
Response to Editor and short comments

Editor comments (E) and author responses (A)

E: I would like to add two additional requests. One 
apparent simplification is that noise is assumed to be 
Gaussian. Climate model signals (and observed climate 
data) has considerable spectral structure (ENSO, PDO, 
AMOC, etc.). Presumably in these models this is 
simplified into some modelled split between noise and 
signal. Could a more realistic noise representation 
impact the results?

A: While the noise assumption is a little simplistic, it 
mirrors that made by Cox et al, and is also widely used 
in the literature. We believe that the heteroscedastic 
and nonlinear behaviours shown in Fig 5 would be robust 
to the details of the noise as they arise directly from 
(a) the reduced damping with large S, and (b) the 
influence of ocean heat uptake, respectively. The results 
with CMIP5/6 models also show the relationship between 
sensitivity and variability to be is weak.

E: It would also be helpful if you could comment if the 
assumption for the magnitude of the noise (sigma) plays a 
role in the final results since this appears to be a 
fixed assumption "generally use the value σ = 0.05".

A: We have add a comment in the manuscript (p 3 line 26). 
The value of psi scales with the magnitude of the noise 
but the results are not very sensitive to it. It was 
chosen as a reasonable compromise between compatibility 
with model results and surface temperature observations.

In addition, some least significant digits have changed 
due to sampling variability following the re-ordering of 
some of the simulations for the new figure arrangement.

Short comment from Nic Lewis (SC) and author responses 
(A)



SC: [comments about transient response] 

A: p6 l30 We note the stronger relationship to transient 
response, albeit it is not a primitive parameter in our 
model.

SC: Page 3 line 20: the model in equations (1) and (2) is 
not the Winton et al (2010)
model: it is the Held et al (2010) model. The Winton et 
al model, although similar to the
Held et al. model, has a basic difference in that its 
efficacy parameter ε applies to total
ocean heat uptake, and is found to vary significantly 
over time in AOGCMs, whereas in
the Held et al model ε only applies to deep ocean heat 
uptake, as in equation (1), and
is found to fit AOGCM behaviour with (as here) a constant 
ε value. The cited Geoffroy
et al (2013a) paper uses the Held model, not the Winton 
model.
R:

A: done

SC Page 4 Table 1: there is a sign error in the default 
value for the radiative feedback
parameter, λ. The way this parameter is used in equation 
(1) implies it is negative, but
Table 1 defines it as 3.7/S not −3.7/S.

A: done

SC: Page 13, line 30: the title of Kass and Raftery’s 
1995 paper is just "Bayes Factors".

A: done

Short comment from  Stephen E. Schwartz

A: No direct changes necessary, though we do mention (p6 



l8) that the results are insensitive to detrending or not 
in the unforced case.

Response to Anonymous Referee #1
Referee comments (R)
Author comments (A)

R:
1 Summary
Annan et al. (2020) examine the utility of using natural 
variability of global mean surface temperature (or ocean 
mixed layer temperature) to constrain equilibrium climate 
sensitivity. They extend recent work on this topic by 
using a two layer energy balance model in a “perfect 
model” framework. They find that the strength of 
variability-based constraints is substantially weaker 
when climate sensitivity is large, which is true for both 
simulations with no external forcing and simulations that 
use estimates of historical external forcing. For 
moderate climate sensitivity (2.5 K), the uncertainty in 
ECS is approximately 4 degrees using information from the 
entire time series and including aerosol forcing 
uncertainty. For simpler constraints, the uncertainty 
range is even larger. This work is a useful expansion of 
recent literature on this topic. The manuscript is 
clearly written, though I suggest the authors make a 
minor modification to the organization, expand their 
discussion in several places, and consider condensing 
some figures (or adding a summary figure) to help compare 
results across the various experiments.

2 General Comments
One suggestion to improve the manuscript is to make it 
easier for the reader to compare across experiments / 
figures. For example, Figure 1 and 5 are similar and it 
would be useful to compare all of these results together 
(perhaps via plotting them on the same axis with color 
coding in an additional summary figure or grouping or by 
putting them on a common figure with different panels). 
It would be similarly useful to intercompare the various 



posterior estimates (Fig. 2 and 6 as well as 3, 7, and 
8). Perhaps plotting lines corresponding to the 5 - 95% 
CI and a dot for the most likely value value (which would 
illustrate the skewness) would help compress the figures 
(though this may run afoul of the Bayesian framework).

A: Thanks for the suggestions. As per our initial 
response in the open review, we have combined figs 2 with 
6, also 3, 7 and 8 and think the changes are an 
improvement. Figure captions and legends have been edited 
appropriately. We draw attention in the text to 
differences between figs 1 and 5.

R:
There were a few places (noted below) where it would be 
helpful to more directly compare and discuss this work in 
the context of other literature. For example, in some 
places I thought that Cox et al had commented on some 
issues (e.g., de-trending, two layer models, etc.) and it 
wasn’t immediately clear how to put that work in the 
context of this manuscript.
I was confused by the  factor you used as well as the 
references for the two layer model used here (see below). 
It would be helpful to clarify some of this in the 
revised manuscript.

A: We didn't want to focus too directly on the details of 
Cox et al and the various comments/responses, as we 
consider the analysis using the full time series to 
provide a more compelling result that obviates a detailed 
investigation of their approach as it puts a strict bound 
on the potential for variability, however it it is 
analysed, to provide a constraint. The "garden of forking 
paths" is a very clear danger when a large number of 
choices can be made in the analysis procedure, and 
therefore such choices must be supported by an underlying 
theoretical basis. However we have added discussion of 
Kirk-Davidoff and made a number of other changes 
described in more detail below.

R:



In terms of organization, I thought it would be helpful 
to include the data (CMIP + HadCRUT) somewhere in the 
beginning (e.g., a renamed Methods section), rather than 
introducing with the manuscript’s results.

A: Subsection on Additional Data to describe CMIP5/6 and 
HadCRUT data has been included.

R:
3 Specific Comments
Abstract (line 2) and Page 1 / Line 24: In the abstract I 
wasn’t sure which studies you were referring to that 
tried to constrain ECS with the trend. This might be an 
oversimplification of these approaches (the Gregory et 
al. 2002 and Otto et al. 2013 papers cited), since these 
publications also considered radiative forcing and ocean 
heat uptake. I believe more recent work by Jimenez-de-la-
Cuesta and Mauritsen (2019; doi:10.1038/s41561-019-0463-
y) and Nijsse et al (2020; doi: 10.5194/esd-2019-86) are 
consistent the abstract language (with caveats that they 
focus on TCR and a specific time period). I suggest 
revising this language to reflect the “energy budget 
constraint” rather than the trend and/or citing these 
other relevant publications.

A: Citations in the abstract are deprecated by the 
journal but we have changed the wording a little to the 
deliberately less specific "trends in observational time 
series" and expanded the introduction to read "energy 
balance as constrained by the warming trend in 
atmospheric and oceanic temperatures "

R:
Abstract / Line 15: “observed. . .observational” consider 
using “inferred from the detrended observational record”

A: Done as suggested

R:
Page 2 (general comment): Other studies that discuss the 



utility of variability in understanding the climate 
response to external forcing include Langen and Alexeev 
(2005, doi:10.1029/2005GL024136) and Kirk-Davidoff (2009, 
doi: 10.5194/acp-9-813-2009).The latter publication seems 
particularly relevant to the manuscript under review and 
could be compared to the results here.

A: Kirk-Davidoff citation added, and mentioned again p6 
l17

R:
Page 2 / Line 21: Cox et al replied (Cox et al, 2018b) to 
these comments with some analyses relevant to this 
manuscript. In it, they discuss issues such as the 
importance of de-trending, their own two layer 
experiments, and the effect of historic external forcing. 
Given the relevance to this manuscript (e.g., they two 
box model results), some of this information could be 
presented in the introduction or at least compared to the 
two layer results shown in this work.

A: Cox 2018b Citation has been added but additional 
discussion is retained for Section 4. Given their 
original (2018a) result was justified solely on the 
single layer unforced model we think it is appropriate to 
focus initially on this situation.

R: 
Section 2: Consider describing the CMIP data and HadCRUT 
observations here

A: Brief description of HadCRUT and two CMIP ensembles 
added.

R:
Page 3 / Line 7: In Cox et al (2018b), they did test a 
two layer model (building off their
one-layer model results)

A: No change needed (Cox 2018b is cited and discussed 
elsewhere).



R:
Page 3 / Line 20 and Equation 2: I was confused why 
epsilon did not appear in Eq. 2 or why
it wasn’t absorbed into gamma in both Eqs. 1 and 2. In 
quickly looking at the Winton
et al (2010) paper: don’t they use this term in part 
because it is a one layer model (line
10 and line 20 seem to imply this was a two layer model, 
but I realize now this may not
have been intended)? Can epsilon be removed here since 
you explicitly have deep ocean
representation? I would appreciate more text justifying / 
clarifying the purpose of epsilon. It
looks like some of what you attribute to Winton et al 
(2010) should be attributed to Held
and Winton (2010, doi: 10.1175/2009JCLI3466.1)?

A: Epsilon does not play a significant role here; we 
include it primarily because this is the standard version 
of the model that is widely used to mimic GCM behaviour.  
We now make this point in the manuscript. It is not quite 
correct to say that it epsilon can be subsumed into the 
gamma parameter, as its effect on energy balance is more 
akin to an additional feedback into space, the strength 
of which depends on the degree of disequilibrium. As for 
the references here, while the Held et al reference is 
actually clearer as to the formulation of the model (see 
their equations 9 and 10 ) they did specifically cite 
Winton et al as the origin of this approach. We now cite 
both papers (l12).

R:
Page 3 / Line 26: On first read, I thought you had used a 
value of the average mixed and deep layer depth based on 
observations. Suggest making this more clear with 
something like, “We assume a mixed and deep layer depth 
of 75 and 1000 m, respectively, which are used to 
calculate the heat capacities (Cm and Cd, respectively) 
based on ocean coverage of 70% of the planetary surface 



area.”

A: Done

R:
Page 3 / Line 27 - 29: It would be useful to provide more 
information about how you chose your parameter values 
(and later information about how you get the range of 
plausible values), citing literature relevant to the 
selection of these values. It was unclear to me why you 
didn’t simply use the mean or median from Geoffrey et al. 
(2013), for example.

A: Aim is not to specifically emulate a particular GCM 
ensemble but just to cover a reasonable range wherein we 
believe reality could plausibly lie. Added sentence to 
explain, "Our aim here is not specifically to replicate 
or mimic this ensemble but to allow for a reasonable 
range of parameter values."

R:
Page 5 / Line 11 - 12: This suggests that you checked 
this using the two-layer model,
consider putting “(not shown)” to indicate that you 
checked this.

A: done. Yes we did look at this briefly.

R:
Page 5 / Line 19 - 20: Does detrending (using 55 year 
windows as in Cox et al) alter the analysis? It seems 
like it would be reasonable to linearly detrend (as done 
in the Cox et al calculation). In the Cox et al reply, 
they note that it is still important to de-trend unforced 
simulations using a two layer model.

A: We did test and detrending the unforced runs made very 
little difference. We thought it was more in the spirit 
of the original derivation to not do this in the main 
analysis, as the stated purpose was to remove the forced 
trend which we know to be zero in this instance.



R:
Page 5 / Line 23 - 29: This is interesting and useful, 
though I am not sure how to square this with the results 
presented in Cox et al. (2018). Could you comment more on 
this? Is this heteroscedasticity included in their 
estimate of ECS via linear regression? For example, if 
you varied S to correspond to the 16 models used in Cox 
et al. (2018), ran a 150 simulation, and performed linear 
regression (Ψ versus ECS) would the fit be significantly 
different from what would be obtained using the 1000-year 
simulations? Or, in another way, is this issue included 
in the Cox et al (2018) ECS estimate because the 
increased variance in high ECS models has the effect of 
making their linear fit between Ψ and ECS more uncertain 
(and thus contributes to the uncertainty in GCM Ψ values 
and, in turn, ECS)? Or is the strength of the 
relationship in Cox et al fortuitous (as suggested by the 
importance of what GCM simulations are included in the 
regression as seen in the Po-Chedley et al comment)? Or 
perhaps the take home message should be that the observed 
value of Ψ is uncertain. The Cox et al reply (Extended 
Data Figure 2, top left) suggests that you would 
generally expect to get a reasonably strong relationship 
between Ψ and ECS (even though heteroscedasticity should 
influence their results, too).

A: Their ordinary least squares analysis makes no 
assumption of (and therefore does not account for) 
heteroscedasticity, and we believe they must just have 
been lucky in their set of models (combined to some 
extent with optimising various choices during their 
analysis). Our analysis using the exact likelihood 
renders the entire debate moot. Furthermore, the failure 
of their approach for CMIP6, and the significantly 
different relationship exhibited by these models, is 
additional evidence that their original result was 
unreliable. 

We now also mention the difference between the CMIP 
ensembles in the conclusions.



R:
Page 5 (Figure 1 discussion): Note that Po-Chedley et al 
(2018) found that you only recover a strong Ψ - ECS 
relationship using all of the piControl data and the 
relationship is weaker with shorter time series. Kirk-
Davidoff (2009) also concludes that shorter time series 
cannot accurately diagnoses climate sensitivity. Of 
relevance, Nijjse et al (2019, doi: 10.24433/CO.
6887733.v1) show that a metric of decadal surface 
temperature variability (from piControl data) scales with 
ECS.

A: Po-Chedley and Kirk-Davidoff cited.

R:
Page 6 / Line 31 - 32: It would be useful to provide a 
reference regarding this point (since the subsequent 
linguistic calibration was not immediately intuitive).

A: This has been be reworded. It is intended as a literal 
translation of what P(psi|S) means, however. 

R:
Page 6 / Line 32: Should this be “Relative” (where it 
says “Likelihood values can be
read. . .”?

A: yes, text changed

R:
Figure 1 (and others): Suggest adding a legend with 
“Single layer (gamma = 0)” and
“Two layer”. In general, it would be helpful to the 
reader to have a legend on all of the
figures (with the possible exception of Fig. 4) and there 
appears to be plenty of white
space to do so.

A: Legend added here (and also to other figures).  



R:
Figure 2: Suggest “dashed” instead of “dotted.” The blue 
appears purple on my monitor.
Page 8 / Line 2: You could cite Roe and Baker (2007; doi: 
10.1126/science.1144735)
and perhaps others here.

A: Changed to dashed lines

R:
Page 9 / Line 5: I don’t have intuition for what the 
relative uncertainty should be, but
20% struck me as small (particularly given the later 
remark that the observational interannual variability 
looks relatively large compared to the model 
simulations).

A: Observational variability has a large component of 
observational uncertainty, so this must provide an upper 
bound on internal variability.

R:
Page 9 / Line 8: Consider using “purple” instead of 
“blue” so the reader doesn’t get
confused with the cyan line (at least this appears purple 
on my screen).

A: We think this colour scheme makes sense, using blue, 
cyan, magenta and green, with dashed lines representing 
the results for multiple uncertain parameters. We have 
added a legend which should help.

R:
Page 11 / Line 26: Does this correspond to any published 
values of the aerosol forcing
uncertainty? Later, you say that a larger aerosol forcing 
corresponds to larger ECS,
but this range suggests that you do not, by default, 
consider larger aerosol forcing - is
that right? If so, why?



A: This scaling considers larger aerosol forcing (alpha 
>1) just as likely as smaller (alpha <1) and the 95% 
range is 0-2x the standard value, which we consider to 
include all reasonable estimates.

R:
Page 11 / Line 33 onwards: Could it also be that the 
noise term in the two layer models
is too small?

A: This is possible and we've changed the text to mention 
this.

R:
Page 12 / Line 2: At first I didn’t understand what 0.13 
represented. Consider re-writing as something like: For 
each of the three simulations, the RMS differences 
between model output with no internal variability and 
observations is 0.13 oC.

A: Done

R:
Page 13 Line 1 (and elsewhere): This record contains more 
than the 20th century. Consider using a more generic term 
(like historical) and noting the time period considered. 
Also consider using “first” instead of “firstly.”

A: Changed to historical. Also changed firstly to first. 

R:
Page 13 / Line 4: In Figure 5, you also only show two 
layer solutions, which is different
from Fig. 1 and could be noted here.

A: noted in text at the start of Section 4.1

R:
Page 13 / Line 18: Should some of this CMIP information 
be included in the Methods Section (perhaps revised to 



“Data and Methods”)? What RCP scenario was used to extend 
the historical time series. This would be a good place to 
cite Taylor (2011, doi: 10.1175/BAMS-D-11-00094.1). There 
is also some language that is suggested for acknowledging 
ESGF and modeling groups (https://pcmdi.llnl.gov/mips/
cmip5/citation.html). It would also be helpful to say 
what variable you are using (tas?).

A: "Additional data" section 2.3 has been included as 
suggested.

R:
Page 13 / Line 25 - 27 / Figure 5: It is very useful 
seeing many CMIP5 realizations on this plot. This is a 
nice illustration of one of your key points (the range of 
Ψ values can be quite large for a given model).

A: Thank you

R:
4 Grammatical / Other Comments
Page 1 / Line 23: Should this be *mid* 19th century to 
the early *21st* century
Page 2 / Line 1: focussed -> focused
Page 2 / Line 2: Suggest: “and this topic” -> “which”
Page 2 / Line 31: Remove “to” in “from to”
Page 3 / Line 7: Suggest changing “equilibrium 
sensitivity” to “equilibrium climate sensitivity”
Page 6 / Line 16: Insert: “so *we* perform. . .”
Page 9 / Line 25: I was not familiar with “i.i.d.” - 
suggest writing this out.

A: All done as suggested.

Response to Anonymous Referee #2

A:
Thank you for your helpful comments. 

R:



General comments:
Annan et al study whether the variability can constrain 
sensitivity in an idealized twobox model setting. They 
find it works well for lower values of sensitivity 
although loses power for higher values (around 5K). They 
also report that using the forced response in addition 
can constrain estimates further. It is well written and 
seems to be technically correct. I have a few questions 
listed below and some minor suggestions for ease of 
comparison with previous work.

R:
Specific comments:
Ranges are reported in the 5-95% interval. It would be 
great to see the 33%
to 66% for comparison with the IPCC ranges particularly 
in the abstract, as was
done in Cox et al (2018).

A: We have added some extra ranges to the values for the 
results with the full time series (our most optimistic 
scenario) to help with comparisons. (IPCC likely range is 
17-83%, which we assume is what the reviewer meant). End 
of Section 4.2

R:
Section 3.1, p.6, lines 25-30. Is the increasing 
uncertainty in estimated sensitivity due to the larger 
timescales in the higher sensitivity models relative to 
the length of the time series which is fixed at 150 
years? If climate sensitivity scales proportionally with 
timescale then the 1K sensitivity has 10 times greater 
effective sampling for a finite length record. Is this 
what’s going on here?

A: Section 3.1 Yes in part this is the case. We cannot 
accurately infer the intrinsic time scale when the time 
series is not long compared to it.

R:



Section 4, p. 11. There are other deterministic forcing 
factors uniform in amplitude and phase across all the 
CMIP GCMs (and the real Earth system) not present in the 
two-box model simulations. These deterministic forcing 
factors could further separate and discriminate the model 
sensitivities in addition to the IPCC annual forcing 
timeseries. Examples of such factors are the diurnal and 
seasonal cycles of solar insolation. Even though these 
forcings (and responses) are averaged over when using 
annual GMSAT, there might still be traces of it in the 
responses (at least in the more complex and nonlinear 
CMIP model responses and the real world) and this could 
act to further help reveal the sensitivity. This is not 
considered in the ideal model scenario and would be 
interesting to test in the two-box.

A: Possibly, but we don't think such a simple model can 
address this with much precision. Weak results relating 
to the annual cycle were obtained by: Knutti, R., Meehl, 
G., Allen, M. R., & Stainforth, D. A. (2006). 
Constraining climate sensitivity from the seasonal cycle 
in surface temperature, Journal of Climate 19(17), 4224–
4233.

R:
section 4, p. 12. Worth noting that there are differences 
between forcing from well mixed GHGs and aerosol 
forcings. Well mixed GHGs tend to act uniformly over the 
globe while aerosol forcing is quite geographical. You’re 
not going to be able to compare the effects of aerosol 
forcing with well mixed GHG forcing in a box model, at 
least in a simple way.

A: Sect 4 yes we now note this at the top of p14 (and 
also cite Aldrin et al as an example). Hemispheric models 
take advantage of this point.

R:
Technical corrections:
line 25: The usual approach to integrating stochastic 



differential equations is the Euler-Maruyama method to 
simulate the correct variance on the random variable. If 
the timestep is 1 unit (as it appears here) it shouldn’t 
make any difference but is worth noting for the reader.

A: We selected the noise sampling deliberately to achieve 
the desired variance in temperatures.

R:
Table 1: Would be good to get all the parameters in the 
same units as Geoffroy et al (2013a) for direct 
comparison (particularly Cm and Cd in W yr /m2 /K). I’m 
aware these are not standard SI units, but just like 
kWhrs, they are much more convenient to calculate with. 
It would also be good to list the resulting timescale 
ranges τf and τs for the same reason.

A: Table 1 We have added the capacities in these 
alternative units.



What could we learn about climate sensitivity from variability in the
surface temperature record?
James Douglas Annan1, Julia Catherine Hargreaves1, Thorsten Mauritsen2, and Bjorn Stevens3

1Blue Skies Research Ltd, The Old Chapel, Albert Hill, Settle, BD24 9HE, UK
2Department of Meteorology, Stockholm University, Stockholm, Sweden
3Max Planck Institute for Meteorology, Hamburg, Germany

Correspondence to: jdannan@blueskiesresearch.org.uk

Abstract.
We examine what can be learnt about climate sensitivity from variability in the surface air temperature record over the instru-

mental period, from around 1880 to the present. While many previous studies have used the trend in the
:::::
trends

::
in

:::::::::::
observational

time series to constrain equilibrium climate sensitivity, it has also been argued that temporal variability may also be a powerful

constraint. We explore this question in the context of a simple widely used energy balance model of the climate system. We5

consider two recently-proposed summary measures of variability and also show how the full information content can be op-

timally used in this idealised scenario. We find that the constraint provided by variability is inherently skewed and its power

is inversely related to the sensitivity itself, discriminating most strongly between low sensitivity values and weakening sub-

stantially for higher values. It is only when the sensitivity is very low that the variability can provide a tight constraint. Our

investigations take the form of “perfect model” experiments, in which we make the optimistic assumption that the model is10

structurally perfect and all uncertainties (including the true parameter values and nature of internal variability noise) are cor-

rectly characterised. Therefore the results might be interpreted as a best case scenario for what we can learn from variability,

rather than a realistic estimate of this. In these experiments, we find that for a moderate sensitivity of 2.5�C, a 150 year time

series of pure internal variability will typically support an estimate with a 5–95% range of around 5�C (e.g. 1.9–6.8�C). To-

tal variability including that due to the forced response, as observed in
::::::
inferred

::::
from

:
the detrended observational record, can15

provide a stronger constraint with an equivalent 5–95% posterior range of around 4�C (eg 1.7–5.6
::::::
1.8–6.0�C) even when uncer-

tainty in aerosol forcing is considered. Using a statistical summary of variability based on autocorrelation and the magnitude of

residuals after detrending proves somewhat less powerful as a constraint than the full time series in both situations. Our results

support the analysis of variability as a potentially useful tool in helping to constrain equilibrium climate sensitivity, but suggest

caution in the interpretation of precise results.20

1



1 Introduction

2 Introduction

For many years, researchers have analysed the warming of the climate system as observed in the modern instrumental temper-

ature record (spanning the late
:::
mid

:
19th to early 20th

::::
21st century), in order to understand the response of the climate system

to external forcing. For the most part, the focus has been on the long-term warming trend
::::::
energy

::::::
balance

:::
as

:::::::::
constrained

:::
by

:::
the5

:::::::
warming

:::::
trend

::
in

::::::::::
atmospheric

::::
and

::::::
oceanic

:::::::::::
temperatures (e.g. Gregory et al., 2002; Otto et al., 2013; Lewis and Curry, 2015).

However, some research has focussed
:::::::
focused more specifically on the temporal variability exhibited in this

:::
the

::::::
surface

:::
air

temperature record (Schwartz, 2007; Cox et al., 2018a), and this topic
:::::
which

:
is the focus of this paper.

Schwartz (2007) argued on the basis of a simple zero-dimensional energy balance model that an analysis based on the

fluctuation-dissipation theorem (Einstein, 1905) could be used to directly diagnose the sensitivity of the Earth’s climate sys-10

tem S — here conventionally defined as the equilibrium surface air temperature response to a doubling of the atmospheric

CO2 concentration — from variability in the observed record of annually and globally averaged surface air temperature obser-

vations over the observational record. While we do not wish to repeat the arguments here, we will note that several researchers

disputed this analysis, demonstrating inter alia that this method did not reliably diagnose the sensitivity of climate mod-

els, and also arguing why it could not be expected to do so, given their complexity (Foster et al., 2008; Knutti et al., 2008)15

:::::::::::::::::::::::::::::::::::::::::::::::::
(Foster et al., 2008; Knutti et al., 2008; Kirk-Davidoff, 2009). Perhaps as a consequence of these arguments, this line of re-

search was largely ignored for the subsequent decade.

More recently however, Cox et al. (2018a) reopened this question with an analysis based on an emergent constraint ap-

proach. That is, rather than following the directly diagnostic approach of Schwartz (2007), they instead observed that a

quasi-linear relationship existed across an ensemble of CMIP5 models (Taylor et al., 2012), between the sensitivities of20

these models, and their interannual temperature variabilities as summarised in a statistic which they denoted  . It has been

cogently argued that an emergent constraint should only be taken seriously if supported by some theoretical basis (Cald-

well et al., 2014), and Cox et al. (2018a) did indeed present an analysis — again based on simple zero-dimensional energy

balance modelling — which qualitatively underpinned this linear relationship. Using the value of  obtained from obser-

vations of surface air temperature, together with the empirical relationship between  and S they had derived from the25

climate models, they produced a best estimate of the equilibrium sensitivity of the climate system of
::::::
climate

:::::::::
sensitivity

::
of

:
2.8�C with a likely (66% probability) range of 2.2–3.4�C, a substantially tighter range than most previous research.

However, questions have also been raised about this result (Brown et al., 2018; Rypdal et al., 2018; Po-Chedley et al., 2018)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Brown et al., 2018; Rypdal et al., 2018; Po-Chedley et al., 2018; Cox et al., 2018b).

:

In this paper, we explore the question of to what extent temporal variability in the globally and annually averaged temperature30

record can be used to constrain equilibrium climate sensitivity. We consider both the internal variability of the climate system

itself, and also the total variability including deviation from a linear trend due to the forced response. Our investigations are

performed in the paradigm of a simple idealised modelling framework, using a two-layer energy balance model which has been

widely used to simulate the climate system and which generalises and improves on the performance of the zero-dimensional

2



model. As part of our investigations, we examine the relationship between the  statistic and the equilibrium sensitivity in

the model. We also show how the full time series of variability can be used to constrain climate sensitivity, under a variety of

idealised scenarios. Our results are based on “perfect model” experiments and therefore may be more readily interpreted as a

best case scenario for what we can learn from variability, rather than a realistic estimate of this.

In the next section, we present the two-layer energy balance model and briefly outline the experimental methods used in5

this paper. We firstly
:::
first

:
focus on internal variability, that is to say, the temporal variability arising entirely from to internal

dynamics of the climate system in the absence of forcing. We evaluate the power of the  statistic in constraining equilibrium

sensitivity, and also consider the more general question of what could in principle be learnt from the full time series. We then

consider variability over the period of the observational record (primarily the 20th century, but with some extension into the

19th and 21st centuries). This includes forced variability due to temporal changes in both natural and anthropogenic forcings10

as well as the internal variability of the climate system. Throughout the paper, the term variability refers simply to all temporal

variation in the annually-averaged temperature time series after any linear trend is removed.

2 Methods

2.1 Model

The basic underpinning of previous work is energy balance modelling of the climate system, from which it is anticipated that in-15

terannual variability may be informative regarding the equilibrium sensitivity. While previous research was based on analysis of

the simplest possible zero-dimensional single layer planetary energy balance, there is evidence that the behaviour of the climate

system over the 20th century
::::::::
historical

:::::
period

:
is poorly modelled by such a system (e.g. Rypdal and Rypdal, 2014). Therefore,

we use here a slightly more complex two-layer model based on Winton et al. (2010)
::::::::::::::::::::::::::::::::
Winton et al. (2010); Held et al. (2010)

. This model has been shown to reasonably replicate the transient behaviour of the CMIP5 ensemble of complex climate20

models (Geoffroy et al., 2013b, a). The model is defined by the two equations:

Cm
dTm

dt
= F

t
+�Tm � ✏�(Tm �Td)+Cm�

t (1)

Cd
dTd

dt
= �(Tm �Td) (2)

This is a two-layer globally-averaged energy balance model which simulates the mixed (Tm) and deep (Td) ocean temper-25

ature anomalies in the presence of time-varying forcing F
t. �=�F2⇥/S is the radiative feedback parameter where S is the

equilibrium sensitivity and F2⇥ is the forcing due to a doubling of the atmospheric CO2 concentration. Cm and Cd are the heat

capacities of the mixed-layer and deep ocean respectively and � represents the ocean heat transfer parameter. The parameter ✏

was introduced by Winton et al. (2010) to represent the deep-ocean heat uptake efficacy,
::::
and

:::::
while

:
it
::
is
:::
not

:::::::::
important

:::
for

:::
our

:::::::
analysis,

:::
we

::::::
include

::
it
:::
for

::::::::::
consistency

::::
with

:::
the

:::::::
broader

::::::::
literature. In a slight modification to Winton et al. (2010), we add a30
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Parameter Default Value (Prior) Description

S 3.0 (U[0,10]) Equilibrium climate sensitivity (�C)

� 3.7/S
::::::
�3.7/S Radiative feedback (Wm�2 �C�1)

� 0.7 (N(0.7,0.22)) Deep ocean heat uptake parameter (Wm�2 �C�1)

✏ 1.3 (N(1.3,0.32)) Deep ocean heat uptake efficacy

F2⇥ 3.7 Forcing of 2⇥CO2 (Wm�2)

Dm 75 Depth of mixed layer (m)

Cm 4.2⇥ 106 ⇥ 0.7⇥Dm Heat capacity of mixed layer (Jm�2 �C�1)

:::
Cm: ::

7.0
: :::

Heat
::::::
capacity

::
of
:::::
mixed

::::
layer

:::
(W

:::
yr

:::::::::
m�2 �C�1)

:

Dd 1000 Depth of deep ocean (m)

Cd 4.2⇥ 106 ⇥ 0.7⇥Dd Heat capacity of deep ocean (Jm�2 �C�1)

::
Cd ::

93
: :::

Heat
:::::::

capacity
::
of

::::
deep

::::
ocean

:::
(W

:::
yr

:::::::::
m�2 �C�1)

� 0.05 (N(0.05,0.01
:
2)) Gaussian noise parameter (�C)

Table 1. Adjustable parameters and default values

noise term �
t to the first equation to represent the internal variability of the system as was originally introduced in a single layer

energy balance climate model by Hasselmann (1976). Here �
t is sampled on an annual (ie, time step) basis from a Gaussian

N(0,�) where we generally use the value � = 0.05 which generates deviations of order 0.05�C on an annual basis.
:
,
:::::::::
reasonably

:::::::::
compatible

::::
with

::::
both

:::::
GCM

::::::
results

::::
and

::::::::::
observations

:::
of

:::
the

::::::
climate

:::::::
system.

::::
Our

::::::::::
conclusions

:::
are

:::
not

::::::::
sensitive

::
to

:::
this

:::::::
choice.

The mixed layer temperature Tm is considered synonymous with the globally averaged surface temperature. The equations are5

solved via the simple Euler method with a one year time step.

The values of the various adjustable parameters are listed in Table 1. The depths of
:::
We

::::::
assume

::::::
depths

::
of

::::
75m

:::
and

::::::
1000m

:::
for

the mixed and deep ocean layers
:::::::::
respectively

:::::
which

:
are used to calculate the heat capacities Cm and Cd respectively based on

ocean coverage of 70% of the planetary surface area. The default values for adjustable parameters are given in Table 1 and the

values used here lie close to the mean of those obtained by fitting the model to CMIP5 simulations by Geoffroy et al. (2013a).10

:::
Our

::::
aim

::::
here

::
is

:::
not

::::::::::
specifically

::
to

:::::::
replicate

::
or

::::::
mimic

::::
this

::::::::
ensemble

:::
but

::
to

:::::
allow

:::
for

::
a

:::::::::
reasonable

:::::
range

::
of

:::::::::
parameter

::::::
values.

If we set � = 0 and ignore the deep ocean then we recover the single layer model of Hasselmann (1976) which was used by

both Schwartz (2007) and Cox et al. (2018a) in their theoretical analyses.

2.2 Bayesian estimation

Our investigations are performed within the paradigm of Bayesian estimation. In general, the Bayesian approach provides us15

with a way to estimate a set of unknown parameters ⇥ from a set of observations O via Bayes’ Theorem,

P (⇥|O) = P (O|⇥)P (⇥)/P (O). (3)

4



Here P (⇥|O) is the posterior probability distribution of ⇥ conditioned on a set of observations O, P (O|⇥) is the likelihood

function that indicates the probability of obtaining observations O for any particular set of parameters ⇥, which in this paper

will always contain S and may include other parameters. P (⇥) is a prior distribution for the parameters ⇥, and P (O) is

the probability of the observations which is required as a normalising constant in the calculation of the posterior probability

distribution.5

Formally, the value of the observations is fully summarised by the likelihood function P (O|⇥), but we primarily present

our results as posterior pdfs in order to provide an easily interpreted output which can be directly compared to previously

published results. We therefore use a uniform prior in S as this is typically the implicit assumption in emergent constraint

analyses (Williamson et al., 2019). This choice results in the posterior being visually equivalent to the likelihood even though

their interpretation is somewhat different. In some experiments, we will consider that only the sensitivity is unknown, but in10

others we will consider a wider range of parametric uncertainties. The priors that we use for all uncertain parameters are shown

in Table 1.

2.3
:::::::::

Additional
::::
data

:::::
While

:::
this

:::::
study

::::::::
primarily

::::::::
focusses

::
on

:::
the

:::::::::
behaviour

::
of

:::
the

::::::
simple

::::::
energy

::::::
balance

::::::
model,

:::
we

::::
also

:::
use

::::
and

::::::
present

:::::
some

::::
data

::::
from

:::::::
external

:::::::
sources.

::
In

:::::
order

::
to

:::::::
perform

::::::::::
simulations

::
of

:::
the

::::::::
historical

:::::::
period,

::
we

:::::
force

:::
our

:::::::
climate

::::::
model

::::
with

::::::
annual

::::
time15

:::::
series

:::
for

:::
the

:::::
major

:::::::
forcing

::::::
factors

:::::
based

:::
on

:::::::::::::::::::::::::::::::::::::::::::::
IPCC (Annex II: Climate System Scenario Tables 2013)

:
.
::::
Our

::::::::
two-layer

::::::
model

::::
with

:
a
:::::::
one-year

::::
time

::::
step

::::
(and

:::::
Euler

::::::
method

:::
of

::::::::
numerical

::::::::::
integration)

:::::
reacts

:::::
rather

:::
too

:::::::
strongly

::
to

:::::::::
short-term

:::::
spikes

::
in
:::::::
forcing

:::
and

::::
thus

:::
we

::::
scale

:::
the

:::::::
volcanic

:::::::
forcing

::
to

::::
70%

::
of

:::
the

:::::::
nominal

:::::
value

::
in

:::::
order

::
to

::::
give

::::
more

:::::::
realistic

::::::::::
simulations.

:::
We

:::::
show

:::::
some

::::::
outputs

::
of

:::
the

:::::
model

:::::::
together

::::
with

::::::
surface

:::
air

::::::::::
temperature

::::::::::
observations

:::::
from

:::::::::
HadCRUT

:::::::::::::::::
(Morice et al., 2012)

::
as

:
a
::::::
purely

:::::
visual

::::::::
indication

::
of

:::
the

:::::::
model’s

:::::::::::
performance.

:::
We

:::
do

:::
not

:::
use

::::
these

::::
real

::::::::::
temperature

:::::::::::
observations

::
in

:::
any

::
of

:::
our

::::::::
analyses,

::::::::
however.20

:::
For

:::::::::
comparison

::::
with

::::
our

:::::
simple

::::::
model

::::::
results,

:::
we

:::
also

::::::
present

:::::
some

::::::
results

::::::::
calculated

::::
from

::::::::
historical

::::::::::
simulations

:::::::::
performed

::
by

::::::
climate

:::::::
models

::
in

:::
the

::::::
CMIP5

:::::::::::::::::
(Taylor et al., 2012)

:::
and

:::::::
CMIP6

:::::::::::::::::
(Eyring et al., 2016)

:::::::::
ensembles.

:::
For

:::::::
CMIP5,

:::
we

:::
use

::::::
results

::::
from

:::
23

::::::
models

::::::::
obtained

:::::
from

:::
the

:::::::
Climate

::::::::
Explorer

:::::::
website

:
(https://climexp.knmi.nl/

:
).
:::::::

Where
:::::::
multiple

::::::::::
simulations

:::::
were

::::::::
performed

:::::
with

:
a
::::::
single

::::::
model,

:::
we

:::::
show

::
all

::::::
results

::::::::::
(amounting

::
to

:::
89

::::::
model

::::
runs

::
in

:::::
total)

:::
and

:::::
these

::::
vary

:::::::::::
substantially

::::
due

:::::
solely

::
to

:::
the

::::::
sample

:::
of

:::::::
internal

::::::::
variability

:::
in

::::
each

::::::::::
simulation.

::::::
Output

:::::
from

::::::
CMIP6

:::::::
models

:::
was

::::::::
provided

::
to

:::
the

:::::::
authors

:::
by25

:::::
Martin

:::::::
Stolpe.

:::
Due

::
to

:::
the

::::::
highly

:::::::
variable

:::
size

::
of

:::::
initial

::::::::
condition

:::::::::
ensembles

::
in

::::
this

::
set

::
of

::::::::::
simulations,

:::
we

::::::
limited

:::
use

::
to
::
at
:::::
most

:
5
::::::::::
simulations

::::
from

::::
each

::::::
model,

::::::::
resulting

::
in

:
a
::::::
sample

:::
of

:::
117

::::::::::
simulations

::::
from

:::
31

::::::
models.

:

3 Unforced (internal) variability

3.1 Using scalar measures of variability to estimate S

Schwartz (2007) and Cox et al. (2018a) both summarised the variability in the temperature record with a scalar measure that30

they argued (based on simple energy balance modelling) should be informative regarding the sensitivity. Schwartz (2007) sum-

5
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marised the variability via the characteristic decorrelation time constant ⌧ = ⌧(�t) =��t/ ln(⇢�t) where�t is an adjustable

lag time and ⇢�t is the autocorrelation coefficient of the temperature time series at a time lag of �t. The method of selecting

�t and therefore the estimation of ⌧ was not presented in an entirely objective algorithmic form, but for the simple one-layer

climate model that was considered, the expected value of ⌧ calculated from a long unforced time series is independent of

lag. Cox et al. (2018a) argued that the function  = �T /
p
� ln⇢1 should be linearly related to the equilibrium sensitivity. In5

this function, ⇢1 is the lag-1 autocorrelation of the time series of annual mean surface temperatures, and �T is the magnitude

of interannual variability of these temperatures.  and ⌧ are closely related and co-vary very similarly over a wide range of

sensitivity when other model parameters are held fixed
:::
(not

:::::::
shown). Henceforth in this section we focus solely on  as it is

more precisely defined and has been recently discussed in some detail (Williamson et al., 2019). However very similar results

are also obtained when equivalent experiments are performed using ⌧ .10

We now present some investigations into the relationship between  and S in unforced simulations of the two-layer model

introduced in Section 2. We perform a multifactorial experiment in which 1000-member ensembles of simulations are inte-

grated for both 150 and 1000 year duration, over a range of S from 0 to 10C, and with � set to either the default value of 0.7 or

alternatively set to 0 in which case we recover the single-layer version of the model. All other model parameters are held fixed

at standard values in these experiments. Since there is no forced trend in these experiments, we do not include any explicit15

detrending step in the analyses.
::::
these

:::::::
analyses.

::::::::
However

:::
the

::::::
results

:::
are

:::::::::
insensitive

::
to

:::::::::
detrending.

:

Figure 1 shows the results obtained when is calculated from the time series of annual mean surface temperatures produced

by these simulations. For 150-year simulations using the single layer model, there is a strong linear relationship between the

mean value of  obtained, and the sensitivity of the model, just as Cox et al. (2018a) argued. However, Cox et al. (2018a) did

not consider sampling variability, that is to say, the precision with which this expected value of  might be estimated from a20

finite time series. As our results show, there is substantial uncertainty in the value of  obtained by individual runs, and there

is also strong heteroscedasticity, that is to say, the variance of each ensemble of  values increases markedly with sensitivity.

This variation arises from the sequence of noise terms which generate the internal variability in each simulation of the model

and is therefore an intrinsic aspect of the theoretical framework relating  to S. For these unforced simulations, it seems quite

possible for a model with its sensitivity set to a value of 5�C or even higher to generate a time series which has a modest value25

for  of say 0.1, even though the expected value of  from such model simulations would be much higher.
::::::::
Similarly

::
to

:::
the

:::::
results

::::::
shown

:::
by

::::::::::::::::::
Kirk-Davidoff (2009),

:::
an

:::::::
accurate

::::::::
diagnosis

::
of

:::
 

:::::
could

::
in

::::::::
principle

::
be

:::::
made

::::
with

::
a
:::::::::
sufficiently

:::::
long

::::
time

:::::
series

::
of

::::::
internal

:::::::::
variability,

:::
but

:::
the

::::::::
sampling

::::::::::
uncertainty

::::
only

::::::::
decreases

::::
with

:::
the

::::::
square

:::
root

::
of

:::
the

::::::::
duration

::
of

:::
the

::::
time

:::::
series

::
(as

::::::::
expected

::::
from

:::
the

:::::::
Central

:::::
Limit

::::::::
Theorem),

:::
so

:::
this

::
is

:::::::
unlikely

::
to

::
be

:::
of

:::
use

::
in

:::::::
practical

::::::::::
applications

::::
with

::::
real

::::
data.

:

When we consider the two-layer model using the standard parameter value of � = 0.7 then the situation is a little different. In30

this case the relationship between sensitivity and is flatter and more curved, with the expected value of changing slowly for

S > 4
�C. The underlying explanation for this is quite simple. Any small perturbation to the surface temperature is damped on

the annual time scale by a relaxation factor which varies in proportion to ✏���, and ✏� is equal to 0.91 for standard parameter

values. Therefore, when S is large, changes in �=�3.7/S have relatively little impact on the total damping and thus both

the magnitude and autocorrelation of variability are relatively insensitive to further increases in S. Williamson et al. (2019)35
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also presented a theoretical analysis of this two-layer model in which they argued that the response of  was close to linear

across the GCM parameter range, and our result confirms this for sensitivity values from around 2 to 4 or even 5�C. However,

the gradual curvature for larger values results in a saturation of the response of  to increases in S and this, together with

the increasing sampling uncertainty, has consequences that will be shown in subsequent experiments.
::
In

::::
fact

:::
the

::::::::::
relationship

:::::::
between

::
 

:::
and

:::
the

::::::::
transient

::::::
climate

::::::::
response

:::
(i.e.

:::
the

::::::::
warming

::::::::
observed

::
at

:::
the

::::
time

::
of CO2 :::::::

doubling
:::::
under

:
a
::::
1%

:::
per

::::::
annum5

:::::::
increase)

::
is
:::::
more

:::::
close

::
to

::::::
linear,

::::
than

:::
the

::::::::::
relationship

:::::::
between

:::
 

:::
and

:::
S. Thus our work does not challenge the underlying

analysis that they presented, but augments it with additional details.

We now directly consider the question of how useful an observed value  o can be as a constraint on the equilibrium climate

sensitivity through Bayesian estimation. It is not trivial to directly calculate the exact value of the likelihood P ( 
o|⇥) for a

given observed value o, as is itself a random variable arising from the stochastic model and thus depends on the sequence of10

random perturbations that were generated during the numerical integration of the model. Therefore, we use here the technique

known as Approximate Bayesian Computation (Diggle and Gratton, 1984; Beaumont et al., 2002). This is a rejection-based

sampling technique in which samples are drawn from the prior distribution, used to generate a simulated temperature time

series, and rejected if the value of  calculated from this time series does not lie within a small tolerance of the observed

value. The set of accepted samples then approximately samples the desired posterior. We have no observations of long periods15

of unforced climate variability with the real climate system, so
::
we

:
perform a number of synthetic tests in which different

hypothetical values for  o are tested.

Our experiments take the form of a ‘perfect model’ scenario, where the model is assumed to be a perfect representation of

the system under consideration, with no structural imperfections. Our uncertainties here are due solely to unknown parameter

values and internal variability noise. In these experiments, we assume that  for the true system is calculated from a 150 year20

temperature time series of the unforced system, without any observational error whatsoever. The results of four experiments

— using values of  o which range from 0.05 to 0.2 in regular increments — are shown in Figure 2. There is not necessarily

an immediate correspondence between these synthetic values and the observationally-derived value that Cox et al. (2018a)

calculated, as we are using unforced model simulations here. Nevertheless, the results are qualitatively interesting. With other

model parameters set to the default values, the four values of  o used here correspond to the expected value generated by 15025

year integrations with sensitivities of approximately 1, 2.5, 5 and 10�C respectively. The figure shows that in this experimental

scenario, can only provide a tight constraint in the first case where the sensitivity is very low. In this case, the 5–95% range of

the posterior is an impressively narrow 0.7
::
0.6–1.7�C. For the case  o

= 0.1, the equivalent probability interval is 1.8–8.0
:
.1�C

and for higher values of  the posterior is very flat indeed with just the very lowest values of S excluded. Similar results are

obtained when equivalent values of ⌧ are used as observational constraints.30

Strictly, when considering the strength of the constraint , it is
::::::
obtained

:::::
from

:::
the

:::::::::
variability,

::
we

::::::
should

:::::
focus

::
on

:
the likelihood

P ( |S) that we should be considering, rather than the posterior pdf P (S| ), since the latter depends also on the prior .

Likelihood values
:::::
which

:
is
::
in
::::::::
principle

::::::::::
independent

::
of

:::
the

:::::::::::
observations.

::::
The

::::::::
likelihood

:::
for

:::::::
different

::::::
values

::
of

::
S,

::::::
which

:::
tells

:::
us

::
the

:::::::
relative

:::::::::
probability

::
of

::::
any

::::::::
particular

:::::::::
sensitivity

::::
value

:::::::::
generating

:::
the

:::::::::::
observation, can be directly read off from Figure 2 as

the height of the appropriate density curve at specific sensitivities, rather than the integral under it
::
the

:::::::
specific

::::::::
sensitivity

:::::
value.35
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Figure 1. estimated from 150y time series for 1- and 2-layer model. Grey results are for single-layer model and black results for two-layer

model. Large dots show means of 1000 simulations, with error bars indicating ±2sd ranges for each ensemble. Results are calculated at each

integer value of sensitivity and offset slightly for visibility.

In the experiment performed with  o
= 0.1, the maximum likelihood value is achieved at a value of S = 2.4

::::::
S = 2.5

�C, and

the likelihood drops by a factor of 10 at both S=1.4
:::
1.3�C and S=7.6

:::
7.9�C. Kass and Raftery (1995) suggest that a likelihood

ratio of 10 or more between two competing hypotheses could be taken to represent “strong” evidence in favour of one over

the other, so if we adopt this linguistic calibration we could say that the observation of  o
= 0.1 represents strong evidence in

favour of S = 2.4
:::::::
S = 2.5

�C versus all values outside of the range 1.4
::
1.3–7.6

:
.9�C (but conversely, does not represent strong5

evidence to discriminate between any pair of values inside that range). It is somewhat coincidental that this range seems quite

8



Posterior Densities

Sensitivity

0.0

0.5

1.0

1.5

0 2 4 6 8 10

0 2 4 6 8 10

Unforced

Unforced

Forced
 (20th Century)

4 pars

1 par

5 pars

1 par

S = 1
S = 1 (4 pars)
S = 2.5
S = 5
S = 10

Figure 2. Posterior estimates of sensitivity based on
::::::
inferred

::
by

:::::
using

:::::::::
observations

::
of
:
 estimated from 150y time series with unforced

::
to

:::::::
constrain

::::::::
parameters

::
in

::
the

:
2-layer model. Four

:::
Top

:::::
panel:

:::
four

:
solid-line pdfs in blue, cyan, magenta and green represent estimates based on

::::
150y

::::::
unforced

::::::::::
simulations,

:::::::
assuming

:::::::::
observations

::
of o = 0.05, 0.1, 0.15, and 0.2 respectively, where only S is uncertain with uniform prior.

Dotted
::::::
Dashed blue line represents posterior estimate for  o = 0.05 with additional modelling

::::::::
parametric uncertainties as described in main

text
:::::
Section

:::
3.2.

:::::::
Horizontal

::::
lines

:::
and

::::
dots

::
in

::::::::
“Unforced”

::::::
central

::::
panel

::::::
indicate

::::::
5–95%

:::::
ranges

:::
and

::::::
median

:::::::::
respectively

::
of

::::
these

::::::::::
experiments.

::::::::
Horizontal

::::
lines

:::
and

:::
dots

::::::
labelled

::
as

::::::
“Forced

::::
(20th

::::::::
Century)”

:::
are

:::::
similar

:::::
results

:::::
based

::
on

:::::
forced

::::::::
simulations

::
of
::::::::
historical

:::::
period

:
as
::::::::
described

:
in
::::::
Section

:::
4.1.

:::::
Solid

::::
lines:

::::
only

:
S
::
is

::::::::
uncertain.

:::::
Dashed

:::::
lines:

::::::
multiple

:::::::
uncertain

:::::::::
parameters.

similar to the 5–95% range of the posterior pdf as the philosophical interpretation of the ranges is rather different. There is a

strong skew in this range, which extends much further towards higher values of S than lower ones, compared to the maximum
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likelihood estimate. We stress that this skew is a fundamental property of the physical model and is not due to the Bayesian

analysis paradigm.

3.2 Additional uncertainties

The experiments summarised in
:::
pdfs

::::::
plotted

::
in

:::
the

::::
top

::::
panel

:::
of Figure 2 assume that all model parameters other than S are

known with certainty. In reality, we have significant uncertainty as to what values we should assign to several other parameters.5

We consider just three of these: the ocean heat uptake parameter �, the efficacy or pattern effect parameter ✏ and the internal

noise parameter �. Geoffroy et al. (2013a) fitted the two-layer model to various GCM outputs in order to estimate parameter

values including � and ✏ and based on these results we use as priors for these parameters the distributions N(0.7,0.2) and

N(1.3,0.3) respectively which generously encapsulate their results. Geoffroy et al. (2013a) did not consider internal variability

and thus we do not have such a solid basis for a prior in � and assume a comparable relative uncertainty of 20%, i.e. a prior10

of N(0.05,0.01). When we repeat the previous experiments but include these additional parametric uncertainties, then for

the experiment where we use  o
= 0.05 as a constraint, the posterior for S widens substantially from the previous spread of

0.7
::

0.6–1.7�C, to 0.7
:::
0.6–4.8

::
.9�C as also shown as the dashed blue line in Figure 2. The largest factor generating this substantial

increase in uncertainty is due to the uncertainty in �. The equivalent posteriors using the larger observational values for  o

also broaden somewhat but this is less visible in the results as they are of course always constrained by the prior range.15

3.3 Using the full time series

Although the results in Figure 2 show that an observation of  taken from a short unforced simulation cannot tightly constrain

equilibrium sensitivity in this model (except perhaps in the most exceptional of circumstances), it could still be hoped that a

more precise constraint could possibly be gleaned by a more advanced analysis that uses some different diagnostic of the time

series. In this section, we show how the total information of the time series can be used. By doing this, we create the most20

optimistic possible scenario for using internal variability to constrain equilibrium sensitivity of this simple climate model.

This approach requires us to calculate the likelihood for the full set of observations, P (O|⇥) where here O = T
i
m, i= 1 . . .N

is the full time series of annual surface temperature anomalies. Once the model parameters and forcing are prescribed, the time

series of surface temperature anomalies is uniquely determined by the series of random noise perturbations �
i. Thus, in the

absence of observational error, we can invert this calculation to calculate (up to machine precision) the sequence of annual25

random noise perturbations �
i, i= 1 . . .N that are required in order to replicate any given observed temperature time series.

This is why we selected a model time step of one year: with one observation per year, we can precisely invert the model

integration to calculate one uncertain noise input per year and thereby reproduce the full model integration to within machine

precision
::
as

::::
long

::
as

::::
one

::::
year,

::
as

::
it
::::::
results

::
in

:::
the

:::::::
number

::
of

::::::::::
observations

:::::
being

:::
as

::::
large

:::
the

:::::::
number

::
of

:::::
noise

:::::
terms

::::::
making

::::
this

::::
exact

::::::::
inversion

:::::::
possible. The probability of the model

::::
(with

::
a
::::::::
particular

:::
set

::
of

::::::::::
parameters) generating the observed sequence is30

exactly the probability of the required noise sequence being sampled. This value is readily calculated, since the joint density of

these i.i.d. generated
::::::::::
independent

:::
and

:::::::::
identically

:::::::::
distributed �

i is simply the product of their individual densities. This unusual

approach which we do not believe has been previously implemented in this context is possible here as we are assuming zero

10



observational uncertainty. With this exact likelihood calculation, the Bayesian estimation process is straightforward. In the case

where only sensitivity is considered uncertain, it can be performed by direct numerical integration, sampling the sensitivity on

a fine regular grid and calculating the likelihood (and therefore posterior) directly at these values.

It is worth emphasising that this calculation represents an absolute best case scenario for using the time series of temperature

anomalies as a constraint. There can be no diagnostic or statistical summary of the observations that provides more information5

than the full set of observations themselves contain. Thus, we cannot hope to obtain a better constraint by some alternative

analysis of the temperature time series.

Figure 3 shows results obtained from this approach, in the case where only S is considered uncertain. To aid visual compa-

rability with Figure 2, the y-axis scale is fixed at the same value despite cutting the peaks of some pdfs. It is not possible to

define what a “typical” noise sequence might look like and therefore we plot 20 replications with different randomly generated10

instances of internal variability for each sensitivity value tested. We can see
:
It
::::::

seems
:
that the results are generally

::::
may

::
be

:
a

little more precise than was obtained using  alone (as shown by the pdfs generally having higher peak densities), though this

depends on the specific sample of internal variability that was obtained. It is still only in the case of the lowest sensitivity value

of 1�C that we reliably obtain a tight constraint. With the true sensitivity of 2.5�C, the posterior 5–95% range, averaged over

the samples, is 1.9–6.8
::::
–7.0�C, a little

:::::::::
marginally narrower than the 1.8–8

::
.1�C range obtained

:::::::::
previously when an equivalent15

 value of 0.1 is
:::
was

:
used. When additional parametric uncertainties are considered

::
in

:::
this

::::::::
unforced

:::::::
scenario, the constraints

again weaken, though not to quite such an extent as in Section 3.2 when only  is used as a constraint. We do not show these

results here.

Thus, there appears to be the potential for internal variability, as represented by the full temperature time series, to provide

a slightly better constraint than that obtained by a summary statistic alone, but the improvement is marginal and even our20

optimal calculation which uses the exact likelihood of the full time series cannot accurately diagnose equilibrium sensitivity

except when the true value is very low. These results again show a skew similar to that obtained when  was used as the

constraint in Sections 3.1 and 3.2. Thus this non-Gaussian likelihood is again an inherent property of the physical model and

not an artefact of the analysis. We mention again that these calculations are made under the three optimistic assumptions that

(a) the model is perfect and we have exact knowledge of all other model parameters, (b) we know the forcing to be zero over25

this time period, and (c) there is no observational error.

4 Forced variability

While the theoretical underpinning of Cox et al. (2018a) was originally based on the properties of unforced internal variability,

Cox et al. (2018b) acknowledged that their approach may have benefited from some signature of forced variability entering

into their calculations. In order to calculate their  statistic, they applied a windowed detrending method in order to focus on30

variability of both model simulations and observations of the 20th century
::::::::
historical

:::::
period. However, the window length of 55

years that they used was justified primarily in empirical terms and cannot remove shorter-term variations in forced response.
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Figure 3. Posterior estimates for the climate sensitivity using
::::
from Bayesian estimation using the full 150 year time series of annual mean

surface temperatures.
::::
Main

::::
plot:

:::::
Results

::::
from

:::::
150y

::::::
unforced

:::::::::
simulations

::
as
::::::::
discussed

::
in

::::::
Section

:::
3.3. 20 replicates are performed for each

true sensitivity of 1, 2.5, 5�C as indicated by the colour blue, cyan and magenta respectively.
::::::::
Horizontal

::::
lines

:::
and

:::
dots

::::::::::
immediately

:::::
below

::
top

:::::
panel

::::
show

:::::
means

::
of

::
the

::::::
5–95%

::::
range

:::
and

::::::
median

::
of

::::
each

::
set

::
of

::::::
results.

::::::::
Horizontal

::::
lines

::::::
labelled

::::::
“C20th”

:::::
show

:::::::
analogous

:::::
results

:::::
using

::::::::
simulations

::
of

:::::::
historical

::::::
period,

::::
with

:::
only

::
S

:::::::
uncertain

::
or

::::
with

:
5
:::::::
uncertain

::::::::
parameters

::
as
::::::::
discussed

::
in

:::::
Section

:::
4.2

In this section, we perform a series of analyses based on 20th century
::::::::
historical forced simulations, in order to investigate

more fully the potential for such forced effects to improve the constraint. We force the climate model with annual time series

for the major forcing factors based on IPCC (Annex II: Climate System Scenario Tables 2013). Our two-layer model with

a one-year time step (and Euler method of numerical integration) reacts rather too strongly to short-term spikes in forcing

12



and thus we scale the volcanic forcing to 70% of the nominal value in order to give more realistic simulations. In some of

the following experiments, we consider aerosol forcing as a source of uncertainty in addition to that arising from the internal

parameters of the model. This uncertainty is implemented via a scaling factor denoted by ↵ which is uncertain but constant in

time, applied to the original aerosol forcing time series. In these cases, our prior distribution for ↵ is N(1,0.5)
:::::::::
N(1,0.5

2
).
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Figure 4. Simulations of instrumental period with 2-layer model. Thick lines are forced response excluding internal variability, thin lines

are 5 replicates of each parameter set including internal variability. Blue lines: S = 1.78�C, � = 0.7Wm�2 �C�1, ✏= 1.3. Cyan lines:

S = 2.5�C, � = 1.0Wm�2 �C�1, ✏= 1.7. Magenta lines: S = 5�C, � = 1.0Wm�2 �C�1, ✏= 1.7, ↵= 1.7. Black line is HadCRUT

data.
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Figure 4 presents 18 simulations from the model, consisting of 5 instances of internal variability for each of three different

parameter sets which were chosen to give reasonable agreement with observational data, and additionally one simulation for

each of these parameter sets in which internal variability was not included in order to show the pure forced response. These

simulations are shown merely to indicate the typical behaviour of the model under 20th century forcing
:::::::
historical

:::::::
forcing

:::::::
estimates

:
and are not directly relevant to our analyses. Note that the observations of the real climate system which are also5

plotted here include observational error (estimated to be roughly ± 0.05�C at the 1 standard deviation level) whereas the model

output is presented as an exact global temperature. Thus it is to be expected that the model results are somewhat smoother and

less variable than the observations. The
:
,
:::::::
although

::
it

::::
may

::::
also

::
be

:::
the

::::
case

:::
that

:::
the

::::
two

::::
layer

::::::
model

:::
has

::::::::::
insufficient

:::::::::
variability.

:::
For

::::
each

::
of

:::::
these

::::
three

::::::::::
simulations

::::::
without

:::::::
internal

:::::::::
variability,

:::
the RMS differences between model output and observations is

identical to two significant figures for the three simulations without internal variability, at 0.13�C.10

When we hold other parameters at default levels, best agreement between model and data (defined here simply by RMS

difference between the two time series) is achieved for a rather low sensitivity of 1.78�C. If the � and ✏ parameters are increased

slightly above their defaults then we can achieve an equally good simulation (again as measured by RMS difference) with a

higher value for sensitivity of 2.5�C. If, additionally, aerosol forcing is also increased above the default value, then a higher

sensitivity still of 5�C achieves an equally good match to the observed temperature time series . These
::
at

:::
the

::::::
global

:::::
scale.15

:::::
While

::::
there

::::
are

::::::::::
hemispheric

:::::::::
differences

:::
in

::::
these

:::::::
forcings

::::
that

::::
may

:::::::
provide

:::::
some

::::::::
additional

::::::::::
information

:::::::::::::::::
(Aldrin et al., 2012)

:
,
::::
these

:
simulations help to illustrate why it has been so challenging to effectively constrain equilibrium sensitivity from the

long-term observed warming.

4.1 Using 

In order to assess what we can learn about sensitivity from the variability of 20th century
::::::::
historical temperature observations,20

we firstly
:::
first consider the utility of calculated from 20th century simulations

:::::::::
simulations

::::
over

:::
this

::::::
period. Cox et al. (2018a)

proposed that the effect of forcing over this interval could be effectively removed by a process of windowed detrending.

Figure 5 shows results analogous to those of
::
the

:::::::::
two-layer

:::::::::
simulations

:::
in Figure 1, but using forced simulations of the 20th

century
::::::::
historical

:::::
period

:
rather than unforced control simulations, and

:::::::
therefore with calculated via the windowed detrending

method of Cox et al. (2018a). One very minor discrepancy with the calculations presented in that paper is that our simulations25

only extend to 2012 (this being the limit of the forcing time series that we are using) and therefore we omit the last 4 years of

the time period that they used. This does not significantly affect any of our results.
:::
We

::
do

:::
not

::::::::
consider

::::::::
one-layer

::::::::::
simulations

:::
here

:::
as

:::
this

::::::
version

:::
of

::
the

::::::
model

::
is

::::::
known

::
to

::::::
provide

::::
poor

::::::::::
simulations

::
of

::::::::
historical

:::::::
changes

:::::::::::::::::::::::
(Rypdal and Rypdal, 2014).

:

Grey dots and error bars indicate results obtained when only S is considered uncertain.
:::::
These

::::::
results

:::
are

:::::::::::
qualitatively

::::::
similar

::
to

::::
those

::::::::
obtained

::
by

:::
the

::::::::
unforced

::::::::
two-layer

:::::::::
simulations

::
in

::::::
Figure

::
1,

::
in

:::
that

::::
they

::::::
exhibit

::
a

::::::::
nonlinear

:::
and

:::::::::::::
heteroscedastic30

:::::::::
relationship

::::
that

:::::
levels

::
off

:::
for

:::::
large

:::::
values

::
of

::
S.

:
The values of obtained for any specific

::
at

::::
each value of S are somewhat larger

than those of Figure 1
:::::::
however

::::::::
somewhat

::::::
larger

::
in

:::
the

:::::
forced

:::::::::::
experiments, which supports the claims of Brown et al. (2018)

and Po-Chedley et al. (2018) that the windowed detrending has not been wholly effective in eliminating all influence of forcing.

The overall nature of the relationship is broadly similar, however. As mentioned previously, results from GCMs
::::::
analysis

:::
of
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Figure 5.  estimated from 20th century
:::::::
historical

:
simulations from 2-layer model. Grey results are based on simulations where only S is

considered uncertain. Black results additionally account for uncertainty in �, ✏, � and ↵. Large dots show means of 1000 simulations, with

error bars indicating ±2sd ranges for each ensemble. Crosses
:::
Blue

:::
and

:::
red

::::::
crosses indicate results generated by CMIP5

::
and

::::::
CMIP6

:
models

:::::::::
respectively,

::::::
together

::::
with

:::
the

:::::
best-fit

::::::::
regression

::::
lines

::
as

:::::
dashed

::::
lines,

::
in
:::::::
matching

::::::
colours.

:::::
GCM

::::::
outputs indicate significant uncertainty in other model parameters and therefore we have performed additional ensembles

of simulations which account for uncertainty both in model parameters and aerosol forcing. These uncertain parameters, and

their priors, are the same as in Section 3.2
:
,
::::
with

:::
the

:::::::
addition

:::::
here

:::
that

:::
we

::::
also

::::::::
consider

:::::::::
uncertainty

:::
in

:::
the

::::::
aerosol

:::::::
forcing

::::::
through

:::
the

::::::
scaling

:::::::::
parameter

::
↵. The combined effect of these uncertainties has little systematic effect on the mean estimate
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of  but slightly increases the ensemble spread. Interestingly, in contrast to our earlier experiments, no single factor appears to

have a dominant effect here.

Black
::::
Blue

:::
and

:::
red crosses also shown on this figure show results obtained from the CMIP5 ensemble. We obtained historical

simulations performed by 23 CMIP5 models from the Climate Explorer website (). Where multiple simulations were performed

with a single model, we show all results (amounting to 89 model runs in total) and these vary substantially due solely to the5

sample of internal variability in each simulation. The CMIP5
::
and

:::::::
CMIP6

:::::::::
ensembles.

::::
The

::::::
CMIP models appear to generate

slightly lower values of  than the two-layer model does with the same sensitivity, although the two sets of results seem

broadly compatible. Reasons for the difference may include biases in parameters of the two-layer model, structural limitations,

or differences in the forcings used. Although we are not replicating the emergent constraint approach here, we do note that there

is a significant correlation in the CMIP5 ensemble results shown here between their sensitivities and  values. However, the10

relationship seen here is is weaker than that obtained by Cox et al. (2018a) for a different (though overlapping) set of models,

and explains a lower proportion of the variance. This remains true whether we perform the regression with S as predictor, as

suggested by our Figure, or when using  as predictor as in Cox et al. (2018a).
::
For

:::::::
CMIP6,

:::
the

:::::::::
correlation

::
is
:::::::::::
insignificant.

:

Posterior estimates of sensitivity based on  estimated from 20th century simulations with 2-layer model. Three solid-line

pdfs in blue, cyan and magenta represent estimates based on  o = 0.1, 0.18, and 0.25 respectively, where only S is uncertain15

with uniform prior. Dashed lines represent equivalent posteriors with additional modelling uncertainties as described in main

text.

Figure ??
:::::
Figure

::
2 shows results generated when various hypothetical values for  o are used to constrain model parameters

for 20th century
::::::::
historical simulations. As before, we test sensitivity values of 1, 2.5 and 5�C which here correspond to

values for  o of 0.1, 0.18 , and 0.25
:::::::::
respectively. As in the previous experiments, the smallest value of  o generates an20

impressively
:
a tight constraint with a 5–95% range of 0.8

:::
0.7–1.7�C when only S is considered uncertain. This grows to 1.8–

7.5
:

.2�C for  o
= 0.18 and the larger value of  o

= 0.25 provide very little constraint. When the additional parametric and

forcing uncertainties are considered, the tightest range corresponding to  o
= 0.1 grows a little to 0.8–1.9

::::::
0.7–2.0�C and the

 
o
= 0.18 case spreads to 1.8–8.8�C.

When we use the observational value of  o
= 0.13 (calculated from HadCRU data) and include multiple parametric uncer-25

tainties, the 17–83% posterior range is 1.3–2.6
:
.7�C and the 2.5–97.5% range is 1.0

::
0.9–5.5

:
.1�C. These ranges are somewhat

larger than the equivalent results presented by Cox et al. (2018a) which were 2.2–3.4�C and 1.6–4.0�C respectively, despite

the highly optimistic perfect model scenario considered here.

4.2 Using the full time series

Finally, we repeat the approach of Section 3.3, and use the full information of the time series, by the same method of inverting30

the model to diagnose the internal variability noise that is required to generate the observed temperature time series. Since

we are interested solely in variability, we only consider the temperature residuals after detrending. We use a simple linear de-

trending over the period 1880-2012, which will leave a signature primarily due both to volcanic events and also the contrasting
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temporal evolution of negative aerosol forcing and positive greenhouse gas forcing, which both generally increase throughout

this period but which exhibit different multidecadal patterns.

The calculation is similar to that of Section 3.3, but there are some minor details which are worth mentioning. Although the

detrending is performed over the interval 1880-2012, we initialise the simulations in 1850 to allow for a spin-up. In contrast to

Section 3.3 where detrending was not performed, knowledge of the residuals after detrending does not actually enable an exact5

reconstruction of the internal variability of the model simulation, as any random trend in this internal variability will have been

removed by detrending. In fact a whole family of different model simulations will be aliased onto the same residuals. Therefore

our inversion only truly calculates the noise perturbations after the removal of the component that generates any linear trend.

This is not a significant problem for the likelihood calculation as the effect of this aliasing is minor and its dependence on

model parameters is negligible.10

The results of multiple replicates are shown in Figures ?? and ??
::::::
Figure

:
3, in which we consider firstly

:::
first

:
the case where

only S is uncertain, and then our larger set of parametric uncertainties. In the case where only S is unknown, the full time

series of detrended residuals provides strong evidence on S which can as a result be tightly constrained except perhaps when it

takes a high value such as 5�C. For S = 2.5
�C, the posterior 5–95% range is typically under 2C in width, with the average of

our samples being 1.9–3.5�C. When multiple uncertainties are considered, the constraint is however markedly weakened. For15

a true sensitivity of S = 2.5
�C, the posterior 5 – 95% range is typically around

::::
over 4 degrees, at 1.7

::
1.6

:
– 5.6�C

:::::
6.0�C,

::::
with

::
a

::::::
“likely”

::::::::
17–83%

:::::
range

::
of

:::::::::
2.2–4.1�C. As in the unforced experiments, these optimal constraints are clearly

:::::
appear

:::::::::
somewhat

narrower than can be obtained by using the  statistic, but are not necessarily tight enough to be compelling in themselves.

Posterior estimates for the climate sensitivity using Bayesian estimation using the full 1880–2012 observational time series

of annual mean surface temperature anomalies after detrending. 20 replicates are performed for each true sensitivity of 1, 2.5,20

5�C as indicated by colours blue, cyan and magenta respectively. Only S is considered uncertain.

5 Conclusions

As Figure ?? but for multiple parametric uncertainties.

6 Conclusions

We have explored the potential for using interannual temperature variability in estimating equilibrium sensitivity. While —25

as Williamson et al. (2019) argued — there is generally a quasi-linear relationship between S and the expected value of

 = �T /
p
� ln⇢1 over a reasonable range of S in the simple energy balance model, this relationship saturates for higher S

and furthermore, sampling variability is significant and highly heteroscedastic. These properties undermine the theoretical basis

for the linear regression emergent constraint approach which was presented by Cox et al. (2018a), as the ordinary least squares

regression method relies on a linear relationship with homoscedastic errors. The behaviour of the model instead results in an30

inherently skewed likelihood P ( |S) with a long tail to high values for S. Thus, while statistic can indeed be informative on
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S, the constraint it provides based on internal variability in the case of unforced simulations is rather limited.
:::::::::::
Furthermore,

:::
the

::::::
CMIP5

:::
and

:::::::
CMIP6

::::::::
ensembles

::::::
exhibit

:::::
quite

:::::::
different

:::::::::::
relationships

::
in

::
the

:::::::::
regression

::::::::::
framework,

:::::::::
suggesting

:
a
::::
lack

::
of

:::::::::
robustness

::
of

:::
the

::::::
original

::::::::
analysis. We have shown how it is possible in principle to extract the full information from time series of annual

temperatures, by calculating the exact likelihood for the complete set of these observations. However, even in this scenario of a

perfect model with a few well-characterised parametric uncertainties and no observational uncertainty on the temperature time5

series, the constraint on sensitivity is seriously limited by the variability inherent to the model. It is only in the case where the

true value of the sensitivity is very low that such an approach can generate a tight constraint. For example, if the true sensitivity

takes a moderate value of 2.5�C, then we could only expect to generate a constraint with a typical 5–95% range of around

1.9–6.8�C. As was the case when using  , estimates generated from the full time series are rarely close to symmetric and

instead are typically skewed with a long tail to high values. This skew is an inherent property of the physical model that defines10

the likelihood and not an artefact of our analysis methods.

Forced variability, such as that occurring during the instrumental period, does provide additional information in our exper-

iments, and therefore we could in theory hope to calculate a narrower posterior range, with a typical width of around 4�C

(e.g. 1.7–5.6
::::::
1.8–6.0�C) when the true sensitivity is 2.5�C. It must however be emphasised that these calculations rely on very

optimistic assumptions and therefore represent a best case that is unlikely to be realised in reality. Nevertheless, our results do15

suggest that variability can inform on the sensitivity and may generate a useful constraint in addition to that arising from the

longer-term observed trend.
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