridded to a common grid of 1◦ x 1◦. We first

apply a 21-year running mean over the monthly merged historical + RCP8.5 tos data and then average over the models. Using

these
:::
This

::::
way,

:
temporally-smoothed monthly fields between 1979–2020 and for

:::
are

::::::
created

:::
for

::::
2018

:::
(as

::::
well

::
as

:::
for

:::
the

:::::
three

:::
year

::::::::
spin-up:

::::::::::
2015–2017)

::::
and

:::
the

:::::
years

::::::::
matching

:::
the

::::::::
warming

:::::
levels:

:
2028, 2042, 2064 and 2085 ,

:
(as well as

::::
three

:::::
years100

::::::
spin-up

:::
for

:::::
each).

::::::::
Transient

:::::
delta

::::
SSTs

:::
for

:::
the

::::::::
warming

::::::::
scenarios

:::
are

::::
then

::::::::
computed

:::
by

:::::::::
subtracting

:::
the

::::::::::::::::::
temporally-smoothed

::::
fields

:::
for

:::
the

::::::::::
present-day

::::::
period

:::::::::::
(2015–2018)

::::
from

:::
the

:::::
fields

:::
for

:::
the

::::::::
warming

:::::
levels

::::
(e.g.

::::::::::
2025–2028

:::
for

:::
the

:::::
1.5◦C

::::::::
warming

::::::::::
simulation).

::
A

:::::::
monthly

::::::::::
climatology

::
is

::::::::
computed

::::
over

:
the monthly climatology of the pre-industrial tos fields we compute the
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transient delta SSTs by taking the differences
:::::::
reference

::::::
period

:::::::::::
(1861–1880)

:::
and

:::
the

:::::
delta

:::::
SSTs

:::
for

:::
the

::::::
natural

:::::::::
simulation

:::
are

:::
then

:::::::::
computed

::
by

::::::::::
subtracting

:::
the

::::::::::
present-day

:::::
period

:::::
from

:::
this

:::::::::::
pre-industrial

::::::::::
climatology. These delta SSTs (see also Fig. 2

:
a)105

are then added to the NOAA OIv2 historical data
:::::::
historical

:::::
SSTs

::
of

::::
the

:::::
model

:
to create the SSTs that are prescribed in our

scenarios. The detailed step-by-step procedure is given in the Appendix (B1).

2.5 Generation and prescription of sea ice

Although it would be possible
::
to derive a delta field for sea ice similarly to the SSTs, this would result in a sea ice field that is not

in balance with the new SSTs. Therefore, we derive a relationship between sea ice fraction anomalies and SST anomalies with110

respect to a climatology, similarly as in the “Half a degree additional warming, prognosis and projected impacts” experiments

(HAPPI; Mitchell et al., 2017). Monthly SST and sea ice anomalies are computed for the years 1996–2015 from the climatology

of the same years, using ocean observations from NOAA OIv2. A linear regression is then fitted to the anomalies for each

month-of-the-year, longitude and for both hemispheres separately. The slope and intercept are smoothed zonally first, before

they are then used to compute sea ice anomalies for the natural and warming scenarios as a function of the delta SST field.115

As an extension of the method applied in the HAPPI experiments we only consider grid cells that undergo a change of sea ice

fraction of over 50% for the month in consideration. This ensures that grid cells that are not experiencing enough variability

during 1996–2015 are excluded from the analysis. For example, a grid cell close to the north pole
:::::
North

::::
Pole

:
may always

have a sea ice fraction larger than 90% while the ocean temperature usually does not change at all
:::::::
changes

::::
only

:::::::::
minimally

and does therefore not allow for a robust estimation of the slope and intercept
::
of

:::
the

::::::::::
relationship. Consequently, the given grid120

cell would not melt even under very high global warming. To compute the regression of a grid cell we pool SST and sea ice

anomalies of all valid grid cells that are within three grid cells to the west and to the east and along the meridian
::::::::
meridians

in the same hemisphere. Should no valid grid cells be in this area, more grid cells in the longitudinal direction are included

gradually (extending box approach).
::
If

:
a
:::::::::
maximum

::
of

:::
11

::::
grid

::::
cells

::
to

:::
the

:::::
west

:::
and

::
to

:::
the

::::
east

::
is
:::::::
reached

::::
and

::
no

:::::
valid

::::
grid

::::
cells

:::
are

:::::
found,

::
a
::::::::::
hemispheric

:::::
linear

::
fit

::
is

:::::
used. The slope and intercept from this regression are smoothed along the longitude125

::::::
zonally using a 500 km smoother as is done for HAPPI. We further tested an approach where not all grid cells along a meridian

were included, but up to two grid cells to the north, south, east, and west of a specific grid cell (5 x 5 grid cells in total). The

results are very similar to the first method (not shown). We choose the first method because the resulting sea ice field is overall

smoother. The new set of SSTs and sea ice for each scenario is adjusted according to the constraint of Hurrell et al. (2008),

which ensures that (i) sea ice fraction is 100% at −1.8◦C, and SSTs do not get colder than that, (ii) there is no sea ice at water130

temperatures warmer than 4.97◦C, and (iii) that within this temperature range the maximum sea ice fraction is limited by a

temperature-dependent function.

We contrast our method to the one developed for the “Climate of the 20th Century Plus Detection and Attribution” project

(C20C+DA; Stone et al., 2019). For this method, a linear relationship is determined using absolute values of SST and
:::
sea ice

coverage instead of anomalies. The regression is calculated by pooling all ice-covered grid cells of the Northern and Southern135

Hemisphere, respectively. Ice coverage is binned in 100 equally-sized bins and the median SST for each ice bin is determined.

The line through the centre of mass of all the bin medians is then estimated by a linear fit. This method was developed to
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compute sea ice estimates for natural historical simulations (i.e. a cooling). Therefore, it comes with an algorithm that prevents

ice from melting and only adds new ice where SSTs cool. As we require a method that works for positive and negative delta

SSTs we do not implement the full algorithm but only make use of the linear relationship. For 20C
:::::
C20C+DA the years 2001–140

2010 were used to determine the relationship. For consistency we take the years 1996–2015. Again, we apply the constraint of

Hurrell et al. (2008). We hereafter refer to this method as SP equation
:
as

:::
the

:::::
C20C

:::::::
method.

2.6 Data sets and data analysis

The atmospheric nudging uses ERA-Interim 6-hourly horizontal wind fields. Mean daily near-surface temperature fields are re-

trieved from ERA-Interim for comparison to our results. Observed daily maximum near-surface temperatures (TX) are obtained145

from ERA-Interim and Berkeley Earth (Rohde et al., 2013a, b). Mean daily
::::::::::
near-surface

:
temperature, TX and precipitation are

retrieved from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2, Gelaro et al.,

2017). The observations/ reanalysis data is
::::
data

:::
sets

:::
are

:
remapped to the resolution of CESM using second-order conservative

remapping (Jones, 1999). Results are shown for the absolute values of the variables as well as for anomalies with respect to the

1981–2010 climatology.150

:::
We

:::::::
estimate

:::::::
observed

:::::::
regional

::::::
trends

::
in

:::
TX

::
as

::
a

:::::::
function

::
of

:::::
global

:::::
mean

:::::::::::
temperature.

:::::::::
Therefore,

::
we

::::
use

:::
TX

::::
from

::::::::
Berkeley

::::
Earth

::::
and

::
the

:::::::
Climate

::::::::
Research

::::
Unit

::::::
(CRU)

:::
data

:::
set

::::
CRU

:::::::
TSv4.03

:::::::::::::::::
(Harris et al., 2020).

:::
For

::::::
global

::::
mean

::::::::::
temperature

:::::::::::
GISTEMPv4

::::::::::::::::::::::::::::::::::::::::
(GISTEMP Team, 2020; Lenssen et al., 2019) and

::::::::::
HadCRUT4

::::::::::::::::::::
(Morice et al., 2012) are

:::::
used.

:::
The

:::::::
regional

:::::::
averages

:::
are

::::::::
computed

::::
using

:::
the

:::::::
original

:::::::::
resolution

::
of

::::
CRU

::::::::
TSv4.03

:::
and

::::::::
Berkeley

:::::
Earth.

::::
The

:::::::
regional

:::::
trends

:::
are

:::::::::
computed

:::::
using

:
a
:::::
linear

:::::::::
regression

::
for

::::::::::
1901–2017.

::::::::::::
Uncertainties

::
of

:::
the

:::::
trend

:::
are

::::::::
estimated

:::::
using

:::
the

:::::::::
covariance

::
of

:::
the

::::::::
residuals

::
of

:::
the

:::
fit.

::::
This

:::::
gives

::::
four

:::::
trend155

::::::::
estimates,

:::::::
whereof

:::::
only

:::
two

:::
are

::::::
shown

:::::
later

:::
on,

::::::::::::
corresponding

::
to
::::

the
:::::::
steepest

:::
and

::::::
flattest

:::::::::
estimates

:::
for

::::
most

:::::::
regions.

::::
All

:::::::
possible

:::::::
estimates

::::
and

::::
their

:::::::::::
uncertainties

:::
are

:::::
given

::
in

:::::
Table

:::
A1.

2.7
:::

Bias
:::::::::
correction

:::::::
Absolute

::::::
values

::
for

::::
TX

::
are

::::::::::::
bias-corrected

:::::
using

::::::::
empirical

:::::::
quantile

::::::::
mapping,

:::::
which

:::::::
corrects

:::
the

:::::
entire

:::::::::
distribution

:::
of

:
a
:::::::
variable

::
as

::::::::
described

::
in
:::::::::::::

Déqué (2007).
:::
We

:::::
apply

:::
the

::::::::::::::
implementation

::
by

::::::::::::::::::
Rajczak et al. (2016),

::::::
which

::
is

::::::::
available

::
in

:::
the

::
R
::::::::

package160

:::::::::
qmCH2018

::::
(see

::::
also

:::::
“Code

::::::::::::
availability”).

:::
We

::::::
choose

:::::::::
1981–2015

::
as

:::
the

:::::::::
calibration

::::::
period

:::
and

:::
the

:::::::
quantile

:::::::
mapping

:::::::::
correction

:
is
:::::::::
calibrated

:::
for

::::
each

:::::::::
day-of-the

::::
year

:::::
using

:
a
::::::
91-day

:::::::
moving

:::::::
window.

::::
The

::::::
model

::::::::::
distribution

:
is
:::::::::

translated
::
to

:::
the

::::::::::
distribution

::
of

:
a
::::::::
reference

:::::
using

:::
99

::::::::
quantiles.

:::
For

::::::
model

::::::
values

:::
that

:::
are

:::::
more

::::::::
extreme,

:::::::
quantile

:::::::
mapping

::::
uses

:::
the

:::::::::
correction

:::::::
function

:::
of

::
the

::::
99th

:::::
(1st)

:::::::
quantile

::
to

::::::
correct

:::::
values

:::::
above

:::::::
(below)

:::
the

::::::::
calibrated

::::::::
quantiles

:::::::::::::::::::
(Themeßl et al., 2012).

:::
We

::::
used

::::::::
Berkeley

:::::
Earth

:::
and

:::::::::::
ERA-Interim

::
as

::::::::
reference

:::
for

:::
the

::::::::
modeled

::::
TX.

::
In

:::
the

::::::::
following

::::::
results

:::
for

::::::::
Berkeley

:::::
Earth

:::
are

::::::
shown

:::
but

:::
the

::::::
results

:::
for165

:::::::::::
ERA-Interim

::
are

:::::
very

::::::
similar

::::::::
(differing

::
by

::::
less

::::
than

::::
2.5%

:::
for

:::
the

:::::::
regional

::::::::
averages

::
of

:::
the

::::
study

:::::::
region).

:

:
A
:::::
mean

::::
bias

::::::::
correction

:::::::
specific

::
to

:::
the

:::::::::
day-of-year

::::
was

:::::
tested

:::
but

::::::
results

::::
were

:::::
found

::
to

:::::
agree

:::
less

::::
with

:::
the

::::::::
reference

:::
data

:::::
from

:::::::::::
ERA-Interim

:::
and

::::::::
Berkeley

::::
Earth

::::
(not

:::::::
shown).

::::
Note

::::
that

::::
only

:::::::
absolute

:::
TX

::::::
values

:::
are

::::::::::::
bias-corrected.

::
In

:::::
cases

:::::
where

:::::::::
anomalies

::
are

::::::
shown

:::
for

:::
TX

::
as

::::
well

::
as

:::::
other

::::::::
variables,

:::
no

::::::::
correction

::
of

:::
the

:::::::
original

::::::
model

:::::
output

::
is

:::::::::
performed.

:

6



Figure 1. Study regions. Shown by the grey shading are regions north of 30◦N with high population density and/ or high importance for

agriculture (AgPop). The black outlines mark the location of selected SREX regions in Americaand ,
:
Europe

:::
and

::::::
Eastern

::::
Asia.

::::
Note

:::
that

:::
the

:::::
Eastern

::::
Asia

:::::
region

:::::
(EAS)

:::
was

:::::::
cropped

:::
and

::::::
extends

:::
only

::::
from

:::::
25◦N

::
to

::::
50◦N.

2.8 Study regions170

We show results only north of 25◦N. For regional averages we choose the regions defined in the IPCC Special Report on

Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX; Seneviratne et al.,

2012). We show results for the European and American regions as
::::
well

::
as

:::
the

:::::::
Eastern

::::
Asia

::::::
region

:::::
(EAS)

:::
as highlighted in

Fig. 1. In addition, we
::::
Note

::::
that

:::
the

:::::::
southern

:::::
extent

:::
of

::::
EAS

:::
was

:::::::
cropped

:::::
such

:::
that

::
it

::::
only

::::::
extends

:::::
from

:::::
25◦N

::
to

:::::
50◦N.

::::::
Ocean

:::
grid

::::::
points

:::
are

::::::::
excluded

::::
from

:::
the

::::::::
analysis.

:::
We

::::
also focus on a region north of 30◦N that is especially vulnerable to extreme175

conditions because it is either densely populated (more than 30 km-2) and/ or an important area for agriculture. We define this

“human-affected and human-affecting” region following Seneviratne et al. (2018) and Vogel et al. (2019) and refer to it as

AgPop (see Fig. 1).

3 Results and discussion

We first evaluate the sea ice reconstruction method introduced in this study against observed sea ice and compare the perfor-180

mance to the SP equation
::::
C20C

:::::::
method

:
in Sect. 3.1. Then we present the results for the natural and warming scenarios in

Sect. 3.2 and discuss their implications for possible future events. In Sect. 3.3 we discuss how TX scales with an increase in

global mean temperature and if the NH2018 atmospheric circulation influences this relationship.

3.1 Evaluation of sea ice reconstruction

Historical sea ice fields are computed
:::::::
modelled

:
using the methods described in Sect. 2.5 and evaluated against NOAA OIv2185

ice (see Appendix Fig. A1). While the method using the SP equation
::::
C20C

:::::::
method generally overestimates sea ice, over- and

underestimation nearly balance out when taking a time average over multiple years for the method presented here .
:::
(Fig.

:::::::
A1a,c).

Hence, the
:::::
spatial

:
root mean squared error (RSME) for ice grid cells is < 1% using the new method while it is around 5% using

the SP equation
::::
C20C

:::::::
method. For a single year the errors are larger, 5.6% and 8.5%

:::
and

:::::
5.6% for the year 2018 for the new

method and SP, respectively .
:::::
C20C

:::
and

::::
new

:::::::
method,

::::::::::
respectively

:::::
(Fig.

::::::
A1b,d).

:
It is not possible to evaluate the performance190
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Figure 2. Change in SST and sea ice coverage with respect to historical conditions from NOAA OIv2 for the natural (left), warming20

(middle) and warming40 (right) scenarios. (top row
:
a) Average delta SST for 2018 under the three climate scenarios. (centre row

:
b) Average

sea ice coverage change for 2018 under the three climate scenarios using the sea ice estimation method developed in this study. (bottom

row
:
c) same

::::
Same as in the centre row

::
(b) but using the SP equation

::::
C20C

::::::
method

:
to compute the change.

of the sea ice reconstruction for the natural and warming scenarios. The two methods suggest a change of +10% to +14%

in the annual mean with respect to currently observed sea ice fraction for the natural scenario, −4% to −7% for the 2◦C

warming scenario and −26% to −27% for 4◦C warming (Fig. 2,
:::
b,c, see Appendix Fig. A2 for the absolute ice fields for the

new method). Note that the two methods show larger differences for the natural scenario but agree more
::::
better

:
for the warming

scenarios.195

3.2 Storylines for the NH2018 event

During late June and the first weeks of July 2018 an exceptionally strong and persistent Rossby wavenumber 7 pattern domi-

nated the weather in the Northern Hemisphere (Drouard et al., 2019; Kornhuber et al., 2019b). The wave pattern was associated
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with
:::::
almost

:
simultaneous extreme events across the entire hemisphere including heat waves in the western United States, east-

ern Canada, western Asia and large areas in Europe (Kornhuber et al., 2019b; NOAA, 2018; Vogel et al., 2019). In Europe,200

the July temperature anomaly was ranked second highest on record, just one hundredth degree Celsius behind 2015 (NOAA,

2018). Vogel et al. (2019) show that the area of important “human-affected and human-affecting” regions (AgPop) experienc-

ing simultaneous heat waves peaked at the end of July. Hence, we focus here on the month of July 2018 and especially on a

15-day period at the end of the month from July 13 to 27 (which also corresponds to the last days of our simulations where the

atmospheric nudging is available).
::::
Note

::::
that

:::::
strong

::::
heat

::::::
waves

:::
also

::::::::
occurred

::::
after

::::
July

:::
27,

::::::
which

::::
were

::::::
locally

:::::
more

:::::::
extreme205

:::
than

::::
the

:::
heat

::::::
waves

::::::::
examined

::::::
during

::::
our

::::
study

:::::::
period.

:::
For

:::::::
example

:::
in

:::::
Spain

:::
and

::::::::
Portugal

:::
the

::::
heat

:::::
wave

::::::
peaked

::::::
during

:::
the

:::
first

:::::
week

::
of

::::::
August

::::::::::::::::::::::
(Barriopedro et al., 2020),

:::
the

::::::::::
Netherlands

::::::::::
experienced

:
a
::::::
second

::::
heat

:::::
wave

::::::
starting

::
at

:::
the

:::
end

:::
of

:::
July

::::
and

:::::
lasting

:::
for

:::
the

::::
first

:::::
week

::
of

::::::
August

:::::::::::::
(KNMI, 2020),

:::
and

::::::
South

:::::
Korea

:::::::
reported

::::
new

::::::
record

::::
daily

:::::::::
maximum

:::::::::::
temperatures

::
in

:::
the

::::::::
beginning

::
of

::::::
August

::::::::::::
(KMA, 2019).

:

Comparison of the temperature anomaly to ERA-Interim shows that the daily and 15-day mean anomalies are well repre-210

sented in the nudged historical CESM simulation (Fig. 3). Similar results are obtained for MERRA-2 (not shown). For 13 to 27

July 2018 the mean daily temperature in the historical simulation is on average 5◦C warmer than the climatology (1981–2010)

for large areas in Scandinavia and some smaller areas in Germany, Belgium and the Netherlands (maps in Fig. 3
:
i). In Northern

America temperatures are 2.5
:::::
2.5◦C

:
to 5◦C above average for Neufundland

:::::::::::
Newfoundland, Québec, Texas and northern Mex-

ico as well as most
::::
large

:::::
parts of the Western North American (WNA) region

:::
and

::::
EAS

:::::::
regions. An intensification of the hot215

anomaly can be seen for the Central European (CEU) and Northern European (NEU) regions during July ,
::::
(Fig.

:::::
3d,e), whereas

in the AgPop region the anomaly is around 1.5 to 2◦C for the entire month (time series plots in Fig. 3
:
h). TX over the same

time period is
:::::::
simulated

:
even more than 7.5◦C warmer than the climatology in much of Scandinavia and Northern Germany,

Belgium and the Netherlands (Fig. 4
:
b
:
and Appendix Fig. A3

:::
a-d for comparison to ERA-Interim, MERRA-2 and Berkeley). In

contrast, TX for much of the Mediterranean (MED) region is close to the climatological average. Colder-than-average TX is220

seen for areas surrounding the Aegean Sea and Black Sea, as well as for Portugal, parts of Spain and for the United States east

coast (Fig. 4).
::
b).

::::
Note

::::
that

::
in

:::::::
Portugal

:::
and

:::::
Spain

::
a

:::
heat

:::::
wave

:::::::::
developed

::
in

:::
the

:::
first

:::::
week

::
of

::::::
August

::::::::::::::::::::::
(Barriopedro et al., 2020),

:::::
which

::
is,

::::::::
however,

::::::
outside

::::
our

:::::
study

::::::
period. The temporal evolution of the TX anomaly during the month of July resembles

that of the daily mean temperature
::
for

:::
the

:::::
study

::::::
regions

:
(Appendix Fig. A4).

In the nudged historical simulation maximum daytime temperatures (TXx) exceeding 40◦C are simulated for parts of the225

Central North American (CNA) region and for a few locations in northern France, Belgium and the Netherlands
:::
and

::::::
WNA

::::::
regions

:::
and

::::
east

::
of

:::
the

:::::::
Caspian

:::
Sea. The fraction of the AgPop region affected by TXx > 40◦C is 20%. In the natural scenario

mean TX anomalies exceed 7.5◦C virtually nowhere (except for five grid cells) in the entire Northern Hemisphere north

of 25◦N (
:::
9%

:
(Fig. 4). TXx during 13 to 27 July does not exceed 40◦C for the European regions and only 12%

::
a).

:::
In

:::
the

::::::
natural

:::::::
scenario

::::
only

:::
7%

:
of the AgPop region is affected by such high temperatures. Although the circulation pattern induces230

anomalous temperatures in the same regions as in the historical case, very extreme temperatures > 40◦C are confined to

areas that climatologically have higher likelihood to experience hot temperatures such as northern Africa. On the other hand,

the warming scenarios show an extreme
:
a
::::::
strong intensification of the magnitude and extent of the event. In the warming20

9



Figure 3. Anomalies of mean daily
::::
mean temperature with respect to the 1981–2010 climatology. The maps show the average anomaly over

13 to 27 July 2018 for
::
(i) the nudged historical CESM simulation

::
and

:
(topj) and for ERA-Interim(bottom). The time series show the

:::::::
evolution

:
of
:

daily temperature anomaly
::::::
(Tanom)

:
for CESM (blue) and ERA-Interim (grey

::::
black) for the month of July averaged over six

:::
(a-g)

:::::
seven

SREX regions as well as
::
(h)

:
for the AgPop region.

scenario the fraction of the AgPop region experiencing > 40◦C temperatures increases to nearly one third
::::
13% of the total area

and it almost doubles to 61% for
:::::
more

::::
than

:::
one

::::
third

::::::
(34%)

:
is
:::::::
affected

::
in
:
the warming40 scenario. At 4◦C global warming the235

model predicts that most of the United States will experience temperatures above > 40◦C given the 2018 circulation pattern

(Fig. 4a). For much of CNA anomalies with respect to 1981–2010 exceed 10◦C .
:::
(Fig.

::::
4b).

:
Large areas of CEU and NEU

experience temperatures around 38◦C and higher, which corresponds to more than 10◦C above climatology for Scandinavia.

The NH2018 event did not only bring exceptionally warm temperatures to central and north-western Europe but also a dry

spring and summer contributed to severe drought conditions (Toreti et al., 2019). In contrast, south-eastern Europe experienced240

a wetter-than-usual spring and summer (Toreti et al., 2019). This marked precipitation dipole over Europe is reproduced in the

historical simulation (Fig. 5). In addition, over North America a contrasting precipitation pattern can be found with a strong

positive anomaly in the east and a precipitation deficit in the west (Fig. 5). In the
::
the

:
warming40 scenario we find a decrease

of up to −60% in precipitation over Mediterranean Europe and CNA compared to the historical simulation (Fig. 6, left). For

Europe these
::
a).

::::::
These changes in precipitation counteract the precipitation dipole observed in the historical simulations but245

precipitation still remains above climatology for most of Mediterranean Europe . Over a
:::
(not

:::::::
shown).

::::::::::
Additionally,

:::
the

::::::::
warming

:::::::
scenarios

::::::::
simulate

:::::
higher

:::
net

:::::::
surface

::::::::
shortwave

::::::::
radiation

::::
(Fig.

:::
6b)

::
in
:::::
large

::::
parts

::
of

:::::::
Europe

:::::::
resulting

::
in

:::
an

:::::::
increase

::
in

:::::::
sensible

:::
heat

::::
flux

::::
and

:
a
::::::::
decrease

::
in

:::::
latent

::::
heat

::::
flux

:::
(not

:::::::
shown).

:::
In

::::::
Eastern

:::::
Asia

::::
very

:::
dry

:::::::::
conditions

:::
are

::::::::
observed

:::
and

:::::::::
simulated

:::
for

10
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Figure 5. Precipitation Anomaly
::::::
anomaly

:
(%) for July 13 to 27 2018 compared to

:::
the 1981–2010 climatology. (top

:
a) CESM historical

simulation (bottom
:
b) MERRA-2. Areas

::::
Land

::::
areas with less than 0.1mm/day precipitation in the climatology are masked out.

:::::
Japan

:::
and

:::
the

::::::
Korean

:::::::::
Peninsula,

:::::::
whereas

:::::
rather

::::
more

::::
than

::::::::::::
climatological

::::::::::
precipitation

::::
can

::
be

::::
seen

:::
for

::
the

:::::::::::
neighbouring

:::::::
regions

::
in

:::::
China

::::
(Fig.

:::
5).

:::
No

:::::::::
substantial

:::::::::::
precipitation

:::::::
decrease

::
is
:::::::::
simulated

:::
for

:::
the

:::::::
warming

::::::::
scenarios

:::::
(Fig.

:::
6a)

::::::::
although

::::
total

:::::
cloud250

::::
cover

:::::::
fraction

:::::::
slightly

::::::::
decreases

::::
(not

:::::::
shown).

::::::
Higher

:::
net

:::::::::
shortwave

::::::::
radiation

::::
(Fig.

::::
6b)

::::
leads

:::
to

::
an

:::::::
increase

:::
in

:::::::
sensible

::::
heat

:::
flux

::
in

:::
the

::::::::::
warming40

:::::::
scenario,

:::::::::
especially

::::
over

:::::
Japan

:::
and

::::::
Korea

:::
(not

:::::::
shown).

:::::
Over

:::::
North

:::::::
America

::
a
:::::::::
contrasting

:::::::::::
precipitation

::::::
pattern

:
is
:::::::::
simulated

::::
with

:
a
::::::
strong

:::::::
positive

:::::::
anomaly

::
in

:::
the

::::
east

:::
and

::
a
::::::::::
precipitation

::::::
deficit

::
in

:::
the

::::
west

:::::
(Fig.

:::
5a).

:::::
Over

:
a
:
smaller

region in CNA there is already a precipitation decrease of around 40%
:::::
−40%

:
in the warming20 scenario .

:::
and

:::
up

::
to

::::::
−60%

::
in

::
the

::::::::::
warming40

::::::::
scenario.

::::
This

::
is

::
in

::::::
contrast

:::
to

:::::::
observed

:::::::
summer

:::::::::::
precipitation

:::::
trends

:::::::
showing

:::
an

:::::::
increase

::
in

:::
the

::::::
central

::::::
United255

:::::
States

::::
over

:::
the

:::
last

:::::::
century

::::::::::::::::::::::::::::::::::
(Alter et al., 2018; Wuebbles et al., 2017). The precipitation decrease co-occurs with a decrease of

up to 25% in total cloud cover fraction for central North America in the warming40 scenario (not shown) as well as higher

net shortwave radiation at the surface for large parts of North America and Europe (Fig. 6, right
:
b). Further, the increase in

net shortwave radiation goes along with a decrease in latent heat flux and an increase in sensible heat flux, which is most

pronounced in the warming40 scenario for CNA and central Europe (not shown). This change in the surface fluxes implies260

a reduction in evaporative cooling and increase of near-surface heating, which can amplify the heat wave (Fischer et al.,

2007; Seneviratne et al., 2006, 2010). Hence, in a warmer climate the heat wave
:::::
waves during a NH2018-like event might

be amplified through land-surface feedback. Further, some of the regions experiencing precipitation excess might be seeing

less precipitation,
:::
for

:::::::
example

:::
the

::::::::::::
Mediterranean. This agrees with findings by Toreti et al. (2019) showing that the projected

likelihood of anomalously wet conditions as observed during NH2018 decreases for southern Europe. On the other hand, in265

the natural scenario the event is less extreme due to higher total cloud cover (not shown), less net shortwave radiation (Fig. 6,

right
:
b), an increase of precipitation, especially for CNA (Fig. 6, left

:
a), and higher soil moisture (not shown). Together with the

colder background climate these effects combine to reduce the maximum reached temperatures and abate the heat stress for

12



example for crops. In short, we find that the NH2018 event would have been less widespread and less hot under natural climate

conditions. Contrarily, it would have affected an even much larger area and would have caused particularly dangerously high270

temperatures and severe drought conditions in a large fraction of the AgPop region under higher levels of global warming.

3.3 Scaling of local temperature increase with global warming

We scale the increase in July mean TX
::::
mean

:::
TX

:::
for

::::::
13–27

::::
July

:
of each study region with the global mean temperature

change in our scenarios. As our simulations are all nudged toward the 2018 atmospheric circulation, we compare the results

to simulations
::
for

::::
July

:::::
mean

::::
TX with random circulation from CMIP5 and in specific to the CESM simulations in CMIP5275

(CMIP5-CESM). This way it is possible to disentangle the effect of the specific circulation pattern from the global mean

warming trend qualitatively (note, however, that
:::
the

::::::
CMIP5

:::::::
models

::::::::
including

:
CMIP5-CESM uses

:::
use an interactive ocean).

The simulation years from the CMIP5 models are chosen to equal the actual warming for the CESM simulations (Table 1).

In general, the increase in TX with global mean warming between 1.2◦C and 4.4◦C follows a linear relationship (Fig. 7). For

MED both CESM simulations as well as the CMIP5 MMM lie close together and there is little spread between the CMIP5280

models (
:::
Fig.

:::
7f,

:
orange shading). This indicates that the CESM model behaves similarly to the CMIP5 MMM and that there

is no change in the relationship induced by the atmospheric circulation of 2018. Hence, the increase in TX is driven by the

background global warming. For WNA and CEU both CESM model configurations simulate a higher TX for a given warming

level than the CMIP5 MMM ,
::::
(Fig.

:::::
7a,e), indicating that CESM produces warmer future climate in general for these regions.

However, the nudged CESM simulations show a very similar increase of TX as CMIP5-CESM, which implies that for these285

regional averages the 2018 circulation did not alter the relationship to the global mean temperature. Both SREX regions cover

a rather large and climatologically diverse area. In the nudged historical simulation positive TX anomalies are observed in

the western part of the CEU region and negative anomalies in the east (Fig. 4
:
b). The two circulation-related contributions

likely compensate each other when computing the regional average for the historical simulation and also for the warming

scenarios, which might be the reason why the scaling is similar to the non-nudged simulations. For
::::
EAS

::::::
nudged

::::::
CESM

::::
and290

::::::::::::
CMIP5-CESM

:::::
show

::::::
higher

:::
TX

::
at
::::::

higher
::::::
global

::::::::
warming

:::::
levels

::::
than

:::
the

:::::::
CMIP5

::::::
MMM

:::
but

::::
not

::
at

:::::
lower

::::::
global

::::::::
warming

:::::
levels

::::
(Fig.

::::
7g).

:::
The

:::::
slope

::
of

:::
the

::::::
nudged

::::::
CESM

::
is

::::::
steeper

::::
than

::
of

:::::::::::::
CMIP5-CESM,

:::::::::
indicating

:
a
::::::::::
contribution

:::
by

::
the

:::::::::::
atmospheric

:::::::::
circulation

::::::
pattern

::
of

:::::
2018.

::::
For

:
NEU, CNA and Eastern North America (ENA) TX from the nudged CESM model shows

different behaviour from
::::::::::
simulations

:::::
shows

::
a
::::::
steeper

:::::::
increase

::::
with

::::::
global

::::::::
warming

::::::::
compared

::
to

:
CMIP5 and CMIP5-CESM

,
::::
(Fig.

:::::::
7d,b,c), whereas the latter two behave rather similarly.

::::::::
similarly.

::
At

:::
the

:::::::
highest

::::
level

::
of

::::::
global

::::::::
warming

:::::::
(4.39◦C)

:
TX295

from the nudged simulations shows a steeper increase with global warming compared to the CMIP5 models and even exceeds

the envelope of CMIP5 modelsat the highest level of global warming (4.39◦C). Hence, there is an effect of the circulation

pattern in these regions which linearly increases for the same event at higher global warming levels. For ENA TX is mostly

around climatological values or even below in the historical simulation. Therefore, it is counter-intuitive that for the warming

scenarios TX increases due to the same circulation pattern. We speculate that this is related to the increase in shortwave300

radiation seen for ENA at higher global warming scenarios such as warming40 (Fig. 6
:
b). For CNA there is a steeper increase

of TX between the 2.18◦C and 3.27◦C global mean warming which might be related to a change in surface heat fluxes and
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stronger land-atmosphere coupling as was found in Sect. 3.2. The AgPop region spans across several of the SREX regions

evaluated here, mainly
:::::
EAS, CNA, CEU and MED. Therefore, the relationship is a combination of the effects described above.

For the relationship between July mean temperature
::::
mean

::::
daily

::::::::::
temperature

::
in

::::
July and global warming the results look similar305

except for the AgPop region
:::
EAS

::::
and

::::::
AgPop

:::::::
regions where the differences between the nudged CESM and CMIP5-CESM

disappear (not shown).

:::
We

:::::::
compare

:::
the

::::::::
simulated

:::::
trends

::
to
:::
the

::::::::
observed

:::::
trends

::::
over

:::
the

:::
last

:::::::
century

:::::::::::
(extrapolated

::
to

:::::
higher

::::::
global

::::::::
warming

::::::
levels).

:::
For

:::::
North

::::::::
America,

:::::::::
especially

:::::
CNA

::::
(Fig.

::::
7b)

:::
and

:::::
ENA

:::::
(Fig.

::::
7c),

:::
the

:::::::
regional

::::::::
warming

::
is

:::::::
stronger

::
in
::::

the
::::::
CMIP5

:::::::
models

::::::::
compared

::
to

:::::::::::
observations.

::
It

:::
has

::::
been

::::::::::
documented

::
in

::::::::
previous

::::::
articles

:::
that

::::::::::
temperature

::::::
trends

:::
are

:::::::::
commonly

:::::::::::
overestimated

:::
by310

::::::
CMIP5

::::::
models

:::
for

:::::
North

:::::::
America

:::::::::::::::::::::::::::::::::::
(e.g. Alter et al., 2018; Donat et al., 2017),

:::::
which

::::
was

:::::
shown

::
to
:::
be

:::
due

::
to

::
an

:::::::::::::
overestimation

::
of

:::
soil

::::::::::::::::::
moisture-temperature

:::::::
coupling

:::::::::::::::::::::::::::::::::::
(Sippel et al., 2017; Vogel et al., 2018) and

:::
an

:::::::
increase

::
of

::::::::
irrigation

:::
that

::
is
:::
not

::::::::
included

::
in

::
the

:::::::
models

:::::::::::::::::::::::::::::::
(Alter et al., 2018; Thiery et al., 2020).

::::::::
Warming

:::::
seems

::
to

::
be

::::::::::::
overestimated

:::
for

::
the

:::::
same

::::::
reasons

::
in

::::
EAS

::::::::::::::::::::::::::::::
(Fig. 7g, see also Donat et al., 2017).

::
In

:::
the

:::::
latest

::::::
CMIP6

:::::::::
ensemble,

:::::
these

:::::
biases

::::::
appear

:::::::
smaller

::::::::::::::::::::::::::
(Seneviratne and Hauser, 2020).

::::::::::
Depending

::
on

:::
the

::::::::::::
observational

:::
data

::::
sets

::::
used,

:::::
there

:::
can

:::
be

::::
large

:::::::::
differences

:::
in

::
the

::::::::
observed

:::::
trend

:::
for

::::
some

::
of
:::
the

:::::::
regions

::::
(e.g.

::::
CEU

::::
and

:::::
MED:

::::::::
Fig.7e,f).

::::
The315

::::
trend

::::::::
estimates

::::
from

:::
the

::::
four

:::::::
possible

:::::::::::
combinations

:::
of

:::::::::::
observational

::::
data

::
for

::::::
global

:::::
mean

::::::::::
temperature

:::
and

:::
TX

::
–

::::::::
including

:::
the

:::::::::
uncertainty

::
of

:::
the

::
fit

::
of

:::
the

:::::
linear

:::::::::
regression

:
–
:::
are

:::::
given

::
in

::::
Table

::::
A1.

:::::::::::
Observational

::::::::::
uncertainty

:::
can

::::::::::
substantially

:::::
affect

:::
the

:::::
trend

:::::::
estimate

::
for

::::::::
example

:::
due

::
to

:::::::::
incomplete

::::::::
coverage

:::
and

::::
data

:::::::
infilling

:::::::::::::::::::::
(Cowtan and Way, 2014);

:::::::
different

::::
data

::::::
quality

::::::
control

::::
and

:::
bias

:::::::::
correction

::::::::::::
methodologies

:::::::::::::::::
(Morice et al., 2012);

::
as

::::
well

::
as

::::
due

:
to
:::
the

::::::::
inclusion

:::
and

:::::::::
weighting

::
of

:::::::
different

:::::::::::
observational

::::
data

:::
and

::::
data

:::::
types.

::
In

::::::::
addition,

::::
both

:::::
global

::::::::::
temperature

::::
data

::::
sets

::::::::::
(HadCRUT4

::::
and

::::::::::::
GISTEMPv4)

:::::
blend

::::::::::
near-surface

:::::::::::
temperatures320

:::
over

::::
land

::::
with

:::::
SSTs

::::
over

:::
the

:::::
ocean,

::::::
which

:::::
differs

:::::
from

:::
the

::::::::
procedure

:::
for

::::::
models

:::::
where

:::::::::::
near-surface

::::::::::
temperatures

:::
are

::::::::
averaged

:::
over

::::
land

::::
and

:::::
ocean

:::::::::::::::::::::
(e.g. Cowtan et al., 2015).

::::::
Hence,

::::::
models

::::
and

::::::::::
observations

:::::
show

:::::::
different

::::::
global

:::::
mean

:::::::
warming

::::
rates

::::
and

:
it
::::
was

:::::
found

:::
that

::
it

:::
the

:::
rate

::
is

:::::
slower

:::
for

:::::::::::
observations

:::
due

::
to

:::
the

:::::::
blending

::
of

:::::
SSTs

:::
and

:::::::::::
near-surface

:::
land

::::::::::::
temperatures,

::
as

::::
well

::
as

:::
due

::
to

::::
very

:::::
sparse

:::::::::::
observations

::
of

::
the

::::::::
warming

::::
polar

:::::::
regions

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(about 1.1◦C since pre-industrial vs. 1.0◦C; see also Cowtan et al., 2015; Richardson et al., 2016).

::::::::
Therefore,

:::
the

::::::::
observed

:::::
trend

:::::
shown

::
in
::::
Fig.

::
7

:::::
would

::
be

:::::::
smaller

::
if

::::::::
computed

::
in

:::
the

::::
same

::::
way

::
as
:::
for

:::
the

:::::::
models.

:
325

4 Conclusions

We present an analysis of scenario storylines building on the extreme 2018 Northern Hemisphere summer (“NH2018 event”).

These storylines retell the NH2018 event in alternative worlds with the same atmospheric circulation as observed but differ-

ent background global mean warming(and associated sea ice cover). The event is alternatively simulated in a natural setting

without human imprint on the climate system (“natural”), for the present-day climate conditions, and for four scenarios at330

different levels of global warming (1.5◦C, 2◦C, 3◦C, and 4◦C). All simulations nudge the large-scale atmospheric circula-

tion toward the 2018 conditions but differ in their greenhouse gas and aerosol forcing as well as in the SSTs and sea ice

coverageof the ocean. These
:
.
:::
The

::::::
focus

::
of

::::
this

:::::
study

::
is

::
on

::
a
::::::
period

::::
from

::::::
13–27

::::
July

:::::
2018,

::::::
when

:::
the

::::
heat

:::::
wave

:::::::
affected

:
a
:::::
large

::::::
fraction

:::
of

:::
the

:::::::::
populated

::::
area

::
of

:::
the

::::::::
Northern

:::::::::::
Hemisphere.

::
It

:::
has

:::
to

::
be

::::::
noted,

::::
that

::::::
locally

:::::
severe

:::::
heat

:::::
waves

:::::
were

:::::::
observed

::::::
during

:::::
other

::::
time

:::::::
periods,

::::::
mainly

::
in

:::
the

::::::::
beginning

:::
of

::::::
August

::
as

:::
for

:::::::
example

::
in
::::::

Korea
:::
and

:::
for

:::
the

::::::
Iberian

:::::::::
Peninsula335
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Figure 7. Scaling of daily maximum temperature (TX) for July with global mean warming (Tglob) for the study regions. Shown is the

July mean temperature
::
TX

:::
for

:::::
13–27

:::
July

:
from the nudged CESM simulations (dark blue; until July 27), the

:::
July

:::::
mean

:::
TX

::
for

:::
the CMIP5

multi-model-mean (orange line) and the full model range (orange shading) as well as
::
the

:::
July

:::::
mean

:::
TX for CESM from the CMIP5 ensemble

(CMIP5-CESM, light blue) separately. The
:::
solid

:::::
green

::::
lines

::::::::
correspond

::
to

:::
the

:::::::
observed

:::::::
warming

::::
while

:::
the

:::::
dashed

:::::
green

::::
lines

::::::
indicate

:::
the

:::::::::
extrapolation

::::::
beyond

:::
the

:::::::
observed

:::::::
warming

:::::
(light

::::
green

:::
for

:::::::
Berkeley

::::
Earth

:::::
using

::::::::::
GISTEMPv4

::
as

:::::::
reference

:::
for

:::::
global

:::::
mean

:::::::::
temperature

:::::
change

:::
and

::::
dark

::::
green

:::
for

::::
CRU

::::::
TSv4.03

:::::
using

:::::
global

::::
mean

:::::::::
temperature

::::::::
anomalies

::::
from

::::::::::
HadCRUT4).

:::
The

:
black line indicates the 1:1 line.
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:::::::::::::::::::::::::::::::::::
(e.g. Barriopedro et al., 2020; KMA, 2019).

::::::::
However,

:::
due

::
to

:::
the

:::::::::
availability

:::
of

::::
input

:::::
fields

:::
for

::::::::::
atmospheric

:::::::
nudging,

:::::
these

::::
later

:::::
events

:::
are

:::
not

::::::::
analysed.

::
It

::
is

:::::
likely

:::
that

:::::::
similar

:::::
effects

::
to
:::::
those

::::::::
described

::
in
::::

this
:::::
study

:::::
could

::
be

:::::
found

:::
for

:::::
other

:::::::
regions,

:::::
when

:::::::
choosing

::
a
::::
time

::::::
period

::::::::
matching

:::
the

:::::
peak

::
of

:::
the

::::
heat

:::::
wave.

::::
For

:::::
these

::::
more

:::::
local

:::::::
features

::
of

:::
the

::::::::
NH2018

:::::
event

::
a

:::::::
regional

::::::
climate

::::::::
modeling

::::::::
approach

:::::
might

::::
shed

:::::
more

::::
light

:::
on

:::
the

::::::::::::
characteristics

::
of

::::::
future

:::::
events

::::
and

:::::
would

:::::::::::
complement

:::
the

:::::::
findings

::
of

:::
this

:::::
study.

:
340

:::
The

:
storylines for the NH2018 event show drastic consequences for the entire Northern Hemisphere in case of a re-

occurrence of this atmospheric pattern at higher global warming. Maximum temperatures increasingly surpass 40◦C with

large parts of the
:::::::
southern

:
United States experiencing such extreme temperatures already at 2◦C global warming. At 4◦C al-

most the entire United States as well as large areas of
::::::
regions

::
in Western Europe and

::::::
Eastern Asia are affectedby such extreme

temperatures. The total area of important “human-affecting and human-affected” regions (Seneviratne et al., 2018; Vogel et al.,345

2019) in the Northern Hemisphere (north of 30◦N) experiencing temperatures higher than 40◦C increases from 20%
:::
9%

:
during

the NH2018 event to 32% and 61%
::::
13%

:::
and

::::
34%

:
at a global warming of 2◦C and 4◦C, respectively.

::
In

:::
the

:::::::
“natural”

::::::::::
simulation,

::
the

:::::::
fraction

::
of

:::
the

::::
area

:::::::
affected

:::::::
reduces

::
to

::::
7%.

::
It

:::
has

::
to

::
be

:::::
noted

::::
that

:::::
these

:::::
values

:::
are

::::::::
sensitive

::
to

:::
the

::::
bias

::::::::
correction

:::::::
method

:::
and

:::
the

::::::::
reference

:::
data

:::
set

::::::
chosen

:::
for

:::
the

:::::::::
calibration

::
of

:::
the

:::::::::
correction.

::
A

::::::
quantile

::::::::
mapping

::::::
method

::::
was

::::::
chosen

:::::::
because

:
it
::::::
agrees

:::
well

::::
with

::::::::
observed

:::
TX

::::::
during

:::
the

::::
heat

::::
wave

:::
but

:::
its

::::::
validity

:::
for

:::
the

::::::::
warming

::::
(and

:::::::
natural)

::::::::
storylines

::::::
cannot

::
be

::::::
tested.350

We find that TX for the different scenarios linearly increases
:::::::
increases

:::::::
linearly

:
with global mean warming. For the CNA,

NEU and ENA region
:::
(and

::::
less

:::::
strong

::::
also

:::
for

:::::
EAS)

:
we find a steeper slope of the relationship

:::::
given

:::
the

::::
2018

:::::::::::
atmospheric

:::::::::
circulation

:::::::::
conditions, indicating that these regions are affected by an amplification of the heat wave in a warming climate.

However, it
::::::::::
Comparison

::::
with

::::::
trends

::::
from

:::::::::::
observations

::::::::
indicates

:::
that

:::
the

:::::::
regional

::::::::
warming

:::::
trend

:::::
might

:::
be

::::::::::::
overestimated

::
in

::
the

:::::::
models,

:::::::::
especially

:::
for

:::::
CNA

::::
and

:::::
ENA.

:::::::::::
Nevertheless,

::::
the

:::::
trends

:::::
agree

::::
well

:::
for

::::
the

::::
other

:::::::
regions

::::
and

:
it
::::

has
::
to

:::
be

:::::
noted355

:::
that

:::
the

::::::::
observed

:::::
trends

::::
also

:::::
have

::
to

::
be

::::::::
evaluated

:::::
with

:::::::
caution,

:::
due

::
to

::::::::::
uncertainty

::
of

:::
the

:::::
trend

:::
fit,

:::::::::::
observational

::::::::::
uncertainty

:::::::::::::::::::::::::::::::::::::::::::
(e.g. Cowtan and Way, 2014; Morice et al., 2012) and

:::
due

::
to
::
a
:::::::
different

:::::::::::
methodology

::
to

::::::::
compute

:::::
global

:::::
mean

:::::::::::
temperatures

::
in

::::::::::
observations

:::::::::
compared

::
to

::::::
models

::::::::::::::::::
(Cowtan et al., 2015).

:::::::
Further,

::
it
:
is important to keep in mind that even if the increase in

temperature is linear, the associated impacts would likely not be. Human well-being, crop yields and fire risk for example are

related to certain temperature ranges and effects of the heat wave might be amplified once certain thresholds are surpassed.360

In the “natural” simulation, temperatures remain below 40◦C for most regions north of 30◦N and stress on plants is further

reduced by higher precipitation and soil moisture in the natural climate conditions.

It is intrinsic to this kind of simulations that there is no atmospheric variability among ensemble members, which prevents

an assessment of the probability of the scenarios. The study is thus not designed to answer the question of how probable it is for

a NH2018-like event to re-occur at a certain warming level. Statistically the probability that exactly the same circulation with365

the same history and evolution during the heat wave will re-occur is small. Further, the nudging approach does not ensure that

the circulation pattern is physically in balance with the scenarios for higher global warming or natural conditions. Hence, it

might be that it is unlikely that the atmospheric circulation patterns associated with NH2018 event could establish in a warmer

climate, which we cannot assess in this kind of study. However, it has been shown from observations that the occurrence

of the driving NH2018 atmospheric circulation pattern, a stationary wavenumber 7 Rossby wave, has increased significantly370
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in recent years, a possible consequence of the enhanced land-ocean temperature contrast due to global warming (Kornhuber

et al., 2019b). Even if there should be no trend in amplitude or persistence of these wave events, associated heat waves in a

future climate will be amplified by the global warming (Kornhuber et al., 2019a). From a dynamical perspective, it appears

thus probable that similar wave events will occur in a warmer climate and thus the study of such hypothetical events is highly

relevant.375

The warming levels and corresponding atmospheric forcing were chosen based on the global mean warming using near-

surface air temperature of the CMIP5 MMM and from this corresponding delta SSTs were computed. However, this does

not imply that the same warming levels will be reached in our model. Indeed, the global mean warming in the simulations is

higher. It was shown that computing blended global mean temperature from near-surface air temperature and SSTs together

with accounting for incomplete data from observations leads to approximately 0.2◦C less global warming since the 19th century380

(Cowtan et al., 2015; Richardson et al., 2016). Applying this to our simulations
:
, the discrepancy between the target warming

level and actual warming is reduced. Still, to simulate the target warming with better accuracy a workaround
:::::::
solution could

be to choose the years corresponding to a target warming level from CESM itself (using blended global mean temperatures)

and also computing the delta SSTs only from CESM (by using the CESM model data from CMIP5 or by running a long,

non-nudged simulation with prescribed ocean following e.g.
:::
the RCP8.5 scenario). We argue that even if the target warming385

might be simulated with better accuracy, the results would not differ fundamentally from those found here as we show that

local temperatures in the simulations scale approximately linearly with global warming.

To our knowledge this is the first study to use storylines of different warming levels for a specific event in a global climate

model setup. Kornhuber et al. (2019a) show that in the future the wavenumber 7 circulation pattern can lead to major risks in

breadbasket regions that are important for crop production. The storyline approach presented here provides insightful results390

that help understand the risks and consequences of similar events in a future climate. Our results highlight that large areas of

the Northern Hemisphere will suffer from major heat stress given the same circulation at higher background warming levels,

which can have dangerous consequences for agriculture, ecosystems, the economy and also human health.

Code and data availability. The python code for the sea ice algorithm developed in this study is available upon request. For the quantile

mapping we used the R package qmCH2018 version 1.0.1 (https://github.com/SvenKotlarski/qmCH2018; Rajczak et al., 2016), which was395

run in R version 3.3.2 (https://www.r-project.org/). CMIP5 data is available from the the Earth System Grid Federation (ESGF).
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Appendix A: Additional figures
:::
and

:::::
table

This section provides additional figures
:::
and

:::::
tables

:
accompanying the main article.

Figure A1. Evaluation of sea ice reconstruction. Bias
:::::
Shown

:
is
:::
the

:::
bias

::::
(%) of reconstructed historical sea ice for 1990–2015

:::
the (left

::
a,c)

::::::::
1990–2015

::::
mean

:
and 2018 (right

::
b,d)

::::
2018

::::
mean

:
compared to NOAA OIv2 (%)

:::
for

::::
areas

::::
north

::
of

::::
50◦N

:::
and

:::::
south

::
of

::::
50◦S. The new method

developed in this study (top
::
a,b) is compared to the SP equation

::::
C20C

::::::
method

::::
(c,d). Numbers in the upper right corner indicate the

:::::
global

::::
mean RMSE for grid cells that are covered by ice in the observed or estimated fields.

19



Figure A2. Absolute sea ice coverage fractions for 2018 in the natural, warming20 and warming40 simulation determined with the algorithm

presented in this study. The numbers in the upper right corner indicate the yearly average sea ice coverage fraction for ice grid cells.
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Figure A4. Time series of anomaly of maximum daily temperature
::::::::
(TXanom) for July 2018 averaged for

::::
(a-g)

:::::
seven

:::::
SREX

::::::
regions

:::
and

::
(h)

:
the AgPop regionand six SREX regions. Shown are the historical simulation from CESM, ERA-Interim and Berkeley. The reference

climatology is 1981–2010.
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Table A1.
:::::
Slopes

::
for

::
all

:::::::
possible

::::::::::
combinations

::
of

::
the

::::::::::
observational

::::
data

:::
sets

::::
used

::
for

:::
the

::::
linear

::::::::
regression

::
as

::::
well

::
as

:::
their

::::::::::
uncertainties

::::
(one

::::::
standard

::::::::
deviation).

:::::
TXreg CRU TSv4.03 Berkeley Earth

:::::
Tglob

::::::::::
GISTEMPv4

:::::::::
HadCRUT4

::::::::::
GISTEMPv4

:::::::::
HadCRUT4

::::
WNA

: :::
0.85

::
±

:::
0.21

: :::
1.03

::
±
::::
0.24

:::
0.85

::
±

:::
0.22

: :::
1.04

::
±
::::
0.25

::::
CNA

:::
0.16

::
±

:::
0.30

: :::
0.24

::
±
::::
0.34

:::
0.55

::
±

:::
0.31

: :::
0.68

::
±
::::
0.35

::::
ENA

:::
0.56

::
±

:::
0.22

: :::
0.65

::
±
::::
0.25

:::
0.58

::
±

:::
0.21

: :::
0.68

::
±
::::
0.23

::::
CEU

:::
1.52

::
±

:::
0.30

: :::
1.84

::
±
::::
0.33

:::
1.30

::
±

:::
0.30

: :::
1.60

::
±
::::
0.34

::::
NEU

:::
1.13

::
±

:::
0.31

: :::
1.32

::
±
::::
0.35

:::
1.11

::
±

:::
0.29

: :::
1.29

::
±
::::
0.33

::::
MED

: :::
1.67

::
±

:::
0.15

: :::
1.93

::
±
::::
0.16

:::
1.21

::
±

:::
0.16

: :::
1.40

::
±
::::
0.18

::::
EAS

:::
0.61

::
±

:::
0.16

: :::
0.80

::
±
::::
0.18

:::
0.55

::
±

:::
0.19

: :::
0.75

::
±
::::
0.21

:::::
AgPop

: :::
0.72

::
±

:::
0.12

: :::
0.87

::
±
::::
0.14

:::
0.80

::
±

:::
0.13

: :::
0.96

::
±
::::
0.14
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Appendix B: Ocean forcing files

This section explains in detail how the ocean forcing files are prepared using model output for the historical and RCP8.5400

scenario from the CMIP5 data archive.

B1 Step-by-step generation of delta SST and SST input files

Warming levels are determined using near-surface air temperature (“tas”) from CMIP5. Delta SSTs are computed from sea

surface temperature fields (“tos”).

1. For easier computation later-on and to prevent steep gradients at the continent’s edges, the tos
::::
“tos”

:
fields are grid-filled405

using Poisson’s equation relaxation scheme, where this has not been done by the model. All data are regridded to the 1x1

degree grid used in the NOAA OIv2 (Reynolds et al., 2002) and HadISST1 (Rayner et al., 2003) observational products,

which are used to prescribe sea surface temperatures and sea ice coverage in CESM.

2. To find the years corresponding to the warming levels we compute weighted global yearly means
::
of

::::
“tas”

:::
are

:::::::::
computed

for the historical and RCP8.5 time period. We only include
::::
Only models that provide complete monthly data for both410

tas and tos
::::
“tas”

::::
and

::::
“tos”

:
for the historical (starting latest 1861) and the RCP8.5 time period (at least until 2099)

:::
are

:::::::
included.

3. We define the
:::
The

:
pre-industrial reference period

::
is

::::::
defined from 1861–1880and average over this period

:
.
:::::
“Tas” for each

model separately. We compute the warming per model
::
is

:::::::
averaged

:::::
over

:::
this

::::::
period

:::::::::
separately.

::::
The

:::::::
warming

:::
for

:::::
each

:::::
model

::
is

:::::::::
computed by taking the difference between the yearly averages from step 2 and the pre-industrial reference415

period. We compute a
::
A 21-year running mean

::
is

::::
taken

:
over the yearly warming values and then take

:::
first,

::::
and

::::
then the

multi-model mean (MMM)
::
is

::::::::
computed.

4. The first year where the multi model warming equals
:::::::
exceeds 1.5◦C, 2◦C, 3◦C and 4◦C is chosen to compute the delta

SST fields in the following and also to set the aerosols and GHG forcing from the RCP8.5 scenarios for the simulations.

We get
::::
The

:::::::
numbers

::
in

:::
this

:::::
study

:::
are: for the current warming (2018) a value of 1.12◦ and the 1.5◦, 2◦, 3◦ and 4◦ warming420

levels are reached in 2028, 2042, 2064, 2085 respectively, for the MMM.

5. A
::::
Now

:::
the

::::
delta

:::::
SSTs

:::
are

:::::::::
computed.

::::
First,

::
a 21-year boxcar filter (running mean over months) is applied to the monthly

tos
::::
“tos” fields for the merged historical (1975–2005) + RCP8.5 time period. These ocean fields are saved together with

the multi-year monthly averaged fields for the pre-industrial time period (1861–1880).

6. The MMM is computed for the monthly ocean fields. Then the delta SST for the natural scenario is computed by425

subtracting the MMM pre-industrial monthly climatology from the present-day monthly fields (1979–2020
:::::::::
2015–2018

::
to

::::::
include

:::::::
spin-up). The delta SSTs for the warming scenarios are computed by subtracting the present-day monthly

fields (1979–2020) from the MMM field of the year
::::
years of the warming scenario under consideration

:::::
(2042

::::
plus

:::
the

::::
years

::::::::::
2039–2041

:::
for

:::::::
spin-up), hence:
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deltaSST_natural: present
:::::::::::::::::::::::::::::::::
deltaSST_natural = present − pre-pre-industrial

:::::::::
industrial; for present between 1979–2020430

:::::::::
2015–2018

:
and pre-industrial averaged over 1861–1880.

deltaSST_warming20: 20warming - present; for
::::::::::::::::::::::::::::::::::::::::::::
deltaSST_warming20 = warming20 − present;

:::
for 20warming

:::::::::
warming20

corresponding to year 2042
:::::
years

:::::::::
2039–2042

:
(with the 21-year boxcar filter applied to it first) and present between

1979–2020.
::::::::::
2015–2018.

Note that the delta SSTs computed this way
::::
these

::::
delta

:::::
SSTs are transient.435

7. We compute the SST input for the simulations simply by subtracting the natural deltaSST field and adding the warming

deltaSST fields to the historical SSTs of the model. We
:::
The

::::::::
constraint

:::
of

::::::::::::::::::
Hurrell et al. (2008) is

:::::
used

::
to

:
ensure that

temperature is not below −1.8◦C.
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