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Abstract. Cumulative emissions budgets and net-zero emission target dates are often used to frame climate negotiations (Frame

et al., 2014; Millar et al., 2016; Van Vuuren et al., 2016; Rogelj et al., 2015b; Matthews et al., 2012). However, their utility for

near-term policy decisions is confounded by an uncertainties in future negative emissions capacity (Fuss et al., 2014; Smith

et al., 2016; Larkin et al., 2018; Anderson and Peters, 2016), the role of non-CO2 forcers (MacDougall et al., 2015) and in long

term Earth System response to forcing (Rugenstein et al., 2019; Knutti et al., 2017; Armour, 2017). Such uncertainties may5

impact the utility of an absolute carbon budget if peak temperatures occur significantly after net zero emissions are achieved, the

likelihood of which is shown here to be conditional on prior assumptions about the long term dynamics of the Earth System. In

the context of these uncertainties, we show that the necessity and scope for negative emissions deployment later in the century

can be conditioned on near term emissions, providing support for a scenario framework which focuses on emissions reductions

rather than absolute budgets(Rogelj et al., 2019b).10

Introduction

The climate policy discussion has adopted some convenient frameworks which act as proxies for the drivers and consequences

of climate change. For example, it is broadly assumed that climate risks scale with global mean temperature (O’Neill et al.,

2017). International climate agreements have thus been framed in this context (United Nations, 2015), necessitating Earth

system parameters which relate future emissions trajectories to temperatures. This relationship is often framed through the15

Transient Climate Response to cumulative carbon Emissions (TCRE - the ratio of the globally averaged transient CO2 induced

surface temperature change per unit carbon dioxide emitted, (Rogelj et al., 2019a; Allen et al., 2009; Millar et al., 2016;

Matthews et al., 2009; Gillett et al., 2013)).

This near linear relationship between cumulative emissions and surface temperatures is seen in many climate simulations on

decadal to century timescales provides a basis for cumulative carbon budgets corresponding to temperature targets (England20

et al., 2009; Gillett et al., 2013), though its application to real-world carbon budgets is complicated by the effect of non-CO2

forcers. The "effective TCRE" (Matthews et al., 2017a) is thus the warming rate per unit carbon dioxide emitted in a scenario

where forcers other than CO2 are acting on the system (such as aerosols and other greenhouse gases), which adds some

uncertainty to the estimation of carbon budgets (Mengis et al., 2018; Rogelj et al., 2015a).

Understanding of how the Earth System reaches equilibrium in response to climate forcing has advanced in recent years; a25

number of studies have highlighted that existing 150 year simulations are insufficiently short to assess the Equilibrium Climate
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Sensitivity (ECS, the equilibrium response of surface temperatures to a doubling of carbon dioxide concentrations) of General

Circulation Models, and assuming a single feedback parameter associated with Effective Climate Sensitivity (Gregory et al.,

2004) can lead to a significant underestimation of long term response (Gregory and Andrews, 2016; Geoffroy et al., 2013;

Senior and Mitchell, 2000; Winton et al., 2010; Armour et al., 2013; Li et al., 2013; Rose et al., 2014; Andrews et al., 2018).30

What is less clear at present is whether these findings have any relevance for the use of TCRE in emissions policy decisions.

The TCRE framework is robust in transient scenarios in which emissions remain mostly positive (Zickfeld et al., 2012; Krasting

et al., 2014; Herrington and Zickfeld, 2014; Goodwin et al., 2015), and its value can be to some degree constrained by emissions

and observed temperatures to date - even in the context of observational uncertainties (Millar and Friedlingstein, 2018). This

path-independence has been explained by the fact that both heat and carbon are absorbed into the ocean on similar timescales,35

the former acting to realize warming in response to forcing while the latter reduces the forcing itself (Williams et al., 2016).

However, the robustness of temperature-cumulative emissions scaling in Earth System Models under large negative emis-

sions on longer timescales is less well understood (Boucher et al., 2012; Vichi et al., 2013; Cao and Caldeira, 2010). Although

an experimental design to test the long term robustness of TCRE under zero or negative emissions (Jones et al., 2019) have

been proposed and would be highly valuable, only a small selection of Earth System Models have performed this type of ex-40

periment to date, finding large uncertainties in land and ocean carbon sinks (Jones et al., 2016) and in the long-term dynamics

of equilibrium response to forcing (Rugenstein et al., 2019).

Earth systems model of intermediate complexity (EMICs) allow a more compuationally tractable integration of long timescale

changes and in these cases, cumulative emissions-temperature proportionality has been found to be relatively insensitive to

emissions pathway (Zickfeld and Herrington, 2015; Tokarska and Zickfeld, 2015; Tokarska et al., 2019a; Zickfeld et al., 2016;45

Herrington and Zickfeld, 2014; Tokarska et al., 2019b; MacDougall et al., 2015). However, many of these results are condi-

tional on the structural assumptions of a single EMIC: the U.Vic Model (Weaver et al., 2001). Within this structure, parametric

sensitivities for TCRE itself have been comprehensively tested (MacDougall et al., 2017) and reversibility in the U.Vic model

has been tested to a degree (Ehlert and Zickfeld, 2018), but uncertainties remain in these results due to structural assumptions

and parametric choices in the U.Vic model.50

Simple climate models allow for very fast simulations which are capable of wide-scale parameter searches, but in many

cases results are still subject to structural assumptions. For example, a fixed climate feedback parameter (Ricke and Caldeira,

2014; MacDougall and Friedlingstein, 2015) or a prior constraint on fraction of equilibrium warming which has already been

realized to date (Millar et al., 2017c). These assumptions have been called into question by recent advances in understanding

on Earth System response timescales (Rugenstein et al., 2019). Other models are less structurally constrained, but assume55

prior information on the equilibrium climate sensitivity of the real world (Goodwin et al., 2018b). The effect of this set of

assumptions on the TCRE framework has not been assessed.

A number of studies have considered the "Zero Emission Warming Commitment" (ZEC), or the warming expected after

emissions cease. This quantity can potentially be positive or negative in different models (MacDougall et al., 2020; Ehlert and

Zickfeld, 2017; Jones et al., 2019; Froelicher and Paynter, 2015; Williams et al., 2017) and modifications to the cumulative60

emissions/ carbon budgeting framework have been proposed (Rogelj et al., 2019a; Froelicher and Paynter, 2015) to allow
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continued post-zero emissions temperature evolution and unforeseen earth-system feedbacks or ’tipping-points’ which change

biosphere or climate feedbacks (Brook et al., 2013). An complementary framework proposes a policy framework focused on

net zero emissions and associated peak warming (Rogelj et al., 2019b). However, these frameworks are most useful if the zero

emissions commitment is a small and finite correction to the net carbon budget, which is only true if peak warming occurs65

within a small number of decades of net-zero emissions.

Aside from physical modeling uncertainties in the long term stability of the TCRE assumption, indefinite carbon budgeting

in policy making requires the combination of the effects of near term emissions reductions (Knutti et al., 2016; Rogelj et al.,

2016a; Eom et al., 2015) and long term carbon removal technology which is subject to large socioeconomic, technological and

physical uncertainties (Fuss et al., 2014; Smith et al., 2016; Larkin et al., 2018).70

Similarly, the framing of climate policy in terms of a net zero emissions target also combines decarbonization of infras-

tructure (of which some sectors are highly difficult (Bataille et al., 2018)) and mid-century negative emissions capacity. These

two components are conceptually different; the former is at least partly a function of structural choices which are currently

available, while the latter is conditional on deeply uncertain biophysical (Smith et al., 2016), technological (Lomax et al., 2015)

and social (Anderson and Peters, 2016) factors.75

Here, we consider long term emissions scenarios in a simple model informed by recent advances in understanding in the

thermal response of the Earth system to climate forcing on a range of timescales (Armour et al., 2013; Geoffroy et al., 2013;

Winton et al., 2010; Held et al., 2010; Proistosescu and Huybers, 2017; Rugenstein et al., 2016), and how prior assumptions

on model parameters have an impact on the long term robustness of a cumulative carbon emissions budget and the possible

commitment to long term negative emissions to maintain a stable climate. We discuss the plausibility of hysteresis in global80

mean temperature as a function of cumulative emissions and of peak warming occurring significantly after net zero emissions

have been achieved.

Finally, we propose that a policy approach which relies primarily on indefinite carbon budgets is not useful in the light

of large geophysical and socioeconomic uncertainties, and that more robust decisions can be made if near term mitigation

priorities are decided independently from absolute commitments on long term negative emissions capacity, which can be85

revised later (Rogelj et al., 2019b). Furthermore, we show that global temperature evolution on the timescale of the mid 21st

century would enable a better constraint on future negative emissions requirements for temperature stabilization.

1 Methods

1.1 Model Description

We first consider to what degree historical observations can constrain the long term coupled carbon-climate evolution of the90

Earth System. In order to produce a posterior parameter distribution conditioned on observations (and thus uncertainties in

system response), there are various strategies (Emerick et al., 2011).

Our approach here is employ Bayesian calibration, a Markov-Chain Monte Carlo (MCMC) optimization (Goodman and

Weare, 2010) in which a posterior parameter distribution is iteratively calculated by such that the sample density is represen-
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tative of an underlying likelihood function. This approach is generally considered as an accurate approach but the number of95

model iterations required is often too computationally demanding to be practical (Oliver and Chen, 2011).

Computationally efficient alternatives include "History Matching" approaches which rule out members of a random sample

which are not consistent with observations (Goodwin et al., 2018b; Williamson et al., 2013), an approach which can approxi-

mate the posterior in a computationally efficient manner subject to careful treatment of stochastic errors and prior assumptions

(Liu et al., 2003). However, in the present study, the use of MCMC is made feasible through the use of a fast two timescale100

thermal response model (comparable to those used in Proistosescu and Huybers (2017); Geoffroy et al. (2013); Smith et al.

(2018); Millar et al. (2017c)).

The thermal model in FAIR represents temperatures as a combination of two components with fast and slow inherent

timescales:

dTn

dt
=

qnF −Tn

dn
;T =

∑

n

Tn;n= 1,2, (1)105

where Tn is global mean temperature and for each timescale n. Tn is the component of warming associated with that

timescale, qn is the feedback parameter and dn is the response timescale. We consider the heat flux into the shallow and deep

ocean to be functions of the same timescale:

Rn = rn(F −Tn/qn);R=
∑

n

Rn;
∑

n

rn = 1;n= 1,2 (2)

where rn is an efficacy factor for heat absorbed by the deep (n= 1) or shallow (n= 2) ocean, which sum to unity given the110

boundary condition that R(0) = F (0) = F4xCO2 at t= 0 (allowing just one degree of freedom r1 - the fraction of heat which

is allocated to deep ocean storage).

The thermal model is made sufficiently fast for MCMC calibration using the particular solution to the step-change in forcing,

which can be convoluted with a generic forcing timeseries to provide a general solution (Ruelle, 1998; Ragone et al., 2016;

Lucarini et al., 2017). The particular solutions for temperature and radiation response to a step change in forcing F4xCO2 at115

time t= 0 can be expressed as a sum of exponential decay functions:

Tp(t) = F4xCO2

2
∑

n=1

qn(1− exp(−t/dn)) (3)

Rp(t) = F4xCO2

2
∑

n=1

rn(exp(−t/dn)), (4)

where TP (t) is the annual global mean temperature and Rp(t) is the net top-of atmosphere radiative imbalance at time

t, and F4xCO2 is the instantaneous global mean radiative forcing associated with a quadrupling of CO2, taken here to be120

3.7Wm−2(Myhre et al., 2013).
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The thermal model is coupled to a emissions driven pulse model (in which each unit of emitted carbon dioxide is allocated

to one of four pools with its own representative decay time). The carbon scheme has four atmospheric carbon pools Ri (where

i= 0..3, following Myhre et al. (2013)) with dissipation timescales τi as detailed in Table 1. Each unit pulse of emissions is

allocated to each of the four pools with a fraction ai:125

dRi

dt
= aiE(t)−

Ri

τi
, (5)

for which the solution for a unit emissions pulse δ(t) can be written:

Ri(t) = ai(1− e−t/τi). (6)

A generic emissions time-series E(t) can then be expressed as a sum of discrete pulses, allowing the corresponding carbon

pools Ci(t) to be expressed as a sum of pulse-responses Ri(t)130

Ci(t) =

t
∫

0

dE(t′)

dt
Ri(t− t′)dt′. (7)

Atmospheric CO2 concentrations C are calculated as the sum of the four pools C(t) = C0 +
∑

iCi(t), and are converted

into a radiative forcing estimate assuming the standard logarithmic relationship:

F (t) =
F4xCO2

ln(4)
ln

(

C(t)

C0

)

+ frFaer +Fother, (8)

where fr is a free parameter to allow scaling of aerosol forcing (conceptually allowing for forcing uncertainty in the historical135

timeseries), and FotherAnt is all other anthropogenic and and natural forcers (summed from (Meinshausen et al., 2011b)). The

thermal response is calculated by expressing the numerical time derivative of the forcing timeseries F (t) where the change in

forcing in a given time-step in a given year ∆F (t′) is [F (t′)−F (t′−1)]. The forcing timeseries can thus be expressed a series

of step functions, and Tp from equation 3 can be used to calculate the integrated thermal response.

T (t) =

t
∑

t′=0

∆F (t′)

2
∑

n=1

qn

(

1− exp

(

−(t− t′)

dn

))

, (9)140

Heat fluxes into the deep (D(t)) and shallow (H(t)) ocean components are represented by numerical integration of the slow

(n=1) and fast (n=2) pulse response components of Rp(t) in Equation 4:

D(t) = r1

t
∑

t′=0

∆F (t′)exp

(

−(t− t′)

d1

)

, (10)

H(t) = (1− r1)
t

∑

t′=0

∆F (t′)exp

(

−(t− t′)

d2

)

, (11)

This is again performed in a computationally efficient manner using MATLAB’s ‘filter’ function.145
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1.1.1 Model Optimization

We then assess the degree to which the physical parameters of this simple model (detailed in Table 1) can be constrained by

historical transient information. The Earth system configuration of the pulse model has time-series inputs emissions of CO2,

along with radiative estimates from Meinshausen et al. (2011b) of non-CO2 forcing agents. We optimize the thermal model

parameters for 2 timescales, the carbon dissipation parameters for 4 pools and the non-CO2 forcing factor fr.150

Long name Symbol Default Min Max

Geological re-absorption fraction a0 0.26 0.1 .3

Deep ocean invasion/equilibration fraction a1 0.14 0.1 .3

Biospheric uptake/ocean thermocline invasion fraction a2 0.22 0.1 .3

Rapid Biospheric uptake/ocean thermocline invasion fraction* a3 n/a n/a n/a

Geological re-absorption timescale (years)** τ0 106 106 106

Deep ocean invasion/equilibration timescale (years) τ1 200 200 1000

Biospheric uptake/ocean thermocline invasion timescale (years) τ2 40 40 100

Rapid biospheric uptake/ocean mixed-layer invasion timescale (years) τ3 1 1 10

Thermal equilibration of deep ocean Sensitivity (KWm−2) q1 0 0 10*

Thermal adjustment of upper ocean Sensitivity (KWm−2) q2 0 0 10

Thermal equilibration of deep ocean timescale (years) d1 239 80 3000

Thermal adjustment of upper ocean timescale (years) d2 30 1 40

Fraction of forcing in deep ocean response r1 0 0.33 0.5

Fraction of forcing in upper ocean response r2 0 0.33 0.5

Non-CO2 Forcing ratio fr 0.7 1 1.3

Emissions scaling ratio se 0.8 1 1.2

Table 1. A table showing default model parameter values and minimum and maximum values used in model optimization. *deep ocean

thermal response is limited to zero for 2 timescale model. *a3 is calculated as the 1−
∑

i=1:3
(ai)

. **following Millar et al. (2017c), deep ocean carbon uptake timescale is not included in the optimization (the timescale is effectively

infinite: sufficiently longer than the scenarios considered here for the a3 pool to not absorb significant carbon).

Optimization is conducted with the Goodman and Weare (2010) MCMC implementation, using flat initial parameter distri-

butions as shown in Table 1, 200 walkers and 50,000 iterations for each optimization. Cost functions are computed for global

mean temperature (T), global CO2 concentrations (C), Shallow Ocean Heat Content (H) and Deep Ocean Heat Content (D):
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ET =
∑

t

(

(T (t)−TGCM (t))√
2σT

)2

155

EC =
∑

t

(

(C(t)−CGCM (t))√
2σC

)2

,EH =
∑

t

(

(H(t)−HGCM (t))√
2σH

)2

,ED =
∑

t

(

(D(t)−DGCM (t))√
2σD

)2

, (12)

where σT represents the confidence in observed temperature values. To estimate this value, we use 2000-2019 annual global

mean temperature anomalies from 1850-1900 in the HadCRUT-CW 100 member observational ensemble, where σT is the

standard deviation of 2000 point (20 years, and 100 ensemble members), which represents uncertainty due to both natural

variability and observational processing uncertainties (Cowtan and Way, 2013; Cowtan et al., 2015).160

For σC , we lack an unforced standard deviation estimate - so a normalization constant of σC = 0.3ppm was chosen em-

pirically to produce a ±1 ppmv range in 2016 observed concentrations in the posterior distribution (though uncertainties in

emissions are much larger, and represented with the emissions scaling parameter se.

Shallow and Deep Ocean heat uptake (in cases where they are used) is taken as the 0-300m and 300m+ heat content re-

spectively in Zanna et al. (2019), with σH and σD taken as 1850-1950 standard deviations from the same dataset. Confidence165

estimates in these timeseries is not available, so σH and σD nominally represents uncertainty due to natural variability - so

"C,T, Heat" results should be considered to be an idealized estimate of how ocean heat information could constrain models if

we were confident in that information.

In the ’C, T constraint’ case, optimization is conducted using −ET and −EC as log likelihoods in the MCMC optimizer,

with parameter boundaries as listed in Table 1. The ’C, T, Heat constraint’ case uses the sum of −ET , −EC , ED and −EH170

cost functions. The ’C,T, paleo’ case is implemented using the likely value and upper bound on Earth System Sensitivity

from Goodman and Weare (2010) fit the median and 90th percentile of a gamma distribution for equilibrium. The ’C,T, RWF’

constraint is implemented using a log-normal prior on Transient Climate Response with 5–95 percentiles of 1.0–2.5 K as in

Millar et al. (2017c), and a Gaussian prior on RWF (the ratio between LTE and TCR) with mean 0.6, and 5th and 9th percentiles

of 0.45 and 0.75. The emissions scaling parameter is subject to Gaussian prior which was adjusted such that uncertainty in 5-175

95% cumulative CO2 emissions in 2016 reflects observational uncertainties. It was found empirically that a Gaussian prior with

a mean scaling parameter of 1, and standard deviations of 0.1 well represented published uncertainties, largely attributable to

uncertain land use emissions (Le Quéré et al., 2017; Millar and Friedlingstein, 2018) (see Figure S3).

2 Results

2.1 The impact of prior assumptions on carbon dynamics180

We consider a number of different constraint assumptions on model parameters and how they influence the range of future

projections under different scenarios (Figure 1). If the model parameters are conditioned only on historical emissions and

temperature (Figure 1(a,b)), transient warming under continued positive emissions is well constrained, such that temperatures

7



2000 2050 2100 2150 2200 2250 2300

Year

0

1

2

3

4

5

6

7

8

9

G
lo

b
a

l 
m

e
a

n
 t

e
m

p
e

ra
tu

re
a

b
o

v
e

 1
8

5
0

 (
T

g
, 

K
)

(a)

0 500 1000 1500 2000

Cumulative emissions (GtC)

0

1

2

3

4

T
g
 (

K
)

(b) C,T constraints

0 500 1000 1500 2000

Cumulative emissions (GtC)

0

1

2

3

4

T
g
 (

K
)

(c) C,T,heat constraints

(e) C,T,RWF constraints

0 500 1000 1500 2000

Cumulative emissions (GtC)

0

1

2

3

4

T
g
 (

K
)

0 500 1000 1500 2000

Cumulative emissions (GtC)

0

1

2

3

4

T
g
 (

K
)

(d)   C,T,Paleo constraints

Constraint

RCP8.5

RCP2.6

C,T C,T

heat

C,T

Paleo

C,T

RWF

Figure 1. Posterior distributions of future global mean temperature projections constrained by 1850-2016 historical temperatures in a range

of scenarios, priors and structural choices as a function of (a) time and (b-e) cumulative emissions of carbon (with 1000 years of climate

evolution plotted from 1851-2850). Colored lines represent RCP8.5 (red) and RCP2.6 (blue). (b) and dashed lines in (a) show 2-timescale

model posterior constrained using emissions (C) and temperature (T) only, (c) and solid lines in (a) are constrained using C,T and ocean

heat content (H), (d) and dot-dash lines in (a) use C,T and RWF. (e) and dotted lines C,T and a paleoclimate prior on ECS. Shaded regions

indicate the 10-90th percentile range. Solid black lines show observed global mean temperature median estimate (Cowtan and Way, 2013)

and most likely estimates of combined land use and fossil fuel emissions (Le Quéré et al., 2017). Grey lines show uncertainties in observed

temperature-cumulative emissions following Millar and Friedlingstein (2018).
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follow the TCRE relationship under a high emission scenario (RCP8.5, Riahi et al. (2011)) emissions. However, the relationship

is not robust under long term negative emissions in a decarbonization scenario (RCP2.6, Van Vuuren et al. (2011)) where some185

model variants in the posterior parameter distribution allow hysteresis in which temperatures continue to rise over the following

centuries under a regime of net negative emissions.

Adding information on historical deep and shallow ocean heat content (Zanna et al., 2019) does not significantly constrain the

system (Figure 1(a,c)). However, assuming addition information about long term equilibrium climate sensitivity is known from

paleo-climate data (Royer et al., 2011; Goodwin et al., 2018b), does provide constraint on the degree of possible hysteresis190

(Figure 1(d)) as does the assumption of a known Realized Warming Fraction (RWF, the fraction of present day warming

relative to equilibrium warming associated with current forcing) which is a very strong constraint on TCRE-like behavior. This

prior, used in Millar et al. (2017b) produces a model configuration in which a proportional relationship between cumulative

emissions-temperature is robust during both positive and negative phases of the emissions scenario (Figure (Figure 1(e)).

This raises the question of the degree to which we are confident in our knowledge of the values of ECS and RWF. In Millar195

et al. (2017b), the RWF prior is derived from the observation that the Transient Climate Response (TCR, the warming at the time

of CO2 doubling in a transient simulation where CO2 increases by 1 percent per year) and Effective Climate Sensitivity (EffCS)

are correlated in the CMIP5 ensemble (Millar et al., 2015) (where EffCS is the estimation of equilibrium response through the

linear extrapolation of temperature change as a function of net top of atmosphere radiative imbalance in an instantaneous CO2

quadrupling experiment (Gregory et al., 2004)).200

However, the Equilibrium Climate Sensitivity (ECS), realized over a multi-century to millennial timescale, is often signifi-

cantly greater than the Effective Climate Sensitivity (Rugenstein et al., 2016; Knutti et al., 2017) and its value may not be well

constrained by observed warming (Proistosescu and Huybers, 2017; Andrews et al., 2018). As such, and it is not apparent that

the long-term ECS in a model like Myhre et al. (2013) can be constrained by TCR (with large implications for millennial-scale

temperature evolution, as seen in Supplemental Figure S16).205

These prior assumptions strongly impact the range of possible behavior under strong negative emissions in RCP2.6. How-

ever, under RCP8.5, the ensembles constrained by historical temperatures show a near-linear relationship between cumulative

emissions and temperature, irrespective of prior assumptions and constraints used (Figure 1(b-e), red lines), this can be broadly

understood by considering that in RCP8.5, radiative forcing continues to increase at current rates and thus long term warming

is broadly a function of TCR, which is itself constrained by historical temperature evolution.210

The scenarios considered here are multi-gas, with both CO2 emissions and non-CO2 forcers. As expected (Mengis et al.,

2018), non-CO2 forcing assumptions can alter the effective TCRE seen in transient RCP8.5 simulations and RCP2.6 projections

on shorter timescales of less than a century (see Supplemental Figure S4), however the potential for hysteresis on longer

timescales is similar in multi-gas and CO2 only experiments.

2.2 Implications for meeting Paris temperature targets215

If we consider a ‘high risk’ world where ECS (and its relationship to TCR) is not independently constrained, corresponding

to subplot (b) in Figure 1, the cumulative emissions framework is not guaranteed to hold under negative emissions, and the
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concept of an indefinite cumulative carbon budget associated with a temperature target may not be helpful for near-term carbon

mitigation planning (results for other prior assumptions are shown in the additional material).

We illustrate this in some idealized cases, using adaptive scenarios in which emissions are adjusted in order to achieve 1.5220

and 2 degree C climates are achieved post 2100 (similar to those considered in Sanderson et al. (2016, 2017); Goodwin et al.

(2018a)). The Sanderson et al. (2016) approach allows iteration of scenarios such that targets can be met in almost all cases,

but the optimization is "forward looking" (in contrast to Goodwin et al. (2018a), which simulates decisions made in response

to observed warming to date without perfect knowledge of the future). Here, we follow a similar strategy to Sanderson et al.

(2016), where scenarios are designed using a small number of parameters which are then optimized to meet a stabilization225

target post-2100.

Scenarios are conducted in 3 phases: before 2020 is the ‘historical’ period, where emissions follow RCP2.6 (which is broadly

consistent with observations before 2020). Between 2020 and 2040, the ‘uninformed’ period, CO2 emissions follow one of a

range of linear mitigation pathways such that 2040 CO2 emissions are chosen at random for each scenario, ranging from

0GtC/yr to 10GtC/yr (our focus here is on low emission futures, and we do not consider here futures where emissions230

increase post-2020).

Each ensemble member uses a single parameter set draw from the posterior distribution of models calculated during the

MCMC constraint of model parameter space in Section 1.1.1. Emissions follow RCP2.6 from 1850 until 2020, after which

CO2 emissions are by a ’pchip’ spline which is fixed at a number of points, the first of which are 2010 and 2020 RCP2.6

emissions - ensuring a smooth transition from the RCP time-series to the post-2020 timeseries. An ’uninformed’ emissions235

trajectory takes place from 2020 to 2040, where emissions evolve from RCP2.6 2020 levels (10.26GtC/yr) to a 2040 emissions

level drawn randomly from a uniform distribution with bounds at 0GtC/yr and 10GtC/yr.

Post 2040, in the ‘adaptive’ period, an emission scenario is calculated iteratively to achieve temperature stabilization at a

defined target post-2100, allowing for a temperature overshoot before 2100 with a large but finite lower limit on net negative

emissions capacity in line with the largest negative emissions values seen in the integrated assessment literature for 1.5 degree240

temperature stabilization targets (−20GtC/yr, First (2018)). Non-CO2 gas emissions follow RCP2.6 throughout the simula-

tion in all cases (clearly, these scenarios should not be treated as socioeconomically plausible scenarios, rather as idealized

illustrations of Earth System Response to a range of forcing pathways).

Parametric control of the adaptive phase is achieved by specifying 3 time points (the first, tp1 in the range 2060-2100, the

second (tp2) in the range 2101-2300 and the third tp3 fixed at the end of the simulation in 2764. Each time point is associated245

with an emissions rate Ep1,2,3 which are each weakly constrained to lie in the range -40 to +10 GtC/yr. Optimization uses

MATLAB’s fmincon algorithm to find optimal values of tp1,2 and Ep1,2,3, where the model is run iteratively for a given

physical parameter set to find a solution which minimizes the RMSE from the desired annual mean global mean temperature

timeseries target (1.5 or 2.0C, in this case) over the date range 2100-2500.

The temperature trajectories are illustrated in Figure 2(a). Each member of the posterior distribution of possible simple250

climate models in Figure 1(a,b) is then paired with a random 2020-2050 emissions reduction pathway and then a post-2050

emissions pathway is calculated to optimize for stabilization at 1.5 or 2 degrees post-2100. This framework allows us to consider
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Figure 2. Plots showing idealized pathways to 1.5 or 2.0C temperature stabilization for an ensemble of coupled carbon-climate model

configurations. (a) shows the global mean temperature as a function of time for 1.5 and 2.0C stabilization ensembles (b) shows emissions

in the historical, uniformed and adaptive stages of the simulation (c) shows the global mean temperatures above 2006-2016 (left/right axis)

levels as a function of post-2010 cumulative CO2 emissions while (d) shows the cumulative carbon emissions total for ensemble members

as a function of time. Shaded regions in (a,b,d) indicate 10th-90th percentile range of the ensemble distribution, while dotted lines shown the

50th percentile. Gray/blue/black areas refer to uninformed/adaptive for 2.0C/adaptive for 1.5C respectively. Box/whisker plots in (c) show

the long term cumulative carbon budget assessed in 2100 for 1.5 and 2.0C stabilization from 1850-2500. Box/whisker plots in (d) show the

TCRE estimate of carbon budget with (median shown by ’+’) and without (median shown by ’x’) non-CO2 gas correction. Red circle shows

ensemble mean warming and post-2010 cumulative emissions in 2020.
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Figure 3. Plots showing (a) the relationship between mid-century cumulative carbon budgets and (b) mid-century warming and associated

likelihoods of long term carbon removal requirements for temperature stabilization. (a) shows the ensemble relationship between the net

carbon emitted between 2020 and 2040 (uninformed period in Figure 1) and the associated range of possible carbon removal required later

in the century in the adaptive phase for 1.5C (green) and 2.0C (blue) stabilization. Filled circles represent an individual ensemble member,

while shaded blue/green areas represent a moving estimate of the 10-90th percentile range of the 2.0C/1.5C distribution (solid blue/green

lines are 2.0/1.5C median. (b) shows 2050-2100 allowable carbon budget as a function of 2050 warming above pre-industrial levels. Dots and

shading show ensemble distribution as in (a). Horizontal box/whisker plots show 10th,25th,50th,75th and 90th percentiles of 2050 warming

consistent with labeled 2020-2040 carbon budgets and the associated percentage reduction in 2040 emissions relative to 2020. Gray bar

shows the range of reference 2100 net carbon budgets considered for end of century 1.5 degree overshoot scenarios in the IPCC spacial

report on 1.5 degrees (First, 2018)).

what would be required for long term stabilization in a model configuration where the cumulative emissions-temperature

relationship does not necessarily hold.

The resulting scenarios are idealized, some requiring a very rapid switch to large net-negative values after 2040 in order255

to stabilize temperatures at 1.5C (Figure 2(b)), and such rapid decarbonization may not be achievable in reality (Sanderson

et al., 2016), but we can learn some useful properties of the system response by studying the relationships between near term

and long term emissions commitments. Non-CO2 emissions remain at RCP2.6 levels in all cases (though the non-CO2 forcing

varies as a function of the fr parameter).

The range of long-term emission trajectories for temperature stabilization is diverse (Figure 2(c)), in some cases requiring260

large negative emissions in the latter half of the 21st century to achieve temperature stabilization after 2100 (Figure 2(a)).

The cumulative carbon budget plume allows for a 1.5C(2.0C) post-2010 budget of -300 to 400GtC (0 to 900GtC) by 2100, a

budget which continues to grow more uncertain over the centuries which follow (Figure 2(c,d)). Most of the 1.5C simulations

overshoot the target in the latter half of the 21st century (Figure 2(a)), and post-2010 budget for initial exceedance of 1.5C is

more tightly constrained at 250-400GtC (most 2C simulations do not significantly overshoot).265

This large uncertainty in the face of long term stabilization scenarios draws into question the utility of an indefinite carbon

budget (in the case where we have no prior information on equilibrium response). We can consider to what degree we can

constrain future response using a definite budget with a 2020-2050 timeframe (Figure 3). Firstly, even in the face of possible

hysteresis of temperature as a function of cumulative carbon emissions, there is a linear relationship between 2020-2040

budgets and associated late century carbon removal rates required for stabilization (Figure 3(a)).270

For example, if a late century net carbon emission of -2.9 GtC/yr is assumed for late century (corresponding to the central

estimate of 1.5 degree, low overshoot stabilization from the IPCC Special Report on 1.5C warming (First, 2018), a 50 percent

chance of 1.5 degrees requires a 2020-2040 budget of 150GtC, which would require a 60 percent cut in emissions from present

day levels by 2040. A 75 percent chance of meeting the target would require a 2020-2040 budget of 100GtC - requiring just

over 100 percent cut in carbon emissions by 2040.275
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Here again, the choice of prior constraint on model parameters has an important effect. If the Paleoclimate or RWF is used,

a 75 percent chance of 1.5 degrees given an assumed -2.9GtC/yr late century removal rate would allow a 160GtC(or 220GtC)

budget from 2020-2040 (see Additional Material Figure S14(c,d)). Similarly, estimated carbon budgets become more consistent

with TCRE derived estimates if an RWF prior is used, with 2100 budgets of 120-430 GtC (500-900GtC) for 1.5C (2.0C). This

can be compared with the IPCC SR1.5 assessment of 115-230GtC (320-550GtC) respectively, which includes uncertainties in280

non-CO2 emissions and forcings and long timescale carbon cycle feedbacks.

These findings support the framing of emissions policy in terms of near term emissions reductions rather than indefinite

carbon budgets (Rogelj et al., 2019b). By mid 21st century, observed warming will provide a good indication of the degree of

negative emissions required for stabilization - as the average realized warming in 2040-2060 provides quite a strong constraint

on budgets for the latter half of the century (Figure 3(b)). The degree of possible mid-century warming can be reduced by285

minimizing the 2020-2040 carbon budget, but there still exists uncertainty due to the degree of thermal inertia in the system as

greenhouse gas concentrations stabilize.

The strong relationship between mid-century warming and late century carbon removal requirements for 1.5 or 2.0C stabi-

lization occurs because 2040-2060 warming can be potentially decreased either by fortuity (with a small value of real-world

equilibrium climate sensitivity) or by action (by minimizing near-term emissions), both of which reduce late century net carbon290

removal requirements. Conversely, high climate sensitivity or slow decarbonization would both result in greater mid-century

warming and greater necessity for negative emissions deployment.

3 Discussion

Recent climate policy discussions have been framed in the context of a carbon budget, an allowable net total of cumulative

emissions which are consistent with a desired limit on planetary warming (Allen et al., 2009; Millar et al., 2016). Nuances in the295

estimation of this budget have been noted relating to bias correction of existing models (Millar et al., 2017a), the compensation

for the effects of non-CO2 anthropogenic emissions (Rogelj et al., 2015a; MacDougall et al., 2015; Mengis et al., 2018) and

the need for additional carbon fluxes for temperature stabilization after net-zero emissions have been achieved (Rogelj et al.,

2016b; Jones et al., in review; Mengis et al., 2018). These factors are deemed to be corrections to the TCRE-computed carbon

budgets (Rogelj et al., 2019a), and value of TCRE informed by a combination of model response historical records of global300

surface temperatures (Gillett et al., 2013; Steinacher and Joos, 2016) form the basis for published model estimates on carbon

budgets for temperature stabilization (Matthews et al., 2017a, a).

It has been noted before that at any given time, the TCRE can be expressed as a product of 3 components: the the dependence

of surface warming on radiative forcing, the fractional dependence of radiative forcing on atmospheric CO2 and the dependence

of atmospheric CO 2 on carbon emissions (Goodwin et al., 2015) - but each of these elements can potentially evolve in time305

as feedbacks are realized on different timescales (Rogelj et al., 2019a; Goodwin et al., 2018a). This has been addressed by

introducing "Threshold Avoidance Budgets" and "Threshold Exceedance Budgets" (Rogelj et al., 2016b) which differ due

to the lag of peak temperatures after net-zero emissions have been achieved as slower timescale components of the system
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equilibrate or due the effects of non-CO2 forcers. But, the scale of these effects is generally assumed to be small - on the order

of 1-2 decades (Ricke and Caldeira, 2014; Zickfeld and Herrington, 2015). Idealized experiments to assess zero-emission310

warming commitment(MacDougall et al., 2020) in both EMICs and ESMs suggest the ZEC is small on a 50 year timescale but

uncertain on a century timescale, with a large diversity of magnitude, sign and rate of warming post-cessation of emissions.

It has also been demonstrated that effective climate sensitivity likely evolves in time (Goodwin, 2018; Rohling et al., 2018),

which will influence TCRE (Goodwin et al., 2015) and thus carbon budgets for a given temperature target (Goodwin et al.,

2018b); thus attempts to quantify fixed real world estimates for TCRE or effective climate sensitivity must be qualified for315

long timescales (Rugenstein et al., 2019) or extended net negative emissions(Ehlert and Zickfeld, 2018). In this study, the

pulse-response formulation allows for the idealized separation of process response both in the evolution of atmospheric CO2

in response to emissions and in the thermal response of the system to forcing, allowing the an illustration of how prior as-

sumptions impact feedbacks on different timescales. Future work should consider further how these fixed parameters of the

carbon-climate system can be further independently constrained and integrated with existing understanding of time-evolving320

net climate feedbacks.

We find that the pulse-response model is not constrained to follow TCRE-like behaviour without prior knowledge of equi-

librium climate sensitivity. Considering other simple models, such priors are often used (either explicitly or implicitly). The

parameters of the FAIR (Millar et al., 2017c; Smith et al., 2018) simple climate model, for example, are constrained using a

prior on RWF (whereas projected uncertainty ranges using other models such as Goodwin et al. (2018b) use no such prior). The325

constraint in FAIR is justified with an observed relationship between Effective Climate Sensitivity and TCR in CMIP models,

and is thus likely overly constraining on possible model behavior consistent with state of art GCMs (see Additional Material

section S1).

Other models do not explicitly constrain RWF, but do constrain equilibrium climate sensitivity - the WASP model (Goodwin

et al., 2015; Goodwin, 2016) considers a multiple timescales of response and a geological prior on equilibrium warming330

response to emissions, which acts to preclude the

Similarly, in the MAGICC model (Meinshausen et al., 2011a), non-stationary feedbacks are represented in two ways - using

an allowance for an oceanic surface and and land surface feedback strengths, as well as having forcing dependent feedback

strengths. However, ECS values calculated using MAGICC when calibrated as an emulator of CMIP GCM simulations remain

very close to the Effective Climate Sensitivities of the target model (Meinshausen et al., 2011a) - even though in some cases we335

know that the true ECS realized in millennial time-frames is significantly greater than the EffCS value (Rugenstein et al., 2019).

This requires further research, but is possibly explained by the consensus that multiple feedback timescales arise from warming

patterns associated with shallow and deep ocean warming (Li et al., 2013; Geoffroy et al., 2013). Representing feedbacks as a

function of the warming of the ocean surface warming is therefore a strong structural assumption which may not capture this

effect.340

Recent work has made clear that the long timescale response of the Earth system is not well constrained by past observations

(Proistosescu and Huybers, 2017; Andrews et al., 2018), drawing into question whether recent transient warming is able to

constrain Equilibrium Climate Sensitivity (Otto et al., 2013) or the Realized Warming Fraction (Millar et al., 2015). In the
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absence of these constraints, we cannot rule out without additional data that the slow timescale response of the Earth System

associated with deep ocean warming may lead to a world which exhibits a (relatively) low TCR but a high ECS realized over345

centuries or millennia (Rugenstein et al., 2019) which, as we show here, may complicate the use of an indefinite carbon budget

for temperature targets.

Here, we find that these factors result in large uncertainties on remaining carbon budgets until 2100, with the possibility of

unless prior information is assumed on the value of ECS or RWF (Supplemental Figure S10). Using an RWF prior, carbon

budgets for 1.5C and 2C are broadly consistent with TCRE-derived estimates in Rogelj et al. (2018), but removing this prior350

reduces the lower bound of the budget from positive 120GtC with a RWF prior (as assessed in 2100 for 1.5C stabilization) to

negative 300GtC if the prior is removed. These factors are in addition to existing uncertainties arising from non-CO2 forcing

and scenario assumptions (approximately ±200GtC in long term budgets) and uncertainties in pre-industrial temperatures

(approximately ±100GtC in long term budgets) (Rogelj et al., 2018).

Other sources of information which may yet resolve the uncertainty. Independent information to constrain ECS from pale-355

oclimate (Royer et al., 2011) or process understanding (Sherwood et al., 2014; Zhai et al., 2015; Tian, 2015; Tan et al., 2016;

Cox et al., 2018) may help constrain the potential for temperature hysteresis. But many constraints to date have considered

only effective climate sensitivity (Gregory et al., 2004) - whereas it is increasingly clear that both the timescale and amplitude

of climate feedbacks need to be constrained in order to understand Earth System response to future forcing pathways (Armour

et al., 2013). Such avenues could and should be explored further.360

The pulse response model of the type used here is also a simplification of global response, albeit a commonly used one (Joos

et al., 2013) - which resolves the degrees of freedom in the range of responses exhibited in physical Earth System Models. The

anthropogenically forced warming in 2040-2060 would be subject to internal variability of order 0.1C (Dai et al., 2015; Rogelj

et al., 2017; Kay et al., 2015) which could potentially be improved with detection approaches (Haustein et al., 2017). As such,

observed mid-century warming would be of some value in constraining negative emissions requirements later in the century365

which spans nearly 0.6C over the ensemble range (Figure 3(b)).

Clearly, the models used here are idealizations. Emission rates and rates of change are not constrained by technological or

societal limitations, and only CO2 pathways are modified from the RCP2.6 scenario - and so results are only illustrative of

how the Earth System might respond to different hypothetical pathways. Finding pathways for technology and policy which

can actually achieve these pathways is a question for Integrated Assessment Models. However, the present standard approach370

of producing scenarios through forward-looking solvers (O’Neill et al., 2016) is unable to capture the risk highlighted here

associated with actors who act today with imperfect knowledge about future technology (Fuss et al., 2014; Anderson and

Peters, 2016) and Earth System response. This has led to a call to frame of policy in terms of near-term emissions which are

compatible with projected peak levels of warming (Rogelj et al., 2019b).

The results of this study support this logic. Even in the presence of large uncertainty on long term response to emissions,375

near-term climate policy can be well posed through the use of a time-limited net carbon budget, or equivalently, a near-

term commitment for a percentage reduction in emissions by a certain date (Sachs et al., 2016; Kaya et al., 2019). Observed

warming over the coming decades will provide additional information on our commitments to implement negative emissions
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infrastructure for temperature stabilization - commitments which may or may not prove feasible to realize. But a near-term

budget would provide decision-makers with the tools to assess the risk of failure to meet temperature targets as a function of380

clearly defined targets for near-term decarbonization.
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