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Abstract. The transient climate
::::::
Climate

:::::::::
sensitivity

::
to

::::
CO2:::::::

remains
:::
the

:::
key

:::::::::
uncertainty

:::
in

:::::::::
projections

::
of

:::::
future

::::::
climate

:::::::
change.

::::::::
Transient

:::::::
climate response (TCR) is the metric of temperature sensitivity that is most rele-

vant to warming in the next few decades, and contributes the biggest uncertainty to estimates of the carbon
budgets consistent with the Paris targets(Arora et al., 2019). .

:::::::::::
Equilibrium

::::::
climate

:::::::::
sensitivity

:::::
(ECS)

::
is
::::
vital

:::
for

:::::::::::
understanding

::::::::::
longer-term

:::::::
climate

::::::
change

:::
and

:::::::::::
stabilization

::::::
targets.

:
In the IPCC 5th Assessment Report (AR5),

the stated ‘likely’ range of TCR was given as
:::::
ranges

::::::::
(16–84%

::::::::::
confidence)

::
of

:::::
TCR

:
(1.0to 2.5 K, with a central

estimate which was
:::
–2.5

:::
K)

::::
and

::::
ECS

:::::::
(1.5–4.5

:::
K)

:::::
were broadly consistent with the ensemble mean of the

:
of

CMIP5 Earth System Models (ESMs) available at the time(1.8 ± 0.4 K). Many
:
.
::::::::
However,

:::::
many

:
of the latest

CMIP6 ESMs have larger climate sensitivities, with 6 of 23
:
5

::
of

:::
34 models having TCR values above 2.5 K,

and an ensemble mean TCR of 2.1
:::
2.0 ± 0.4 K.

::::
Even

::::::
starker,

:::
12

::
of

:::
34

::::::
models

::::
have

:::
an

::::
ECS

:::::
value

:::::
above

:::
4.5

::
K.

On the face of it, these latest ESM results suggest that the IPCC likely range of TCR
:::::
ranges

:
may need revising

upwards, which would cast further doubt on the feasibility of the Paris targets.
Here we show that rather than increasing the uncertainty in climate sensitivity, the CMIP6 models help to

further constrain the likely range of TCR to 1.5-2.2
::::::
1.3–2.1 K, with a central estimate of 1.82

::::
1.68 K. We reach

this conclusion through an emergent constraint approach which relates the value of TCR
:::::::
linearly to the global

warming from 1970 onwards. We confirm
::::
1975

::::::::
onwards.

::::
This

::
is

::
a

::::::
period

:::::
when

:::
the

::::::::::::
signal-to-noise

:::::
ratio

::
of

::
the

::::
net

:::::::
radiative

:::::::
forcing

::::::::
increases

:::::::
strongly,

:::
so

:::
that

:::::::::::
uncertainties

::
in
:::::::

aerosol
::::::
forcing

:::::::
become

::::::::::::
progressively

:::
less

::::::::::
problematic.

:::
We

::::
find

:
a consistent emergent constraint on TCR when we apply the same method to CMIP5

models(Jiménez-de-la Cuesta and Mauritsen, 2019). Our emergent constraint on TCR benefits from both the
large range of TCR values across

:
.
::::
Our

:::::::::
constraints

:::
on

::::
TCR

:::
are

:::
in

::::
good

:::::::::
agreement

:::::
with

::::
other

::::::
recent

::::::
studies

:::::
which

:::::::
analysed

::::::
CMIP

:::::::::
ensembles.

::::
The

::::::::::
relationship

:::::::
between

::::
ECS

:::
and

:::
the

:::::::::
post-1975

:::::::
warming

:::::
trend

::
is

:::
less

:::::
direct

:::
and

::::
also

:::::::::
non-linear.

::::::::
However,

:::
we

:::
are

:::
able

:::
to

:::::
derive

:
a
:::::
likely

:::::
range

:::
of

::::
ECS

::
of

::::::
1.9–3.4

::
K
:::::
from the CMIP6 models

, and also from the extension of the historical simulations into a period when the uncertain changes in aerosol
forcing have had a far less significant impact on the trend in

::
by

:::::::::
assuming

::
an

:::::::::
underlying

::::::::
emergent

::::::::::
relationship

:::::
based

::
on

::
a
:::::
2-box

:::::::
energy

::::::
balance

:::::::
model.

:::::::
Despite

:::::
some

:::::::::::::
methodological

::::::::::
differences,

::::
this

::
is

::::::::
consistent

:::::
with

:
a

:::::::::::::::::
previously-published

::::
ECS

::::::::
constraint

:::::::
derived

::::
from

::::::::
warming

:::::
trends

::
in
:::::::
CMIP5

::::::
models

::
to

:::::
2005.

::::
Our

::::::
results

::::
seem

::
to

::
be

:::
part

::
of
::
a
:::::::
growing

::::::::
consensus

::::::::
amongst

::::::
studies

:::
that

::::
have

::::::
applied

:::
the

::::::::
emergent

::::::::
constraint

::::::::
approach

::
to

:::::::
different

:::::
model

::::::::::
ensembles

:::
and

::
to

::::::::
different

::::::
aspects

::
of

:::
the

::::::
record

::
of global warming.



2 F.J.M.M. Nijsse: An emergent constraint on climate sensitivity from simulated historical warming in CMIP models

1 Introduction

The key uncertainty in projections of future climate change
continues to be the sensitivity of global mean temperature
to perturbations of

:::::::
changes

::
in
:

the Earth’s energy budget,
normally termed

::::
called

:
‘radiative forcing’. This sensitivity is5

usually characterised in terms of the global mean temperature
that would occur if the atmospheric carbon dioxide concen-
tration was doubled, for which the radiative forcing is rea-
sonably well-known.

Two related parameters
::::::::
quantities

:
are used to characterise10

the climate sensitivity of Earth System Models (ESMs).
Equilibrium Climate Sensitivity

::::::
climate

:::::::::
sensitivity (ECS) is

an estimate of the eventual steady-state global warming at
double CO2. Transient Climate Response

::::::
climate

:::::::
response

(TCR) is the mean global warming predicted to occur around15

the time of doubling CO2 in ESM runs for which atmo-
spheric CO2 concentration is prescribed to increase at 1%
per year. Across an ensemble of ESMs, TCR values are
typically around half of

:::
less

::::
than

:
ECS values because of

ocean heat uptake, which leads to a lag in the response of20

global temperature to the increasing CO2 concentration .

:::::::::::::::::
(Hansen et al., 1985).

::::
The

::::
ratio

:::
of

::::
TCR

:::::
over

::::
ECS

:::::
tends

::
to

:::::::
decrease

::::
with

::::::::
increasing

:::::
ECS,

:::
and

:::::::
depends

:::
on

:::::
spatial

::::::
pattern

:::::
effects

:::::::::::::
(Armour, 2017)

:
.

Despite significant
:::::::
decades

::
of advances in climate science,25

both
::
the

:::::::
Earth’s ECS and TCR remain uncertain. The ‘likely’

range of ECS (66% confidence limit) has been quoted as
1.5 K to 4.5 K in all of the five Assessment Reports (ARs)
of the Intergovernmental Panel on Climate Change (IPCC)
starting in 1990, aside from the AR4

:::::
fourth

:::
AR

:
which moved30

the likely lower range temporarily to 2 K. Similarly the likely
range of TCR is given as 1 K to 2.5 K in the IPCC AR5, based
on multiple lines of evidence.

There have been numerous attempts to constrain ECS
using the record of historical warming or palaeoclimate35

data (Knutti et al., 2017), and more recently using emergent
constraints which relate observed climate trendsor variations

:
,
::::::::
variations

:::
or

:::::
other

::::::::
variables

:
to ECS using an ensemble

of models (Caldwell et al., 2018; Cox et al., 2018a).
However, debate still rages about the likely range of ECS40

(Brown et al., 2018; Po-Chedley et al., 2018; Rypdal et al., 2018; Cox et al., 2018b)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Brown et al., 2018; Bretherton and Caldwell, 2019; Cox et al., 2018b; Gregory et al., 2020)
, in part because observed global warming is a rather
indirect measure of global warming at equilibrium.
On the other hand, TCR is more closely related45

to the rate of warming, and therefore ought to be
more amenable to constraint by the record of global
warming (Jiménez-de-la Cuesta and Mauritsen, 2019)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bengtsson and Schwartz, 2013; Gregory and Forster, 2008; Jiménez-de-la Cuesta and Mauritsen, 2019; Tokarska et al., 2020)
. Nevertheless, the accepted likely range of TCR has also50

resisted change (Knutti et al., 2017), for reasons we will
discuss in this paper. At the time of the AR5, the CMIP5
ESMs produced central estimates (mean ± stdev) of ECS
(3.2

:::
3.3 ± 0.7 K) and TCR (1.8 ± 0.4

::
0.3 K), that were

::::::
broadly

:
consistent with these IPCC likely ranges. However, 55

there has been a general drift upwards towards higher
climate sensitivities in the new CMIP6 ESMs, such that
almost half

::::
more

::::
than

::::
one

::::
third

:
of the new CMIP6 models

now have ECS values over 4.5 K (Forster et al., 2019),
and more than a quarter

:::
five have TCR values over 2.5 K 60

(Table 1). If the real climate system is similarly sensitive,
the Paris climate targets will be much harder to achieve

::::::::::::::::::::::
(Tanaka and O’Neill, 2018).

Therefore some key
:::::::
science-

:::
and policy-relevant questions

arise: 65

(a) Are such high climate sensitivities consistent with the
observational record?

(b) If so, do the CMIP6 models demand an upward revision
to the IPCC likely ranges for climate sensitivity?

We address these questions in this paper by evaluating the 70

historical simulations of global warming from the CMIP6
models. In particular, we explore an emergent constraint
on TCR based on global warming from 1970 onwards
(Jiménez-de-la Cuesta and Mauritsen, 2019)

::::
1975

:::::::::
onwards

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Jiménez-de-la Cuesta and Mauritsen, 2019; Tokarska et al., 2020)75

, but using the CMIP6 models and observational data up to
2018.

:::::
2019.

Emergent constraints are increasingly used to assess future
change by exploiting statistical relationships in multimodel
ensembles between an observable and a variable describing 80

future climate (Cox et al., 2018a; Hall et al., 2019). In the
work presented here, we use the latest CMIP6 multimodel
ensemble to define an emergent relationship between histor-
ical warming (

::::::::
expressed

::
in

:::::
terms

::
of

:::::::
GMST, the observable)

and TCR (the variable describing
:::::
related

::
to

:
future climate). 85

In line with published recommendations (Hall et al., 2019;
Klein and Hall, 2015), we check the robustness of the result-
ing emergent constraint against the CMIP5 ensemble, using
exactly the same methodology as for CMIP6. We also follow
the suggestion of Hall et al. (2019) in striving to base our

::
the 90

emergent constraint on sound physical reasoning, as outlined
below.

By definition
::::
From

:::::::
physical

:::::::::
principles, we expect values

of TCR to be very well-correlated with simulated global
warming across a model ensemble, if all models are driven 95

by a .
:::
By

:::::::::
definition,

:::::
TCR

::
is

::
a
:::::::
measure

:::
of

::::::::
warming

::::
from

:
a
:::::::::
simulation

:::::
that

::
is

::::::
driven

:::
by

:::
an

::::::::::
exponential

::
1.0% per

year increase in CO2. These are the idealised conditions
used to estimate TCR, so only internal variability would
deny a perfect correlation between TCR and the modelled 100

rate of global warming in this case. However, historical
global warming has not

::::::::
Historical

:::::
global

::::::::
warming

:::
has

:
been

driven by a
::::::::
qualitative

::::::
similar

:::::::
forcing,

:::::
albeit

:::::::::
somewhat

:::
less

:::::
rapid.

::::::
Instead

:::
of

:
1.0%per year

:
,
:
CO2increase, but instead

by a smaller near-exponential rate of CO2 increase (,
:::
the 105

::::::::::
atmospheric

::::
CO2

:::::::::::
concentration

::::
has

::::::::
increased

::
at

:::::
about 0.5%
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per year since 2000 (Dlugokenchy and Tans, 2019)), aug-
mented by additional positive radiative forcing from other
well-mixed greenhouse gases(especially methane and nitrous
oxide), and partially offset by the cooling effects of anthro-
pogenic aerosols.5

The radiative effects of the known increases
:::
rise

in greenhouse gas concentrations are relatively well-
known (Myhre et al., 2013), and are broadly simi-
lar in different ESMs. By contrast, the radiative forc-
ing due to changes in anthropogenic aerosols, espe-10

cially indirect effects via changes in cloud brightness
and lifetime, are poorly constrained (Myhre et al., 2013)

:::::::::::::::::::::::::::::::::
(Myhre et al., 2013; Bellouin et al., 2019).

These uncertainties in aerosol forcing have hindered at-
tempts to constrain TCR

:
or

:::::
ECS

:
from the rate of warm-15

ing, especially during the pre-1980 period when the burn-
ing of sulphurous coal led to increases in CO2 and increases
in sulphate aerosols, that went up almost together (Andreae
et al., 2005). As a result it has been difficult to distinguish,
based purely on the observational record of global warm-20

ing, between a model with high TCR
::::::
climate

:::::::::
sensitivity and

strong aerosol cooling, and a model with low TCR
::::::
climate

::::::::
sensitivity

:
and weak aerosol cooling.

In order to minimise the effects of uncertainties in aerosol
forcing, we need periods in which aerosol radiative forcing25

changes relatively little compared to the change in radiative
forcing due to CO2 and other well-mixed greenhouse gases.
Fortunately, this applies to the decade after 1970

::::::
decades

::::
after

:::::
1975

:
when total aerosol load from global SO2 and

NH3 emissions were similar to values over the last decade30

(Stevens et al., 2017). For this reason, we follow Jiménez-
de-la Cuesta and Mauritsen (2019) in focusing on global
warming since 1970.

::::
1975.

:
However, in addition we ex-

plore a range of start and finish dates to assess the robust-
ness of our TCR constraint, and to test the hypothesis that35

the relationship between TCR and warming rate is emerging
strongly now because of the declining importance of changes
in aerosol forcing.

::
To

:::::::
establish

:::
an

::::::::
emergent

::::::::
constraint

::
on

:::::
ECS,

::
we

:::::::::
investigate

::
the

::::::::::
appropriate

:::::::::
functional

::::
form

::::::::
between

::::::::
observed

:::::::
warming40

:::
and

:::::::
climate

:::::::::
sensitivity.

:::::
Due

::
to

::::
the

::::
slow

::::::::
response

:::
of

:::
the

:::::
ocean,

::::
this

::
is
::::

not
::::::::
expected

::
to
:::

be
::::::

linear,
::::

and
:::::
using

::
a
:::

set

::
of

::::::::::
assumptions,

::::::::::::::::::::::::::::::::::::
Jiménez-de-la Cuesta and Mauritsen (2019)

:::::::
proposed

:::
an

::::::::
analytical

::::
form

:::::
based

:::
on

:
a
::::::::
two-layer

:::
box

::::::
model.

::
By

:::::::::
computing

::::
the

:::::
model

:::::::::
parameters

:::::::
directly

:::
per

::::::
model,

:::
we45

:::::::::
investigate

:::
the

:::::::::::::
appropriateness

:::
of

::::
this

::::::::
analytical

::::::::
function,

:::
and

:::
use

::
it

::
to

:::::
derive

:::
an

:::::::
emergent

:::::::::
constraint.

:

The remainder of this paper is organised as follows: in
Section 2 we describe our methodological choices; Section
3 contains the emergent constraint

:::::::::
constraints on TCR and50

::::
ECS

:::
and

:
Section 4 contains the discussion and conclusions.

More technical details concerning the regression methods are
given in the Appendix.
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Figure 1.
:::::::
Effective

:::::::
radiative

::::::
forcing

::::
over

:::
the

:::::::
historical

::::::
period,

:::::::
calculated

:::::
from

:::
22

::::::
CMIP6

:::::::
models:

::::
(a)

::::::::
ensemble

:::::
mean;

:::
(b)

:::::::
ensemble

::::::
standard

::::::::
deviation;

::
(c)

::::::::::::
signal-to-noise

::::
ratio.

2
::::::::::::
Methodology

2.1
:::::
Choice

:::
of

:::::
period

:::::
over

:::::
which

::
to

::::::::
calculate

::::::::
warming 55

:::::
trends

::
To

::::::::
constrain

::::::
climate

:::::::::
sensitivity

:::::
using

:::::::
observed

:::::::::
warming,

::
we

::::
seek

:
a
:::::
period

:::
for

:::::
which

:::
the

::::::
forcing

::
is
::::::::
relatively

::::::
similar

:::::
across

::::::
models.

:::
In

:::::
order

::
to

:::::::
identify

::::
such

::
a
::::::
period

:::
we

:::::::
compute

:::
the

:::::::
effective

:::::::
radiative

:::::::
forcing

::
F

:::::
(ERF)

:::
for

::::
each

:::::
model

::::
run

::::
using 60

F = ∆N +λ∆T
::::::::::::::

(1)

::::::::
following

::::::::::::::::
Forster et al. (2013)

:
.
:::::
Here

::::
∆N

::
is
:::

the
:::::::::

difference

::
in

:::
net

:::
top

:::
of

:::
the

::::::::::
atmosphere

::::::::
radiative

:::
flux

::::
and

::::
∆T

::
is
:::
the

::::::::
difference

:::
in

::::::::::
near-surface

:::::::::::
temperature,

:::::
both

:::::::::
computed

::
as 65

:::::
global

:::::::::::
annual-mean

::::::::
anomalies

:::::::
relative

::
to

:::
the

:::::
initial

::::
state.

:::
We

:::::::
calculate

:::
the

:::::::::::::
signal-to-noise

::::
ratio

:::
of

::
F

::
at

:::::
each

::::
time

::
as

:::
the

:::::
model

:::::
mean

::
F

::::::
divided

:::
by

:::
the

:::::::
standard

::::::::
deviation

::
of

::
F

:::::
across

::
the

::::::
model

::::::::
ensemble.

:

:::::
Figure

::
1
::::::
shows

::::
how

:::
the

:::::
signal

::
to
:::::

noise
:::::
ratio

::
of

:::
the

::::
ERF 70

:::::
varies

::::
from

::::
1880

::
to

:::::
2010.

::
It

::
is

::::::
notable

:::
that

:::
the

::::::::::::
signal-to-noise

::::
ratio

::::::::
increases

:::::::
rapidly

:::::
from

:::::::
around

::::::
1975,

:::
as

::::::::
relatively

::::::::::
well-known

:::::::::
greenhouse

:::
gas

::::::
forcing

::::::::
continues

::
to
:::::::
increase

:::
but

::
the

:::::::::
uncertain

::::::
aerosol

:::::::
forcing

::::::
begins

:::
to

:::::::
saturate.

::::
We

::::
have

:::::::
therefore

:::::::
focused

:::
our

:::::::
analysis

:::
on

::
the

:::::::::
post-1975

::::::::
warming.

:
75

2.2
:::::::
Selection

::
of
:::::::
CMIP6

::::::
model

::::
runs
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Table 1. List of CMIP6 models used in this study and their
::::
ERF

:
at
::::

CO2:::::::
doubling

:::::
F2×,

:::
the

::::::
climate

:::::::
feedback

::::::::
parameter

::
λ, equilibrium

climate sensitivity (ECS) and transient climate response (TCR). Mean values are reported for models with multiple realisations.
:::
The

:::::
values

:
of
::::

F2×,
:
ECS and the climate feedback parameter λ are computed using the Gregory method (Gregory, 2004). Starred models had full model

output available and are
:::::
Models

:::::
above the ones included

:::::::
horizontal

:::
line

::::
were

::::
used in the emergent constraint

:::::::
extended

::::::::
simulations

::
to

:::::
2019.

:::::
Models

:::::
below

:::
the

:::
line

:::
did

:::
not

::::
have

::::
SSP

::::::::
simulations

:::::::
available

::
at
::::
time

::
of

::::::
writing. Values

:::::::::
Consistently

::::::
derived

:::::
values

:
for CMIP5 are from

(Flato et al., 2013), and model selection the same as
:::::::
displayed in (Nijsse et al., 2019).

::
the

:::::::::::
Supplementary

:::::
Table

:
1.

Centre Model F2xCO2 ::2× (W m−2)
:
λ ECS(K) TCR(K)

:
n

:::
DT

::::
dDT

*heightBCC BCC-CSM2-MR 3.01 0.98 3.07 1.59
:
1
: :::

0.64
:

BCC
:::::
CAMS

:
BCC-ESM1

::::::::::::
CAMS-CSM1-0

:
3.03

:::
3.95 0.93

:::
1.71 3.35

:::
2.31 1.76

:::
1.72

:
1
: :::

0.44
:

*CAMS
:::
CAS

:
CAMS-CSM1-0

::::::::::
FGOALS-f3-L

:
3.39

:::
3.95 1.76

:::
1.31 2.35

:::
3.03 1.75

:::
2.01

:
1
: :::

0.70
:

*CCCma CanESM5 3.63 0.64 5.66 2.66
::
50

:::
1.27

: :::
0.10

:

*CNRM CERFACS
::::::::::::::
CNRM-CERFACS CNRM-CM6-1 3.54 0.72 4.94 2.08

::
10

:::
0.73

: :::
0.11

:

*CNRM CERFACS
::::::::::::::
CNRM-CERFACS CNRM-ESM2-1 3.09 0.66 4.66 1.92

:
5
: :::

0.65
: :::

0.15
:

E3SM Project
:::::::::::::
CSIRO-ARCCSS E3SM-1.0

:::::::::::
ACCESS-CM2

:
3.23

:::
3.21 0.60

:::
0.67 5.38

:::
4.81 2.99

:::
2.00

:
1
: :::

0.77
:

*EC Earth Consortium
:::::
CSIRO

: ::::::::::::::
ACCESS-ESM1-5

:::
2.71

: :::
0.68

: :::
3.97

: :::
1.91

: :
3
: :::

0.84
: :::

0.10
:

::::::::::::::::
EC-Earth-Consortium

:
EC-Earth3-Veg 3.32 0.77 4.34 2.57

:
2
: :::

0.97
: :::

0.23
:

*
::::::::::::::::
EC-Earth-Consortium

::::::::
EC-Earth3

:::
3.30

: :::
0.78

: :::
4.22

: :::
2.38

: ::
10

:::
0.72

: :::
0.16

:

::::
INM

:::::::::
INM-CM4-8

: :::
2.61

: :::
1.42

: :::
1.84

: :::
1.32

: :
1
: :::

0.61
:

::::
INM

:::::::::
INM-CM5-0

: :::
2.88

: :::
1.49

: :::
1.93

: :::
1.40

: :
1
: :::

0.55
:

IPSL IPSL-CM6A-LR 3.32 0.72 4.63 2.32
:
6
: :::

0.85
: :::

0.10
:

*MIROC MIROC6
:::::::::::
MIROC-ES2L 3.75 1.47 2.56 1.52

:::
1.55

:
1
: :::

0.62
:

*MIROC MIROC-ES2L
:::::::
MIROC6 -

:::
3.76

:
-
:::
1.47

:
-
:::
2.56

:
1.55

:::
1.52

:
3
: :::

0.50
: :::

0.04
:

MOHC HadGEM3-GC31-LL 3.39
::::
3.38 0.62

:::
0.60 5.52

:::
5.62 2.52

:::
2.45

:
4
: :::

1.07
: :::

0.19
:

*MOHC UKESM1-0-LL 3.56 0.66 5.41 2.72
:
5
: :::

1.13
: :::

0.13
:

*
::::::
MPI-M

: :::::::::::::
MPI-ESM1-2-HR

: :::
3.58

: :::
1.20

: :::
2.99

: :::
1.64

: :
2
: :::

0.65
: :::

0.07
:

MRI MRI-ESM2-0 3.36 1.07 3.14 1.56 NASA GISS GISS-E2-1-G 5
:

3.89
:::
0.73 1.44

:::
0.06

:::::
NCAR

:
2.70

:::::::::::::
CESM2-WACCM 1.72 NASA GISS

::::
3.08 GISS-E2-1-H

:::
0.63 3.54

:::
4.90 1.17

:::
1.92 3.09

:
3 1.89

:::
0.97

:::
0.15

:

*NCAR CESM2 3.12
:::
3.13 0.63

:::
0.59 5.17

:::
5.30 2.08 *NCAR

:::
2.04

:
CESM2-WACCM

:
3 3.08

:::
0.82 0.69 4.90 1.92

:::
0.01

:

NCC NorESM2-LM -
:::
3.06 -

:::
1.13

:
-
:::
2.69

:
1.46

:
3
: :::

0.63
: :::

0.18
:

NOAA GFDL
::::::::::
NOAA-GFDL

:
GFDL-CM4 2.90

:::
2.91 0.71 4.09 1.97

:
1
: :::

0.86
:

:::::::::::
NOAA-GFDL

::::::::::
GFDL-ESM4

: :::
3.51

: :::
1.31

: :::
2.68

: :::
1.53

: :
2
: :::

0.79
: :::

0.15
:

NUIST NESM3 -
:::
3.73 -

:::
0.78

:
-
:::
4.76

:
2.73

:
2
: :::

0.93
: :::

0.17
:

SNU
:::
UA SAM0-UNICON

:::::::::::
MCM-UA-1-0 3.85 1.06 3.67 2.18

:::
1.94

:
1
: :::

0.81
:

UA height Mean MCM-UA-1.0
:::
3.69

:
-
:::
0.95

:
-
:::
3.90

:
-
:::
1.96 1.94

:::
4.9

:::
0.78

: :::
0.12

:

Standard deviation
:::
0.40

: :::
0.34

: :::
1.18

: :::
0.42

: ::
9.4

: :::
0.19

: :::
0.06

:

::::::::
AS-RCEC CMIP6 mean

:::::::
TaiESM1 3.40 (3.42*) 0.90 (*0.89) 4.16 (*4.24) 2.06 (*2.01)

::::
2.34

::::
BCC CMIP6 standard deviation

:::::::::
BCC-ESM1 0.32 (0.35*)

::::
3.03

:::
0.89

: :::
3.39

: :::
1.74

:

::::::::::
E3SM-Project

: ::::::::
E3SM-1-0

:::
3.23

: :::
0.60

: :::
5.38

: :::
2.99

:

::::::::::
NASA-GISS

::::::::::
GISS-E2-1-G

: :::
3.89

: :::
1.43

: :::
2.71

: :::
1.68

:

::::::::::
NASA-GISS

::::::::::
GISS-E2-1-H

: :::
3.55

: :::
1.14

: :::
3.12

: :::
1.89

:

::::::
MOHC

:::::::::::::::::
HadGEM3-GC31-MM

:::
3.36

: :::
0.61

: :::
5.52

: :::
2.37

:

::::::
MPI-M

:::::::::::::
MPI-ESM1-2-HR

: :::
3.58

: :::
1.20

: :::
2.99

: :::
1.64

:

::::
SNU

:::::::::::::
SAM0-UNICON

:::
3.83

: :::
1.02

: :::
3.76

: :::
2.25

:

Mean CMIP6
:::
3.70

: :::
0.95

: :::
3.91

:::
2.01

Standard deviation CMIP6
:::
0.39

:
0.33 (*0.35) 1.09 (*1.11)

::::
1.17 0.44 (*0.42)

::::
0.42

Mean CMIP5 CMIP5 mean
:::
3.58

:
3.44

:::
1.06 1.19

:::
3.31 3.04

:::
1.79 1.83

Standard deviation CMIP5 CMIP5 standard deviation
:::
0.22

:
0.46

:::
0.29 0.31

:::
0.76 0.72

:::
0.34 0.38
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MethodWe use the CMIP6 multimodel ensembleto find an
emergent relationship between historical warmingand TCR.
We use all currently available

::::::
CMIP6

:
models that have con-

trol (piControl), historical,
:
a
:
Shared Socioeconomic Pathway

3-7.0 (ssp370
:::::::::
simulation

:::::::::
(SSP1-2.6,

:::::::::
SSP2-4.5,

::::::::
SSP3-7.0

::
or5

::::::::
SSP5-8.5) and one percent CO2 increase per year (1pctCO2)
experiments.

::
We

::::::
extend

:::
the

::::::::
historical

::::::::::
simulations

::::
from

::::
2014

::
to

::::
2019

:::::
using

::::
the

::::::
Shared

:::::::::::::
Socioeconomic

::::::::
Pathways

::::::
(SSPs)

:::::::
scenario

::::
runs.

::::::::::
Additional

::::::::
warming

::::
over

::::
this

:
5
::::

year
::::::

period

:::::
varies

::::
very

::::
little

:::::
across

:::
the

::::::
SSPs,

::
so

:::
we

:::
use

::::::::
SSP2-4.5

::
as

:::
this10

:::
has

:::
the

:::::
largest

:::::::
number

::
of

:::::::::::
participating

::::::
models

::
at

:::
the

::::
time

::
of

::::::
writing.

:

2.3
:::::::::
Calculation

::
of

::::::
model

:::::::::
sensitivity

From the 1pctCO2 experiment TCR is determined as the av-
erage temperature difference from the corresponding piCon-15

trol run between 60 to 80 years after the start of the simula-
tion . Values of TCR

::::::::::::
(IPCC, 2013a).

::::
ECS

::
is
:::::::::
computed

::::
using

::
the

::::::::
Gregory

::::::
method

::::::::::::::
(Gregory, 2004)

::
on

:::
the

::::
first

:::
150

::::
year

::
of

::
the

:::::::::::::
abrupt-4xCO2

::::::::::
simulations.

:::
The

::::::
values

::
of

:::::
ECS

:::
and

::::
TCR

:::
that

:::
we

::::::
derived

:
are given in table 1.20

2.4
:::::::::
Calculation

::
of

::::::::
warming

:::::
trend

Historical warming (our observable) is found from the his-
torical and ssp370

::::
SSP simulations using the global annual

mean surface air temperature (GMSAT) smoothed with a
centred

::::::
equally

::::::::
weighted running mean. Some of these mod-25

els have multiple runs starting from different initial condi-
tions, forcing time series or parameter settings. We use all
available runs. This results in a set of 95 simulations from 13
different models.

We use smoothed GMSAT to calculate warming. This is30

to limit the random effect of internal variability on the forced
change we wish to constrain. We choose a centred 11-year
running mean to remove shorter interannual and mid-term
variability from sources such as ENSO, as well as reducing
the effect of longer period modes of natural variability. We35

have tested the robustness of our
::
the

:
constraint on TCR to

the length of the running mean. It remains relatively invari-
ant past a length of 5 years

:
8

:::::
years,

:
suggesting most of the

internal variability in GMSAT resides in shorter periods.
Warming ∆T is calculated as the difference in smoothed40

GMSAT between two periods, typically the years 1970-1980
and 2008-2018

:::::::::
1975–1985

::::
and

::::::::::
2009–2019. We have cho-

sen the end year to be 2018
::::
2019 to maximise the chances

of discrimination between high and low sensitivity mod-
elsi. e. as .

:::
As

:
the forcing from CO2 increases with time,45

the warming in more sensitive models is more likely
:
to
:

di-
verge from less sensitive ones resulting in stronger statistical
relationships between TCR and ∆T . Although we use 2018
as

::
as

:::
we

:::::
extend

:::
the

::::::
period

::::
over

:::::
which

:::
we

:::::::
calculate

:::
the

:::::
trend.

::::::::
Extending

::
to
:::::
2019

::::
also

::::::
allows

::
us

::
to

:::::::
include the end year of50

annual GMSAT, we report the central year of the smoothed

timeseries in the following figures i. e. the central year of
annual GMSAT smoothed with a centred running mean of
11 years would be shown as 2013.

Other reasons for choosing 2018 include being able 55

to use the most recent observational data and to elimi-
nate possible effects from the warming slowdown between
2000-2012

:::::::::
2000–2012. This slowdown has been attributed

to a combination of internal variability and decreased forc-
ing, amongst other things (Medhaug et al., 2017). We have 60

investigated whether this reduced forcing makes a difference
to our emergent constraint by extending the historical CMIP6
simulations from 2014 to 2018 using the SSP scenario
simulations. The different SSP scenarios have very similar
greenhouse gas emissions for the 2015-2019 period, and the 65

choice of SSP does not significantly alter our findings. We
use SSP3-7.0 as this SSP has the largest number of model
simulations at the time of writing. Choosing either 2014
or 2018 does not significantly affect our results.

:::::
assess

:::
the

:::::
impact

:::
of

:::
the

:::::::::
slow-down

::
by

:::::::::
comparing

::::::::
emergent

:::::::::
constraints 70

::::::
derived

:::::
from

::::::::::
time-series

::::::::
truncated

:::
to

:::::
have

:::::::
different

::::
end

:::::
years.

We have chosen the starting period to be 1970-1980 when
aerosols forcing was similar to today’s values. This choice
also minimised the uncertainty in our estimate of TCR. As 75

a function of start period, uncertainty is relatively flat and
minimal between periods with central years of 1975 and
1985.

2.5
:::::::::
Theoretical

:::::
basis

2.5.1
::::::::
Transient

:::::::
Climate

:::::::::
Response

::::::
(TCR) 80

Once choices of length of running mean and start and
end years for calculation of ∆T are fixed (our observ-
able), we can fit an emergent relationship between the
observable and our values of TCR via linear regres-
sion. Linear regression is performed using a hierarchical 85

Bayesian model which can take into account all the differ-
ent simulations per model: models with more simulations
have a better-constrained post-aerosol warming.

::::::::
post-1975

::::::::
warming.

::::
This

::::::
results

:::
in

::
a
:::

set
:::

of
::::

127
::::::::::

simulations
:::::

from

::
26

::::::::
different

:::::::
models.

:
The regression method is further de- 90

scribed in Appendix A.
:::
The

::::::
choice

:::
of

:::::
linear

:::::::::
regression

::
is

::::::
justified

:::
by

::::::::::
considering

::
a
::::::::
two-layer

:::::::
energy

:::::::
balance

:::::
model

:::::::::::::::::::::::::::::::::::
(Winton et al., 2010; Geoffroy et al., 2013a)

:
:

C
d∆T

dt
= F −λ∆T − εγ(∆T −∆T0)C0

d∆T0

dt
= γ(∆T −∆T0).

:::::::::::::::::::::::::::::::::::::::::::::::

(2)

::::
Here

::::
∆T

::
is

:::
the

::::
top

:::::
layer

::::::::::
temperature

::::::::
anomaly,

:::::
∆T0:::

the 95

::::
deep

:::::
ocean

:::::::::::
temperature

::::::::
anomaly,

::
λ

:::
the

::::::
climate

:::::::::
sensitivity

::::::::
parameter,

::
ε
:::
the

:::::
ocean

::::::
pattern

:::::::
efficacy

:::
and

::
γ
:::
the

:::::
ocean

::::
heat

:::::
uptake

:::::::::
parameter

::::::::::::::::::
(Winton et al., 2010).

::::
The

::::::::::
parameters

::
C

:::
and

:::
C0:::

are
:::
the

::::
heat

::::::::
capacity

::
of

:::
the

::::::
upper

:::::
ocean

::::
and

::::
deep

:::::
ocean,

:::::::::::
respectively.

:::
We

::::
will

::::
refer

:::
to

:::
this

::::::
model

::
as

:::::::
EBM-ε, 100
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Figure 2.
:::::
Scatter

:::
plot

:::
of

::::
TCR

:::::
values

::::::
plotted

:::::
against

::::
ECS

:::::
values

::
for

::
all

::::::
CMIP6

::::::
models

:::
with

::::
both

:::::::
available

:
at
:::
the

::::
time

:
of
:::::::::
submission.

:::::
Models

:::::
from

:::
the

:::::
same

::::::::
modelling

::::::
group

:::
are

::::::
plotted

::::
with

:::
the

::::
same

::::::
colour.

:::
Plot

:::::::
markers

::::::::::
differentiate

::::::
models

:::::
from

:::
the

::::
same

:::::::
modelling

::::::
centre.

:::::
Black

:::
line

::::
uses

:::
the

::::::
average

:::::
ocean

::::
heat

:::::
uptake

::::::::
parameters

::
as
:::::

fitted
:::::

from
:::
the

::::::::::::::::::
Geoffroy et al. (2013b)

:::::::
procedure,

::::
listed

::
in

::::::::::::
Supplementary

::::
Table

::
3
::::

and
:::::
related

::::
ECS

::::
and

::::
TCR

:::
via:

::::::::::::::::::::
ECS = TCR/(1− e′TCR),

:::
with

:::::::
e’=0.24,

:::
the

::::
model

:::::
mean.

::
or

::::::
EBM-1

::
if
::
ε
::
is

:::
set

::
to

::
1.

:::
We

::::::
follow

:::
the

:::::::::::::
approximations

::
in

::::::::::::::::::::
Williamson et al. (2018)

:::
and

:::::
JM19

:::
in

::::::::
assuming

:::
no

::::::
change

::
in

::::
deep

::::::
ocean

::::::::::
temperature,

::::
and

::::::::
assuming

::::
the

:::::
upper

:::::
ocean

::
to

::
be

::
in
:::::::::::

equilibrium.
:::::
These

:::::::::::
assumptions

:::
are

:::::::::
reasonable

:::
for

::::::::
timescales

::::::
larger

::::
than

:
a
:::::::

decade,
:::
but

:::::::
smaller

::::
than

::
a

::::::
century5

::::::
(JM19),

::::
and

::::
lead

::
to

:::
the

::::::::
following

::::::::::
relationship:

:

TCR = s′∆T + η
::::::::::::::

(3)

::::
Here

::
s′
:::

is
:
a
:::::::

forcing
:::::::::
parameter,

:::::::
defined

:::
as

:::::::
F/F2× :::

and

:
η
:::

an
::::::
offset.

::::
The

::::::
choice

:::
of

:::::::
starting

::::::
period

:::::::::
minimises

:::
the

:::::::::
uncertainty

::
in

::::
our

:::::::
estimate

:::
of

:::::
TCR.

:::
As

:
a
::::::::

function
::
of

::::
start10

::::::
period,

:::::::::
uncertainty

:::
is

::::::::
relatively

::::
flat

:::
and

::::::::
minimal

:::::::
between

::::::
periods

::::::
centred

::::::
around

:::::
1975

::
to

:::::
1990.

:::
We

::::::
further

:::::::::
investigate

::
the

:::::::::
sensitivity

:::
of

:::
this

:::::::::
constraint

::
to

:::
the

::::
final

:::::
year,

:::
the

:::::
length

::
of

:::
the

::::::
running

::::::
mean,

:::
the

:::::
model

::::::::
selection,

::::
and

:::
the

::::::
method

::
of

::::::::
regression

::::
(see

::::::
Figure

::
5).

:
15

2.5.2
::::::::::
Equilibrium

:::::::
Climate

:::::::::
Sensitivity

:::::
(ECS)

:::::::
Similarly

:::
to

:::
the

:::::::::
constraint

:::
on

:::::
TCR,

:::
we

::::
use

:::
the

::::::::
warming

:::::::
between

::::::::::
1975–1985

::::
and

:::::::::
2009–2019

:::
to

::::
find

:::
an

::::::::
emergent

::::::::
constraint

:::
on

::::::
ECS.

:::::
The

:::::::::::
relationship

::::::::
between

:::::::
climate

::::::::
sensitivity

::::
and

::::::::
observed

::::::::
warming

::
or

:::::
TCR

::
is

:::
not

::::::::
expected20

::
to

::
be

::::::
linear,

::
as
::

a
:::::::
smaller

:::::::
fraction

::
of

::::::::::
equilibrium

::::::::
warming

:
is
::::::::

typically
:::::::
realised

:::
in

::::::
models

:::::
with

::::
high

:::::::
climate

:::::::
sensitive

:::::
within

:::
the

::::
first

::::::
decades

:::
of

:::::::
warming

::::::::::::::::::::
(Rugenstein et al., 2019)

:
.
:::::
Using

:::
the

:::::
same

::::::::::
assumption

::
as

::
in
::::

the
:::::
above

:::::::
section,

::::
TCR

:::
and

::::
ECS

:::
are

::::::
related

:::
via:

:
25

ECS = TCR/(1− e′TCR).
:::::::::::::::::::::

(4)

::
So

::::
that

:::
the

:::::::::
relationship

::::::::
between

::::
ECS

:::
and

::::
∆T

::::
ends

::
up

:::
as:

:

ECS =
∆T

s′− e′∆T
.

:::::::::::::::

(5)

:::::
Again,

::
s′
::

is
::
a
::::::
forcing

:::::::::
parameter,

:::::::
defined

::
as

::::::::
∆F/F2×:::

and

:
e′
:::

is
:::
the

:::::
ocean

:::::
heat

::::::
uptake

::::::::
parameter

:::::::
defined

:::
as

:::::::
εγ/F2×, 30

:::
The

:::::::
function

::::
has

::
an

:::::::::
asymptote

::
at
:::::::::::::
s′− e′∆T = 0,

::::
and

::::
turns

:::::::
negative

:::
for

:::::
larger

::::
∆T

::::::
values.

:::
As

:::::::
negative

:::::
ECS

:::::
values

:::
are

:::::::::
unphysical,

::::
we

::::::
modify

::::
the

::::::::
equation

:::
by

:::::::
keeping

:::::
ECS

::
at

::::::
infinity

:::
for

::::::::
∆T > s′

e′ .

::
To

:::
test

:::
the

:::::::
validity

::
of

:::::
these

:::::::::::
assumptions,

:::
we

:::::::
perform

:::
two 35

::::::
checks.

::::::
Firstly,

:::
by

::::::::
explicitly

:::::::::
simulating

:::
the

::::
two

:::
box

::::::
model,

::
we

:::::::::
investigate

:::
to

::::
what

::::::
extent

:::
the

::::::::
analytical

:::::::::
functional

::::
form

:::::::
deviates

::::
from

::::
the

::::
true

::::::::
functional

::::::
form.

:::
We

::::
are

::::::::
especially

::::::::
interested

::
in

:::
the

:::::
upper

:::::
region

:::
of

:::
this

:::::::::
functional

::::
form.

:

::::::::
Secondly,

:::
we

:::
fit

::::
the

::::::
ocean

:::::
heat

::::::
uptake

::::
and

:::::::
forcing 40

:::::::::
parameters

::::
for

:::
all

:::::::
CMIP6

::::::::
models,

:::::::::
following

::::
the

::::
two

:::::::::
algorithms

:::::::::
described

:::
in

::::::::::::::::::::::
Geoffroy et al. (2013a, b),

:::::
with

::::
slight

::::::::::::
modifications

::
to

::::::
ensure

::::::::
solutions

::::
exist

:::
for

:::
all

::::::
models

::::::::
described

::
in

:::
the

::::::::::::
Supplementary

:::::::::::
Information.

:::::
Using

::::
these

::::::
fitting

:::::::::
parameters,

:::
we

:::::::::
investigate

:::
the

:::::::
physical 45

::::
basis

:::
of

:::
Eq

::
5
:::::

with
:::

the
:::::::

EBM-ε
::::

and
::::::::

EBM-1
:::::::
models.

::
If

:::
this

:::::::
function

:::::::
derived

:::::
from

:::
the

:::::::
two-box

::::::
model

::
is

::
a
::::::
faithful

::::::::::::
representation,

::::::::

∆T
s′−e′∆T ::::::

should
:::

be
::::::

better
::::::
related

:::
to

::::
ECS

::::
with

::::::::
individual

::::::
model

::::::::::
parameters

::::
than

::::
with

:::
the

:::::
bulk

::::
fitted

::::::::
parameter.

::::::
Figure

::
2
:::::
plots

::::::
model

::::
TCR

::::::
versus

:::::
ECS,

::::::
related 50

::
via

::::
Eq.

:::
4,

:::::
using

::::
the

::::::::
ensemble

:::::
mean

:::
of

::::
the

:::::
fitted

:::::
ocean

:::::::::
parameters.

:

3 Results

3.1
:::::::
Transient

:::::::
Climate

:::::::::
Response

::::::
(TCR)

Figure 3a shows the ∆T
:::::::::
temperature

::::::::
anomaly

:
over the 55

period 1880 to 2018 simulated by 13
::::
2019

::::::::
simulated

:::
by

::
26

:
different CMIP6 models running a total of 95

:::
127

simulations smoothed with a 11-year running meanrelative
to the mean of the reference period

:
.
:::
The

:::::::::
reference

:::::
period

::
in

:::
this

:::::
case

::
is

:
1880-1910. Model runs have been colour 60

coded by their TCR ,
:::::
value,

:::::
with

:
darker red indicating

models with higher TCR,
:::
and darker blue indicating lower

TCR. Black lines are various observational datasets of

:::::::::::
observational

:::::
global

::::::::
warming

:::::::
datasets

::::
over

:
the same period

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Morice et al., 2012; Rohde et al., 2013; Lenssen et al., 2019; Zhang et al., 2019)65

. Models with higher TCR either show large ∆T
:::::::
warming

at the end of the period, or portray a strong aerosol cooling
over the 20th century, particularly visible as a dip around
1970

:::::::::
1960-1970

:
(notably CNRM-ESM1, UKESM1-0-LL

and EC-Earth-Veg). The major uncertainty for historical 70

radiative forcing comes from aerosols (Bellouin et al., 2019)
. Figure 3b shows the same information for the end of the
historical period although the reference period is now chosen
to be 1970-1980, close to

:::::::::
1975-1985,

:::::
after

:
the dip. The

positive correlation intuitively expected between TCR and 75
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Figure 3. Global mean surface temperature of 13 individual
::

the
::
26

:
CMIP6 models named in Table 1.

::
To

::::
avoid

:::::
visual

:::::::::::::::
over-representation,

:
a
::::::::
maximum

::
of

:::
ten

::::::::
realisations

:::
per

:::::
model

:::
are

::::::
plotted.

:
An 11-year running mean was used. (a)

:::::::::
Temperature

::::::
anomaly

:
∆T using the mean

GMSAT between 1880-1910 as reference period. (b)
:::::::::
Temperature

:::::::
anomaly ∆T relative to the 1970-1980

::::::::
1975–1985

:
mean.To avoid

overrepresenting a single model, a maximum of ten realisations per model are plotted.

1900 1925 1950 1975 2000
Year

0.0

0.5

1.0

1.5
Te

m
pe

ra
tu

re
 (K

)
Reference period 
 1880-1910

(a)

1980 1990 2000 2010
Year

0.00

0.25

0.50

0.75

1.00

1.25

Te
m

pe
ra

tu
re

 (K
)

(b)

1.50

1.75

2.00

2.25

2.50

2.75

TC
R 

(K
)

::::::::::
temperature

:::::::
increase ∆T is more clearly seen

::::
much

::::::
clearer

::
for

::::
this

::::
time

::::::
interval.

The ∆T for each model simulation in Fig. 3b is used in
our

:::
for

:::
the

:
emergent constraint on TCR in Fig. 4a. Obser-

vational warming (black vertical dashed line) is the mean5

of HadCRUT4 (Morice et al., 2012), Berkeley Earth (Ro-
hde et al., 2013), GISSTEMP4 (Lenssen et al., 2019) and
NOAA v5 (Zhang et al., 2019). The confidence interval (grey
shaded vertical area) is a combination of the observational
uncertainty and the internal variability. The models from the10

previous CMIP5 generation generally fall within the predic-
tion interval of the CMIP6 emergent constraint: the emer-
gent constraint is robust across generations (Klein and Hall,
2015). The best estimate (1.82

:::
1.68

:
K) from this emergent

constraint is very similar to
::::::
higher

::::
than the best estimate us-15

ing the larger set of models that have historical simulations
up to 2014, but no future scenarios (1.77

::::::
median:

:::::
1.54 K,

1.31 - 2.22 K, likely range). The set of CMIP6 models
used in our emergent constraint are listed in table 1 along
with their TCR and ECS values, the latter being determined20

from Gregory plots (Gregory, 2004) on the first 150 year of

::::::
5–95%

:::::
range:

:::::::::
0.76–2.30

:::
K).

:::::
This

:::
can

::::::
mostly

:::
be

::::::::
explained

::
by

:::
the

::::
fact

:::
that

::::::::::
2004-2014

:::::::
overlaps

::::
with

:
the abrupt-4xCO2

simulations
:::::::::
slow-down

::
in

:::::::
surface

::::::::::
temperature

:::::::
increase

::::
over

::
the

::::::::::
2000-2012

::::::
period,

::::
but

:::
the

:::::
wider

:::::
range

:::
of

::::::
models

::::
also25

::::::
impacts

:::
the

:::::::::
regression.

Figure 4b shows the probability density functions (pdf) of
TCR derived from the emergent constraint for both CMIP6
and the earlier CMIP5 model ensembles. For comparison, the
raw model range in each CMIP is plotted as a histogram,30

as well as the reported IPCC AR5 range. The IPCC pdf
is not specified, here we take it as

::::
likely

:::::
range

:::::::::
(assuming

a normal distribution
:
). Both CMIP5 and CMIP6 pdfs are

very similar (central estimates differ by 0.05
:::
0.1 K) even

though raw model means in CMIP6 and CMIP5 differ by35

0.23 K
::::::
contains

::::::
many

:::::
more

::::
high

:::::
TCR

:::::::
models. As a con-

tinuation of the historical CMIP5 simulation, RCP4
:::::
RCP8.5

is chosen.
:::
The

::::::
tighter

:::::::::
constraint

:::
in

::::::
CMIP5

:::
is

::::::
mostly

::
a

::::::::::
consequence

:::
of

:::::::::
differences

:::
in

::::::
internal

::::::::::
variability,

:::::
which

::
is

::::
42%

:::::
larger

::
in

::::::
CMIP6

::::
than

::
in

::::::
CMIP5,

::
in
::::
line

::::
with

:::
the

::::::
findings 40

::
of

:::::::::::::::::
Parsons et al. (2020).

:

3.2 Robustness to parameter choices

We have assessed how robust our estimate of TCR is to the
various choices of parameters:

3.1.1 End year
:::::
Period

::::::::
selection 45

Estimates of TCR depend on the final year chosen for the
emergent constraint. However, uncertainty

::::::::::
Uncertainty in the

estimate of TCR reduces as time increases and the central
estimate converges as shown in Figure

:::
Fig.

:
5a. Later end

years are intuitively preferred (i.e. 2018) as the increased 50

CO2 forcing with time leads to more separation in models
warming predictions over their internal variability. This
increases correlation of warming with TCR and reduces
uncertainty in the best estimate. We believe this might also
be due to the reducing relative effect of aerosol forcing 55

compared to forcing from CO2 at later years.
:::::::
favoured

::
as

::
the

:::::::::::::
signal-to-noise

::::
ratio

::
of

:::
the

:::
net

:::::::
radiative

:::::::
forcing

:::::::
increases

::::::::::::
monotonically

::::
after

::::
1975

::::
(see

::::::
Figure

::
1).

:::
In

:::
the

:::
21st

:::::::
century,

::
the

:::::::
climate

:::::::
impact

::
of
:::::::::

volcanoes
::::

has
:::::

been
:::::::::
dominated

:::
by

::::::
smaller

::::::::
eruptions

::::::::::::::::::
(Stocker et al., 2019)

:
.
::::
The

:::::::::::
scenarioMIP 60

:::::::::
simulations

::::
used

:::
for

::::::::::
2015-2019

::::::
include

:
a
:::::

small
::::::::::
background

::::::
forcing

::::
from

:::::::::
volcanoes

::::::::::::::::::
(O’Neill et al., 2016).

::::
We

:::::::
estimate

:::::
errors

::::
from

::
a
::::::::
potential

:::::::::
mismatch

:::::::
between

::::::
model

::::
and

:::
real

::::::
forcing

::
to

::
be

::::::::
relatively

::::::
small.

3.1.2 Length of running mean 65

To mitigate the effect of internal variability, we use a running
mean of GMSAT. Figure

:
5b shows the likely range of TCR

as a function of the length of the running mean. Since we
use all available simulations including multiple realisations
of the same model in our

::
the

:
emergent constraint, the effect 70

of internal variability is already reduced and the length of the
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Figure 4. (a) Emergent constraint on TCR against historical warming ∆T . ∆T is calculated from the difference between 1970-1980

::::::::
1975-1985 and 2008-2018

::::::::
2009-2019

:
of a timeseries of GMSATsmoothed with a centred 11 year running mean, denoted by their central year

on axis label. Linear regression is performed with all
:::::

CMIP5
:::
and CMIP6 simulations. Shaded areas indicate a 66

::
90% confidence

::::::::
prediction

interval (see Appendix A). The vertical dotted line is the mean value of the observations and
:::::
y-axis

::::
shows

:
the horizontal dotted line is the

implied central estimate
::::::::
probability

:::::::::
distribution of the TCR

:::
both

:::::::::
generations

::
of

::::::::
ensembles. (b) Comparison of probability distributions for

the transient climate response using post-1970
:::::::
post-1975 warming using CMIP5 and CMIP6 simulations. The probability distribution in the

fifth IPCC assessment is not fully specified, and
::
so the figure shows a normal distribution with the same likely range as IPCC.
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running mean on the estimate of TCR is small - the central
estimate and the likely range remain relatively invariant past
a length of 5

::::::
window

:::::
length

:::
of

:
8
:
years.

3.1.2 Start year

Figure
:::::
Figure

:
5c shows the effect of the start year on the5

emergent constraint. Uncertainty in the estimated value of
TCR is minimal and relatively flat between start years of
1975 and 1985.

:::::
1990. Uncertainty from start years of 1985

onwards increases although slowly
::::
1990

:::::::
onwards

::::::::
increases

until the estimate and the uncertainty revert towards the raw10

CMIP6 ensemble statistics (no predictive power) at later
years.

3.1.2 Regression method

When only one realisation per model is used for ordinary
least square regression, regression dilution takes place in15

which the slope is underestimated (Cox et al., 2018b). This
leads to

:::
has

:::
the

::::::::
potential

::
to

::::
lead

::
to

:
a slight overestimation

of TCR (Figure
:::
Fig. 5d), as the observed warming is on the

lower end of model warming
::
the

::::::
model

:::::
range. Jiménez-de-

la Cuesta and Mauritsen (2019) used the average warming20

for models with multiple simulations. As not all models pro-
vide (a sufficient amount ) of simulations, they state that
this leads to a minor inflation of the estimation of uncer-
tainty. Although we use a hierarchical Bayesian model as
the default (details in Appendix A) we have investigated two25

::::
three

:
other regression methods used in the emergent con-

straint literature: ordinary least squares (OLS) with only one
realisation per modeland

:
, OLS on the mean warming per

model
:::
and

:::::::::
orthogonal

::::::::
distance

:::::::::
regression

:
(Fig. 5d. All

:
).

:::::
While

:::
the

::::
first

:::::
three give very similar results.

:
,
:::::::::
orthogonal30

:::::::
distance

:::::::::
regression

:::::
gives

::
a
:::::::::

somewhat
::::::

lower
::::::::
estimate

::
of

::::
TCR.

::::::::::
Orthogonal

:::::::
distance

:::::::::
regression

:::::::
assumes

::::
that

::::
there

:::
are

::::
both

:::::
errors

:::
in

:::
the

::::::::
predictor

::::
and

::
in
::::

the
::::::::::
predictand,

:::::
which

::::
leads

::
to
::

a
::::::
steeper

::::::
slope.

:::
As

:::
our

::::::::::
observation

::::
lies

:::::
under

:::
the

:::::::
average,

::
a

::::::
steeper

:::::
slope

:::::::
results

::
in

::
a
:::::::

smaller
:::::

mean
:::::

TCR 35

:::::
value.

:::::::::
Orthogonal

:::::::
distance

:::::::::
regression

::
is

:::::
known

::
to
:::::::::
sometimes

:::::::::::::
overcompensate

:::
for

:::::
errors

:::
in

:::
the

:::::::::::
independent

:::::::
variable,

:::
for

:::::::
instance

::
in

:::
the

:::::
case

:::
the

:::::::::
statistical

::::::
model

::
is

:::
not

::::::::
perfectly

::::::
known;

::
if

:::
the

:::::
model

:::::::
deviates

:::::
from

:::::
being

:
a
::::::::
perfectly

::::::
straight

:::
line

:::::::::::::::::::::::
(Carroll and Ruppert, 1996).

:
40

3.1.3 Model selection

It has been noted that model
:::::
Model

:
selection can prevent

double counting of very similar models (Sanderson et al.,
2015; Cox et al., 2018a). As models from the same centre can
have very dissimilar climate sensitivities (Chen et al., 2014; 45

Jiménez-de-la Cuesta and Mauritsen, 2019) and sensitivity
can change drastically with only small adjustments to param-
eters (Zhao et al., 2016), we

::::::
initially use all available models

in the CMIP5 and CMIP6 ensemble. Figure 5e shows that
this choice does not significantly change the best estimate of 50

the transient response, but using all models gives a stronger
constraint.

:::
and

::::
that

:::::
using

::::
one

::::::
model

::::
per

:::::::::
modelling

:::::
centre

::::
only

::::
very

:::::::
slightly

::::::::
increases

:::
the

:::::::::
variance,

::::
even

:::
as

::::::
models

::::
from

:::
one

:::::::::
modelling

:::::
centre

:::
are

:::::::
relative

::::::
similar

::::
(Fig.

:::
2).

4 Discussion and Conclusion 55

An immediate question that may come to mind after
constraining TCR, is whether the same information can be
used to constrain ECS. There is an approximately linear
relationship between ECS and TCR across the
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Figure 5. Robustness of the result to various parameter choices and the choice of regression method. Unless stated differently, start year is
1975, all years up to 2018 are used, and the length of the running mean is 11 years. (a) Likely

:::::
5-95% TCR range as a function of the end

:::
final

year (dotted
:::
blue

:
line central estimate). (b): Likely

:::::
5-95% TCR range as a function of length of running mean. (c) Likely

::::
5-95%

:
TCR range

as a function of start year. (d) Pdf of TCR from different regression methods: the hierarchical Bayesian model is compared to three other
linear regression methods used in the emergent constraint literature: ordinary least squares (OLS) with only one realisation per model ,

:::
and

OLS on the mean warming per model and orthogonal distance regression (ODR). (e) Resulting pdfs on TCR from stricter model selection
(one model per modelling centre) compared to the

:::::::
regression

:::::
using

:
all models and the IPCC AR5 rangeusing the hierarchical Bayesian

model.
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:::::
Study

::::::::
Ensemble

:::::
Period

::::::
Median

:::::
5-95%

:::::
range

::::::
16-84%

:::::
range

::::::::::::::::::::::::::::::::
Jiménez-de-la Cuesta and Mauritsen (2019)

::::::
CMIP5

::::
1970

:
-
::::
2005

::::
1.67

:
K
: :::

1.17
::
–
:::
2.16

::
K

:::::
Nijsse

::
et

::
al.

:::::
(2020)

::::::
CMIP5

::::
1970

:
-
::::
2005

::::
1.72

:
K
: :::

1.11
::
–
:::
2.34

::
K

:::
1.37

:
–
::::
2.08

:
k
:

::::::::::::::::
Tokarska et al. (2020)

::::::
CMIP6

::::
1981

:
-
::::
2017

::::
1.60

:
K
: :::

1.2
:
–
:::
2.0

:
K
:

:::::
Nijsse

::
et

::
al.

:::::
(2020)

::::::
CMIP6

::::
1970

:
-
::::
2019

::::
1.68

:
K
: ::

1.1
::
–
::
2.5

::
K
: :::

1.3
:
–
:::
2.1

:
K
:

Table 2.
:::::::
Emergent

::::::::::
constraint

::::
on

::::::
TCR

::::::::::
depending

:::::
on

::::::::
choices

::::
of

:::::::::
ensemble

:::::
and

::::::::
period.

::::::::
Results

::::::
from

::::::::::::::::::::::::::::::::
Jiménez-de-la Cuesta and Mauritsen (2019)

:::
and

::::::::::::::::
Tokarska et al. (2020)

::
are

::::
also

:::::
shown

::
for

::::::::::
comparison.

3.1
:::::::::
Equilibrium

:::::::
Climate

:::::::::
Sensitivity

::::::
(ECS)

:::::
Figure

::::
6a

:::::::
shows

::::
the

:::::::::
emergent

::::::::::
constraint

:::
on

::::::
ECS.

:::
For

:::::::
CMIP5,

::::
the

:::::
90%

::::::::::
confidence

:::::::
interval

::::
lies

::::::::
between

::::::::
0.96–4.09

::
K.

::::
The

::::::::
constraint

::
is
:::::::
stronger

:::
for CMIP6ensemble,

but this shows significant scatter due to variation in ocean5

heat uptake across the ensemble (see Figure 2). As a
result, although our central estimate of TCR corresponds
to ECS values slightly over 3K, some models with
ECS > 4.5 K also fall within the likely bounds of our
TCR constraint. We find no good evidence to support a10

particular non-linear relationship between ECS and TCR
(Rugenstein et al., 2019), and therefore little evidence of a
direct emergent constraint on ECS from recent warming
alone (Jiménez-de-la Cuesta and Mauritsen, 2019). In the
future, we hope that our TCR constraint will become the15

basis for constraints also on ECS and TCRE (Transient
Climate Response to Emissions) , but this will require the
inclusion of additional constraints on ocean heat uptake, and
land andocean carbon uptake , respectively.

::::
with

:::
the

::::
90%

:::::::::
confidence

::::::
interval

::::::::
spanning

::::::::
1.52–4.03

:::
K.

::::::
Further

::::::
results

::
are20

:::::
shown

::
in

:::::
Table

::
3.

:

:::
The

:::::::
results

:::::
are

:::::::
highly

::::::::::
dependent

::::
on

:::::
the

:::::
time

::::::
interval

::::::::
chosen.

::::
For

:::::::
shorter

:::::::::
intervals,

::::
the

::::::::::
theoretical

::::::::
functional

:::::
form

::::::
shows

:::
an

::::::::
increased

:::::::::
steepness

:::
for

::::::
higher

:::::
values

:::
of

:::::
∆T ,

:::::::
making

:::
it

:::::
more

::::::::
difficult

:::
to

:::::::::
constraint. 25

:::
For

:::::::::
instance,

::::::
taking

:::::
the

:::::
time

:::::::
period

:::
in

:::::
line

:::::
with

:::::::::::::::::::::::::::::::::::
Jiménez-de-la Cuesta and Mauritsen (2019),

::::
i.e.

:::::::::
1970–1989

:::::
versus

::::::::::
1994–2005,

::::
we

::::::
obtain

:
a
:::::::

5–95%
:::::::
interval

::
of

:::::
0.70

:
-

::::
8.41

::
K

::
for

:::::::
CMIP5,

:::::::::::
significantly

:::::
wider

::::
than

::::
what

::::
was

:::::
found

::
in

:::
the

::::::
former

::::::
paper,

::::::
which

:::::::
reported

::
a
:::::::

5–95%
:::::::::
confidence 30

::::::
interval

:::
of

:::::::::
1.72-–4.12

:::
K.

::::
The

:::::
major

::::::::::
differences

:::
lie

::
in

:::
the

::::::::
definition

::
of

:::
the

:::::::::
theoretical

::::::::
function,

:::::
where

:::
we

::::
have

:::
cut

:::
off

::
the

::::::::::
unphysical

::::::
branch,

:::
and

::
a
::::::::
correction

:::
of

:
a
::::::
coding

:::::
error.

However, we are now in a position to answer the questions
that we posed in Section 1, at least with regard to TCR: 35

Are such high climate sensitivities consistent with the
observational record?

No, models with high TCR (>2.5 K) are not consistent
with observed global warming since 1970, as demonstrated
in Figure 3b. If so, do the 40

::
In

::::
Fig.

:::
6b

:::
the

::::
dark

::::::
green

::::
dots

::::::::
represent

::::::::
expected

::::
ECS

::::
from

::::::::
observed

::::::::
warming

:::::
(using

::::
Eq.

::
5)

::::
and

:::
true

:::::
ECS,

:::::
using

::
the

::::::
fitted

:::::::::
parameters

:::::
from

::::
Fig.

::::
6a.

::::
The

:::::
light

:::::
green

::::
dots
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Figure 6.
:
a)

::::::::
Emergent

:::::::
constraint

:::
for

::::
ECS,

:::::
using

::
the

::::::::
functional

::::
form

::
of

:::
Eq.

::
5.

:::
The

::::::
shaded

:::
area

:::::::
includes

:::
the

:::::
5-95%

::::::::
confidence

:::::::
interval.

::
b)

:::::::::
Comparison

::
of

:::::::
emergent

::::::::
constraint

::::
fitted

:::::::::
parameters,

::::
with

::::
using

:::::
model

:::::
values

:::
for

::
s′

:::
and

::
e′.

::::
The

:::::::
coloured

::::
lines

::
are

::::
OLS

:::
fits

:::
for

:::
the

::::
three

::::
cases,

:::
and

:::
the

::::
black

::::
line

::::::
indicates

:::
the

:::::::
1:1-line.

::::
Three

:::::
values

:::
for

:::
the

:::::
EBM-ε

:::::
model

:::
are

:::
not

:::::
shown

::
as

::::
their

:::::::::::::
∆T/(s′− e′∆T )

:::
are

::::::
between

:::
75

:::
and

::
90

::
K.

::::::::
Ensemble

::::::
Median

:::::
5-95%

:::::
range

::::::
CMIP5

::::::::
1970-2005

::::
2.33

:
K
: ::::

0.70
:
–
::::
8.41

:
K

::::::
CMIP5

:::
hist

:
+
::::::
RCP85

::::
2.19

:
K
: :::

0.96
::
–
:::
4.10

::
K

CMIP6 models demand an upward revision to the IPCC likely ranges for climate sensitivity?Our associated emergent constrainton TCR (Figure 4) does not warrant a revision upwards of the IPCC likely range for TCR , despite the larger TCR values in the
::::::::
1970-2005

: ::::
2.53

:
K
: :::

0.97
::
–
:::
8.62

::
K

CMIP6 ensemble.
::::::
historical

: ::::
1.89

:
K
: :::

0.98
::
–
:::
3.26

::
K

::::::
CMIP6

:::
hist

:
+
:::::::
SSP2-4.5

: ::::
2.62

:
K
: :::

1.53
::
–
:::
3.99

::
K

Table 3.
:::::::
Emergent

::::::::
constraint

:::
on

::::
ECS

::::::::
depending

:::
on

::::::
choices

::
of

:::::::
ensemble

:::
and

:::::
period.

:::::
denote

::::
the

:::::
same,

:::
but

::::
now

:::::
every

::::::
model

::::
uses

:::
its

::::
own

:::::
ocean

:::::::::
parameters,

::::
F2×::::

and
:::::
model

:::::::
forcing

::::::::
computed

:::::
using

:::
Eq.

:::
??.

:::
The

::::::
yellow

::::
data

:::::
shows

:::
the

::::::::
expected

::::
ECS

::::::::
computed

::::
from

:::
the

::::::
EBM-1

::::::
model.

::::
Full

::::::::
parameter

:::
fits

:::
for

::::
both

::::::
models

:::
are

:::::
found

::
in

::::::::::::
Supplementary

::::::
Tables

:
2
::::
and

::
3.5

Instead, the CMIP6 models help to constrain the likely
TCR range, without significantly changing the central
estimate.

:::
The

::::::
EBM-ε

:::::
model

::::::::
performs

::::::
poorly

::
for

:::::
large

:::::
values

::
of

:::
the

:::::
ocean

::::
heat

::::::
uptake

:::::::
pattern

::::::::
parameter

::
ε.
:::::::

Models
::::
with

:
ε
::::::
around

:::
1.8

::
in
:::::::::

particular
:::::
show

::
an

::::::::
expected

::::
ECS

:::
far

:::::
above10

:
a
:::::::
realistic

::::::
range,

::::
with

::::
one

::::::::
expected

::::
ECS

::::::::
reaching

:
a
:::::

value

::
of

::
89

:::
K.

::::
Eq.

::
5

::
is

::::::::
nonlinear

::::
and

:::::
small

:::::
errors

:::
in

::::::::
parameter

::::::::
estimation

:::::::
quickly

:::::
lead

::
to
:::::

large
::::::

errors
:::

in
:::::
ECS.

::::
For

:::
the

::::::
EBM-ε

::::::
model

::
in

:::::::::
particular,

:::::
high

:::::::
internal

:::::::::
variability

::::
may

::::
skew

:::
the

::::::::
parameter

::::::::
estimate

:::::::
upwards.

:
15

:::
The

:::::::
EBM-1

::
fit

:::::
leads

::
to
:::

an
::::::::
improved

::::::::::
estimation

::
of

::::
ECS

::::::::
compared

::
to

:::
the

::::
Eq.

:
5
:::
fit

::
in

::::
53%

:::
of

:::
the

:::::
cases,

:::::::
whereas

:::
the

::::::
EBM-ε

:::::
model

:::::
leads

::
to

::
an

:::::::::::
improvement

::
in

::::
34%

::
of

:::::
cases.

::::
This

::::::
pattern

::
in

::::::
similar

::
in

:::
the

::::
case

::::
only

::::::::
historical

::::::
models

:::
are

::::
used,

::::
with

::::
66%

:::
and

::::
42%

::::::::
improved

:::::::::::
respectively.20

::::::::
Explicitly

:::::::::
simulating

:::
the

:::::::::
two-layer

::::::
model

::::::::
indicates

:::
that

::
the

:::::::::
steepness

:::
of

::::
the

::::::
graph

::
is
::::::::::::::

overestimated:
::::::::
assuming

::
no

:::::
deep

:::::
ocean

:::::::::::
temperature

::::
rise

::::::::
dampens

:::
the

::::::::::
temperature

:::::::
response

:::
of

:::::
the

::::::
upper

:::::::
ocean.

::::::::::::::::::::
Geoffroy et al. (2013a)

:::::::
included

:
a
::::::::
analytical

:::::::
solution

::
to

:::
the

:::::::
two-box

::::::
model

:::::
under

::
the25

::::::
weaker

::::::::::
assumption

::
of

::
a
:::::::
linearly

:::::::::
increasing

:::::::
forcing,

:::::
which

::::
again

:::::::
showed

::
a

:::::
larger

::::::::::
temperature

::::
rise.

:::::::::
However,

::
by

:::::
using

::
an

::::::::
decreased

:::::
ocean

::::
heat

::::::
uptake

::::::::
parameter

::
e′
::::
and

::::::
forcing,

:::
the

:::
two

::::::::
analytical

::::::::
solutions

:::
do

::::::
overlap

::::::::::::::
(Supplementary

::::
Fig.

::
1),

:::::
which

::::::::
indicates

::::
that

:::::
using

:::
the

::::::::::::
approximated

::::
Eq.

::
5

::
in

:::
the 30

::::::::
regression

::::::
should

:::
not

::::
lead

::
to
::::::

biased
::::::
results

::
in

:::
the

::::::::
emergent

::::::::
constraint,

::::
but

:::::::
simply

::::
that

:::
the

:::::
fitted

::::::::::
parameters

::::
will

:::
be

::::::
slightly

::::::::
different

::::
from

:::
the

::::::
model

::::::::::
parameters.

::::
This

:::::::
explains

:::
why

:::
the

:::::::::
regression

:::::
using

::::::
model

:::::::::
parameters

::
in

::::
Fig.

::
6b

::
is
:::
not

::::::::::
significantly

:::::
better

::::
than

:::::
using

::
the

::::::
overall

:::::
fitted

:::::::::
parameters

::
of 35

:::
Fig.

:::
6a.

:

4
::::::::::
Discussion

::::
and

:::::::::::
Conclusion

:::
The

::::::::::
emergent

:::::::::::
constraint

::::::::
found

:::::
on

:::::::
TCR

::::
in

:::
this

::::::
paper

::::
is

:::::
very

::::::::
similar

:::
to

::::
the

:::::
one

:::::::
found

:::
in

:::::::::::::::::::::::::::::::::::
Jiménez-de-la Cuesta and Mauritsen (2019)

:::
and 40

::::::::::::::::::
Tokarska et al. (2020).

:::::
The

:::::
most

:::::::::
important

:::::::::::
determinant

::
of

:::
the

:::::::::
constraint

:::
is

:::
the

:::::::
periods

::::::
taken.

::::
We

::::
have

:::::::
slightly

::::::::
expanded

:::
on

::::
the

::::::::
amount

:::
of

:::::::
models

::::::::::
compared

:::
to

::
a

::::::::::::::::::
Tokarska et al. (2020),

:::::::
taking

:::
a

::::::::
different

::::::::
period,

::::
and

::
we

:::::::::
compared

::::::
further

::::::::
regression

:::::::
choices.

:
45

Our best estimate for TCR from the CMIP6 models is
1.82

:::
1.68

:
K, which remains close to the centre of the likely

range (1-2
:::
1–2.5K) given in the IPCC AR5 (IPCC, 2013b).

The emergent constraint on TCR from the CMIP6 models
is however strong enough to indicate a much tighter likely 50

range of TCR (1.5-2.2
:::::::
16-84%,

::::::::
1.29–2.05

:
K).

We find a consistent emergent constraint from the
CMIP5 models against observed global warming from
1970 to 2018 (1.31-2.22

::::
1975

:::
to

::::::
2019

:::::::::
(16-84%,

::::::::
1.27–1.88

:
K). Furthermore, both of these likely ranges 55

overlap strongly with the emergent constraint on TCR
derived by (Jiménez-de-la Cuesta and Mauritsen, 2019)

:::::::::::::::::::::::::::::::::::
Jiménez-de-la Cuesta and Mauritsen (2019) using a similar
method, but only considering global warming from 1970
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to 2005 (
::::::
5-95%, 1.17-2.16

::::
–2.16

:
K). In terms of the clas-

sification proposed by Hall et al. (2019), we therefore now
have a confirmed emergent constraint on TCR, implying an
approximate likely range of 1.5 to 2.2K.

:::
with

::::::::::
consistency

:::::
across

::::::::::
generations

:::
and

:
a
::::::
sound

:::::::::
theoretical

:::::::::
framework.

:
5

::::::::::
Equilibrium

:::::::
climate

:::::::::
sensitivity

:::
is

::::::
likely

::::::::
between

:::
1.9

:::
and

:::
3.4

:::
K

::::::::
(16-83%

::::::::::
percentile).

:::::
This

::::::
finding

::::::::::
strengthens

:::::::
previous

::::::::
evidence

::::
that

:::::
ECS

:::::
very

:::::::
unlikely

::::::
above

::::
4.5

::
K

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cox et al., 2018a; Jiménez-de-la Cuesta and Mauritsen, 2019; Goodwin et al., 2018)

:
.
:::
For

:::::::
instance,

:::::::::::::::::::
Goodwin et al. (2018)

::::
used

::::::
history

::::::::
matching,10

:
a
::::::
simple

::::::::
emulator,

:::
and

:::::::::::
observations

::
of

:::::::
surface

::::::::::
temperature,

:::::
ocean

::::
heat

:::::::
uptake,

:::
and

:::::::
carbon

:::::
fluxes

:::
to

::::::::
estimate

::::::
climate

::::::::
sensitivity

::::
and

:::::::::
concluded

:::::
upon

::
a
::::::

5-95%
::::::

range
::
of

::::
2.0

::
to

:::
4.3

:::
K.

::::::::::::::::::
Renoult et al. (2020)

::::
using

:::
a

:::::::::
combined

::::::::
emergent

::::::::
constraint

::
of
::::

the
::::
last

::::::
glacial

:::::::::
maximum

::::
and

:::::::::::
mid-Pliocene15

:::::
Warm

::::::
Period

::
to

::::::::
constrain

::::
ECS

::
to

:::::::
1.1–3.9

::
K,

:::::
with

:::
the

::::
same

:::
best

:::::::
estimate

:::
of

:::
2.6

::
K.

::::
Does

:::
the

::::::::
presence

::
of

:::::
many

:::::::
models

::::
with

::::
ECS

::::
over

:::
4.5

::
K

::::
tests

:::::
mean

::::
that

:::
the

::::::
CMIP5

::::::::::
generation

::::
was

:::::
better

::
or

:::::
more

:::::
useful

:::
for

::::::::::::
understanding

:::::::
climate

:::::::::
sensitivity

:::::
than

:::::::
CMIP6?20

::::
From

:::
the

:::::
point

:::
of

::::
view

::
of

:::::::::
emergent

:::::::::
constraints

:::
the

::::::
answer

:
is
::::::
clearly

:::
no,

:::
as

:::::
model

::::::
spread

:::::
helps

::::::
capture

:::
the

:::::
shape

::
of

:::
the

:::::::
emergent

:::::::::::
relationship.

::
In

:::
the

:::::
future,

:::
we

::::
hope

::::
that

:::
our

::::
TCR

::::::::
constraint

::::
will

::::::
become

::
the

:::::
basis

::::
for

:::::::::
constraints

::::
also

:::
on

::::::
TCRE

:::::::::
(transient

::::::
climate25

:::::::
response

::
to

::::::::::
emissions),

:::
but

:::
this

::::
will

::::::
require

:::
the

::::::::
inclusion

::
of

::::::::
additional

:::::::::
constraints

:::
on

::::
land

:::
and

:::::
ocean

::::::
carbon

::::::
uptake.

:

Scatter plot of TCR values plotted against ECS values
for all CMIP6 models with both available at the time of
submission. Models from the same modelling group are30

plotted with the same colour. Plot markers differentiate
models from the same modelling centre. Regression line
computed with orthogonal distance regression (ODR).

::::::::
However,

:::
we

:::
are

::::
now

::
in

:
a
::::::::

position
::
to

::::::
answer

:::
the

::::::::
questions

:::
that

:::
we

:::::
posed

::
in

:::::::
Section

::
1:35

(a)
:::
Are

::::
such

:::::
high

::::::
climate

::::::::::
sensitivities

:::::::::
consistent

::::
with

:::
the

:::::::::::
observational

:::::::
record?

:::
No,

::::::
models

::::
with

::::
high

::::
ECS

:::::::
(>4.5K)

:::
and

::::
high

:::::
TCR

::::
(>2.5

::
K)

:::
do

:::
not

::::::
appear

::
to

::
be

:::::::::
consistent

::::
with

::::::::
observed

:::::
global

:::::::
warming

:::::
since

::::
1975

:::::::
(Figure

:::
3b).

:
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(b)
:
If
:::
so,

::
do

:::
the

:::::::
CMIP6

::::::
models

:::::::
demand

::
an

:::::::
upward

::::::
revision

::
to

:::
the

::::::
IPCC

::::
likely

::::::
ranges

:::
for

::::::
climate

::::::::::
sensitivity?

:::
No,

::::::
instead

::::::::
emergent

::::::::::
constraints

::
on

:::::
TCR

::::
(Fig.

:::
4)

:::
and

::::
ECS

::::
(Fig

::
6)

:::::::
suggest

::::::::
narrower

:::::
likely

:::::::
ranges

:::
for

::::
TCR

:::::::
(1.3–2.1

::
K)

::::
and

::::
ECS

:::::::
(1.9–4.0

:::
K).

:
45

Code availability. The code to analyse the data and produce the
figures is available upon request to the corresponding author.

Data availability. CMIP5 and CMIP6 data can be accessed
through ESGF nodes.

Figure A1.
:::::::
Schematic

:::
of

::::
the

::::::::::
hierarchical

:::::::
Bayesian

::::::
model

::::::::
employed.

:::
The

::::
data

:::::
layer

::::::
models

::
a

:::
best

:::::::
estimate

:::
of

:::::::
historical

::::::
warming

::::
for

::::
each

::::::
model.

:::::
With

:::
this

::::::::
estimate,

::
a
::::::::
regression

::
is

:::::::
performed

:::::::
between

::::::::
historical

:::::::
warming

::::
and

::::
TCR

::
in

:::
the

::::::
process

::::
layer.

:::::
Using

:::::::::
information

::::
from

::::
both

:::::
layers

:::
and

:::::::
observed

:::::::
warming,

:
a
::::::::
probability

::::::
density

::::::
function

::
is

:::::::
estimated

:::
for

::::
TCR

:
is
:::
the

::::
final

:::
step.

  

Data layer

Process layer: 
regression

Prediction

 

σ x

ΔTm

α ,β ,
σ y

ΔT obs

α ,β ,σ y

σ x

ΔTm, j

Appendix A: Hierarchical linear regression 50

To systematically include the information from all model re-
alisations, we use a hierarchical Bayesian model (Sansom,
2014). This model includes two layers: the normal linear re-
gression

:::::::
(process

::::::
layer) and a layer that computes the ex-

pected warming per model from all its initial value realisa- 55

tions
::::
(data

:::::
layer). To include the initial value ensemble, we

assume that each model i
::
m has a "true" or "best" value for

warming over the last decades denoted by ∆TT . We further
assume that every realisation j of a model gives a value of
∆T that is drawn from a normal distribution with mean ∆TT 60

and a standard deviation σx that is the same across all mod-
els. Our hierarchical model consists of two steps: for each
model the best estimate of historical warming is computed
and with this value a simple linear regression is performed:

for(j in 1:N){ ∆T all[j]m,j |∆Tm,σx
::::::::::

∼ normal(∆TT [i]m
:
,σx);65

TCRm
:::::

|α,β,σy
::::::

}for(i in 1:Ng){TCR[i]∼ normal(α+β∆TT [i]m
:
,σy);}

The probability density function
::
for

:::::
TCR

:
is then sam-

pled from the observation of warming between 1970 and
2018 ∆T and

::::::::
observed

:::::::
warming

::::::::
between

::::::::::
1975–1985

:::
and

:::::::::
2009–2019

::::::
∆Tobs :::::

using the emergent constraint. The obser- 70

vational uncertainty σobs is taken as the sample standard de-
viation of the four observational datasets.

TCRpred =

normalrng(

(
α+β normalrng(

(
∆Tobs
:::::

,
√
σ2
x +σ2

obs)

)
,σy);

)
Here rng is a (pseudo) random number generator. The 75

second for loop
::::
The

::::::
second

::::
layer

:
corresponds with normal

linear regression, while the first for loop
::::
layer makes an esti-

mate of the true ∆TT ::::
∆Tm. Note that

::::::::
especially

:
for models

with only few initial value member, the "best" ∆TT ::::
∆Tm
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does not necessarily correspond with that the value of this
only ensemble member

:::
the

:::::
mean

:::::
value

:::
of

:::::
these

::::::::
ensemble

::::::::
members,

:::
but

:::
will

:::::::
instead

::
lie

:::::
closer

::
to
:::
the

:::::::::
regression

::::
line.

::
As

:::
no

:::::::
warming

::
is

:::::::
expected

::
if

::::::
climate

:::::::::
sensitivity

::::
were

::::
zero,

::
we

::::::
expect

:::
the

:::::::::
regression

:::
to

::::
pass

:::::::
through

:::
the

::::::::
intercept

:::
and5

:::::
chose

:
a
::::
prior

:::
for

:::
the

::::::::
intercept

::
α

::
of

::::::::
normal(0,

:::
1).

:
Weakly in-

formative priors are chosen for the intercept α, the slope β,
the uncertainty of the regression σy and the internal variabil-
ity σx:

α ∼ normal(0,5)normal(0,1)
:::::::::

;10

β ∼ normal(0,10)normal(2,10)
::::::::::

;

σy ∼ half-normal(0.5,10);

σx ∼ half-normal(0.2,0.5);
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Review of "An emergent constraint on transient climate response from simulated historical 
warming in CMIP6 models" by F. J. M. M. Nijsse and co-authors. In this paper the authors apply a 
recently proposed emergent constraint on transient climate response (TCR) on a new set of climate 
models (CMIP6). The emergent constraint uses warming since the 1970’s which is a period that has 
aerosol forcing which doesn’t change too much, and so even if there is uncertainty in the absolute 
magnitude shouldn’t affect the warming rate too much. A best estimate TCR of 1.82 K is obtained, 
which is about 10 percent higher than that found in other studies. These other studies are Jimenez-
de-la-Cuesta and Mauritsen (2019), Tokarska et al. (submitted), and implicitly Winton et al. (2020, 
JAMES, see their Fig. 14). 
 
It is obviously useful to test a method on new model ensembles, as there have been several cases of 
emergent constraints found in one ensemble that does not work in another. However, the authors 
have made a series of choices that are different from the original study which hinders a direct 
comparison. Again, it is useful that choices regarding the statistics are explored, but it is not 
currently possible to see whether the shift is related to these new methods or something more 
fundamental. Other problems were that the authors have not used too many models and some of 
the writing was less insightful. I suggest the authors undertake major revisions. 
 
 
 Response: We thank the reviewer for their thoughtful comments on our paper. Their 
suggestions with regards to ECS were especially important for improving the paper. The revised 
paper now contains an additional emergent constraint on ECS. 
 
Major issues 

1) When a study obtains different quantitative estimates compared to previous studies (see 
above), then I expect to be able to understand why. It is not sufficient to say that this is 
within the error-bounds because the input data is in principle the same. 
 

Response: We have included further comparison with the Jimenez-de-la-Cuesta and Mauritsen 
study (henceforth JM19). We have identified several differences: 
a) JM19 had slightly lower values for TCR compared to the IPCC values. We have now computed 

TCR values directly (instead of using AR5 values) for CMIP5 to ease comparison with JM19 and 
CMIP6. Our calculations are very close to the standard IPCC values; 

b) JM19 compared different periods to those used in our draft paper; 
c) a minor programming error was found in the analysis software of JM19;  
d) JM19 used a different statistical method that assumes error solely in the independent variable. 

This reduces regression dilution. However, for an observation that is less than the average 
model warming, this method produces lower values (by about 0.1K).  



Despite these differences, we get a very similar emergent constraint on TCR if we use a similar 
method (JM19 had a best estimate of 1.67K, and we get 1,66K using similar methods for 
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added a table of CMIP5 model values to the appendix. 
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plotting ECS against TCR. From this plot it is claimed that, contrary to earlier studies the post-1970s 
warming does not constrain ECS. However, the plot uses the posterior TCR to make this claim, not 
observed warming, and furthermore the authors do not provide a statistical analysis to support the 
claim. It is furthermore claimed that a straight line is superior to any other more physically based 
model, which is clearly not right. A physical constraint is that ECS -> 0 as TCR -> 0, and this linear fit 
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We have also investigated whether the functional form proposed by JM19 is supported by the 
relationship between ECS and the warming trend across the models: 

 ECS = DT/(s’ - e’DT). 
In order to turn this theoretical relationship into an emergent constraint on ECS, JM19 used 

the ocean heat uptake parameter e’ and the radiative forcing parameter s’ as fitting parameters.  
As these values are highly variable between models, the residual of the DT-ECS emergent 
relationship should be at least partially explained by model differences in ocean heat uptake and 
forcing.   - if this function is indeed theoretically sound. Yet, DT/(s’-e’DT) correlated better with ECS 
if the fitted s’ and e’ are used, instead of model-specific s’ and/or e’, suggesting that the theory 
used by JM19 is not fully consistent with the results from the CMIP5 and CMIP6 models.  

We discuss these issues concerning the relationship between ECS and the warming trend in 
a revised Section 3.  
 
 
3) A perhaps somewhat less important point is that the authors first apply smoothing, then 
average over periods and ensembles, which is effectively the same thing. I mention this because it 
bothered me that the authors would add an unnecessary layer of complexity, and also because it 
was unclear what is done with the running-mean smoothing when you approach the end of the 
time-series in year 2018. For the early period, nominally 1970-1980, it simply means there is some 
weighing of years outside the interval, out to 1965-1985 for an 11-year filter. But for the late 
period, which years are then included? All in all, though, there is no reason to do the smoothing at 
all, averaging over periods as well as ensemble members is a filter. 
 



 Response: In fact, there is only one step of time-averaging (the wording smoothing and 
running mean referred to the same step), and the years 1965-1970 were not used at all.  We have 
made changes in the text and figure captions to make this clearer (e.g. not using a central year but 
instead writing the period out explicitly in the x-label of Fig 2). 
 
Detailed comments 
5, Please report what range is given. 
 Response: this would make the abstract less readable, as it already contains quite a few 
numbers. The full range is clear from Table 1, and is now also reiterated in the introduction. 
 
23, It is well-known that the TCR/ECS ratio is not a constant, but decreases with ECS (Hansen et al. 
1985, Science). We now understand that the ratio is dependent on the feedback, heat uptake 
coefficient and pattern effects (e.g. Armour 2017). 

Response: we have removed this rule-of-thumb and added a discussion about the reduced 
ratio. 
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 Response: We removed two of the citations, and added two more recent papers by others. 
 
35, I suggest adding more relevant references, e.g. Gregory and Forster (2008), Otto et al. (2013) 
and Bengtsson and Schwartz (2013) etc. 
 Response: we’ve added the reference to Gregory and Bengtsson. 
 
40-41, What is this claim based on? Please explain and/or provide references. 
 Response. We’ve added a reference to Tanaka & O'Neill, NCC, (2018). 
 
42, The questions are also science-relevant, why deprive them to being only policy-relevant? 
 Response. Added. 
 
53, Here, and in several other places, the authors refer to the emergent constraint as theirs ("our 
constraint"). I suggest rewriting. 
 Response: done 
 
58-59, a 1 percent per year increase is also exponential. Table 1, please add number of simulations 
and the temperature change. 
 Response: We’ve added exponential before 1% to make this point clearer. We’ll add more 
information to Table 1. 
 
94-95, Why omit so many years of data, 1980-2008 is not used but contains information as well. 
 Response: Figure 3 shows a sensitivity to parameter choice, of which one is the running 
mean. We’ve extended this to 20 years, and conclude not much extra information is obtained if 
more years are used. 
 
97-99, I didn’t understand this, see also major point above. 



 Response: we have clarified this by adjusting the figure captions. We now state the 
difference between period A and B more clearly. 
 
106, if using 2014 does not significantly change the results, then I suggest to stick with 2014 which 
would allow including many more models and alleviates concerns that stitching together two 
experiments could lead to biases (e.g. from missing volcanoes in scenarios). 
 Response: With the addition of more models and an extra year, the difference between 
ending in 2014 and 2019 is more pronounced. There is a trade-off between using a shorter period, 
that was also dominated by the ‘global warming hiatus’, and biases from a discrepancy between 
real and modelled forcings. We have now investigated the sensitivity to forcings by comparing the 
various SSPs. A difference of only 1% was found between DT for SSP126 and SSP585.  
113, what is "post-aerosol"? Figure 1, it would seem that more than 13 lines are plotted. 

Response: post-aerosol changed into post-1970. In Figure 1, up to ten lines per model were 
shown. To emphasize this, the sentence stating this has been brought forward in the 
caption. 

131, this type of information belongs in Methods. 
 Response: moved. 
133, I would like to see CMIP5 models tabulated as well. 
 Response: we will do this. 
153, I was confused over this sentence, do the authors mean to refer to 3a instead, and the case 
where end and start year are so close that there is no signal? 

Response: The sentence referred to 3c. However, with more data analysed, we have 
adjusted the paragraph. The uncertainty is now minimum between 1970 and 1976. The 
second part of the confusing sentence has been deleted, as uncertainty is not that big 
anymore with the larger set of models. 

175, I am not sure Rugenstein et al. (2019) said this. 
Response: We removed the sentence, and replaced it with a discussion of the nonlinear 
relationship. 

176, likewise, I don’t think Jimenez-de-la-Cuesta and Mauritsen (2019) said this.  
 Response: Likewise deleted. 
Appendix A, I struggled to understand this. Would it be possible to provide an illustration of how 
the method works? 

Response: we have added an illustration, replaced the pseudo code with equations and 
simplified the text. 
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Response to Reviewer 2 
 
Interactive comment on “An emergent constraint on Transient Climate 
Response from simulated historical warming in CMIP6 models” by Femke J. M. 
M. Nijsse et al. 
 
Reviewer comments are listed in italics below, followed by our responses in normal 
font. 
 
Anonymous Referee #2 
Received and published: 5 March 2020 
 
In this paper authors apply the concept of “emergent constraints” to new CMIP6 
model data aiming to restrict a possible range of Earth climate system sensitivity to 
CO2 doubling. The topic of the paper is of considerable importance especially in the 
light that many of CMIP6 model demonstrate increased sensitivity to CO2 forcing 
(5K+/2xCO2). The paper fits well within the scope of the journal. I recommend the 
paper for publishing in general but I think some aspects of the paper should be 
improved. 
 
General comments: 

1. The concept of emergent constraints must be explained much better. Please 
expand your definition. “By definition, we expect...” of emergent constraints on 
line 55 to be understandable for inexperienced reader. Why TCR has to be 
correlated with GMST changes across a model ensemble? Models are 
different, some could have wrong dynamics and incorrect response (Green) 
function correspondent to CO2 forcing etc. From the paper conclusions it 
follows that some of the models have wrong TCR while other models are 
based on the same principles and use more or less the same 
parameterizations, so why one should believe that TCR/GMST change ratio 
should be the same for models and for real climate system? 

Response: we have added further explanation of the concept and 
assumptions (see response to comment 2 below). 
 

2. 2. Authors must be more careful with the use of definitions. As far as I 
understood, the TCR is defined as the change of model/climate system GMST 
(in K) from equilibrium conditions at the moment of CO2 doubling (1%/year 
forcing for CO2 only). Then what is TCR in “idealized” conditions? “Global 
warming” is a general concept, you cannot relate/correlate it with TCR in K 
(line 50, line 55 etc). 

Response: the paragraph about TCR has been rewritten, making clear 
that there is only one definition of TCR, and that global warming is defined 
here as rise in GMST. We further explicitly acknowledge that emergent 
constraints assume there is no systematic error in the relationship, with a 
reference to Winkel, Myneni & Brovnik (Earth system dynamics, 2019) and 
how this emergent constraint is in line with theoretical expectation (JM19). 

 
3. It could be interesting to have CMIP5 model results for comparison on Fig.2a 

and Fig.4 as well. 



Response: We’ve added the CMIP5 models to Figure 2a, but Figure 4 
became too crowded with both model ensembles. 
 

4. It should be pointed out that GMST changes are estimated with respect to the 
nonequilibrium state (1970-80 average). Will the green line at Fig. 2a cross 
TSR=0 near the out-of-equilibrium temperature-in-1975 (around -0.4K)? 

Response: we have adjusted the limits of the figure so that the 
intercept is visible. The intercept location is highly dependent on the 
regression method, with those methods assuming the error to be solely 
in the y-variable (OLS, Hierarchical) getting a positive intercept, while 
methods assuming similar errors in x and y (orthogonal distance 
regression), portraying a negative intercept. Per the theoretical 
foundations of JM19, we expect an approximate zero-intercept in this 
non-equilibrium regime. 
 

5. Why 13 models only for CMIP6? Zelinka et al., GRL, 2020 analyzed 27 
CMIP6 models... 

Response: at the time of submission, there were only 13 models for 
which all necessary information was available, including future scenarios. 
Now a larger set of 24 models is available. We have also included the 
emergent constraint with 31 models that ends in 2014 for which scenarios 
runs are not required.  

 
Special comments: 
Lines 20-25. TCR and ECS are introduced for ESMs where they are well defined 
characteristics for each ESM. On the next line (line 26) paper says that “both TCR 
and ECS remain uncertain”. What do you mean here? 
 Response: We have clarified that the TCR and ECS values that we seek 
relate to the real climate system. These real-world values are still poorly known, 
even though ECS and TCR are well-defined for each model. 
 
Line 50. Relationship between historical warming (expressed in terms of GMST) and 
TCR? 
 Response: Added. 
 
Line 55-60. “By definition, we expect...”. What “definition” do you mean? What are 
“idealized” conditions? (Are they somehow different from the ones used in your 
definition of TCR on lines 20-25)? 
 Response: The paragraph has been rewritten. ‘By definition’ has been 
changed to ‘from physical principles’, and it has been made clear we use the normal 
definition of TCR. 
 
Line 80. Could you please provide link to the data? 
 Response: In addition to a reference to the ESGF nodes, we will upload all 
the code, including the data, to Code Ocean.  
 
Line 107-108. Can you illustrate the similarity between aerosol forcing in 1970-80 
and 2010-2020? 



 Response: we have added a graph computing the spread in effective 
radiative forcing in the appendix. This graph shows that the spread is highest in the 
sixties and early seventies. 
 
Line 120. “The major uncertainty....”. This sentence falls out of the context. 
 Response: we have removed the sentence and moved the reference to the 
introduction. 
 
Line 122. Can you give a number for correlation between TCR and deltaT? 
 Response: Yes, the correlation is 0.84 for CMIP6, and 0.63 for CMIP5. 
Added. 
 
Line 129-131. Move this sentence upward to line 85 (definitions of the table 1)? 
 Response: done. 
 
Line 200 (Appendix). Appendix does not clarify anything. Either remove or expand it. 
 Response: the Appendix has been rewritten completely and a figure has 
been added for extra clarity. The pseudo-code has been replaced by normal 
equations for easier understanding. 
 


