
What could we learn about climate sensitivity from variability in the
surface temperature record?
James Douglas Annan1, Julia Catherine Hargreaves1, Thorsten Mauritsen2, and Bjorn Stevens3

1Blue Skies Research Ltd, The Old Chapel, Albert Hill, Settle, BD24 9HE, UK
2Department of Meteorology, Stockholm University, Stockholm, Sweden
3Max Planck Institute for Meteorology, Hamburg, Germany

Correspondence to: jdannan@blueskiesresearch.org.uk

Abstract.

We examine what can be learnt about climate sensitivity from variability in the surface air temperature record over the

instrumental period, from around 1880 to the present. While many previous studies have used trends in observational time series

to constrain equilibrium climate sensitivity, it has also been argued that temporal variability may also be a powerful constraint.

We explore this question in the context of a simple widely used energy balance model of the climate system. We consider5

two recently-proposed summary measures of variability and also show how the full information content can be optimally used

in this idealised scenario. We find that the constraint provided by variability is inherently skewed and its power is inversely

related to the sensitivity itself, discriminating most strongly between low sensitivity values and weakening substantially for

higher values. It is only when the sensitivity is very low that the variability can provide a tight constraint. Our investigations

take the form of “perfect model” experiments, in which we make the optimistic assumption that the model is structurally perfect10

and all uncertainties (including the true parameter values and nature of internal variability noise) are correctly characterised.

Therefore the results might be interpreted as a best case scenario for what we can learn from variability, rather than a realistic

estimate of this. In these experiments, we find that for a moderate sensitivity of 2.5◦C, a 150 year time series of pure internal

variability will typically support an estimate with a 5–95% range of around 5◦C (e.g. 1.9–6.8◦C). Total variability including

that due to the forced response, as inferred from the detrended observational record, can provide a stronger constraint with15

an equivalent 5–95% posterior range of around 4◦C (eg 1.8–6.0◦C) even when uncertainty in aerosol forcing is considered.

Using a statistical summary of variability based on autocorrelation and the magnitude of residuals after detrending proves

somewhat less powerful as a constraint than the full time series in both situations. Our results support the analysis of variability

as a potentially useful tool in helping to constrain equilibrium climate sensitivity, but suggest caution in the interpretation of

precise results.20

1 Introduction

For many years, researchers have analysed the warming of the climate system as observed in the modern instrumental tem-

perature record (spanning the mid 19th to early 21st century), in order to understand the response of the climate system to

external forcing. For the most part, the focus has been on the long-term energy balance as constrained by the warming trend
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in atmospheric and oceanic temperatures (e.g. Gregory et al., 2002; Otto et al., 2013; Lewis and Curry, 2015). However, some

research has focused more specifically on the temporal variability exhibited in the surface air temperature record (Schwartz,

2007; Cox et al., 2018a), which is the focus of this paper.

Schwartz (2007) argued on the basis of a simple zero-dimensional energy balance model that an analysis based on the

fluctuation-dissipation theorem (Einstein, 1905) could be used to directly diagnose the sensitivity of the Earth’s climate sys-5

tem S — here conventionally defined as the equilibrium surface air temperature response to a doubling of the atmospheric

CO2 concentration — from variability in the observed record of annually and globally averaged surface air temperature obser-

vations over the observational record. While we do not wish to repeat the arguments here, we will note that several researchers

disputed this analysis, demonstrating inter alia that this method did not reliably diagnose the sensitivity of climate models,

and also arguing why it could not be expected to do so, given their complexity (Foster et al., 2008; Knutti et al., 2008; Kirk-10

Davidoff, 2009). Perhaps as a consequence of these arguments, this line of research was largely ignored for the subsequent

decade.

More recently however, Cox et al. (2018a) reopened this question with an analysis based on an emergent constraint approach.

That is, rather than following the directly diagnostic approach of Schwartz (2007), they instead observed that a quasi-linear

relationship existed across an ensemble of CMIP5 models (Taylor et al., 2012), between the sensitivities of these models, and15

their interannual temperature variabilities as summarised in a statistic which they denoted Ψ. It has been cogently argued that

an emergent constraint should only be taken seriously if supported by some theoretical basis (Caldwell et al., 2014), and Cox

et al. (2018a) did indeed present an analysis — again based on simple zero-dimensional energy balance modelling — which

qualitatively underpinned this linear relationship. Using the value of Ψ obtained from observations of surface air temperature,

together with the empirical relationship between Ψ and S they had derived from the climate models, they produced a best20

estimate of the equilibrium climate sensitivity of 2.8◦C with a likely (66% probability) range of 2.2–3.4◦C, a substantially

tighter range than most previous research. However, questions have also been raised about this result (Brown et al., 2018;

Rypdal et al., 2018; Po-Chedley et al., 2018; Cox et al., 2018b).

In this paper, we explore the question of to what extent temporal variability in the globally and annually averaged temperature

record can be used to constrain equilibrium climate sensitivity. We consider both the internal variability of the climate system25

itself, and also the total variability including deviation from a linear trend due to the forced response. Our investigations are

performed in the paradigm of a simple idealised modelling framework, using a two-layer energy balance model which has been

widely used to simulate the climate system and which generalises and improves on the performance of the zero-dimensional

model. As part of our investigations, we examine the relationship between the Ψ statistic and the equilibrium sensitivity in

the model. We also show how the full time series of variability can be used to constrain climate sensitivity, under a variety of30

idealised scenarios. Our results are based on “perfect model” experiments and therefore may be more readily interpreted as a

best case scenario for what we can learn from variability, rather than a realistic estimate of this.

In the next section, we present the two-layer energy balance model and briefly outline the experimental methods used in this

paper. We first focus on internal variability, that is to say, the temporal variability arising entirely from internal dynamics of

the climate system in the absence of forcing. We evaluate the power of the Ψ statistic in constraining equilibrium sensitivity,35
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and also consider the more general question of what could in principle be learnt from the full time series. We then consider

variability over the period of the observational record (primarily the 20th century, but with some extension into the 19th and

21st centuries). This includes forced variability due to temporal changes in both natural and anthropogenic forcings as well as

the internal variability of the climate system. Throughout the paper, the term variability refers simply to all temporal variation

in the annually-averaged temperature time series after any linear trend is removed.5

2 Methods

2.1 Model

The basic underpinning of previous work is energy balance modelling of the climate system, from which it is anticipated

that interannual variability may be informative regarding the equilibrium sensitivity. While previous research was based on

analysis of the simplest possible zero-dimensional single layer planetary energy balance, there is evidence that the behaviour10

of the climate system over the historical period is poorly modelled by such a system (e.g. Rypdal and Rypdal, 2014). Therefore,

we use here a slightly more complex two-layer model based on Winton et al. (2010); Held et al. (2010). This model has been

shown to reasonably replicate the transient behaviour of the CMIP5 ensemble of complex climate models (Geoffroy et al.,

2013b, a). The model is defined by the two equations:

Cm
dTm
dt

= F t +λTm− εγ(Tm−Td) +Cmδ
t (1)15

Cd
dTd
dt

= γ(Tm−Td) (2)

This is a two-layer globally-averaged energy balance model which simulates the mixed (Tm) and deep (Td) ocean temper-

ature anomalies in the presence of time-varying forcing F t. λ=−F2×/S is the radiative feedback parameter where S is the

equilibrium sensitivity and F2× is the forcing due to a doubling of the atmospheric CO2 concentration. Cm and Cd are the heat20

capacities of the mixed-layer and deep ocean respectively and γ represents the ocean heat transfer parameter. The parameter ε

was introduced by Winton et al. (2010) to represent the deep-ocean heat uptake efficacy, and while it is not important for our

analysis, we include it for consistency with the broader literature. In a slight modification to Winton et al. (2010), we add a

noise term δt to the first equation to represent the internal variability of the system as was originally introduced in a single layer

energy balance climate model by Hasselmann (1976). Here δt is sampled on an annual (ie, time step) basis from a Gaussian25

N(0,σ) where we generally use the value σ = 0.05 which generates deviations of order 0.05◦C on an annual basis, reasonably

compatible with both GCM results and observations of the climate system. Our conclusions are not sensitive to this choice.

The mixed layer temperature Tm is considered synonymous with the globally averaged surface temperature. The equations are

solved via the simple Euler method with a one year time step.
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Parameter Default Value (Prior) Description

S 3.0 (U[0,10]) Equilibrium climate sensitivity (◦C)

λ −3.7/S Radiative feedback (Wm−2 ◦C−1)

γ 0.7 (N(0.7,0.22)) Deep ocean heat uptake parameter (Wm−2 ◦C−1)

ε 1.3 (N(1.3,0.32)) Deep ocean heat uptake efficacy

F2× 3.7 Forcing of 2×CO2 (Wm−2)

Dm 75 Depth of mixed layer (m)

Cm 4.2× 106 × 0.7×Dm Heat capacity of mixed layer (Jm−2 ◦C−1)

Cm 7.0 Heat capacity of mixed layer (W yr m−2 ◦C−1)

Dd 1000 Depth of deep ocean (m)

Cd 4.2× 106 × 0.7×Dd Heat capacity of deep ocean (Jm−2 ◦C−1)

Cd 93 Heat capacity of deep ocean (W yr m−2 ◦C−1)

σ 0.05 (N(0.05,0.012)) Gaussian noise parameter (◦C)
Table 1. Adjustable parameters and default values

The values of the various adjustable parameters are listed in Table 1. We assume depths of 75m and 1000m for the mixed and

deep ocean layers respectively which are used to calculate the heat capacities Cm and Cd respectively based on ocean coverage

of 70% of the planetary surface area. The default values for adjustable parameters are given in Table 1 and the values used here

lie close to the mean of those obtained by fitting the model to CMIP5 simulations by Geoffroy et al. (2013a). Our aim here is

not specifically to replicate or mimic this ensemble but to allow for a reasonable range of parameter values. If we set γ = 0 and5

ignore the deep ocean then we recover the single layer model of Hasselmann (1976) which was used by both Schwartz (2007)

and Cox et al. (2018a) in their theoretical analyses.

2.2 Bayesian estimation

Our investigations are performed within the paradigm of Bayesian estimation. In general, the Bayesian approach provides us

with a way to estimate a set of unknown parameters Θ from a set of observations O via Bayes’ Theorem,10

P (Θ|O) = P (O|Θ)P (Θ)/P (O). (3)

Here P (Θ|O) is the posterior probability distribution of Θ conditioned on a set of observations O, P (O|Θ) is the likelihood

function that indicates the probability of obtaining observations O for any particular set of parameters Θ, which in this paper

will always contain S and may include other parameters. P (Θ) is a prior distribution for the parameters Θ, and P (O) is

the probability of the observations which is required as a normalising constant in the calculation of the posterior probability15

distribution.
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Formally, the value of the observations is fully summarised by the likelihood function P (O|Θ), but we primarily present

our results as posterior pdfs in order to provide an easily interpreted output which can be directly compared to previously

published results. We therefore use a uniform prior in S as this is typically the implicit assumption in emergent constraint

analyses (Williamson et al., 2019). This choice results in the posterior being visually equivalent to the likelihood even though

their interpretation is somewhat different. In some experiments, we will consider that only the sensitivity is unknown, but in5

others we will consider a wider range of parametric uncertainties. The priors that we use for all uncertain parameters are shown

in Table 1.

2.3 Additional data

While this study primarily focusses on the behaviour of the simple energy balance model, we also use and present some data

from external sources. In order to perform simulations of the historical period, we force our climate model with annual time10

series for the major forcing factors based on IPCC (Annex II: Climate System Scenario Tables 2013). Our two-layer model

with a one-year time step (and Euler method of numerical integration) reacts rather too strongly to short-term spikes in forcing

and thus we scale the volcanic forcing to 70% of the nominal value in order to give more realistic simulations. We show some

outputs of the model together with surface air temperature observations from HadCRUT (Morice et al., 2012) as a purely visual

indication of the model’s performance. We do not use these real temperature observations in any of our analyses, however.15

For comparison with our simple model results, we also present some results calculated from historical simulations performed

by climate models in the CMIP5 (Taylor et al., 2012) and CMIP6 (Eyring et al., 2016) ensembles. For CMIP5, we use results

from 23 models obtained from the Climate Explorer website (https://climexp.knmi.nl/). Where multiple simulations were

performed with a single model, we show all results (amounting to 89 model runs in total) and these vary substantially due

solely to the sample of internal variability in each simulation. Output from CMIP6 models was provided to the authors by20

Martin Stolpe. Due to the highly variable size of initial condition ensembles in this set of simulations, we limited use to at most

5 simulations from each model, resulting in a sample of 117 simulations from 31 models.

3 Unforced (internal) variability

3.1 Using scalar measures of variability to estimate S

Schwartz (2007) and Cox et al. (2018a) both summarised the variability in the temperature record with a scalar measure that25

they argued (based on simple energy balance modelling) should be informative regarding the sensitivity. Schwartz (2007) sum-

marised the variability via the characteristic decorrelation time constant τ = τ(∆t) =−∆t/ ln(ρ∆t) where ∆t is an adjustable

lag time and ρ∆t is the autocorrelation coefficient of the temperature time series at a time lag of ∆t. The method of selecting

∆t and therefore the estimation of τ was not presented in an entirely objective algorithmic form, but for the simple one-layer

climate model that was considered, the expected value of τ calculated from a long unforced time series is independent of30

lag. Cox et al. (2018a) argued that the function Ψ = σT /
√
− lnρ1 should be linearly related to the equilibrium sensitivity. In

5
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this function, ρ1 is the lag-1 autocorrelation of the time series of annual mean surface temperatures, and σT is the magnitude

of interannual variability of these temperatures. Ψ and τ are closely related and co-vary very similarly over a wide range of

sensitivity when other model parameters are held fixed (not shown). Henceforth in this section we focus solely on Ψ as it is

more precisely defined and has been recently discussed in some detail (Williamson et al., 2019). However very similar results

are also obtained when equivalent experiments are performed using τ .5

We now present some investigations into the relationship between Ψ and S in unforced simulations of the two-layer model

introduced in Section 2. We perform a multifactorial experiment in which 1000-member ensembles of simulations are inte-

grated for both 150 and 1000 year duration, over a range of S from 0 to 10C, and with γ set to either the default value of 0.7 or

alternatively set to 0 in which case we recover the single-layer version of the model. All other model parameters are held fixed

at standard values in these experiments. Since there is no forced trend in these experiments, we do not include any explicit10

detrending step in these analyses. However the results are insensitive to detrending.

Figure 1 shows the results obtained when Ψ is calculated from the time series of annual mean surface temperatures produced

by these simulations. For 150-year simulations using the single layer model, there is a strong linear relationship between the

mean value of Ψ obtained, and the sensitivity of the model, just as Cox et al. (2018a) argued. However, Cox et al. (2018a) did

not consider sampling variability, that is to say, the precision with which this expected value of Ψ might be estimated from a15

finite time series. As our results show, there is substantial uncertainty in the value of Ψ obtained by individual runs, and there

is also strong heteroscedasticity, that is to say, the variance of each ensemble of Ψ values increases markedly with sensitivity.

This variation arises from the sequence of noise terms which generate the internal variability in each simulation of the model

and is therefore an intrinsic aspect of the theoretical framework relating Ψ to S. For these unforced simulations, it seems quite

possible for a model with its sensitivity set to a value of 5◦C or even higher to generate a time series which has a modest value20

for Ψ of say 0.1, even though the expected value of Ψ from such model simulations would be much higher. Similarly to the

results shown by Kirk-Davidoff (2009), an accurate diagnosis of Ψ could in principle be made with a sufficiently long time

series of internal variability, but the sampling uncertainty only decreases with the square root of the duration of the time series

(as expected from the Central Limit Theorem), so this is unlikely to be of use in practical applications with real data.

When we consider the two-layer model using the standard parameter value of γ = 0.7 then the situation is a little different. In25

this case the relationship between sensitivity and Ψ is flatter and more curved, with the expected value of Ψ changing slowly for

S > 4◦C. The underlying explanation for this is quite simple. Any small perturbation to the surface temperature is damped on

the annual time scale by a relaxation factor which varies in proportion to εγ−λ, and εγ is equal to 0.91 for standard parameter

values. Therefore, when S is large, changes in λ=−3.7/S have relatively little impact on the total damping and thus both

the magnitude and autocorrelation of variability are relatively insensitive to further increases in S. Williamson et al. (2019)30

also presented a theoretical analysis of this two-layer model in which they argued that the response of Ψ was close to linear

across the GCM parameter range, and our result confirms this for sensitivity values from around 2 to 4 or even 5◦C. However,

the gradual curvature for larger values results in a saturation of the response of Ψ to increases in S and this, together with

the increasing sampling uncertainty, has consequences that will be shown in subsequent experiments. In fact the relationship

between Ψ and the transient climate response (i.e. the warming observed at the time of CO2 doubling under a 1% per annum35
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increase) is more close to linear, than the relationship between Ψ and S. Thus our work does not challenge the underlying

analysis that they presented, but augments it with additional details.
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Figure 1. Ψ estimated from 150y time series for 1- and 2-layer model. Grey results are for single-layer model and black results for two-layer

model. Large dots show means of 1000 simulations, with error bars indicating ±2sd ranges for each ensemble. Results are calculated at each

integer value of sensitivity and offset slightly for visibility.

We now directly consider the question of how useful an observed value Ψo can be as a constraint on the equilibrium climate

sensitivity through Bayesian estimation. It is not trivial to directly calculate the exact value of the likelihood P (Ψo|Θ) for a

given observed value Ψo, as Ψ is itself a random variable arising from the stochastic model and thus depends on the sequence of5

random perturbations that were generated during the numerical integration of the model. Therefore, we use here the technique
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known as Approximate Bayesian Computation (Diggle and Gratton, 1984; Beaumont et al., 2002). This is a rejection-based

sampling technique in which samples are drawn from the prior distribution, used to generate a simulated temperature time

series, and rejected if the value of Ψ calculated from this time series does not lie within a small tolerance of the observed

value. The set of accepted samples then approximately samples the desired posterior. We have no observations of long periods

of unforced climate variability with the real climate system, so we perform a number of synthetic tests in which different5

hypothetical values for Ψo are tested.

Our experiments take the form of a ‘perfect model’ scenario, where the model is assumed to be a perfect representation of

the system under consideration, with no structural imperfections. Our uncertainties here are due solely to unknown parameter

values and internal variability noise. In these experiments, we assume that Ψ for the true system is calculated from a 150 year

temperature time series of the unforced system, without any observational error whatsoever. The results of four experiments10

— using values of Ψo which range from 0.05 to 0.2 in regular increments — are shown in Figure 2. There is not necessarily

an immediate correspondence between these synthetic values and the observationally-derived value that Cox et al. (2018a)

calculated, as we are using unforced model simulations here. Nevertheless, the results are qualitatively interesting. With other

model parameters set to the default values, the four values of Ψo used here correspond to the expected value generated by 150

year integrations with sensitivities of approximately 1, 2.5, 5 and 10◦C respectively. The figure shows that in this experimental15

scenario, Ψ can only provide a tight constraint in the first case where the sensitivity is very low. In this case, the 5–95% range

of the posterior is an impressively narrow 0.6–1.7◦C. For the case Ψo = 0.1, the equivalent probability interval is 1.8–8.1◦C

and for higher values of Ψ the posterior is very flat indeed with just the very lowest values of S excluded. Similar results are

obtained when equivalent values of τ are used as observational constraints.

Strictly, when considering the strength of the constraint obtained from the variability, we should focus on the likelihood20

P (Ψ|S) rather than the posterior pdf P (S|Ψ), since the latter depends also on the prior which is in principle independent of

the observations. The likelihood for different values of S, which tells us the relative probability of any particular sensitivity

value generating the observation, can be directly read off from Figure 2 as the height of the appropriate density curve at the

specific sensitivity value. In the experiment performed with Ψo = 0.1, the maximum likelihood value is achieved at a value of

S = 2.5◦C, and the likelihood drops by a factor of 10 at both S=1.3◦C and S=7.9◦C. Kass and Raftery (1995) suggest that a25

likelihood ratio of 10 or more between two competing hypotheses could be taken to represent “strong” evidence in favour of

one over the other, so if we adopt this linguistic calibration we could say that the observation of Ψo = 0.1 represents strong

evidence in favour of S = 2.5◦C versus all values outside of the range 1.3–7.9◦C (but conversely, does not represent strong

evidence to discriminate between any pair of values inside that range). It is somewhat coincidental that this range seems quite

similar to the 5–95% range of the posterior pdf as the philosophical interpretation of the ranges is rather different. There is a30

strong skew in this range, which extends much further towards higher values of S than lower ones, compared to the maximum

likelihood estimate. We stress that this skew is a fundamental property of the physical model and is not due to the Bayesian

analysis paradigm.
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Figure 2. Posterior estimates of sensitivity inferred by using observations of Ψ to constrain parameters in the 2-layer model. Top panel: four

solid-line pdfs in blue, cyan, magenta and green represent estimates based on 150y unforced simulations, assuming observations of Ψo =

0.05, 0.1, 0.15, and 0.2 respectively, where only S is uncertain with uniform prior. Dashed blue line represents posterior estimate for Ψo

= 0.05 with additional parametric uncertainties as described in Section 3.2. Horizontal lines and dots in “Unforced” central panel indicate

5–95% ranges and median respectively of these experiments. Horizontal lines and dots labelled as “Forced (20th Century)” are similar results

based on forced simulations of historical period as described in Section 4.1. Solid lines: only S is uncertain. Dashed lines: multiple uncertain

parameters.
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3.2 Additional uncertainties

The pdfs plotted in the top panel of Figure 2 assume that all model parameters other than S are known with certainty. In reality,

we have significant uncertainty as to what values we should assign to several other parameters. We consider just three of these:

the ocean heat uptake parameter γ, the efficacy or pattern effect parameter ε and the internal noise parameter σ. Geoffroy

et al. (2013a) fitted the two-layer model to various GCM outputs in order to estimate parameter values including γ and ε and5

based on these results we use as priors for these parameters the distributions N(0.7,0.2) and N(1.3,0.3) respectively which

generously encapsulate their results. Geoffroy et al. (2013a) did not consider internal variability and thus we do not have such

a solid basis for a prior in σ and assume a comparable relative uncertainty of 20%, i.e. a prior of N(0.05,0.01). When we

repeat the previous experiments but include these additional parametric uncertainties, then for the experiment where we use

Ψo = 0.05 as a constraint, the posterior for S widens substantially from the previous spread of 0.6–1.7◦C, to 0.6–4.9◦C as also10

shown as the dashed blue line in Figure 2. The largest factor generating this substantial increase in uncertainty is due to the

uncertainty in σ. The equivalent posteriors using the larger observational values for Ψo also broaden somewhat but this is less

visible in the results as they are of course always constrained by the prior range.

3.3 Using the full time series

Although the results in Figure 2 show that an observation of Ψ taken from a short unforced simulation cannot tightly constrain15

equilibrium sensitivity in this model (except perhaps in the most exceptional of circumstances), it could still be hoped that a

more precise constraint could possibly be gleaned by a more advanced analysis that uses some different diagnostic of the time

series. In this section, we show how the total information of the time series can be used. By doing this, we create the most

optimistic possible scenario for using internal variability to constrain equilibrium sensitivity of this simple climate model.

This approach requires us to calculate the likelihood for the full set of observations, P (O|Θ) where hereO = T i
m, i= 1 . . .N20

is the full time series of annual surface temperature anomalies. Once the model parameters and forcing are prescribed, the time

series of surface temperature anomalies is uniquely determined by the series of random noise perturbations δi. Thus, in the

absence of observational error, we can invert this calculation to calculate (up to machine precision) the sequence of annual

random noise perturbations δi, i= 1 . . .N that are required in order to replicate any given observed temperature time series.

This is why we selected a model time step as long as one year, as it results in the number of observations being as large the25

number of noise terms making this exact inversion possible. The probability of the model (with a particular set of parameters)

generating the observed sequence is exactly the probability of the required noise sequence being sampled. This value is readily

calculated, since the joint density of these independent and identically distributed δi is simply the product of their individual

densities. This unusual approach which we do not believe has been previously implemented in this context is possible here

as we are assuming zero observational uncertainty. With this exact likelihood calculation, the Bayesian estimation process is30

straightforward. In the case where only sensitivity is considered uncertain, it can be performed by direct numerical integration,

sampling the sensitivity on a fine regular grid and calculating the likelihood (and therefore posterior) directly at these values.
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It is worth emphasising that this calculation represents an absolute best case scenario for using the time series of temperature

anomalies as a constraint. There can be no diagnostic or statistical summary of the observations that provides more information

than the full set of observations themselves contain. Thus, we cannot hope to obtain a better constraint by some alternative

analysis of the temperature time series.

Density from full time series
0.

0
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5
1.

0
1.

5

0 2 4 6 8 10

0 2 4 6 8 10

Unforced

C20th
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C20th
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Figure 3. Posterior estimates for the climate sensitivity from Bayesian estimation using the full time series of annual mean surface temper-

atures. Main plot: Results from 150y unforced simulations as discussed in Section 3.3. 20 replicates are performed for each true sensitivity

of 1, 2.5, 5◦C as indicated by the colour blue, cyan and magenta respectively. Horizontal lines and dots immediately below top panel show

means of the 5–95% range and median of each set of results. Horizontal lines labelled “C20th” show analogous results using simulations of

historical period, with only S uncertain or with 5 uncertain parameters as discussed in Section 4.2
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Figure 3 shows results obtained from this approach, in the case where only S is considered uncertain. To aid visual com-

parability with Figure 2, the y-axis scale is fixed at the same value despite cutting the peaks of some pdfs. It is not possible

to define what a “typical” noise sequence might look like and therefore we plot 20 replications with different randomly gen-

erated instances of internal variability for each sensitivity value tested. It seems that the results may be a little more precise

than was obtained using Ψ alone (as shown by the pdfs generally having higher peak densities), though this depends on the5

specific sample of internal variability that was obtained. It is still only in the case of the lowest sensitivity value of 1◦C that

we reliably obtain a tight constraint. With the true sensitivity of 2.5◦C, the posterior 5–95% range, averaged over the samples,

is 1.9–7.0◦C, marginally narrower than the 1.8–8.1◦C range obtained previously when an equivalent Ψ value of 0.1 was used.

When additional parametric uncertainties are considered in this unforced scenario, the constraints again weaken, though not to

quite such an extent as in Section 3.2 when only Ψ is used as a constraint. We do not show these results here.10

Thus, there appears to be the potential for internal variability, as represented by the full temperature time series, to provide

a slightly better constraint than that obtained by a summary statistic alone, but the improvement is marginal and even our

optimal calculation which uses the exact likelihood of the full time series cannot accurately diagnose equilibrium sensitivity

except when the true value is very low. These results again show a skew similar to that obtained when Ψ was used as the

constraint in Sections 3.1 and 3.2. Thus this non-Gaussian likelihood is again an inherent property of the physical model and15

not an artefact of the analysis. We mention again that these calculations are made under the three optimistic assumptions that

(a) the model is perfect and we have exact knowledge of all other model parameters, (b) we know the forcing to be zero over

this time period, and (c) there is no observational error.

4 Forced variability

While the theoretical underpinning of Cox et al. (2018a) was originally based on the properties of unforced internal variability,20

Cox et al. (2018b) acknowledged that their approach may have benefited from some signature of forced variability entering

into their calculations. In order to calculate their Ψ statistic, they applied a windowed detrending method in order to focus on

variability of both model simulations and observations of the historical period. However, the window length of 55 years that

they used was justified primarily in empirical terms and cannot remove shorter-term variations in forced response.

In this section, we perform a series of analyses based on historical forced simulations, in order to investigate more fully the25

potential for such forced effects to improve the constraint. We force the climate model with annual time series for the major

forcing factors based on IPCC (Annex II: Climate System Scenario Tables 2013). Our two-layer model with a one-year time

step (and Euler method of numerical integration) reacts rather too strongly to short-term spikes in forcing and thus we scale the

volcanic forcing to 70% of the nominal value in order to give more realistic simulations. In some of the following experiments,

we consider aerosol forcing as a source of uncertainty in addition to that arising from the internal parameters of the model. This30

uncertainty is implemented via a scaling factor denoted by α which is uncertain but constant in time, applied to the original

aerosol forcing time series. In these cases, our prior distribution for α is N(1,0.52).
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Figure 4. Simulations of instrumental period with 2-layer model. Thick lines are forced response excluding internal variability, thin lines

are 5 replicates of each parameter set including internal variability. Blue lines: S = 1.78◦C, γ = 0.7Wm−2 ◦C−1, ε= 1.3. Cyan lines:

S = 2.5◦C, γ = 1.0Wm−2 ◦C−1, ε= 1.7. Magenta lines: S = 5◦C, γ = 1.0Wm−2 ◦C−1, ε= 1.7, α= 1.7. Black line is HadCRUT

data.

Figure 4 presents 18 simulations from the model, consisting of 5 instances of internal variability for each of three different

parameter sets which were chosen to give reasonable agreement with observational data, and additionally one simulation for

each of these parameter sets in which internal variability was not included in order to show the pure forced response. These

simulations are shown merely to indicate the typical behaviour of the model under historical forcing estimates and are not

directly relevant to our analyses. Note that the observations of the real climate system which are also plotted here include5
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observational error (estimated to be roughly ± 0.05◦C at the 1 standard deviation level) whereas the model output is presented

as an exact global temperature. Thus it is to be expected that the model results are somewhat smoother and less variable than

the observations, although it may also be the case that the two layer model has insufficient variability. For each of these three

simulations without internal variability, the RMS differences between model output and observations is 0.13◦C.

When we hold other parameters at default levels, best agreement between model and data (defined here simply by RMS5

difference between the two time series) is achieved for a rather low sensitivity of 1.78◦C. If the γ and ε parameters are

increased slightly above their defaults then we can achieve an equally good simulation (again as measured by RMS difference)

with a higher value for sensitivity of 2.5◦C. If, additionally, aerosol forcing is also increased above the default value, then a

higher sensitivity still of 5◦C achieves an equally good match to the observed temperature time series at the global scale. While

there are hemispheric differences in these forcings that may provide some additional information (Aldrin et al., 2012), these10

simulations help to illustrate why it has been so challenging to effectively constrain equilibrium sensitivity from the long-term

observed warming.

4.1 Using Ψ

In order to assess what we can learn about sensitivity from the variability of historical temperature observations, we first

consider the utility of Ψ calculated from simulations over this period. Cox et al. (2018a) proposed that the effect of forcing15

over this interval could be effectively removed by a process of windowed detrending. Figure 5 shows results analogous to the

two-layer simulations in Figure 1, but using forced simulations of the historical period rather than unforced control simulations,

and therefore with Ψ calculated via the windowed detrending method of Cox et al. (2018a). One very minor discrepancy with

the calculations presented in that paper is that our simulations only extend to 2012 (this being the limit of the forcing time

series that we are using) and therefore we omit the last 4 years of the time period that they used. This does not significantly20

affect any of our results. We do not consider one-layer simulations here as this version of the model is known to provide poor

simulations of historical changes (Rypdal and Rypdal, 2014).

Grey dots and error bars indicate results obtained when only S is considered uncertain. These results are qualitatively

similar to those obtained by the unforced two-layer simulations in Figure 1, in that they exhibit a nonlinear and heteroscedastic

relationship that levels off for large values of S. The values of Ψ obtained at each value of S are however somewhat larger25

in the forced experiments, which supports the claims of Brown et al. (2018) and Po-Chedley et al. (2018) that the windowed

detrending has not been wholly effective in eliminating all influence of forcing. As mentioned previously, analysis of GCM

outputs indicate significant uncertainty in other model parameters and therefore we have performed additional ensembles of

simulations which account for uncertainty both in model parameters and aerosol forcing. These uncertain parameters, and their

priors, are the same as in Section 3.2, with the addition here that we also consider uncertainty in the aerosol forcing through30

the scaling parameter α. The combined effect of these uncertainties has little systematic effect on the mean estimate of Ψ but

slightly increases the ensemble spread. Interestingly, in contrast to our earlier experiments, no single factor appears to have a

dominant effect here.
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Figure 5. Ψ estimated from historical simulations from 2-layer model. Grey results are based on simulations where only S is considered

uncertain. Black results additionally account for uncertainty in γ, ε, σ and α. Large dots show means of 1000 simulations, with error bars

indicating ±2sd ranges for each ensemble. Blue and red crosses indicate results generated by CMIP5 and CMIP6 models respectively,

together with the best-fit regression lines as dashed lines, in matching colours.

Blue and red crosses also shown on this figure show results obtained from the CMIP5 and CMIP6 ensembles. The CMIP

models appear to generate slightly lower values of Ψ than the two-layer model does with the same sensitivity, although the

results seem broadly compatible. Reasons for the difference may include biases in parameters of the two-layer model, structural

limitations, or differences in the forcings used. Although we are not replicating the emergent constraint approach here, we do

note that there is a significant correlation in the CMIP5 ensemble results shown here between their sensitivities and Ψ values.5
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However, the relationship seen here is is weaker than that obtained by Cox et al. (2018a) for a different (though overlapping)

set of models, and explains a lower proportion of the variance. This remains true whether we perform the regression with S

as predictor, as suggested by our Figure, or when using Ψ as predictor as in Cox et al. (2018a). For CMIP6, the correlation is

insignificant.

Figure 2 shows results generated when various hypothetical values for Ψo are used to constrain model parameters for5

historical simulations. As before, we test sensitivity values of 1, 2.5 and 5◦C which here correspond to values for Ψo of 0.1,

0.18 and 0.25 respectively. As in the previous experiments, the smallest value of Ψo generates a tight constraint with a 5–

95% range of 0.7–1.7◦C when only S is considered uncertain. This grows to 1.8–7.2◦C for Ψo = 0.18 and the larger value of

Ψo = 0.25 provide very little constraint. When the additional parametric and forcing uncertainties are considered, the tightest

range corresponding to Ψo = 0.1 grows a little to 0.7–2.0◦C and the Ψo = 0.18 case spreads to 1.8–8.8◦C.10

When we use the observational value of Ψo = 0.13 (calculated from HadCRU data) and include multiple parametric uncer-

tainties, the 17–83% posterior range is 1.3–2.7◦C and the 2.5–97.5% range is 0.9–5.1◦C. These ranges are somewhat larger

than the equivalent results presented by Cox et al. (2018a) which were 2.2–3.4◦C and 1.6–4.0◦C respectively, despite the highly

optimistic perfect model scenario considered here.

4.2 Using the full time series15

Finally, we repeat the approach of Section 3.3, and use the full information of the time series, by the same method of inverting

the model to diagnose the internal variability noise that is required to generate the observed temperature time series. Since

we are interested solely in variability, we only consider the temperature residuals after detrending. We use a simple linear de-

trending over the period 1880-2012, which will leave a signature primarily due both to volcanic events and also the contrasting

temporal evolution of negative aerosol forcing and positive greenhouse gas forcing, which both generally increase throughout20

this period but which exhibit different multidecadal patterns.

The calculation is similar to that of Section 3.3, but there are some minor details which are worth mentioning. Although the

detrending is performed over the interval 1880-2012, we initialise the simulations in 1850 to allow for a spin-up. In contrast to

Section 3.3 where detrending was not performed, knowledge of the residuals after detrending does not actually enable an exact

reconstruction of the internal variability of the model simulation, as any random trend in this internal variability will have been25

removed by detrending. In fact a whole family of different model simulations will be aliased onto the same residuals. Therefore

our inversion only truly calculates the noise perturbations after the removal of the component that generates any linear trend.

This is not a significant problem for the likelihood calculation as the effect of this aliasing is minor and its dependence on

model parameters is negligible.

The results of multiple replicates are shown in Figure 3, in which we consider first the case where only S is uncertain,30

and then our larger set of parametric uncertainties. In the case where only S is unknown, the full time series of detrended

residuals provides strong evidence on S which can as a result be tightly constrained except perhaps when it takes a high value

such as 5◦C. For S = 2.5◦C, the posterior 5–95% range is typically under 2C in width, with the average of our samples being

1.9–3.5◦C. When multiple uncertainties are considered, the constraint is however markedly weakened. For a true sensitivity of
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S = 2.5◦C, the posterior 5 – 95% range is typically over 4 degrees, at 1.6 – 6.0◦C, with a “likely” 17–83% range of 2.2–4.1◦C.

As in the unforced experiments, these optimal constraints appear somewhat narrower than can be obtained by using the Ψ

statistic, but are not necessarily tight enough to be compelling in themselves.

5 Conclusions

We have explored the potential for using interannual temperature variability in estimating equilibrium sensitivity. While —5

as Williamson et al. (2019) argued — there is generally a quasi-linear relationship between S and the expected value of

Ψ = σT /
√
− lnρ1 over a reasonable range of S in the simple energy balance model, this relationship saturates for higher S

and furthermore, sampling variability is significant and highly heteroscedastic. These properties undermine the theoretical basis

for the linear regression emergent constraint approach which was presented by Cox et al. (2018a), as the ordinary least squares

regression method relies on a linear relationship with homoscedastic errors. The behaviour of the model instead results in an10

inherently skewed likelihood P (Ψ|S) with a long tail to high values for S. Thus, while Ψ statistic can indeed be informative on

S, the constraint it provides based on internal variability in the case of unforced simulations is rather limited. Furthermore, the

CMIP5 and CMIP6 ensembles exhibit quite different relationships in the regression framework, suggesting a lack of robustness

of the original analysis. We have shown how it is possible in principle to extract the full information from time series of annual

temperatures, by calculating the exact likelihood for the complete set of these observations. However, even in this scenario of a15

perfect model with a few well-characterised parametric uncertainties and no observational uncertainty on the temperature time

series, the constraint on sensitivity is seriously limited by the variability inherent to the model. It is only in the case where the

true value of the sensitivity is very low that such an approach can generate a tight constraint. For example, if the true sensitivity

takes a moderate value of 2.5◦C, then we could only expect to generate a constraint with a typical 5–95% range of around

1.9–6.8◦C. As was the case when using Ψ, estimates generated from the full time series are rarely close to symmetric and20

instead are typically skewed with a long tail to high values. This skew is an inherent property of the physical model that defines

the likelihood and not an artefact of our analysis methods.

Forced variability, such as that occurring during the instrumental period, does provide additional information in our experi-

ments, and therefore we could in theory hope to calculate a narrower posterior range, with a typical width of around 4◦C (e.g.

1.8–6.0◦C) when the true sensitivity is 2.5◦C. It must however be emphasised that these calculations rely on very optimistic25

assumptions and therefore represent a best case that is unlikely to be realised in reality. Nevertheless, our results do suggest that

variability can inform on the sensitivity and may generate a useful constraint in addition to that arising from the longer-term

observed trend.
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