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Abstract 

Groundwater is the largest store of freshwater on Earth after the cryosphere and provides a 

substantial proportion of the water used for domestic, irrigation and industrial purposes. Knowledge 15 

of this essential resource remains incomplete, in part, because of observational challenges of scale 

and accessibility. Here we examine a 14-year period (2002-2016) of GRACE observations to 

investigate climate-groundwater dynamics of 14 tropical and sub-tropical aquifers selected from 

WHYMAP’s 37 large aquifer systems of the world. GRACE-derived changes in groundwater storage 

resolved using GRACE JPL Mascons and the CLM Land Surface Model are related to precipitation 20 

time series and regional-scale hydrogeology. We show that aquifers in dryland environments exhibit 

long-term hydraulic memory through a strong correlation between groundwater storage changes 

and annual precipitation anomalies integrated over the time series; aquifers in humid environments 

show short-term memory through strong correlation with monthly precipitation. This classification is 

consistent with estimates of Groundwater Response Times calculated from the hydrogeological 25 

properties of each system, with long (short) hydraulic memory associated with slow (rapid) response 

times. The results suggest that groundwater systems in dryland environments may be less sensitive 

to seasonal climate variability but vulnerable to long-term trends from which they will be slow to 

recover. In contrast, aquifers in humid regions may be more sensitive to climate disturbances such 

as ENSO-related drought but may also be relatively quick to recover. Exceptions to this general 30 

pattern are traced to human interventions through groundwater abstraction. Hydraulic memory is 

an important factor in the management of groundwater resources, particularly under climate 

change.  
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1.0. Introduction: 35 

 

The availability of freshwater is essential for sustaining human life, economic security, and access to 

the benefits of a wide range of ecosystem services (Taylor et al., 2013a). After the cryosphere, 

groundwater is the second largest store of freshwater on the planet supplying 36% of domestic 

water, 42% of irrigation for agriculture and 27% of industrial water use (Döll et al., 2012). 40 

Bidirectional flows between surface water and groundwater are fundamentally important to 

the ecology of semi-arid and arid regions (drylands), where surface water often recharges 

groundwater and baseflow from groundwater can sustain rivers and wetlands in the 

absence of rainfall (Alley et al., 2002; Graaf et al., 2019). Climate change in which 

anthropogenic emissions of greenhouse gases transform patterns of natural variability, 45 

together with substantial socio-economic change, predicates that management of 

freshwater resources has and will increasingly become a critical task (Famiglietti, 2014). In a 

climate where it is broadly predicted that ‘wet gets wetter, dry gets drier’ (Trenberth, 2011), water 

storage at and below the land surface will be a vital tool in enabling successful adaptation to the 

changing global environment (Damkjaer and Taylor, 2017; Wada, 2016).  50 

Despite the importance of groundwater there are considerable gaps in current knowledge 

and understanding (Güntner et al., 2007). Direct observations of groundwater are sparse in relation 

to its geographical scale so most global or regional groundwater data are based on output from 

large-scale models. These include Global Hydrological Models (GHMs) (Sood and Smakhtin, 2015) or 

Land Surface Models (LSMs) (Bierkens, 2015; Overgaard et al., 2006; Wood et al., 2011)  for which 55 

there are often insufficient data available to constrain or calibrate (Döll et al., 2016). Model 

simulation of key processes such as soil hydrodynamics and groundwater recharge is therefore 

based on theoretical frameworks rather than field data (Scanlon et al., 2002). As a result, there is 

also considerable uncertainty about climate-groundwater dynamics. Recent work in this area has 

either focused on localised observations of changes in Groundwater Storage (∆GWS) from 60 

piezometry (Cuthbert et al., 2019b) or occurred adjacent to large centres of population where 

human intervention, through extraction of groundwater by pumping, can greatly influence 

observational measurements (Scanlon et al., 2018). In the context of an ~85% increase in global 

groundwater abstraction from 1979 to 2010 (Wada et al., 2014), an understanding of climate-

groundwater dynamics, supported by large-scale observational data, is required to inform 65 

sustainable access to groundwater resources (Taylor et al., 2009).     

In response to the lack of in situ field observations, remote-sensing by satellite is 

increasingly being utilised to expand the scope of observational data available to Earth sciences 
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(Acker and Leptoukh, 2007). An important advance in the quality of global data for hydrological 

studies has come from the Gravity Recovery and Climate Experiment (GRACE), a collaboration 70 

between the National Aeronautics and Space Administration (NASA) in the USA and the German 

Aerospace Centre (DLR) launched in March 2002 (Tapley et al., 2004). Completed sets of ~monthly 

measurements are used to derive the changes in mass at the Earth’s surface and from these data 

mass fluxes can be extracted that directly relate to the hydrosphere. Over land, the flux is expressed 

as a change in Total Water Storage (∆TWS) at a spatial resolution of ~300km and with an expected 75 

accuracy of better than 2 cm equivalent water height (EWH) (Tapley et al., 2004). GRACE ceased 

operation due to battery failure in mid-2016 having created a record of 163 monthly gravity 

solutions (Tapley et al., 2019). Although GRACE operated for ten years longer than anticipated at its 

launch, it is a relatively brief dataset in relation to large-scale climate patterns impacting the global 

hydrological system with frequencies of several years or decades (e.g. Pacific Decadal Oscillation 80 

(PDO), Atlantic Multidecadal Oscillation (AMO)). Nevertheless, inter-annual periodicities associated 

with the El Niño Southern Oscillation (ENSO) and the Antarctic Circumpolar Wave (ACW) have been 

detected (Mémin et al., 2015; Ni et al., 2018; Phillips et al., 2012).    

Intrinsic parameters of GRACE data effectively define the spatial and temporal dimensions of 

this study but there are additional constraints related to the derivation of ∆GWS data from GRACE 85 

∆TWS that also need to be considered. The sub-division of GRACE ∆TWS into its component parts, 

including ∆GWS, requires the application of GHM or LSM output that is itself subject to associated 

uncertainty, as already noted (Döll et al., 2014). It has been demonstrated that there is relatively 

poor correlation between GRACE and GHMs/LSMs in the evaluation of ∆TWS, with significant 

discrepancies at the basic level of whether storage trends are increasing or decreasing (Scanlon et 90 

al., 2018). These findings have been confirmed with reference to regional piezometric groundwater 

measurements from tropical aquifers in Africa (Bonsor et al., 2018). Thus, the application of GRACE 

data to ∆GWS implies three distinct areas of uncertainty: in the processing of the GRACE signal, 

accuracy of GHM/LSM model projections and mutual consistency of the observed (GRACE) and 

modelled (GHM/LSM) data (Long et al., 2015).  95 

This study investigates the spatio-temporal properties of climate-groundwater dynamics 

using a subset of the 37 Large Aquifer Systems of the World (LASW) as defined by the Worldwide 

Hydrogeological Mapping and Assessment Programme (WHYMAP) (“BGR - WHYMAP - Large 

Aquifers,” 2008), and shown in Figure S1. This subset comprises aquifers that lie broadly within the 

tropics and sub-tropics climate variability is mostly defined by rainfall (Shepherd, 2014). The 14 100 

aquifers selected are listed in Table 1 together with their key characteristics including Aridity Index 

(AI) calculated from the Consultative Group for International Agriculture Research’s Consortium for 
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Spatial Information (CGIAR-CSI) Global-Aridity Dataset (Trabucco and Zomer, 2019), shown in Figure 

1. Following the work of (Shamsudduha and Taylor, 2019), the groundwater storage response to 

regional climate variability for these 14 large scale aquifer systems is investigated using ∆GWS data 105 

extracted from the whole of the available GRACE ∆TWS time series (August 2002 – July 2016) 

together with climate data that are defined by the areal extent of each of the aquifer systems.  

Several studies have used GRACE data to examine storage changes within a particular GW 

system e.g. (Becker et al., 2010; Bonsor et al., 2018; Chen et al., 2016, 2010; Henry et al., 2011; Z. 

Huang et al., 2015; Ramillien et al., 2014; Shamsudduha et al., 2017, 2012; Tiwari et al., 2009; Xavier 110 

et al., 2010; Yeh et al., 2006). Here, we examine the dynamics of climate-groundwater interactions 

inferred from the underlying patterns of large-scale ∆GWS in response to extremes of precipitation. 

We find that Hydraulic Memory (HM) is a key component in the classification of groundwater 

responses to climate variability. We then seek to reconcile the results with reference to the physical 

characteristics of individual aquifer systems  (Cuthbert et al., 2019a) whilst accounting for 115 

anomalous responses in ∆GWS to climate variability.  

 

 

 

 120 

Figure 1: 14 of the World’s Large-scale Aquifers (the Study Aquifers) overlaid on CGIAR-CSI Global-Aridity 
dataset (Trabucco & Zomer, 2019). 
 

 

 125 
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5 Senegal-
Mauritanian 
Basin 

Africa 17.77 295k 1.0 Semi-Arid 540 14.6 

8 Umm Ruwaba 
Aquifer 

Africa 10.52 509k 0.0 Semi-Arid 789 10.7 

10 Congo Basin Africa 34.74 1.49m 0.0 Humid 1566 5.6 
11 Upper Kalahari-

Cavelai- 
Zambezi Basin 

Africa 6.02 1.00m 0.1 Semi-Arid 819 10.0 

13 Karoo Basin Africa 14.53 568k 2.1 Semi-Arid 479 17.6 
16 California 

Central Valley 
Aquifer System 

North 
America 

8.10 71k 57.8 Semi-Arid 515 32.0 

19 Amazon Basin South 
America 

8.93 2.28m 1.0 Humid 2505 8.3 

20 Maranhao 
Basin 

South 
America 

10.81 593k 32.6 Humid 1502 15.7 

21 Guarani Aquifer 
(Parana Basin) 

South 
America 

47.84 1.83m 20.5 Humid 1450 10.6 

23 Indus River 
Basin 

Asia 155.85 308k 31.0 Arid 375 16.2 

24 Ganges-
Brahmaputra 
Basin 

Asia 596.44 616k 55.8 Humid 1391 12.1 

29 North China 
Plains Aquifer 
System 

Asia 336.70 439k 37.1 Dry Sub-
Humid 

826 10.0 

36 Great Artesian 
Basin 

Australia 0.20 1.77m 0.9 Arid 444 28.9 

37 Canning Basin Australia 0.01 433k 0.4 Arid 443 21.2 
 

Table 1: Characteristics of the 14 Aquifer Systems selected for the study according to the WHYMAP 

and CGIAR-CSI databases with statistics giving (L to R): total number of resident population, aquifer 

area, proportion of irrigation GW-fed, mean aridity index classification (Trabucco and Zomer, 2019), 130 

mean annual rainfall and mean variability in annual rainfall. 

 

 



 6 

Methods:  

 135 

      2.1. GWS derived from GRACE data:    

 

Mass fluxes relating to the hydrosphere contained in the GRACE land-signal measurement of 

changes in the Earth’s gravitational field are defined as ∆TWS. In order to obtain information relating 

specifically to groundwater, this signal is separated into the component parts that comprise TWS, 140 

generally represented as: 

 

∆TWS = ∆GWS + ∆SWS + ∆SMS + ∆SNS     (1) 

 

where SWS is surface water storage, SMS is soil moisture storage and SNS is snow-water equivalent 145 

storage. ∆GWS is then derived from ∆TWS according to the following equation: 

 

∆GWS = ∆TWS – (∆SWS + ∆SMS + ∆SNS)          (2) 

 

 150 

The locations of the 14 aquifers are outside areas where changes in snow-water equivalent 

substantially impact ∆TWS (Getirana et al., 2017).  ΔSNS can consequently be omitted so that Eq. (2) 

can be rewritten for the purposes of this particular study as: 

 

∆GWS = ∆TWS – (∆SWS+∆SMS)      (3) 155 

 

Since GRACE started transmitting, several solutions have been developed for analysing and 

producing GRACE ∆TWS data to increasing levels of accuracy, with the intention that the data be 

readily and freely available for research (Landerer and Swenson, 2012). In this instance, three 

different products were drawn from Shamsudduha and Taylor (2019), two of which are Spherical 160 

Harmonics (SH) solutions comprising CSR Land (version RL05.DSTvSCS1409) from the Jet Propulsion 

Laboratory (JPL) at NASA and CNES/GRGS (version RL03-v1) from the French Centre National 

d’Etudes Spatiales, and one JPL-Mascon (version RL05M 1.MSCNv01) from JPL-NASA. To derive 

∆TWS, all GRACE solutions require additional processing that include corrections for glacial isostatic 

rebound and atmospheric mass variation (Landerer and Swenson, 2012). SH solutions also require 165 

spatial filtering (or ‘de-striping’) whereas JPL-Mascon does not as it directly converts the GRACE 
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signal into mass concentration blocks (Mascons), rendering monthly gravitational fields directly as 

3ºx3º gridded spatial components to reduce errors (Watkins et al., 2015).  

On inspection, the divergence between the 3 ∆TWS datasets was significant when summed 

over the time series. The relatively large coefficient of variance, -104%, even though derived from a 170 

small sample size, calls into question use of an ensemble mean for this study. Such an approach may 

be appropriate for the use of SH products alone (Sakumura et al., 2014) but it is preferable not to 

combine SH products and Mascons (Landerer, pers. comm.). Consequently we rely solely on the JPL-

Mascon dataset possessing a better signal-to-noise ratio and potentially less error (Scanlon et al., 

2016; Watkins et al., 2015; Xie et al., 2018). The employed JPL-Mascon dataset has been spatially 175 

sampled at a 0.5º grid using dimensionless scaling factors provided as 0.5ºx0.5º bins derived from 

the CLM4.0 LSM (Long et al., 2015; Wiese et al., 2016). GRACE ∆TWS is not a time-invariant measure 

(Wahr et al., 1998) and in the standard datasets all anomalies are given with respect to a baseline 

which is the mean over the period January 2004 to December 2009 (JPL NASA, 2019). However, we 

examine the completed available GRACE ∆TWS time series with respect to climate anomalies over 180 

the consistent timeframe of the entire series. Consequently, the employed JPL-Mascon ∆TWS 

dataset has been rescaled with respect to a time-mean taken over the whole period of GRACE 

operation (08.2002 – 07.2016), which is the Study Reference Period (SRP) (JPL NASA, 2019).    

As set out in Eq. (3), datasets for ∆SMS and ∆SWS derived from LSMs are required to 

determine ∆GWS from ∆TWS since observational data at the spatio-temporal scales of this study do 185 

not exist. Datasets for the 14 aquifer systems were drawn from  NASA’s Global Land Data 

Assimilation System (GLDAS) (Rodell et al., 2004) comprising the output from four different LSMs 

(Shamsudduha and Taylor, 2019):  the Common [Community] Land Model (CLM, version 2.0), Noah 

(version 2.7.1), the Variable Infiltration Capacity (VIC) model (version 1.0), and Mosaic (version 1.0) 

(Rui and Beaudoing, 2019). As with ∆TWS, analysis of the four LSM datasets for ∆SWS+∆SMS shows 190 

that their divergence summed over the entire time series is substantial, with a coefficient of 

variance of 258%, suggesting that a LSM-ensemble mean approach may also not be appropriate for 

this analysis, even given the restricted sample size. Further, the inter- and intra- model variability of 

∆SWS in the LSM datasets , assessed as surface runoff (e.g. Shamsudduha and Taylor, 2019; Thomas 

et al., 2017), is much less substantial than that of ∆SMS (inter-model coefficient of variance 378%). 195 

In the absence of consideration of ∆SWS, groundwater recharge is primarily determined  by the 

effect of evapotranspiration on moisture in the soil zone (Long and Mahler, 2013). Therefore, for this 

study, modelling of ∆SMS is a key determinant of the outcomes for ∆GWS computed using Eq. (3) 

(de Vries and Simmers, 2002). Modelled soil profiles vary substantially in each of the 4 LSMs ranging 

in depth from 3.5m (Mosaic) to 1.9m (VIC) and, in vertical layers, from 10 (CLM) to 3 (VIC & Mosaic) 200 
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(Rodell et al., 2004). CLM 2.0 (Bonan et al., 2002; Dai et al., 2003) with 3.4m depth and 10 vertical 

layers features the most well developed soil model (Scanlon et al., 2018), has been shown to 

perform well in comparative testing (Scanlon et al., 2018; Spennemann et al., 2014). In addition, 

CLM has demonstrated appropriate variability in initial ensemble model runs undertaken here, 

meaning that ∆SMS is almost always less than the magnitude of ∆TWS thereby ensuring that ∆GWS 205 

estimates derived from Eq. (3) are not arbitrarily high or low (Shamsudduha and Taylor, 2019). 

Therefore, this study employs a single model, CLM, for ∆SMS and ∆SWS rather than adopting a LSM 

ensemble mean approach.  

 

     2.2. Climatology: 210 

 

Individual aquifer system shapefiles from the WHYMAP LASW were prepared as ASCII files and 

uploaded to KNMI Climate Explorer (KNMI Climate Explorer, 2018). This allowed a range of climate 

data to be extracted for the precise spatial boundaries of each system. In particular, Precipitation 

(PCP) data from the CRU TS4.03 dataset at 0.5º resolution (Climate Research Unit, University of East 215 

Anglia, 2019) was obtained together with Anomalies (PCPA) normalised for the SRP (2002-16). The 

CRU TS4.03 datasets together with the ∆GWS derived from JPL-Mascon ∆TWS and CLM 2.0 ∆SMS & 

∆SWS, in accordance with Eq. (3), were used to create time series analyses to explore correlations 

over different time and volume components through integration. In this respect the use of ‘annual’ 

in this study implies the appropriate hydrological year. 220 

In order to calibrate the time series for each aquifer system prior to further analysis, the lag 

between monthly PCP, as the primary climate-groundwater index, and monthly GRACE ∆TWS was 

set by maximising the Pearson Correlation Coefficient (PCC) between the two datasets, validated by 

point-wise verification of alignment of the time series. In the majority of cases, this comparison 

showed ∆TWS lagging PCP by two months. The lag for the PCPA time series were set in the same 225 

way with relation to ∆GWS but with the already determined PCP time series lag set as a minimum. In 

the case of all aquifer systems except for the Congo, Canning and Indus River Basins, this procedure 

resulted in a consistent lag being applied to all of the time series investigations of each aquifer. 

Initial investigations also established that only relatively weak first-order correlations exist between 

∆TWS and other monthly observational climate data such as the self-calibrating Palmer Drought 230 

Severity Index (PDSI-sc) (Wells et al., 2004) and Mean Temperature anomalies (CPC GHCN/CAMS 

t2m analysis) (Fan and van den Dool, 2008). By comparison with both these measures, it appeared 

that PCPA carried a stronger climate variability signal due to the tropical/sub-tropical location of the 

selected aquifers (Allan et al., 2010; Shepherd, 2014).  An analysis was then conducted to test for 
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correlations between ∆GWS and a series of measures of precipitation. Three separate time series of 235 

precipitation were developed to examine the temporal response of the study LASW with respect to 

the process by which precipitation at the land surface contributes to ∆GWS: 

 

1. PCP = monthly precipitation 

2. PCPA = monthly precipitation anomalies with respect to the consistently applied study 240 

reference period time-mean baseline, 2002 - 2016 

3. ∫PCPA = cumulative monthly rainfall anomalies derived by integrating the PCPA time series  

 

These monthly series were also summed to provide annual time series for each aquifer system. 

Correlation was measured using the PCC with statistical significance determined by a t-test with 245 

𝛂=0.05 (Spearman, 1904). In addition, as previously stated, the CGIAR-CSI Global-Aridity dataset 

(Trabucco and Zomer, 2019) was obtained and a numerical AI for each aquifer was extracted as a 

spatial mean value using QGIS. AI was used to place each aquifer into the climate zone classification 

specified by the dataset as set out in Table 1. Of the climate zones relating to the 14 aquifer systems, 

3 are Arid, 5 are Semi-Arid, 1 is Dry Semi-Humid, giving 9 in total in dryland zones (Corvalán et al., 250 

2005), and 5 are Humid.       

 

     2.3. Hydraulic Memory (HM): 

 

In using cumulative rainfall anomalies, this study invokes the concept of system memory (Weber and 255 

Stewart, 2004). Several studies have considered the question of hydraulic or hydrologic memory, 

both as it impacts soil moisture including land/atmosphere dynamics (Castro et al., 2009; Lo and 

Famiglietti, 2010; Wu et al., 2002), and groundwater (Currell et al., 2016; Cuthbert et al., 2019a; 

Güntner et al., 2007; Rodell and Famiglietti, 2001). Central to the definition of this ‘memory’ is that it 

represents the time taken for a system to re-equilibrate following a change in boundary conditions 260 

(Downing et al., 1974). In the case of an aquifer system, approximated to a one-dimensional flow of 

uniform diffusivity, the groundwater response time (GRT) is given by Eq. (4): 

 

GRT = L2S/𝛽T      (4) 

 265 

where L is a measure of the scale of the system, S is the storativity, 𝛽	is a dimensionless constant	and 

T is transmissivity. Qualitatively Eq. (4) implies that long response times are characterised by large-

scale systems and/or low hydraulic diffusivity (i.e. combination of high S and low T) (e.g. Kooi and 
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Groen, 2003). An alternative approach to quantifying memory may be needed in more complex - 

and realistic – multidimensional flow situations (see Cuthbert et al., 2019a). Nevertheless, Eq. (4) still 270 

provides a useful order of magnitude approximation. Here, it is helpful to consider the response 

time as a delay between system input and system output whereby the output state H, at time t, is 

given by: 

 

H(t) = ∫ 𝑝(𝜏)	𝜃(𝑡 − 𝜏)	𝑑𝜏-
./ 	 	 	 	 (5) 275 

 

where p(𝛕) is the input state or function at time 𝛕, (t-𝛕)	is the delay between output and input, and 

𝛉 is an Impulse Response Function (IRF), also known as a transfer function (Long and Mahler, 2013). 

The IRF is a multi-parameter function that is intended to model the properties of the system so that 

the output of the IRF determines the time, t, at which the state H is reached. The hydraulic memory 280 

is quantified by the length of time that the effect of the input persists in the system. As the IRF is 

commonly exponential, making the equilibrium state asymptotic, system memory can be defined as 

the time interval at which the IRF is 95% complete. This approach has been successfully applied to 

modelling aquifer responses to precipitation validated by piezometry in both the USA (Long and 

Mahler, 2013) and the Netherlands (von Asmuth and Knotters, 2004). Alternatively, system memory 285 

may be defined as the length of time taken for the effect of the anomalous input to decay to 1/e of 

its starting value where this can be explicitly measured (Cuthbert et al., 2019a; Lo and Famiglietti, 

2010). In relation to Eq. (5), chosen precipitation measures are p(𝛕)	input functions, and ∆GWS 

represents H(t), the output measure. The timestep, 𝛕,	for each of the precipitation time series used 

is as shown in Table 2. Correlation between ∆GWS (output) and a particular precipitation dataset 290 

(input) can be considered to be a measure of the persistence of the effect of that input integrated 

over the timestep. The degree of correlation between ∆GWS and annual ∫PCPA is thus indicative of 

the duration of HM in the aquifer system. 

 

 295 
Time series: Timestep 𝛕:          

PCP & PCPA 1 month 

PCPA (HY) 1 year 

∫PCPA (HY) 1 year≤𝛕≤14 years (upper limit set by 

length of dataset) 

 
Table 2: The timestep, 𝛕,	for each of the precipitation time series investigated in the study 
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     2.4. Regional-Scale Hydrogeology: 300 

 

In an exploration of climate-groundwater dynamics using GRACE data, the lack of direct physical 

observational data means that it is necessary to demonstrate that results are not simply artefacts of 

modelling and signal processing (Rodell et al., 2009). The role of hydrogeology in determining 

groundwater dynamics is widely acknowledged (Befus et al., 2017; Cuthbert et al., 2019a; de Vries 305 

and Simmers, 2002; Lanen et al., 2013). Here, we seek to validate results inferred from GRACE data 

with reference to the physical characteristics of specific aquifer systems. In order to categorise the 

hydrogeology of each aquifer system, a number of available global datasets were sourced as raster 

files and interrogated in QGIS using the aquifer vector files from WHYMAP LASW. Examined datasets 

include: 310 

 

1. Groundwater Response Time (GRT) (Cuthbert et al., 2019a) 

2. Hydraulic Conductivity (K) and Porosity (𝛷) GHLYMPS high resolution maps (Gleeson et al., 

2014) 

3. Water Table Depth (WTD) (Fan et al., 2013) 315 

 

As defined above, the GRT is a temporal measure of the latency of aquifer systems that is derived 

from their scale and physical properties via Eq. (4). This measures relies on the other datasets listed 

for its calculation (Cuthbert et al., 2019a).  K and 𝛷 are high-resolution datasets derived from 

recently developed lithological maps of the Earth’s surface (Hartmann and Moosdorf, 2012) and 320 

their computation uses established geological parameters (Gleeson et al., 2014). However, K is 

based on permeability mapping from hydrolithologies that have a standard deviation of ~2 orders of 

magnitude (Gleeson et al., 2011) and this variance underlies the uncertainty in each of these 

datasets used. WTD is a 30 arc-second (~1km.) resolution dataset compiled from available 

observational data extended by modelled interpolation with both of these data sources being 325 

subject to considerable sampling bias and model uncertainty respectively (Fan et al., 2013). All of 

these datasets are global and derived from combinations of observations and modelled data.  

 

 
 330 
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     3.0. Results: 

 

The main results for each aquifer system are given as a monthly time series of ∆TWS and ∆GWS vs. 335 

PCP and an annual time series of ∆GWS vs. PCPA and ∫PCPA, shown as Figure 2 a-r for dryland 

systems and Figure 3 a-j for humid systems. The outcomes are summarised in Table 3. As a general 

result, all time series plots show a qualitative relationship between ∆GWS and PCP that exhibits 

interesting and potentially important spatio-temporal variations. The quantitative results show that 

for ∆GWS there is a strong correlation with annual ∫PCPA for aquifer systems in dryland 340 

environments whereas in humid environments, the strongest correlation is with monthly PCP. Three 

aquifers – Guarani Aquifer, Indus River Basin and Canning Basin - do not follow this general 

classification and anomalies are discussed further in section 4.3 below, and in the SI. 

 

 345 
Aquifer 
System 
 

Monthly 
PCP vs 
∆TWS 

Monthly 
PCP vs 
∆GWS 

Monthly 
PCPA vs 
∆GWS 

Annual 
PCPA vs 
∆GWS 

Monthly 
∫PCPA vs 
∆GWS 

Annual 
∫PCPA vs 
∆GWS 

Aridity 
Class 
 
 

Aridity 
Index 

GWS Net 
Change 
over SRP 

Upper 
Kalahari  

0.64 (2) 0.47 (2) 0.13 (2) 0.22 (2) 0.67 (2) 0.88 (2) Semi-
Arid 

0.42 Increasing 

Karoo  0.15 (7) 0.25 (7) 0.07 (7) 0.21 (7) 0.71 (7) 0.88 (7) Semi-
Arid 

0.28 Increasing 

Senegal 0.67 (2) 0.55 (2) 0.15 (2) 0.14 (2) 0.61 (2) 0.87 (2) Semi-
Arid 

0.20 Increasing 

California 
Central 
Valley 

0.53 (2) 0.46 (2) 0.26 (2) 0.56 (2) 0.60 (2) 0.84 (2) Semi-
Arid 

0.22 Decreasing 

Great 
Artesian  

0.45 (2) 0.33 (2) 0.34 (2) 0.67 (2) 0.61 (2) 0.80 (2) Arid 0.18 Stable 

North China 
Plains 

0.34 (2) 0.22 (2) 0.18 (2) 0.26 (2) 0.65 (2) 0.80 (2) Dry 
Sub-
Humid 

0.57 Decreasing 

Umm 
Ruwaba 

0.87 (2) 0.83 (2) 0.12 (2) 0.55 (2) 0.20 (2) 0.64 (2) Semi-
Arid 

0.33 Stable 

Congo 0.67 (2) 0.67 (2) 0.11 (3) 0.43 (3) 0.27 (3) 0.62 (3) Humid 1.22 Stable 
Maranhao  0.82 (2) 0.75 (2) 0.30 (2) 0.74 (2) 0.11 (2) 0.40 (2) Humid 0.91 Decreasing 
Indus River 0.30 (1) 0.11 (1) 0.19 (3) 0.37 (3) 0.15 (3)  0.34 (3) Arid 0.16 Decreasing 
Amazon  0.88 (2) 0.82 (2) 0.08 (2) -0.12 (2) 0.13 (2) 0.33 (2) Humid 1.99 Stable 
Guarani  0.50 (3) 0.48 (3) 0.42 (3) 0.78 (3) 0.01 (3) 0.26 (3) Humid 0.90 Increasing 

Ganges-
Brahmaputra 

0.75 (2) 0.69 (2) 0.06 (2) 0.03 (2) 0.03 (2) 0.01 (2) Humid 0.86 Decreasing 

Canning 0.35 (2) 0.19 (2) 0.15 (3) 0.26 (3) -0.15 (3) -0.01 (3) Arid 0.13 Decreasing 
Indus River 
post ‘08 

0.42 (1) 0.15 (1) 0.21 (3) 0.73 (3) 0.34 (3) 0.89 (3) Arid 0.16 Decreasing 

Canning post 
’06  

0.41 (2) 0.24 (2) 0.22 (3) 0.61 (3) -0.02 (3) 0.24 (3) Arid 0.13 Decreasing 

 
Table 3:  Summary Table of Results from Monthly & Annual Time Series & Aridity Datasets. 

Summary of all correlation results from time series datasets [Pearson Correlation Coefficient & (lag 

in months)] and the aridity indices derived from the CGIAR-CSI Global-Aridity dataset (Trabucco and 

Zomer, 2019). ∆GWS trend over SRP also shown. Results in italics fall below the t-test threshold. 350 
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Aquifers are ranked in order of Pearson Correlation Coefficient for Annual ∫PCPA vs ∆GWS. For each 

Aquifer system the strongest ∆GWS correlation with PCP or PCPA is shown in bold. Truncated time 

series results shown for 2 systems. 
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 355 
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Figure 2: Monthly ∆TWS & ∆GWS vs PCP and Annual ∆GWS vs ∫PCPA Time Series for each of the dryland 
climate zone aquifer systems, as labelled. Systems are ordered by decreasing PCC for annual ∆GWS vs ∫PCPA. 
All time series are plotted to the aquifer system lag as set out in Table 3, where ∆TWS (∆GWS) lags PCP (PCPA) 
by the specified number of months. Y-axis units are Equivalent Water Height (EWH) in cm. Note the variation 
in the y-axis scales. 7 of the annual ∫PCPA data series have been scaled x10 for clarity, where indicated. 360 
 
 
 

 
 365 

Figure 3: Monthly ∆TWS & ∆GWS vs PCP and Annual ∆GWS vs ∫PCPA Time Series for each of the humid climate 
zone aquifer systems, as labelled. Systems are ordered by decreasing PCC for annual ∆GWS vs ∫PCPA. All time 
series are plotted to the aquifer system lag as set out in Table 3, where ∆TWS lags PCP by the specified number 
of months. Y-axis units are Equivalent Water Height (EWH) in cm. Note the variation in the y-axis scales. Congo 
Basin annual ∫PCPA data series has been scaled x10 for clarity. 370 
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GRT, shown in Figure 4, is a measure of the time it takes for an aquifer system to equilibrate after a 

change in boundary conditions, as discussed above. For the 14 studied aquifers, it extends from 

centennial to millennial timescales as indicated from median values reported in Tables 4 and S1. For 

humid aquifers, GRT ranges from 100 to 350 years whereas for dryland systems GRT then escalates 375 

to values well in excess of 1,000 years for semi-arid and arid basins; the sub-humid North China 

Plains Aquifer has a GRT of ~550 years. This order of magnitude point of transition can be identified 

as the threshold between sensitive (rapid) and insensitive (slow) aquifer response times (Cuthbert et 

al., 2019a), which show a broad global relationship with aridity. This observation helps to explain 

groundwater storage responses to climate variability through the memory of the aquifer system 380 

defined by both physical characteristics and geographical location. The role of HM is discussed 

further in section 4.1. 

 

 

Aquifer System Aridity 
Classification 

Aridity Index Annual ∫PCPA vs 
∆GWS [PCC] (lag in 
months) 

GRT: 
 log (GRT) (GRT in 
yrs) 

Indus River post ‘08 Arid 0.16 0.89 (3) 3.96 

Upper Kalahari  Semi-Arid 0.42 0.88 (2) 2.95 

Karoo  Semi-Arid 0.28 0.88 (7) 5.74 

Senegal Semi-Arid 0.20 0.87 (2) 5.70 

California Central 

Valley 

Semi-Arid 0.22 0.84 (2) 3.01 

Great Artesian  Arid 0.18 0.80 (2) 6.33 

North China Plains Dry Sub-Humid 0.57 0.80 (2) 2.74 

Umm Ruwaba Semi-Arid 0.33 0.64 (2) 4.42 

Congo Humid 1.22 0.62 (3) 2.12 

Maranhao  Humid 0.91 0.40 (2) 2.55 

Indus River Arid 0.16 0.34 (3) 3.96 

Amazon  Humid 1.99 0.33 (2) 2.03 

Guarani  Humid 0.90 0.26 (3) 2.20 

Ganges-Brahmaputra Humid 0.86 0.01 (2) 2.10 

Canning Arid 0.13 -0.01 (3) 6.46 

 385 
Table 4:  Relationship between Aridity Index, Climate and Regional-Scale Hydrogeology: Data linking 

climate and regional-scale hydrogeology to GW dynamics. (Italicised results fall below t-test threshold.) 

 

 

 390 
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Figure 4:  14 of the World’s Large-scale Aquifers (the Study Aquifers) overlaid on the GRT dataset [original 
dataset from: (Cuthbert et al., 2019a)] 
 395 

 

Presented results represent the outcome of a detailed analysis of the available datasets and, 

as such, contain important assumptions that need to be acknowledged here. Firstly, the allocation of 

lag time has been done on a ‘best-fit to the ∆TWS data’ basis. It is therefore not derived from 

analysis of intrinsic physical characteristics of the aquifer systems but is consistent with the range of  400 

theoretical values derived from hydrodynamic first principles that anticipate a maximum lag time of 

3 months for systems with a large GRT (Townley, 1995), as has been observed by Ahmed et al. 

(2011). Time lags have been tested for consistency through alignment of specific events in the 

various time series (Storch and Zwiers, 2001). The evident anomaly of a 7-month lag time for the 

Karoo Basin is discussed in the SI. Secondly, the restricted duration of the GRACE dataset should be 405 

acknowledged, particularly with regard to the annual time series. In mitigation, statistical 

significance appears to be robust when tested using the methods described by Zwiers and Von 

Storch (Zwiers and von Storch, 1995) and the use of PCPA and ∫PCPA datasets is designed to 

minimise the effect of seasonal climate and short-term trends in ∆GWS (Craddock, 1965). Thirdly, 

the use of Eq. (3) to derive ∆GWS from GRACE ∆TWS data represents a temporal and spatial 410 

approximation in representing sub-surface hydrological processes. Simply put, all water below the 

soil zone neither necessarily comprises GWS nor will it all eventually reach GWS due to lateral flow 

processes. However, on the scale of the aquifer systems considered here, the use of Eq. (3) is a 

reasonable approximation (de Vries and Simmers, 2002). 

 415 
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4.0. Discussion: 

 420 

     4.1. Role of Hydraulic Memory (HM): 

 

A key finding of this study is that GRACE-derived ∆GWS correlates most strongly with annual ∫PCPA 

for large-scale aquifers in dryland environments of the tropics and sub-tropics whereas GRACE-

derived ∆GWS correlates most strongly with monthly PCP in humid environments at these latitudes. 425 

Further, we show that there is correspondence between the annual ∫PCPA vs ∆GWS correlations and 

GRTs of large-scale aquifer systems (Table 4); the latter is a measure derived in accordance with Eq. 

(4) (Cuthbert et al., 2019a).  HM ultimately derives from the physical properties of the saturated 

portion of the aquifer system (Townley, 1995) and system memory as measured by Eq. (5) is 

representative of the physical properties of an aquifer system and its climate. Von Asmuth and 430 

Knotters (2004) use 4 parameters to describe groundwater dynamics in their transfer function (𝛉	in 

Eq. (5)) that they argue represents a more accurate description of the physical system than 

previously used parametric methods (von Asmuth and Knotters, 2004). Further, their description of 

groundwater dynamics is capable of accommodating non-stationary elements such as climate 

change and groundwater abstraction (von Asmuth and Knotters, 2004). HM as measured by Eq. (5) is 435 

therefore representative of both spatial and temporal variability in aquifer systems but HM itself can 

vary spatio-temporally. Indeed the response time to a given boundary change can vary according to 

the physical circumstances, with persistence lasting from months to hundreds of thousands of years 

(Cuthbert et al., 2019a). 

In this study, the GRACE dataset is not long enough to allow detailed IRF modelling of 440 

aquifer systems based on ∆GWS data, which would require an observational record longer than the 

system memory (Long and Mahler, 2013). An extended GRACE series together with reduced 

uncertainty in the permeability dataset from which GRT is derived, may generate closer numerical 

matches between GRT (Eq. (4)) and HM as measured by the method of this study (Eq. (5)). 

Nevertheless, we show that aquifer responses to anomalous precipitation, discussed below, exhibit 445 

long HM in dryland environments and relatively short HM in humid environments. The 

correspondence with GRT extends the classification to two broad categories: dryland 

environment/long HM/slow GRT and humid environment/short HM/rapid GRT. Note that these 

categories represent a simplification of the correspondence between HM derived from the study 

datasets and GRT, which in fact exhibits a spectrum in which Umm Ruwaba (dryland), Congo Basin 450 
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and Maranhao (both humid) occupy an intermediate position in terms of the correlation between 

∆GWS and annual ∫PCPA, as can be seen from Table 3. Aquifers in humid environments, with 

exception of the Congo Basin, generally exhibit less HM in this study than expected from GRT values. 

These humid aquifers, as can be seen from Figure 4, have some of their area with GRTs in the order 

of years to tens of years, perhaps meaning that a disproportionate amount of groundwater 455 

processes may be moving through these lower GRT areas. This may explain why humid regions have 

less HM overall than is implied by their median GRT. 

 

 

  4.2 Aquifer Responses to Anomalous Precipitation: 460 

 

The annual time series of ∆GWS vs ∫PCPA for each aquifer have been examined to identify years in 

which the maximum annual increase in ∆GWS occurred, as identified by the steepest positive 

gradient of the ∆GWS line (Table 5). These years of extreme recharge, inferred from the increase in 

∆GWS, are then further categorised by whether: (1) prior to the event ∫PCPA is negative, indicating 465 

anomalously dry conditions when Soil Moisture Deficits (SMDs) are likely to be widespread; and (2) 

the ∫PCPA is concurrently shifting from a negative to positive cumulative anomaly, associated with 

an extreme rainfall event. Finally, the NINO3.4 index for 2002-2016 (Huang et al., 2015) has been 

examined (KNMI Climate Explorer, 2018) to indicate the state of ENSO, the dominant control on 

equatorial precipitation, at the time of the recharge. Nearly all recharge events in dryland aquifer 470 

systems take place at a time of negative ∫PCPA (likely SMD), with most coinciding with extreme 

rainfall as recently observed in a pan-African study by Cuthbert et al., (2019b). Extreme recharge 

events also generally coincide with El Niño/La Niña events indicating an association with large-scale 

modes of climate variability identified previously in tropical Africa (Kolusu et al., 2019; Taylor et al., 

2013b). In contrast, extreme recharge in humid aquifer systems is consistently associated with 475 

neither negative ∫PCPA (likely SMD), nor anomalous rainfall, though the latter is correlated with 

ENSO state. 

 

 

 480 
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 485 

 

 
Aquifer Systems 
grouped by AI: Dry  

Year of Extreme 
Recharge 

Negative ∫PCPA 

(likely SMD) [Y/N] 

∫PCPA Phase Change 
[Y/N] 

ENSO State 

Senegal 2010 Y Y La Nina 

Umm Ruwaba 2014 Y Y Neutral 

U. Kalahari 2008/9 Y N La Nina 

Karoo 2010/11 N N La Nina 

California CV 2015/16 Y Y El Nino 

Indus River 2003 Y Y El Nino 

Indus River 2015 Y Y El Nino 

Great Artesian 2010/11 Y Y La Nina 

Canning 2010/11 Y Y La Nina 

North China Plains 2003 Y Y El Nino 

Aquifer Systems by 
AI: Humid 

    

Ganges 2003 N N El Nino 

Ganges 2011 Y Y Neutral 

Amazon 2008/9 N N La Nina 

Amazon 2011/12 N N La Nina 

Maranhao 2008/9 N N La Nina 

Guarani 2009/10 Y N El Nino 

Guarani 2015/16 Y Y El Nino 

Congo 2012/13 Y N Neutral 

 
Table 5: Aquifer systems grouped by AI – Dry (Upper) and Humid (Lower). Extreme recharge years 

identified from annual time series by slope of ∆GWS plotted line. SMD status inferred by prior 490 

negative ∫PCPA and annual ∫PCPA phase change also derived from the same time series. ENSO state 

from NINO3.4 Index (Huang et al., 2015). 

 

 

  4.3 Anomalous Trends in Groundwater Storage: 495 

 

Over the SRP determined by the availability of GRACE data, six aquifer systems show a net 

decline in groundwater storage: California Central Valley, North China Plains, Maranhao, Ganges, 

Indus & Canning Basins. Of these, two aquifer systems (Indus River and Canning Basins) do not show 

a strong correlation between ∆GWS and any of the precipitation data series. Table 4 shows that 500 

these same two aquifers do not fit the general classification of the 14 aquifer systems into either 
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dryland/slow GRT/long HM or humid/rapid GRT/short HM systems. These anomalous characteristics 

may reflect  groundwater storage decline through the escalation of groundwater abstraction 

referenced previously (Wada et al., 2014) and this hypothesis was tested through further analysis as 

follows below and in further detail in the SI. 505 

The Indus River and Canning Basins superficially present similar stories of groundwater 

storage decline yet contextual analysis of their respective GRACE/CLM ∆GWS datasets reveals two 

quite different realities. The Indus River Basin supports a population of ~210 million people 

(Immerzeel et al., 2010) and its hydrology is strongly influenced by water supply from upstream of 

the basin, much of it intended for irrigation (Immerzeel et al., 2010). Surface water is augmented by 510 

groundwater abstraction, which supplies ~31% of the total irrigation demand, but it has been 

estimated that ~84% of the groundwater abstracted returns to the aquifer system as leakage from 

canals and intensively irrigated fields (Cheema et al., 2014). A net calculation of these effects on 

∆GWS, which is detailed in the SI, shows that the underlying climate-groundwater dynamics are 

consistent with the GRT derived from the regional-scale hydrogeology of the aquifer system. In 515 

contrast, the Canning Basin is sparsely populated and is not a centre of agriculture (Richey et al., 

2015). It is, however,  a source of freshwater for iron-ore extraction in adjacent areas (Western 

Australia Department of Water, 2011) and very little of the abstracted groundwater is returned to 

the aquifer system as its use in mining causes it to become contaminated (Western Australia 

Department of Water, 2013). This contaminated groundwater is subsequently disposed in the sea or 520 

evaporation ponds (Prosser et al., 2011). The Canning Basin has a very slow GRT and, situated in an 

arid environment, is subject to low rates of groundwater recharge so that the physically sustainable 

rate of groundwater abstraction is expected to be very low (Scanlon et al., 2006). The analysis of the 

Indus and Canning Basins is evidence of how groundwater depletion, which has been reported 

elsewhere (e.g. Famiglietti, 2014; Rodell et al., 2009), impacts relationships between precipitation 525 

and ∆GWS. 

 

5.0 Conclusions: 

    

Strong correlations are found between GRACE-derived annual ∆GWS and ∫PCPA for large-scale 530 

aquifer systems in dryland environments. This correlation is much weaker for large-scale aquifer 

systems in humid zones where a stronger correlation generally exists between monthly ∆GWS and 

monthly PCP. We propose that the correlation between annual ∆GWS and ∫PCPA demonstrates the 

existence of hydraulic memory which is central to large-scale climate-groundwater dynamics. For the 

studied aquifer systems, the measure of correlation between annual ∆GWS and ∫PCPA also shows 535 
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very good correspondence with the groundwater response time, a measure of the hydraulic memory 

of an aquifer system derived from its regional-scale hydrogeological and catchment properties 

(Cuthbert et al., 2019a). The 14 aquifer systems can be broadly categorised into two groups, with 

each group listed in ascending order of groundwater response time: 

 540 

• Group 1: Dryland/Long HM/slow GRT: North China Plains, Upper Kalahari, California Central 

Valley, Indus River, Umm Ruwaba, Senegal-Mauritanian, Karoo, Great Artesian & [Canning] 

Basins 

• Group 2: Humid/Short HM/rapid GRT: Amazon, Ganges, Congo, Guarani, & Maranhao Basins 

 545 

Aquifer systems in Group 1 may be less sensitive to seasonal climate variability but also 

vulnerable to long-term trends from which they will be slow to recover. In contrast, aquifers in 

Group 2 may be more sensitive to seasonal climate disturbances such as ENSO-related drought but 

may also be relatively quick to recover. These characteristics can be applied to anticipate the 

groundwater response to present conditions and to future pressures that can be expected from 550 

anthropogenic climate change (Taylor et al., 2013a). The results from the analysis of GRACE data are 

reconciled to regional-scale hydrogeological conditions, which gives confidence in their validity 

(Beven and Germann, 2013), albeit with the caveat regarding the uncertainties inherent in all the 

datasets used (Wilks, 2016).  

The new GRACE follow on (GRACE-FO) project has now been launched (Frappart and 555 

Ramillien, 2018; Tapley et al., 2019), providing an opportunity to augment the existing GRACE ∆TWS 

dataset without recourse to modelling (Ahmed et al., 2019) and to give greater certainty in linking 

climate-groundwater dynamics to decadal and longer timescale climate systems including the Pacific 

Decadal Oscillation and Atlantic Multidecadal Oscillation (Wunsch, 1999). An extended dataset will 

improve the calibration of HM as it relates to specific aquifer systems, providing a robust context for 560 

monitoring ∆GWS, including groundwater decline, in real time and protecting fundamentally 

important groundwater resources. 
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