
Response to Reviewer 1 
 
This paper introduces an interesting concept of how to account for the long-term effects (such 
as changing climate feedback parameter) in the carbon budgets framework. However, I found it 
challenging to understand this study in the context of applications to carbon budgets, and how 
these findings should be interpreted. I would recommend revising the framing of this paper to 
make it more relevant and easier to follow for readers familiar with the carbon budgets literature.  
Many thanks to the reviewer for the extensive review - and I recognise (from both reviews) that 
the initial submission required better context in the existing carbon budgets literature.  I have 
endeavoured to incorporate the suggestions and better frame the paper in the revised version. 
 
The paper could also benefit from clarifications, and consistency with the most recent literature 
on carbon budgets and TCRE.  In particular, the role of non-CO2 forcing on hysteresis of the 
effective TCRE curves discussed in the paper should be clearly separated from making claims 
on hysteresis in TCRE alone (which applies to CO2-induced warming only). I included several 
suggestions that potentially could help to clarify the points of confusion.  Also, I would suggest 
putting the findings of this paper in the context of the overall uncertainties in carbon budgets 
(see IPCC Special Report, Table 2.2, Chapter 2, for a summary of different uncertainties), which 
I suppose are much larger than the uncertainties in carbon budgets due to changing climate 
feedbacks. 
 
Point well taken - I have worked to make clear in the revised version that there is potential for 
hysteresis from a number of factors, of which this study only deeply considers one - with better 
reference to the SR15 conclusions. 
 
Furthermore, I would suggest discussing the uncertainties in the observational datasets 
explicitly in the main text, and how they affect the results of constraining the simple model.  
Agreed, I have structured the methods to be inline with the document - including the 
observational uncertainties. 

Major points 

1. Model description 
It is unclear what model is used in this study -is it a version of the FaIR model with additional 
components that would account for changing long-term feedbacks, or is it a simpler 
impulse-response model that contains less processes than FaIR? (the references are a bit 
vague).  



 Sorry about this - I’ve made the current version more clear.  It’s a Green’s function solution of 
the core carbon-climate equations in FAIR - not the whole model (i.e. there’s no complex 
chemistry - just a single bulk forcing term for aerosols.)  
I would suggest to include basic description of the model in the main text (e.g. on lines 70-75) in 
the context of recent climate model emulators (or how it differs component-wise from FaIR) for 
the readers to have a brief idea of how the climate response is determined without the need of 
referring to the appendix. 
 
The methods are now inline with the document, with an expanded description of the model 
 
Lines 180-185: It is unclear how the emulator used here differs from the FaIR emulator? Is this 
an extension of FaIR that accounts for the possibility of changing feedbacks, or is it a simplified 
version of it. 
This should be clearer now - it’s a green’s function implementation of the core dynamical 
assumptions which is fast enough to run MCMC calculations (I started out using FAIR itself, but 
the solver was too slow to run the number of iterations needed to calculate posterior 
distributions). 

2. Observational constraints from the historical period 
It is unclear how the observational uncertainty both in the observed warming and in the 
estimates of cumulative CO2 emissions from the global carbon project affects the results.  
Thanks for this point.  I’ve made efforts to expand the discussion of observational uncertainty - 
and have updated the analysis to better consider these aspects. 
 
The  approach of  Millar and Friedlingstein 2018 (MF18)  is not possible here - given the MCMC 
optimization is computationally demanding so repeating the probabilistic assessment for each 
member of Cowtan and Way (CW hereon) observational ensemble would not be practical, nor 
would the results be particularly meaningful (an ensemble of posterior distributions). 
 
Given this - I’ve attempted to ensure that observational uncertainties are appropriately 
considered in the model’s parameter space.  For the case of climate sensitivity parameters, 
showing that the range of 20th C warming is consistent with the CW spread.  For emissions 
uncertainty - I’ve introduced a new parameter which introduces uncertainty into the emissions in 
a given year to account for land use emissions uncertainty.  A prior on this parameter is now 
chosen such that distribution of cumulative emissions in 2016 is consistent with MF18.  
 
I would suggest either illustrating it on Figure 1 or at least discussing the following points in the 
main text:  
Figure 1: ‘observed’ cumulative CO2 emissions – Please include references to the observational 
datasets in the perhaps in the figure caption, and specify if they include the total CO2 emissions 
(from fossil fuels and land use change?)  
Done - now total land use and fossil emissions from GCP 2019. 



 
If so, the uncertainty on estimated CO2 land use change emissions in the historical period is 
quite large (even up to +/-50 percent for the annual E luc emissions), and it should be indicated 
on the figure or at least mentioned in the text and the figure caption. (e.g. see Table 5 from the 
recent Global Carbon Project 2019). 
Thanks for this point.  The revised manuscript allows for uncertainty in historical cumulative 
emissions  by introducing a new parameter in the model, for which the prior is manually 
adjusted to replicate (very well) the distribution of historical emissions in MF18, see new Figure 
S3. 
  Figure 1: observed warming from HadCRUT4 – is it adjusted for the blending-masking effects? 
If not, it is not like-for-like comparison with the global (and complete coverage) climate models’ 
output. In such case, at least a caveat in the figure caption and a short mention of this point 
would be useful. (e.g. see Cowtan et al. 2015; Richardson et al. 2016, 2018). 
 
I’ve shifted to using the Cowtan/Way 2015 ensemble median (for calibration target) and 
ensemble to assess the sigma T parameter which conveys the degree to which we trust that 
data in the MCMC calibration 
 
Uncertainties in the other observation-based quantities (heat content, paleo and RWF) should 
be discussed, as some of those inputs/constraints have narrower uncertainties, while others are 
a lot larger. 
 
I’ve made clear for other constraints (heat, Paleo-ECS and RWF) that they are idealized - they 
illustrate what the effect would be on our confidence in the event that we knew that data. 
 
Lines 70-75: Please discuss the uncertainty in the observational parameters that are used to 
constrain the model output. Also, perhaps include a figure showing the observation-based priors 
used.  
The confidence in temperatures is now covered in the context of the discussion of the selection 
of sigma_T, and informed by the range of observed warming seen in the Cowtan-Way 
ensemble.  
 
Do historical emissions include emissions from land use change? If so, the uncertainty on 
cumulative emissions is much larger than the uncertainty resulting from observed temperature. 
 
Confidence in cumulative emissions is replicated from Millar/Friedlingstein 2018 - itself informed 
by uncertainty estimates in GCP2016.  This is represented in the model with a scaling 
parameter on emissions, which is calibrated to represent this uncertainty. 
 
Also, the discussion regarding constraints from the historical record could use the following 
reference and a short discussion:  
Millar, R. J. Friedlingstein, P. The utility of the historical record for assessing the transient 
climate response to cumulative emissions.Phil. Trans. R. Soc. A 376, 20160449 (2018). 



 
Well noted -this is now discussed in the introduction 

References: 
Cowtan, K. et al. Robust comparison of climate models with observations using blended land air 
and ocean sea surface temperatures. Geophysical Research Letters 42, 6526–6534 (2015). 
Richardson, M., Cowtan, K., Hawkins, E. Stolpe, M. B. Reconciled climate response estimates 
from climate models and the energy budget of Earth. Nature Climate Change 6, 931 (2016). 
Richardson, M., Cowtan, K. Millar, R. J. Global temperature definition affects achievement of 
long-term climate goals. Environ. Res. Lett. 13, 054004 (2018).  

3. TCRE definition, non-CO2 forcing and the effective TCRE hysteresis 
Please note that the definition of TCRE should be applied to CO2-induced warming alone. If 
calculating carbon budgets directly from RCP scenarios that are subject to CO2 and non-CO2 
forcing, please refer to the Effective TCRE (Matthews et al. 2016). The current version of the 
manuscript confuses these two concepts, referring to TCRE even if non-CO2 forcing is present, 
making the arguments difficult to follow, since the effective TCRE, per definition, is not 
necessarily linear, due to the non-linearities arising from non-CO2 forcing. This should be 
clarified throughout the text. 
 
Point well taken, and apologies for this confusion.  I have made efforts to clarify the definitions 
throughout. 
Based on earlier studies (e.g. MacDougall et al. 2015; Tokarska et al. 2019), I would expect that 
the apparent hysteresis behaviour depends on non-CO2 forcing scenario, and I am not 
convinced that observational constraints address this non-linearity.  
I have now noted these papers - but my paper is exploring uncertainties which are not present 
in these studies. MacDougal 2015 considers only a single feedback timescale (i.e. constant 
sensitivity parameter) - therefore is omitting the major development considered here. Tokarska 
2019 uses only a single model configuration in which thermal effects and carbon cycle 
nonlinearities cancel to produce a near constant TCRE - but the results are not generalised to 
all possible configurations of the model, Neither study is addressing the key issue here - 
whether historical temperatures can constrain the free parameters of model which allows for 
feedbacks on multiple timescales. 
 
Furthermore, if considering TCRE to CO2-emissions alone (with no non-CO2 influence), TCRE 
would likely be fully reversible (no hysteresis)- e.g. see Figure 2a in MacDougall et al. 2015.  
 
Figure S3 shows the response to CO2 emissions alone for each posterior parameter 
distribution.  The effective TCRE is clearly different to the TCRE, as would be expected, but the 
hysteresis behaviour is not strongly influenced by the non-CO2 forcing - arising primarily from 
unresolved uncertainty on fraction of warming to date which is explained by slow timescale and 
fast timescale feedbacks. 



 
Thus, regarding Figure 1, I would suggest discussing the effect on CO2-only response 
separately, as I suppose most of these non-linearities arises due to the specific nonCO2 
emission scenarios, and is not necessarily an inherent property of TCRE alone. One way to 
address this issue would be to repeat the analysis using CO2-only simulations (according to 
RCP 2.6 scenarios), to illustrate if such hysteresis also arises in the absence  of non-CO2 
forcing. 
Thanks for this suggestion - I have conducted the sensitivity study as suggested, which 
illustrates that although non-CO2 forcing assumptions do scale inferred TCRE, they do not play 
a strong role in hysteresis on a multi-century timescale (illustrated in supplemental figure S4). 
Scenarios with non-CO2 forcers set to zero show different apparent TCRE in RCP8.5 (as 
expected), but the hysteresis behaviour in RCP2.6 remains primarily a function of the choice of 
prior assumptions on the model behavior. 

References: 
MacDougall, A. H., Zickfeld, K., Knutti, R. Matthews, H. D. Sensitivity of carbon budgets 
to permafrost carbon feedbacks and non-CO2 forcings. Environ. Res. Lett. 10, 125003 (2015). 
Tokarska, K. B., Zickfeld, K. Rogelj, J. Path independence of carbon budgets when 
meeting a stringent global mean temperature target after an overshoot. Earth’s Future (2019). 

Specific comments: 
Lines 15-25: Please note that TCRE refers to CO2-only induced warming (originally defined in 
simulations where atmospheric CO2 concentrations increase at a rate of 1 
Corrected as suggested 
 
 
Lines 20-25: I found this sentence confusing and inaccurate: ‘the range of TCRE values 
observed in Earth System Models (ESMs) can be used to infer model-based carbon budgets 
which are compatible with 1.5 and 2 degree Celsius targets of the Paris Agreement. . .” Is this 
referring to model-based TCRE that is used then in conjunction with other quantities (such as 
estimates of observed warming and future warming from non-CO2 forcing, as in Rogelj et al. 
2019a framework) to infer remaining carbon budgets? Or is this sentence referring to carbon 
budgets at 1.5 C and 2.0C directly inferred from ESM output, as in AR5, for example? (in that 
case, those budgets already account for CO2 and non-CO2 warming in RCP scenarios, for 
example), but those budgets are not calculated directly from TCRE. 
Paragraph completely rewritten in light of the reviewer’s comment. 
 
Lines 115-125: Since CO2 emissions follow different trajectories, but non-CO2 forcing follows 
the RCP 2.6 trajectory for each section, it is unclear how is the role of non-CO2 forcing distinct 
from CO2-induced changes? TCRE is pathway independent for CO2 emissions (both positive 
and negative), but if non-CO2 emissions are evolving in time (according to the RCP 2.6 



scenario), the effective TCRE (to CO2 and non-CO2 forcing) is scenario-dependent, and heavily 
depends on the chosen non-CO2 scenario. 
e.g. Reference: Mengis, N., Partanen, A.-I., Jalbert, J. Matthews, H. D. 1.5 ◦ C carbon budget 
dependent on carbon cycle uncertainty and future non-CO2 forcing. Sci Rep 8, 5831 (2018). 
 
I’ve added a paragraph at the end of section 2.1 to discuss non-CO2 forcers.  But the CO2-only 
experiments in Figure S3 show fairly convincingly that this is not the major factor in explaining 
the possibility for hysteresis without the RWF prior. 

4. Robustness of TCRE under negative emissions 
Please note that there are several recent studies using climate models of different complexity, 
including comprehensive ESMs and EMICs, that should be cited on lines 30-40. Currently, the 
paper gives an impression that this topic has not been studied in depth, while quite the opposite 
is true. Some discussion of these more recent studies would also be helpful on lines 25-40. 
 

Regarding Earth system response to negative emissions in ESMs and EMICs: 

Ehlert, D. Zickfeld, K. Irreversible ocean thermal expansion under carbon dioxide removal. Earth 
System Dynamics 9, 197–210 (2018). 
Tokarska, K. B. Zickfeld, K. The effectiveness of net negative carbon dioxide emissions 
in reversing anthropogenic climate change. Environ. Res. Lett. 10, 094013 (2015). 
Thanks - these are added in a new dedicated paragraph in the introduction on EMICs 
 
Jones, C. D. et al. Simulating the Earth system response to negative emissions. Environmental 
Research Letters 11, 095012 (2016). 
Mentioned in a dedicated paragraph on ESMs 

Regarding TCRE behaviour under negative emissions: 

Zickfeld, K., MacDougall, A. H. Matthews, H. D. On the proportionality between global 
temperature change and cumulative CO2 emissions during periods of net negative CO 2 
emissions. Environ. Res. Lett. 11, 055006 (2016). 
 
Noted in the EMIC discussion 
Tokarska, K. B., Zickfeld, K. Rogelj, J. Path independence of carbon budgets when meeting a 
stringent global mean temperature target after an overshoot. Earth’s Future (2019). 
Noted in the EMIC discussion 
 
MacDougall, A. H., Zickfeld, K., Knutti, R. Matthews, H. D. Sensitivity of carbon budgets to 
permafrost carbon feedbacks and non-CO2 forcings. Environ. Res. Lett. 10, 125003 (2015). 
Noted in the EMIC discussion 
 



Lines 30-35: ‘[TCRE] robustness in complex models under large negative emissions is relatively 
unexplored’ – There are at least several recent studies that look at ESM model responses under 
different amounts of negative emission scenarios, and reversibility of TCRE after an overshoot 
(see several examples above). 
Noted in the ESM discussion 
 
 
Lines 80-85 claim that the TCRE relationship is not robust under negative emissions. However, 
it is unclear what fraction of this hysteresis behaviour is due to non-CO2 forcing. In 
intermediate-complexity model (UVic ESM) TCRE is reversible under negative CO2 emissions. 
At least a discussion of this claim in the context of these two following studies would be helpful 
here. 
This paragraph has been highly restructured, with a more extensive literature review. I now note 
in the EMIC paragraph in the introduction that the net negative emission cumulative emission 
behavior is well tested in the U.Vic model.  It is also noteworthy that the vast majority of the 
literature on the matter is conditional on the structural assumptions in a single EMIC - with very 
few studies formally sampling uncertain parameters of the model in tests of reversibility. 
 
Lines 105-110: Figure 1b is not discussed in the previous section. I find it unconvincing why the 
TCRE framework would not hold under negative emissions even if model output is constrained 
by temperature and cumulative CO2 emissions (see major point above regarding reversibility ). 
Please explain more your claim, possibly process-wise). Also, this hysteresis in the effective 
TCRE shown here may arise due to time-dependent non-CO2 forcing. Please see my 
comments below and in the above section 3 regarding the separation of CO2 and non-CO2 
effects on the reversibility of TCRE. 
As noted in the previous section, in this setup, the non-CO2 forcers are not a significant factor in 
the potential for hysteresis (the dominant factor being whether a prior is assumed for RWF or 
long term ECS).  The model with the RWF prior does show more hysteresis in the all-forcing 
RCP2.6 compared with the CO2-only RCP2.6 (Figure S4(c)), but the choice of prior is by far the 
dominant constraint on hysteresis-like behavior in the model (compare Figure S4(a) with S4(c)) 
 
 
Line 80: This paragraph suggests that TCRE relationship is not robust under negative 
emissions. However, TCRE (due to CO2 emissions alone, as originally defined) has shown to 
be reversible in overshoot scenarios with negative emissions, including RCP scenarios (see 
major point 3 above). 
I would argue it has not been shown to be true in a general sense - it has been demonstrated, 
for the most part, to hold in the UVic model, with limited evidence on shorter timescales in 
ESMs, and for simple climate models making strong structural assumptions on feedback 
timescales. 
 The non-linearity probably arises due to time-varying non-CO2 forcing. This should be clarified 
here, 



As for the point above  - supplemental plot S3 shows that the potential for hysteresis arises from 
the timescale dynamics of the thermal response, not from non-CO2 forcing assumptions. 
 
 and please refer to effective TCRE, if non-CO2 forcing is included.  
corrected 
Also, this behaviour depends on non-CO2 forcing scenario, and I am not convinced that 
observational constraints address this 
See response to major point 3  and  figure S3 
 
Non-linearity. 
 
Lines 85 to 90: I would suggest discussing the effect on CO2-only response separately, as I 
suppose most of these non-linearities arises due to the specific non-CO2 emission scenarios, 
and is not necessarily an inherent property of TCRE alone. 
See response to major point 3 and  figure S3 
 
Line 107: ‘cumulative emissions framework is not guaranteed to hold under negative emissions’ 
– This is a strong statement, which I am not convinced about. I would expect non-CO2 forcing in 
RCP 2.6 to be responsible for this hysteresis, and if considering RCP 2.6 CO2-only simulation, 
this hysteresis effect would be a lot smaller, if at all Present? 
See response to major point 3 and  figure S3 
 

5. Committed warming (after emissions reach net-zero): 
The paper refers to peak warming occurring after the emissions reach net-zero. However, there 
is no discussion with the literature on the committed warming occurring after emissions are 
stopped, which is directly relevant to the carbon budgets framework. For example, a short 
mention in the introduction (e.g. lines 25-40) and a discussion of how this paper fits within 
earlier studies would be valuable. 
 Ehlert, D. Zickfeld, K. What determines the warming commitment after cessation of CO 2 
emissions? Environ. Res. Lett. 12, 015002 (2017). 
 MacDougall, A. H. et al. Z. M. MacDougall, A.H, Frölicher, T.L., Jones, C.D., Rogelj,J., 
Matthews, H.D., Zickfeld K., Arora, V.K., Barrett, N.J., Brovkin, V., Burger, F.A., Eby, M., 
Eliseev, A.V., Mokhov, I.I., Hajima, T., Holden, P.B., Jeltsch-Thömmes,A., Séférian, R., Michou, 
M., Shaffer, G., Sokolov, A., Wiltshire, A., Ziehnand, T., Menviel, L. How much warming remains 
in the pipeline? A multi-model analysis of the CO2 zero emission commitment. (discussion 
paper/ in review). https://www.biogeosciencesdiscuss.net/bg-2019-492/ 
 
Thanks for these suggestions - the papers are now discussed in the introduction. 
 
Also, regarding the parameter choices and how they influence TCRE – perhaps it would be 
valuable to discuss the results of this study in the context of earlier studies, for example: 

https://www.biogeosciencesdiscuss.net/bg-2019-492/


MacDougall, A. H., Swart, N. C. Knutti, R. The Uncertainty in the Transient Climate Response to 
Cumulative CO2 Emissions Arising from the Uncertainty in Physical Climate Parameters. J. 
Climate 30, 813–827 (2016).  
Thanks - paper noted in introduction. 
 
Lines 170-175: I would suggest also discussing the zero-emission commitment (see examples 
above), which suggests, that on average, ZEC is close to zero for CO2 emission pathways (in 
ESMs).  
 Noted - for decadal timescales - but the focus of this study is century timescales.  The 
MacDougal paper itself shows a large diversity of response on century timescales (Figure 3a, 
https://www.biogeosciences-discuss.net/bg-2019-492/) , with only a subset of models having 
performed integrations long enough to assess the long term response.  
Also, part of the difference between the threshold exceedance and avoidance budgets may be 
non-CO2 forcing, which is not part of the TCRE relationship (it would be part of the effective 
TCRE, which, however, is not expected to be linear due to non-CO2 influence). Please see 
above major comments regarding framing. 
I’ve now noted this point in the discussion. 
 
Line 60: Please note that recent studies suggest that the peak warming after emissions are 
zeroed is likely to be close to zero (see examples above) 
Note that the focus of this study is on century timescales - where the MacDougal 2019 review 
shows a large diversity of sign and magnitude of post-cessation warming. 
 

6. Long-term uncertainties in the context of overall carbon budget 
uncertainties 
Lines 215-220: It would be good to put it in the context of other uncertainties on carbon budgets 
(see IPCC SR Ch2, Table 2.2). I would expect that other uncertainties such as permafrost 
carbon cycle feedbacks, model response to non-CO2 forcings, and nonCO2 forcing scenario 
uncertainty are still the dominant sources of uncertainness in the remaining carbon budgets. 
 
Thanks for this suggestion.  I’ve quantified the impact of the prior assumption uncertainty on 
2100 budgets in the results section, added a new figure S12 to illustrate budgets as a function 
of time in each experiment.  I’ve also added a discussion paragraph to consider these 
uncertainties in the context of other factors, as you suggest, tabulated in SR1.5 Table 2.2 
 

Minor suggestions: 
Title: I would suggest for the title to reflect more that the scope of this paper is also 
focusing on carbon budgets and TCRE framework 
Fair point.  

https://www.biogeosciences-discuss.net/bg-2019-492/


 
Title is now: The role of prior assumptions in carbon budget calculations 
 
Abstract: The abstract gives the impression that the main source of uncertainties for near-term 
policy decisions is future negative emissions capacity and the long-term response to climate 
forcers as the main sources of uncertainty in the near-term policy decisions. However, carbon 
budgets and related net-zero emissions targets are subject to much larger transient uncertainty 
from the future non-CO2 forcing (at the time of 1.5C or target warming level), and climate 
models’ response to non-CO2 forcing, which varies largely among models, contributing to a 
large spread in the remaining carbon budgets. (See IPCC Special Report, Chapter 2, Table 2.2. 
therein for quantification of different sources of uncertainties). While non-CO2 forcing is not the 
main scope of this paper, I would suggest revising this framing to avoid the misconception about 
the key sources of uncertainties in the remaining carbon budgets and near-term emission 
Targets. 
Thanks for this - and I agree, non-CO2 forcing uncertainty should be discussed in the abstract. 
 
Abstract: ‘definite cumulative emissions budget’ -I would suggest following terminology from 
Rogelj et al. 2019a framework, for consistency with other studies. Please specify if that is 
referring to the total or remaining budget? 
 
Done - abstract rewritten to support the Rogelj model (a paper which came out during the late 
stages of writing) 
 
Lines 90-100: While it is an interesting discussion, it is unclear how it relates to the transient 
timescales shown on Figure 1. (For example, it would be interesting to see the emulator 
behaviour until year 3000, for example, to assess the effect of non-linearities discussed in this 
study). 
 
Added Supplemental Figure S16 to show evolution up to year 3000 for all simulations. 
 
Figure 2 c. I found this plot confusing, and it is unclear what the baselines are. Following the 
SR1.5 and Rogelj et al 2019b recommendations, I would suggest plotting only the warming 
since 2006-2016, and offset it (as in SR 1.5 Table 2.2), so that the 1.5C and 2.0C target levels 
are clearly readable,  
Done. x- and y-axis now anomalies from 2010. 
 
Are cumulative emissions since 2010 or since 2020? (the figure caption and x-axis labels are 
inconsistent or confusing).  
 
Now 2010 throughout. 
Similarly, I suggest using the present-day warming baseline (as in SR 1.5), for consistency, in 
the whisker plots.  
Done. 



 
Perhaps, to clarify the point of this figure, it would be also useful to show whisker plots for the 
remaining carbon budgets at the time when 1.5C and 2.0C target is reached for the first time 
(before the overshoot), which would help to illustrate the difference in the transient and 
long-term budgets.  
 Thanks for this suggestion.  Done. 
 
However, they are not expected to be the same due to the ongoing non-CO2 forcing 
contribution. This point would need to be clarified as well. 
As noted in response to major point 3 - this is a factor, but a secondary one to the choice of 
prior on thermal response parameters. 
 
Lines 130-135: I found this paragraph unclear and confusing. It seems to be comparing carbon 
budgets calculated from scenarios that non-CO2 forcing is constantly evolving over time, with 
carbon budget estimates directly inferred from TCRE, but how that latter estimate accounts for 
the future contribution from non-CO2 forcing? 
I’ve removed the TCRE estimate comparison from the text and Figure 2d, now just citing the 
SR1.5. 
 
Lines 135-155 and Figure 3: It is unclear how the budgets can be compared for the different 
time periods, given that they entail different levels of non-CO2 forcing that is evolving in time in 
the simulations considered in this study. (i.e. since those budgets depend on the future 
non-CO2 forcing levels that differ, how can they be compared in a like-for-like manner?) 
The non-CO2 emissions are fixed here at RCP2.6 emission levels, but the forcing is allowed to 
vary as an uncertain parameter in the model configuration - and that uncertainty is represented 
in the vertical spread  of the distribution of points in Figure 3.  I’ve made efforts to make this 
clearer in the text.  
 
Lines 200-205: Perhaps a brief discussion in the context of more recent literature would be 
interesting (e.g. see Rogelj et al. 2019) 
Thanks - restructured such that the end of the discussion explicitly supports the Rogelj framing. 
 
Lines 205-215: Please note that carbon budgets should be calculated from anthropogenic 
warming estimate (Rogelj et al. 2019b. Haustein et al. 2017), which is not  subject to internal 
variability. Reference: Haustein, K. et al. A real-time Global Warming Index. Scientific Reports 7, 
15417 (2017). 
 
I disagree that the Haustein estimate is not subject to internal variability, for reasons I laid out in 
this realclimate piece: 
 
http://www.realclimate.org/index.php/archives/2017/10/1-5oc-geophysically-impossible-or-not/ 
 

http://www.realclimate.org/index.php/archives/2017/10/1-5oc-geophysically-impossible-or-not/


The thesis of which was that the anthropogenic warming estimate is itself particularly sensitive 
to temperatures in the last few years of the timeseries, and repeating the approach in a large 
ensemble produces a distribution of forced warming estimates varying by over 0.2K.  As such, 
I’m reluctant to recommend a regression approach as the preferred means of assessing forced 
warming trends for carbon budgeting.  
 
That said - in the context of the present paper, I agree that the regression reconstruction would 
be more skillful by mid-century - and have cited these references in this context. 
 
 
 
  



Response to reviewer 2 
 
Summary: This study explores the long-term warming of climate for heavily mitigated scenarios, 
discussing the reasons behind changes in the sensitivity of warming to cumulative carbon 
emitted over time. An efficient model ensemble is generated and integrated with both prescribed 
concentration pathways (e.g. Figure 1), and an adaptive pathway algorithm to generate warming 
scenarios that restore towards the desired warming targets (e.g. Figure 2). 
 
The study discusses how the required mitigation efforts are affected by changes in the 
sensitivity of surface warming to cumulative carbon emitted over time (the TCRE), and how a 
constant TCRE framework may not be able to account for such effects. 
 
I found the study, as currently written, difficult to place in the context of existing literature. In 
particular, this study is missing comparisons to existing literature using 
observationally-constrained ensembles to explore the future carbon budget, adaptive mitigation 
pathways, and the time evolutions of effective climate sensitivity and transient climate response 
to emission. 
 
Before such comparisons are made, it is difficult to say what in this study is new, and how it fits 
within existing knowledge. 
 
Many thanks to the reviewer, 
 
I have made efforts to clarify the framing in the revised version. The central focus of the study, 
and novel aspects are: 
 
1 - the adequacy of TCRE-based carbon budgeting for temperature stabilization targets and the 
potential for hysteresis in the cumulative carbon-temperature relationship. 
2 - how including different types of common prior assumptions (which vary across the literature) 
in the Bayesian model can alter the appropriateness of meta-frameworks for policy such as 
carbon budgeting. 
 
The use of adaptive pathways and the simple model itself were never intended to by the novel 
aspects of this study (the adaptive mitigation pathway concept follows previous studies - 
Sanderson et al 2016, Sanderson et al 2017).   That said, I apologise for missing important 
comparisons in the methodological aspects of the study.  I've endeavoured to place the revised 
version in the context of the studies raised - which are certainly relevant. 
 
In particular, the Goodwin studies are very relevant and make good efforts to quantify the 
effects of prior assumptions - but they do not focus on the question of reversibility and 
hysteresis.  However, there are a number of studies and approaches in common usage which 



make stronger structural assumptions (fixed lambda or RWF) which are used to justify the 
cumulative emissions budgeting framework.  The point of this study is to examine those 
assumptions, and how they influence model dynamics if imposed. 
 

Major points: Significant areas of existing literature missing from 
discussion. 

1. Observation-constrained ensembles exploring the future carbon budget 
The study as currently written is missing comparisons to existing literature on 
observation-constrained calculations of future carbon budget for this century (Goodwin et al., 
2018a) and out to year 2300 (Goodwin et al., 2018b) generated using the WASP model. 
 
Many apologies for these omissions. I now discuss the papers in both results and introduction. 
 
More details are required for the method used here for generating an observationally 
constrained ensemble. A full methodology needs to be presented containing prior assumptions, 
observational constraints and how the observational constraints are applied.  
The method has been expanded, and now incorporated into the main text body. 
 
This method used here should then be compared to the Monte Carlo plus history matching 
method presented in Goodwin et al. (2018a). 
 
This is a good point.  I now discuss the Goodwin paper at the start of the optimization chapter - 
because it represents an important design choice.  In FAIR, at least - the Python code requires 
seconds to run  - which made MCMC quite impractical to optimize the model (though a brief 
inspection suggests that in WASP, as compiled C++ code, might be fast enough). 
  
The solution I proposed was to recode the core elements of the FAIR as a pulse-response 
model, fast enough that full MCMC is feasible to estimate the posterior (i.e. thousands of 
simulations per second) - which avoids the design issues of history matching (difficulty in 
automation of the selection of cutoff values and sampling uniformly from the posterior).  
 
But - I accept that my approach has downsides, the model is an accurate representation of the 
FAIR core dynamics - but every aspect of the model and forcing must be represented in the 
pulse/response framework, which might limit further developments (e.g. a more detailed 
breakdown of non-CO2 forcers 
  
Note that both Goodwin et al. (2018a) and (2018b) studies adopt an efficacy on the ocean heat 
uptake, which is equivalent to allowing the effective climate sensitivity to change over time 
(where the ocean heat uptake efficacy is greater than 1 the effective climate sensitivity in the 



present day is less than the equilibrium climate sensitivity on multi-century timescales, and 
where the efficacy is less than 1 the effective climate sensitivity for the present day is greater 
than the equilibrium value). As such, both studies allow the effective climate sensitivity to vary 
implicitly over time, and do not assume a relationship between TCR and ECS like the FaIR 
model studies (an approach which this study critiques).  
I’ve now explicitly noted in the discussion that WASP does not contain this prior assumption. 
 
The fact that no relationship is assumed between TCR and ECS in this study is currently 
discussed, but to assess whether the method is novel is needs to be compared to the WASP 
model methodology, for which this is also true. 
 The novelty in this study is not the omission of the TCR/ECS relationship - but the point that 
including it or not has large implications on the robustness of the TCRE framework. 

2. Comparison to adaptive mitigation pathway algorithms in the literature 
The Goodwin et al (2018b) study in Earth’s Future presents and uses an adaptive mitigation 
pathway approach to restore a large ensemble of observation-constrained efficient model 
simulations to 1.5 and 2.0 ◦ C targets – in a very similar manor to the results presented in this 
study in Figure 2. Given the similarity of the method, the results in this study should be 
compared to this existing Goodwin et al (2018b) study in the literature. The ‘Adaptive scenario 
design’ used here (Figure 2, Appendix A1.2) should be compared to the ‘Adaptive Mitigation 
Pathway’ algorithm presented in Goodwin et al (2018b) and used in Brown et al. (2018) and 
Nicholls et al (2018). The resulting model output in this study, for compatible carbon emission 
pathways, should then be compared to the similar output generated in these previous studies in 
the literature. 
 
I have now cited Goodwin 2018b as also using an adaptive scenario design.  However, the 
approach considered here follows our earlier works, which predate the Goodwin studies 
(Sanderson et al 2016, used in Sanderson et al 2017) - which detail the methodology for 
adaptive mitigation pathways used here.   As such, I didn’t consider this aspect of my present 
study to be novel.  I am simply applying an established approach to produce idealized 
pathways.   Apologies if this was unclear in the previous version. 
There are, however, some interesting distinctions between the two approaches.  Sanderson 
2016 is ‘forward looking’ - i.e. scenario parameters are iteratively adjusted until targets are met, 
while Goodwin 2018b represents to some degree the state of knowledge of decision makers 
based on observed TCRE.  I’ve noted this at the start of Section 2.2. 

3. Comparisons to existing literature on the reasons behind continued 
warming after emissions cease and the non-constancy of the TCRE 
This study is missing comparisons to existing literature: 
 



on the reasons behind continued surface warming after emissions cease (e.g. Frölicher et al., 
2014; Williams et al., 2017a) 
These are now cited in the introductory paragraphs on ZEC. 
 
 on the reasons behind near-constancy (or otherwise) of the TCRE (e.g. Goodwin et al., 2015; 
Williams et al., 2017b). 
I now cite both papers in the introduction in the paragraph introducing TCRE. 
 
 One of the potential reasons that TCRE is non-constant is a change in effective climate 
sensitivity. However, other possible reasons are discussed in the studies mentioned here. The 
reasons behind nonconstancy of the TCRE in the model simulations presented here should be 
quantified in a way that relates to previous studies in the literature such as these. 
 
This is an interesting point.  The pulse-response framing here and the gradient framing of 
Goodwin 2015 potentially give two different perspectives on the role of the ocean which are 
perhaps complementary.   In the Goodwin framework - the TCRE at a given time is decomposed 
into the dependence of surface warming on radiative forcing, the fractional dependence of 
radiative forcing from atmospheric and the dependence of radiative forcing from atmospheric 
CO 2 on carbon emissions, each of which evolve in time and whose interaction explains why 
TCRE remains constant (or not). 
 
The  Greens function/pulse response method used here could provide a different framing, with 
discrete responses to emissions which emerge on different exponentially decaying timescales. 
The model is already defined in terms of the set of exponential decays which describe p_CO2 
as a function of emissions, and a second set which define warming as a function of p_CO2. 
The response parameters do not evolve in time because the time evolution is coded into the 
pulse response.  As such - one can clearly see the effect of a prior on timescales of model 
response (e.g. imposing the RWF prior suppresses the long timescale sensitivity parameter). 
 
I see these two frameworks as being complementary, the advantage of this approach being that 
it provides fixed parameters which can then be estimated for the real world (rather than 
time-evolving diagnostics) - and have added a paragraph to this effect in the discussion.  A 
comprehensive use of the Greens function description as a framework for decomonsing system 
response to be compared the Goodwin framework is beyond scope in an already long paper, 
given it’s not the focus - but it would make for an interesting followup which I’d be keen to work 
on. 
 



4. Constraints on the time-evolution of effective climate sensitivity in the 
literature  
One effect leading to a change in TCRE over different response timescales is that the effective 
climate sensitivity also evolves over different response timescales. Again, here the discussion is 
missing sections of the literature. 
 
 For example, Goodwin (2018) generates a large ensemble of model simulations with explicitly 
time-evolving effective climate sensitivity, and then uses historic observations to constrain how 
effective climate sensitivity evolves on different response timescales. This reveals an increase in 
effective climate sensitivity over time (Goodwin, 2018) that will, crucially for this study, affect 
future mitigation requirements for a given warming target. Rohling et al. (2018) presents a 
similar account of time-evolving effective climate sensitivity from a paleo-perspective. These 
studies should be discussed and the results of this study compared to these previous findings. 
 
I now discuss this study in some length in the discussion as a proposal for future work.  Broadly 
- the non-stationarity of EffCS and TCRE mean that attempts to quantify these parameters from 
observations should be qualified - and that an alternative is to explicitly calibrate carbon and 
thermal feedbacks on different timescales.  To do this properly requires future work - specifically 
considering additional information (other than global mean evolution) which might be used to 
constrain system response at different timescales.  
 
It should also be noted that unlike the FaIR model methodology that is currently discussed for 
comparison (e.g. section 2, Lines 170-185), the WASP model methodology in Goodwin et al. 
(2018a; 2018b) and Goodwin (2018) does not assume a prior relationship between TCR and 
ECS or a near-constant TCRE. Therefore, comparisons to the WASP methodology deserve a 
separate discussion in section 2. 
Now noted - I broadly cite the Goodwin 2018 approach as being an example of using a 
geological prior on ECS, in contrast to FAIR which uses a prior on RWF. 
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Abstract. Cumulative emissions budgets and net-zero emission target dates are often used to frame climate negotiations (Frame

et al., 2014; Millar et al., 2016; Van Vuuren et al., 2016; Rogelj et al., 2015b; Matthews et al., 2012). However, their utility for

near-term policy decisions is confounded by an uncertainties in future negative emissions capacity (Fuss et al., 2014; Smith

et al., 2016; Larkin et al., 2018; Anderson and Peters, 2016),
:::
the

::::
role

::
of

:::::::::
non-CO2

::::::
forcers

::::::::::::::::::::::
(MacDougall et al., 2015) and in

long term Earth System response to climate forcers (Rugenstein et al., 2019; Knutti et al., 2017; Armour, 2017)which
::::::
forcing5

::::::::::::::::::::::::::::::::::::::::::::::::
(Rugenstein et al., 2019; Knutti et al., 2017; Armour, 2017).

:::::
Such

::::::::::
uncertainties

:
may impact the utility of an indefinite

:::::::
absolute

carbon budget if peak temperatures occur significantly after net zero emissions are achieved, the likelihood of which in a simple

model is
:
is

::::::
shown

::::
here

::
to

:::
be conditional on prior assumptions about the long term dynamics of the Earth System. Here we

illustrate that the risks associated with near term positive emissions can be framed using a definite cumulative emissions budget

with a 2040 time horizon, allowing
::
In

:::
the

:::::::
context

::
of

:::::
these

:::::::::::
uncertainties,

:::
we

:::::
show

::::
that the necessity and scope for negative10

emissions deployment later in the century to be better informed by observed warming over coming decades
::
can

:::
be

::::::::::
conditioned

::
on

::::
near

::::
term

:::::::::
emissions,

::::::::
providing

::::::
support

:::
for

:
a
:::::::
scenario

::::::::::
framework

:::::
which

::::::
focuses

:::
on

::::::::
emissions

:::::::::
reductions

:::::
rather

::::
than

:::::::
absolute

:::::::::::::::::::::::
budgets(Rogelj et al., 2019b).

Introduction

The climate policy discussion has adopted some convenient frameworks which act as proxies for the drivers and consequences15

of climate change. For example, it is broadly assumed that climate risks scale with global mean temperature (O’Neill et al.,

2017). International climate agreements have thus been framed in this context (United Nations, 2015), necessitating Earth sys-

tem parameters which relate future emissions trajectories to temperatures. This relationship is often framed through the Tran-

sient Climate Response to cumulative carbon Emissions (TCRE - the ratio of the globally averaged transient
:::
CO2:::::::

induced
:
sur-

face temperature change per unit carbon dioxide emitted, Rogelj et al. (2019a); Allen et al. (2009); Millar et al. (2016); Matthews et al. (2009); Gillett et al. (2013)20

). This convenient relationship allows the direct translation of temperature targets into available carbon budgets and derives

from the apparent
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rogelj et al., 2019a; Allen et al., 2009; Millar et al., 2016; Matthews et al., 2009; Gillett et al., 2013)

:
).

::::
This near linear relationship between cumulative emissions and surface temperatures

:
is

:
seen in many climate simulations

(England et al., 2009). Under the TCRE framework, the emissions budget constraint is dependent on a single parameter and the

1



range of TCRE values observed in Earth System Models (ESMs)can be used to infer model-based carbon budgets which are25

compatible with the 1.5 and 2 degree Celsius targets of the Paris agreement (Gillett et al., 2013)
::
on

:::::::
decadal

::
to

::::::
century

:::::::::
timescales

:::::::
provides

:
a
:::::
basis

:::
for

:::::::::
cumulative

::::::
carbon

::::::
budgets

::::::::::::
corresponding

::
to
::::::::::
temperature

::::::
targets

::::::::::::::::::::::::::::::::::
(England et al., 2009; Gillett et al., 2013)

:
,
::::::
though

::
its

::::::::::
application

::
to

:::::::::
real-world

::::::
carbon

::::::
budgets

::
is
:::::::::::
complicated

::
by

:::
the

:::::
effect

:::
of

::::::::
non-CO2

::::::
forcers.

::::
The

::::::::
"effective

:::::::
TCRE"

::::::::::::::::::::
(Matthews et al., 2017a)

:
is
::::
thus

:::
the

::::::::
warming

:::
rate

::::
per

:::
unit

::::::
carbon

:::::::
dioxide

::::::
emitted

::
in
::

a
:::::::
scenario

::::::
where

::::::
forcers

::::
other

::::
than

:::::
CO2

::
are

::::::
acting

:::
on

:::
the

::::::
system

:::::
(such

:::
as

:::::::
aerosols

:::
and

:::::
other

::::::::::
greenhouse

::::::
gases),

::::::
which

::::
adds

:::::
some

::::::::::
uncertainty

::
to

:::
the

:::::::::
estimation

:::
of30

:::::
carbon

:::::::
budgets

::::::::::::::::::::::::::::::::::
(Mengis et al., 2018; Rogelj et al., 2015a).

Meanwhile, understanding
::::::::::::
Understanding of how the Earth System reaches equilibrium in response to climate forcing has

advanced ; recent
:
in
::::::

recent
:::::
years;

::
a
:::::::
number

::
of

:
studies have highlighted that existing 150 year simulations are insufficiently

short to assess the Equilibrium Climate Sensitivity (ECS, the equilibrium response of surface temperatures to a doubling of

carbon dioxide concentrations) of General Circulation Models, and assuming a single feedback parameter associated with35

Effective Climate Sensitivity (Gregory et al., 2004) can lead to a significant underestimation of long term response (Gregory

and Andrews, 2016; Geoffroy et al., 2013; Senior and Mitchell, 2000; Winton et al., 2010; Armour et al., 2013; Li et al., 2013;

Rose et al., 2014; Andrews et al., 2018).

What is less clear at present is whether these findings have any relevance for the use of (effective) TCRE in emissions policy

decisions. Though the cumulative-emissions temperature relationship is relatively
:::
The

::::::
TCRE

:::::::::
framework

::
is robust in transient40

scenarios in which emissions remain mostly positive (Zickfeld et al., 2012; Krasting et al., 2014; Herrington and Zickfeld, 2014)

, its robustness in complex models
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zickfeld et al., 2012; Krasting et al., 2014; Herrington and Zickfeld, 2014; Goodwin et al., 2015)

:
,
:::
and

:::
its

:::::
value

:::
can

:::
be

::
to

:::::
some

::::::
degree

::::::::::
constrained

::
by

:::::::::
emissions

::::
and

:::::::
observed

:::::::::::
temperatures

:::
to

::::
date

:
-
::::
even

:::
in

:::
the

::::::
context

:::
of

:::::::::::
observational

::::::::::
uncertainties

:::::::::::::::::::::::::::
(Millar and Friedlingstein, 2018)

:
.
::::
This

:::::::::::::::
path-independence

::::
has

::::
been

::::::::
explained

:::
by

:::
the

:::
fact

::::
that

::::
both

:::
heat

::::
and

::::::
carbon

:::
are

:::::::
absorbed

::::
into

:::
the

:::::
ocean

:::
on

::::::
similar

:::::::::
timescales,

:::
the

::::::
former

:::::
acting

::
to
::::::
realize

::::::::
warming

::
in

:::::::
response

::
to
:::::::
forcing45

::::
while

:::
the

:::::
latter

:::::::
reduces

:::
the

::::::
forcing

::::
itself

:::::::::::::::::::
(Williams et al., 2016).

:

::::::::
However,

:::
the

:::::::::
robustness

::
of

::::::::::::::::::::
temperature-cumulative

::::::::
emissions

::::::
scaling

:::
in

:::::
Earth

::::::
System

:::::::
Models under large negative emis-

sions is relatively unexplored
::
on

::::::
longer

:::::::::
timescales

::
is

:::
less

::::
well

::::::::::
understood

:
(Boucher et al., 2012; Vichi et al., 2013; Cao and

Caldeira, 2010). Although an experimental design to test the long term robustness of TCRE under zero or negative emissions

(Jones et al., 2019) or the dynamics of equilibrium response to forcing (Rugenstein et al., 2019) have been proposed and would50

be highly valuable,
::::
only

:
a
:::::
small

::::::::
selection

::
of

:
Earth System Models have not generally performed this type of experiment to

date. Though such experiments have been performed in simple climate (Ricke and Caldeira, 2014; Millar et al., 2017c) and

some intermediate complexity models (Zickfeld and Herrington, 2015) where
:
,
::::::
finding

:::::
large

:::::::::::
uncertainties

::
in

::::
land

:::
and

::::::
ocean

:::::
carbon

:::::
sinks

::::::::::::::::
(Jones et al., 2016)

:::
and

::
in

:::
the

::::::::
long-term

:::::::::
dynamics

::
of

::::::::::
equilibrium

:::::::
response

::
to

::::::
forcing

:::::::::::::::::::::
(Rugenstein et al., 2019).

:

::::
Earth

:::::::
systems

:::::
model

::
of
:::::::::::
intermediate

:::::::::
complexity

::::::::
(EMICs)

::::
allow

::
a
::::
more

:::::::::::::
compuationally

:::::::
tractable

:::::::::
integration

::
of

::::
long

::::::::
timescale55

::::::
changes

::::
and

::
in

:::::
these

:::::
cases,

:
cumulative emissions-temperature proportionality has been observed, it rests to thoroughly test

whether these findings arise due to oversimplified modelstructure or prior assumptions on model parameters
:::::
found

::
to

:::
be

:::::::
relatively

:::::::::
insensitive

::
to

:::::::::
emissions

:::::::
pathway

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Zickfeld and Herrington, 2015; Tokarska and Zickfeld, 2015; Tokarska et al., 2019a; Zickfeld et al., 2016; Herrington and Zickfeld, 2014; Tokarska et al., 2019b; MacDougall et al., 2015)

:
.
::::::::
However,

::::
many

::
of

:::::
these

:::::
results

:::
are

::::::::::
conditional

::
on

:::
the

::::::::
structural

::::::::::
assumptions

::
of

:
a
::::::
single

:::::
EMIC:

:::
the

:::::
U.Vic

::::::
Model

:::::::::::::::::
(Weaver et al., 2001)

2



:
.
::::::
Within

:::
this

::::::::
structure,

:::::::::
parametric

::::::::::
sensitivities

:::
for

::::::
TCRE

:::::
itself

::::
have

::::
been

:::::::::::::::
comprehensively

:::::
tested

::::::::::::::::::::::
(MacDougall et al., 2017)60

:::
and

::::::::::
reversibility

::
in

:::
the

:::::
U.Vic

::::::
model

:::
has

::::
been

::::::
tested

::
to

:
a
::::::
degree

:::::::::::::::::::::::
(Ehlert and Zickfeld, 2018),

:::
but

:::::::::::
uncertainties

::::::
remain

::
in

:::::
these

:::::
results

::::
due

::
to

::::::::
structural

::::::::::
assumptions

:::
and

::::::::::
parametric

::::::
choices

::
in

:::
the

:::::
U.Vic

::::::
model.

:

::::::
Simple

::::::
climate

::::::
models

:::::
allow

:::
for

::::
very

:::
fast

::::::::::
simulations

:::::
which

:::
are

::::::
capable

::
of

:::::::::
wide-scale

:::::::::
parameter

:::::::
searches,

:::
but

::
in

:::::
many

:::::
cases

:::::
results

:::
are

:::
still

::::::
subject

::
to
::::::::
structural

:::::::::::
assumptions.

:::
For

::::::::
example,

:
a
::::
fixed

:::::::
climate

:::::::
feedback

:::::::::
parameter

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ricke and Caldeira, 2014; MacDougall and Friedlingstein, 2015)

::
or

:
a
:::::
prior

::::::::
constraint

:::
on

::::::
fraction

:::
of

::::::::::
equilibrium

:::::::
warming

::::::
which

:::
has

::::::
already

:::::
been

:::::::
realized

::
to

::::
date

:::::::::::::::::
(Millar et al., 2017c).

::::::
These65

::::::::::
assumptions

::::
have

::::
been

:::::
called

::::
into

:::::::
question

::
by

::::::
recent

:::::::
advances

::
in

::::::::::::
understanding

::
on

:::::
Earth

::::::
System

::::::::
response

::::::::
timescales

::::::::::::::::::::
(Rugenstein et al., 2019)

:
.
:::::
Other

::::::
models

:::
are

:::
less

::::::::::
structurally

::::::::::
constrained,

:::
but

::::::
assume

:::::
prior

::::::::::
information

::
on

:::
the

::::::::::
equilibrium

::::::
climate

:::::::::
sensitivity

::
of

:::
the

::::
real

:::::
world

:::::::::::::::::::
(Goodwin et al., 2018b)

:
.
:::
The

:::::
effect

:::
of

:::
this

:::
set

::
of

::::::::::
assumptions

:::
on

:::
the

:::::
TCRE

::::::::::
framework

:::
has

:::
not

::::
been

:::::::
assessed.

A number of
::::::
studies

::::
have

::::::::::
considered

:::
the

:::::
"Zero

::::::::
Emission

::::::::
Warming

::::::::::::
Commitment"

::::::
(ZEC),

:::
or

:::
the

::::::::
warming

:::::::
expected

:::::
after

::::::::
emissions

:::::
cease.

::::
This

:::::::
quantity

:::
can

:::::::::
potentially

::
be

:::::::
positive

::
or

:::::::
negative

::
in

:::::::
different

::::::
models

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(MacDougall et al., 2020; Ehlert and Zickfeld, 2017; Jones et al., 2019; Froelicher and Paynter, 2015; Williams et al., 2017)70

:::
and modifications to the cumulative emissions/ carbon budgeting framework have been proposed (Rogelj et al., 2019a) to allow

for additional corrections for non-CO2 forcings (Rogelj et al., 2015a),
::::::::::::::::::::::::::::::::::::::::::
(Rogelj et al., 2019a; Froelicher and Paynter, 2015)

::
to

:::::
allow continued post-zero emissions temperature evolution (Jones et al., 2019) and unforeseen earth-system feedbacks or

’tipping-points’ which change biosphere or climate feedbacks (Brook et al., 2013). An complementary framework proposes a

policy framework focused on net zero emissions and associated peak warming (Rogelj et al., 2019b). However, these frame-75

works are most useful if the zero emissions commitment is a small and finite correction to the net carbon budget, which is only

true if peak warming occurs within a small number of decades of net-zero emissions.

Aside from physical modeling uncertainties in the long term stability of the TCRE assumption, indefinite carbon budgeting

in policy making requires the combination of the effects of near term emissions reductions (Knutti et al., 2016; Rogelj et al.,

2016a; Eom et al., 2015) and long term carbon removal technology which is subject to large socioeconomic, technological and80

physical uncertainties (Fuss et al., 2014; Smith et al., 2016; Larkin et al., 2018).

Similarly, the framing of climate policy in terms of a net zero emissions target also combines decarbonization of infras-

tructure (of which some sectors are highly difficult (Bataille et al., 2018)) and mid-century negative emissions capacity. These

two components are conceptually different- ;
:
the former is at least partly a function of structural choices which are currently

available, while the latter is conditional on deeply uncertain biophysical (Smith et al., 2016), technological (Lomax et al., 2015)85

and social (Anderson and Peters, 2016) factors.

Here, we consider long term emissions scenarios in a simple model informed by recent advances in understanding in the

thermal response of the Earth system to climate forcing on a range of timescales (Armour et al., 2013; Geoffroy et al., 2013;

Winton et al., 2010; Held et al., 2010; Proistosescu and Huybers, 2017; Rugenstein et al., 2016), and how prior assumptions

on model parameters have an impact on the long term robustness of a cumulative carbon emissions budget and the possible90

commitment to long term negative emissions to maintain a stable climate. We discuss the plausibility of the Earth exhibiting

hysteresis behavior of
::::::::
hysteresis

::
in global mean temperature as a function of cumulative emissions and that peak warming may

occur
::
of

::::
peak

:::::::
warming

:::::::::
occurring significantly after net zero emissions have been achieved.
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Finally, we propose that a policy approach which relies primarily on indefinite carbon budgets is not useful in the light

of large geophysical and socioeconomic uncertainties, and that more robust decisions can be made if near term mitigation95

priorities are decided independently from absolute commitments on long term negative emissions capacity, which can be

revised later (Rogelj et al., 2019b). Furthermore, we show that global temperature evolution on the timescale of the mid 21st

century would enable a better constraint on future negative emissions requirements for temperature stabilization.

1 Results
::::::::
Methods

1.1 Can transient observations constrain model response?
:::::
Model

::::::::::
Description100

We first consider to what degree historical observations can constrain the long term coupled carbon-climate evolution of the

Earth System. To address this, we consider a
:
In

:::::
order

::
to

:::::::
produce

:
a
::::::::
posterior

::::::::
parameter

::::::::::
distribution

::::::::::
conditioned

::
on

:::::::::::
observations

::::
(and

:::
thus

:::::::::::
uncertainties

::
in

::::::
system

:::::::::
response),

::::
there

:::
are

:::::::
various

::::::::
strategies

::::::::::::::::::
(Emerick et al., 2011).

:

:::
Our

::::::::
approach

::::
here

:
is
:::::::
employ

:::::::
Bayesian

::::::::::
calibration,

:
a
::::::::::::
Markov-Chain

::::::
Monte

:::::
Carlo

::::::::
(MCMC)

::::::::::
optimization

::::::::::::::::::::::::
(Goodman and Weare, 2010)

::
in

:::::
which

::
a
::::::::
posterior

::::::::
parameter

::::::::::
distribution

::
is
:::::::::

iteratively
:::::::::
calculated

:::
by

::::
such

::::
that

:::
the

::::::
sample

:::::::
density

::
is

::::::::::::
representative

::
of

:::
an105

:::::::::
underlying

:::::::::
likelihood

::::::::
function.

::::
This

::::::::
approach

::
is
:::::::::

generally
:::::::::
considered

:::
as

::
an

::::::::
accurate

::::::::
approach

:::
but

:::
the

:::::::
number

:::
of

::::::
model

:::::::
iterations

::::::::
required

:
is
:::::
often

:::
too

::::::::::::::
computationally

:::::::::
demanding

::
to

::
be

::::::::
practical

::::::::::::::::::::
(Oliver and Chen, 2011).

:

:::::::::::::
Computationally

:::::::
efficient

::::::::::
alternatives

:::::::
include

:::::::
"History

:::::::::
Matching"

:::::::::
approaches

::::::
which

:::
rule

:::
out

::::::::
members

:::
of

:
a
:::::::
random

::::::
sample

:::::
which

:::
are

:::
not

::::::::
consistent

::::
with

::::::::::
observations

::::::::::::::::::::::::::::::::::::::::
(Goodwin et al., 2018b; Williamson et al., 2013),

::
an

::::::::
approach

:::::
which

::::
can

::::::::::
approximate

::
the

::::::::
posterior

:::
in

:
a
::::::::::::::

computationally
:::::::
efficient

:::::::
manner

::::::
subject

:::
to

::::::
careful

::::::::
treatment

:::
of

::::::::
stochastic

::::::
errors

:::
and

:::::
prior

:::::::::::
assumptions110

:::::::::::::
(Liu et al., 2003)

:
.
::::::::
However,

::
in

:::
the

::::::
present

:::::
study,

:::
the

:::
use

::
of

:::::::
MCMC

::
is

::::
made

:::::::
feasible

:::::::
through

::
the

::::
use

::
of

:
a
:::
fast

:
two timescale ther-

mal response model , with timescales of response representing the deep ocean and shallow ocean response (as in Proistosescu and Huybers (2017); Geoffroy et al. (2013)

). This
::::::::::
(comparable

::
to
:::::
those

::::
used

::
in

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Proistosescu and Huybers (2017); Geoffroy et al. (2013); Smith et al. (2018); Millar et al. (2017c)

:
).
:

:::
The

:::::::
thermal

::::::
model

::
in

:::::
FAIR

:::::::::
represents

:::::::::::
temperatures

:::
as

::
a

::::::::::
combination

:::
of

::::
two

::::::::::
components

::::
with

::::
fast

::::
and

::::
slow

::::::::
inherent115

:::::::::
timescales:

dTn
dt

:::

=
qnF −Tn

dn
;T =

∑
n

Tn;n= 1,2,

::::::::::::::::::::::::::::

(1)

:::::
where

:::
Tn::

is
::::::
global

:::::
mean

::::::::::
temperature

::::
and

:::
for

::::
each

:::::::::
timescale

::
n.

:::
Tn::

is
::::

the
:::::::::
component

:::
of

::::::::
warming

:::::::::
associated

::::
with

::::
that

::::::::
timescale,

:::
qn :

is
:::
the

::::::::
feedback

:::::::::
parameter

:::
and

:::
dn ::

is
:::
the

:::::::
response

:::::::::
timescale.

:::
We

:::::::
consider

:::
the

::::
heat

::::
flux

:::
into

:::
the

:::::::
shallow

:::
and

:::::
deep

:::::
ocean

::
to

::
be

::::::::
functions

::
of

:::
the

:::::
same

::::::::
timescale:

:
120

Rn = rn(F −Tn/qn);R=
∑
n

Rn;
∑
n

rn = 1;n= 1,2

::::::::::::::::::::::::::::::::::::::::::::

(2)
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:::::
where

::
rn::

is
:::
an

::::::
efficacy

:::::
factor

:::
for

::::
heat

::::::::
absorbed

::
by

:::
the

:::::
deep

::::::
(n= 1)

::
or

:::::::
shallow

::::::
(n= 2)

::::::
ocean,

:::::
which

::::
sum

::
to

:::::
unity

:::::
given

:::
the

::::::::
boundary

::::::::
condition

:::
that

::::::::::::::::::::
R(0) = F (0) = F4xCO2::

at
:::::
t= 0

::::::::
(allowing

:::
just

::::
one

::::::
degree

::
of

:::::::
freedom

::
r1::

-
:::
the

::::::
fraction

::
of

::::
heat

::::::
which

:
is
::::::::
allocated

::
to

::::
deep

::::::
ocean

:::::::
storage).

:::
The

:::::::
thermal

:::::
model

::
is

:::::
made

:::::::::
sufficiently

:::
fast

:::
for

:::::::
MCMC

:::::::::
calibration

::::
using

:::
the

::::::::
particular

:::::::
solution

::
to

:::
the

::::::::::
step-change

::
in

:::::::
forcing,125

:::::
which

:::
can

::
be

:::::::::
convoluted

::::
with

::
a

::::::
generic

::::::
forcing

:::::::::
timeseries

::
to

::::::
provide

:
a
:::::::
general

::::::
solution

::::::::::::::::::::::::::::::::::::::::::::::
(Ruelle, 1998; Ragone et al., 2016; Lucarini et al., 2017)

:
.
:::
The

:::::::::
particular

::::::::
solutions

:::
for

::::::::::
temperature

::::
and

:::::::
radiation

::::::::
response

::
to
::

a
::::
step

::::::
change

:::
in

::::::
forcing

:::::::
F4xCO2::

at
:::::

time
:::::
t= 0

:::
can

:::
be

::::::::
expressed

::
as

:
a
::::
sum

::
of

::::::::::
exponential

:::::
decay

:::::::::
functions:

Tp(t)
::::

= F4xCO2

2∑
n=1

qn(1− exp(−t/dn))

::::::::::::::::::::::::::::

(3)

Rp(t)
::::

= F4xCO2

2∑
n=1

rn(exp(−t/dn)),

:::::::::::::::::::::::::

(4)130

:::::
where

:::::
TP (t)

:::
is

:::
the

::::::
annual

::::::
global

:::::
mean

::::::::::
temperature

::::
and

::::::
Rp(t)::

is
:::
the

:::
net

::::::
top-of

::::::::::
atmosphere

::::::::
radiative

:::::::::
imbalance

::
at
:::::

time

:
t,
::::
and

:::::::
F4xCO2::

is
:::
the

::::::::::::
instantaneous

::::::
global

:::::
mean

:::::::
radiative

:::::::
forcing

:::::::::
associated

::::
with

::
a
::::::::::
quadrupling

:::
of

:::::
CO2,

:::::
taken

::::
here

::
to

:::
be

:::::::::::::::::::::::::
3.7Wm−2(Myhre et al., 2013).

:

:::
The

:::::::
thermal

:::::
model is coupled to a simple emissions driven pulse model (as in Myhre et al. (2013); Millar et al. (2017c); Smith et al. (2018)

, see additional material) in which each unit of emitted carbon dioxide is allocated to one of four pools with its own represen-135

tative decay time. We then ask whether
:
).

:::
The

::::::
carbon

:::::::
scheme

:::
has

::::
four

::::::::::
atmospheric

::::::
carbon

:::::
pools

::
Ri::::::

(where
::::::::
i= 0..3,

::::::::
following

::::::::::::::::
Myhre et al. (2013))

::::
with

::::::::::
dissipation

::::::::
timescales

:::
τi ::

as
:::::::
detailed

::
in

:::::
Table

::
1.

::::
Each

::::
unit

:::::
pulse

::
of

::::::::
emissions

::
is
::::::::
allocated

::
to

::::
each

:::
of

::
the

::::
four

:::::
pools

::::
with

::
a

::::::
fraction

:::
ai::

dRi
dt

= aiE(t)− Ri
τi
,

:::::::::::::::::

(5)

::
for

::::::
which

:::
the

:::::::
solution

::
for

::
a
:::
unit

:::::::::
emissions

:::::
pulse

:::
δ(t)

::::
can

::
be

:::::::
written:140

Ri(t) = ai(1− e−t/τi).
:::::::::::::::::::

(6)

:
A
:::::::
generic

::::::::
emissions

::::::::::
time-series

::::
E(t)

:::
can

::::
then

:::
be

::::::::
expressed

::
as

::
a

:::
sum

:::
of

::::::
discrete

::::::
pulses,

::::::::
allowing

:::
the

::::::::::::
corresponding

::::::
carbon

::::
pools

:::::
Ci(t)::

to
:::
be

::::::::
expressed

::
as

::
a

:::
sum

:::
of

:::::::::::::
pulse-responses

:::::
Ri(t)

Ci(t) =

t∫
0

dE(t′)

dt
Ri(t− t′)dt′.

:::::::::::::::::::::::::

(7)

::::::::::
Atmospheric

:::::
CO2 ::::::::::::

concentrations
::
C

:::
are

:::::::::
calculated

::
as

:::
the

::::
sum

:::
of

:::
the

::::
four

:::::
pools

:::::::::::::::::::
C(t) = C0 +

∑
iCi(t), :::

and
:::
are

:::::::::
converted145

:::
into

::
a
::::::::

radiative
::::::
forcing

:::::::
estimate

::::::::
assuming

:::
the

::::::::
standard

:::::::::
logarithmic

:::::::::::
relationship:
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F (t) =
F4xCO2

ln(4)
ln

(
C(t)

C0

)
+ frFaer +Fother,

::::::::::::::::::::::::::::::::::::::

(8)

:::::
where

::
fr::

is
:
a
::::
free

::::::::
parameter

::
to

:::::
allow

::::::
scaling

::
of

::::::
aerosol

::::::
forcing

:::::::::::
(conceptually

::::::::
allowing

:::
for

::::::
forcing

:::::::::
uncertainty

::
in

:::
the

::::::::
historical

:::::::::
timeseries),

::::
and

::::::::
FotherAnt::

is
:::
all

::::
other

::::::::::::
anthropogenic

:::
and

::::
and

::::::
natural

::::::
forcers

::::::::
(summed

::::
from

:::::::::::::::::::::::
(Meinshausen et al., 2011b)

:
).
::::
The

::::::
thermal

::::::::
response

:
is
:::::::::

calculated
:::
by

:::::::::
expressing

:::
the

::::::::
numerical

::::
time

:::::::::
derivative

::
of

:::
the

::::::
forcing

:::::::::
timeseries

::::
F (t)

:::::
where

:::
the

:::::::
change

::
in150

::::::
forcing

::
in

:
a
:::::
given

::::::::
time-step

::
in

:
a
:::::
given

::::
year

::::::
∆F (t′)

::
is

::::::::::::::::
[F (t′)−F (t′− 1)].

::::
The

::::::
forcing

:::::::::
timeseries

:::
can

::::
thus

::
be

::::::::
expressed

::
a
:::::
series

::
of

:::
step

:::::::::
functions,

:::
and

:::
Tp::::

from
::::::::
equation

:::
A1

:::
can

::
be

::::
used

::
to
::::::::
calculate

:::
the

::::::::
integrated

:::::::
thermal

::::::::
response.

:

T (t)
:::

=

t∑
t′=0

∆F (t′)

2∑
n=1

qn

(
1− exp

(
−(t− t′)
dn

))
,

::::::::::::::::::::::::::::::::::::::

(9)

::::
Heat

:::::
fluxes

::::
into

:::
the

::::
deep

::::::
(D(t))

:::
and

:::::::
shallow

:::::
(H(t))

::::::
ocean

::::::::::
components

:::
are

:::::::::
represented

:::
by

::::::::
numerical

:::::::::
integration

:::
of

:::
the

::::
slow

::::
(n=1)

::::
and

:::
fast

:::::
(n=2)

:::::
pulse

:::::::
response

:::::::::::
components

::
of

:::::
Rp(t)::

in
::::::::
Equation

::
4:155

D(t)
:::

= r1

t∑
t′=0

∆F (t′)exp

(
−(t− t′)

d1

)
,

::::::::::::::::::::::::::::

(10)

H(t)
::::

= (1− r1)

t∑
t′=0

∆F (t′)exp

(
−(t− t′)

d2

)
,

:::::::::::::::::::::::::::::::::

(11)

::::
This

:
is
:::::
again

:::::::::
performed

::
in

:
a
::::::::::::::
computationally

:::::::
efficient

::::::
manner

:::::
using

::::::::::
MATLAB’s

::::::
‘filter’

::::::::
function.

1.1.1
:::::
Model

::::::::::::
Optimization

:::
We

::::
then

:::::
assess

:::
the

::::::
degree

::
to

::::::
which the physical parameters of this simple model

:::::::
(detailed

::
in

:::::
Table

::
1)
:

can be constrained by160

historical transient information.
:::
The

:::::
Earth

::::::
system

:::::::::::
configuration

:::
of

:::
the

:::::
pulse

:::::
model

:::
has

::::::::::
time-series

:::::
inputs

:::::::::
emissions

::
of

:::::
CO2,

::::
along

:::::
with

:::::::
radiative

::::::::
estimates

:::::
from

:::::::::::::::::::::::
Meinshausen et al. (2011b)

:
of
:::::::::

non-CO2
::::::
forcing

::::::
agents.

::::
We

:::::::
optimize

:::
the

:::::::
thermal

::::::
model

:::::::::
parameters

:::
for

:
2
:::::::::
timescales,

:::
the

::::::
carbon

:::::::::
dissipation

::::::::::
parameters

:::
for

:
4
:::::
pools

:::
and

:::
the

::::::::
non-CO2

::::::
forcing

::::::
factor

::
fr.:

:::::::::::
Optimization

:
is
:::::::::
conducted

::::
with

:::
the

:::::::::::::::::::::::
Goodman and Weare (2010)

::::::
MCMC

::::::::::::::
implementation,

:::::
using

::
flat

::::::
initial

::::::::
parameter

::::::::::
distributions

::
as

:::::
shown

:::
in

:::::
Table

::
1,

:::
200

:::::::
walkers

::::
and

::::::
50,000

::::::::
iterations

:::
for

::::
each

:::::::::::
optimization.

:::::
Cost

::::::::
functions

:::
are

::::::::
computed

:::
for

::::::
global

:::::
mean165

::::::::::
temperature

:::
(T),

::::::
global

::::
CO2::::::::::::

concentrations
::::
(C),

:::::::
Shallow

::::::
Ocean

::::
Heat

:::::::
Content

:::
(H)

:::
and

:::::
Deep

::::::
Ocean

::::
Heat

:::::::
Content

::::
(D):

ET =
∑
t

(
(T (t)−TGCM (t))√

2σT

)2

:::::::::::::::::::::::::::

EC =
∑
t

(
(C(t)−CGCM (t))√

2σC

)2

,EH =
∑
t

(
(H(t)−HGCM (t))√

2σH

)2

,ED =
∑
t

(
(D(t)−DGCM (t))√

2σD

)2

,

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(12)
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::::
Long

::::
name

: ::::::
Symbol

::::::
Default

:::
Min

: ::::
Max

::::::::
Geological

::::::::::
re-absorption

::::::
fraction

: ::
a0 :::

0.26
: ::

0.1
::
.3

::::
Deep

:::::
ocean

::::::::::::::::
invasion/equilibration

::::::
fraction

::
a1 :::

0.14
: ::

0.1
::
.3

::::::::
Biospheric

::::::::::
uptake/ocean

:::::::::
thermocline

::::::
invasion

::::::
fraction

: ::
a2 :::

0.22
: ::

0.1
::
.3

:::::
Rapid

::::::::
Biospheric

::::::::::
uptake/ocean

:::::::::
thermocline

::::::
invasion

:::::::
fraction*

: ::
a3 ::

n/a
::
n/a

::
n/a

:

::::::::
Geological

::::::::::
re-absorption

:::::::
timescale

:::::::::
(years)**

::
τ0 ::

106
: :::

106
: ::

106
:

::::
Deep

:::::
ocean

::::::::::::::::
invasion/equilibration

:::::::
timescale

::::::
(years)

: ::
τ1 ::

200
: :::

200
: ::::

1000

::::::::
Biospheric

::::::::::
uptake/ocean

:::::::::
thermocline

::::::
invasion

::::::::
timescale

::::::
(years)

::
τ2 ::

40
::
40

::
100

:

:::::
Rapid

:::::::
biospheric

::::::::::
uptake/ocean

:::::::::
mixed-layer

:::::::
invasion

:::::::
timescale

:::::::
(years)

::
τ3 :

1
: :

1
: ::

10

::::::
Thermal

::::::::::
equilibration

::
of

::::
deep

::::
ocean

:::::::::
Sensitivity

:::::::::
(KWm−2)

::
q1 :

0
: :

0
: ::

10*
:

::::::
Thermal

:::::::::
adjustment

::
of

::::
upper

:::::
ocean

::::::::
Sensitivity

:::::::::
(KWm−2)

: ::
q2 :

0
: :

0
: ::

10

::::::
Thermal

::::::::::
equilibration

::
of

::::
deep

::::
ocean

::::::::
timescale

::::::
(years)

: ::
d1 ::

239
: ::

80
::::
3000

::::::
Thermal

:::::::::
adjustment

::
of

::::
upper

:::::
ocean

:::::::
timescale

::::::
(years)

: ::
d2 ::

30
:
1
: ::

40

::::::
Fraction

::
of

::::::
forcing

::
in

:::
deep

:::::
ocean

:::::::
response

::
r1 :

0
: :::

0.33
: ::

0.5
:

::::::
Fraction

::
of

::::::
forcing

::
in

::::
upper

:::::
ocean

:::::::
response

::
r2 :

0
: :::

0.33
: ::

0.5
:

:::::::
Non-CO2

::::::
Forcing

::::
ratio

: ::
fr ::

0.7
:
1
: ::

1.3
:

::::::::
Emissions

:::::
scaling

::::
ratio

::
se ::

0.8
:
1
: ::

1.2
:

Table 1.
:
A
::::
table

:::::::
showing

::::::
default

:::::
model

:::::::
parameter

::::::
values

:::
and

:::::::
minimum

::::
and

::::::::
maximum

:::::
values

::::
used

::
in

:::::
model

::::::::::
optimization.

:::::
*deep

:::::
ocean

:::::
thermal

:::::::
response

::
is

:::::
limited

::
to
::::
zero

::
for

::
2
:::::::
timescale

:::::
model.

::::
*a3 :

is
::::::::
calculated

::
as

:::
the

::::::::::::
1−

∑
i=1:3(ai)

.
::::::::::

**following
:::::::::::::::
Millar et al. (2017c),

::::
deep

:::::
ocean

:::::
carbon

:::::
uptake

:::::::
timescale

::
is
:::
not

::::::
included

::
in
:::
the

::::::::::
optimization

:::
(the

:::::::
timescale

::
is

::::::::
effectively

::::::
infinite:

::::::::
sufficiently

:::::
longer

::::
than

:::
the

:::::::
scenarios

::::::::
considered

::::
here

::
for

:::
the

::
a3::::

pool
::
to

::
not

::::::
absorb

::::::::
significant

::::::
carbon).

:::::
where

:::
σT ::::::::

represents
:::
the

:::::::::
confidence

::
in
::::::::
observed

::::::::::
temperature

::::::
values.

:::
To

:::::::
estimate

:::
this

:::::
value,

:::
we

:::
use

:::::::::
2000-2019

::::::
annual

::::::
global170

::::
mean

:::::::::::
temperature

::::::::
anomalies

:::::
from

:::::::::
1850-1900

:::
in

:::
the

:::::::::::::
HadCRUT-CW

:::
100

::::::::
member

:::::::::::
observational

:::::::::
ensemble,

:::::
where

::::
σT ::

is
:::
the

:::::::
standard

::::::::
deviation

::
of

:::::
2000

:::::
point

:::
(20

::::::
years,

:::
and

::::
100

::::::::
ensemble

:::::::::
members),

::::::
which

:::::::::
represents

:::::::::
uncertainty

::::
due

::
to

::::
both

:::::::
natural

::::::::
variability

::::
and

:::::::::::
observational

:::::::::
processing

:::::::::::
uncertainties

:::::::::::::::::::::::::::::::::::::
(Cowtan and Way, 2013; Cowtan et al., 2015).

:

:::
For

::::
σC ,

:::
we

::::
lack

:::
an

::::::::
unforced

:::::::
standard

:::::::::
deviation

:::::::
estimate

::
-
::
so

::
a
::::::::::::

normalization
::::::::

constant
::
of

::::::::::::
σC = 0.3ppm

::::
was

:::::::
chosen

:::::::::
empirically

::
to

:::::::
produce

:
a
::::
±1

:::::
ppmv

:::::
range

::
in

::::
2016

::::::::
observed

::::::::::::
concentrations

::
in

:::
the

::::::::
posterior

:::::::::
distribution

:::::::
(though

:::::::::::
uncertainties

::
in175

::::::::
emissions

:::
are

:::::
much

:::::
larger,

::::
and

:::::::::
represented

::::
with

:::
the

:::::::::
emissions

::::::
scaling

::::::::
parameter

:::
se.:

:::::::
Shallow

:::
and

:::::
Deep

::::::
Ocean

::::
heat

::::::
uptake

:::
(in

:::::
cases

::::::
where

::::
they

::::
are

:::::
used)

::
is

:::::
taken

::
as

::::
the

:::::::
0-300m

:::
and

:::::::
300m+

::::
heat

:::::::
content

::::::::::
respectively

::
in

:::::::::::::::
Zanna et al. (2019)

:
,
::::
with

:::
σH :::

and
:::
σD:::::

taken
::
as

:::::::::
1850-1950

:::::::
standard

:::::::::
deviations

::::
from

:::
the

:::::
same

::::::
dataset.

::::::::::
Confidence

:::::::
estimates

:::
in

::::
these

:::::::::
timeseries

::
is

:::
not

:::::::::
available,

::
so

:::
σH::::

and
:::
σD:::::::::

nominally
:::::::::
represents

:::::::::
uncertainty

::::
due

::
to

::::::
natural

:::::::::
variability

:
-
:::
so

::::
"C,T,

:::::
Heat"

::::::
results

::::::
should

::
be

::::::::::
considered

::
to

::
be

:::
an

:::::::
idealized

::::::::
estimate

::
of

::::
how

:::::
ocean

::::
heat

::::::::::
information

:::::
could

::::::::
constrain

::::::
models

::
if180

::
we

:::::
were

::::::::
confident

::
in

:::
that

:::::::::::
information.
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::
In

:::
the

:::
’C,

::
T

:::::::::
constraint’

::::
case,

:::::::::::
optimization

::
is

:::::::::
conducted

:::::
using

:::::
−ET :::

and
:::::
−EC::

as
::::
log

:::::::::
likelihoods

::
in

:::
the

:::::::
MCMC

:::::::::
optimizer,

::::
with

::::::::
parameter

::::::::::
boundaries

::
as

:::::
listed

::
in

:::::
Table

::
1.

::::
The

:::
’C,

::
T,

::::
Heat

:::::::::
constraint’

::::
case

::::
uses

::::
the

:::
sum

:::
of

:::::
−ET ,

::::::
−EC ,

:::
ED::::

and
:::::
−EH

:::
cost

:::::::::
functions.

::::
The

:::::
’C,T,

:::::
paleo’

:::::
case

::
is

:::::::::::
implemented

:::::
using

:::
the

:::::
likely

:::::
value

::::
and

:::::
upper

::::::
bound

:::
on

:::::
Earth

::::::
System

::::::::::
Sensitivity

::::
from

::::::::::::::::::::::::
Goodman and Weare (2010)

:
fit

:::
the

:::::::
median

:::
and

::::
90th

::::::::
percentile

:::
of

:
a
::::::
gamma

::::::::::
distribution

:::
for

::::::::::
equilibrium.

::::
The

::::
’C,T,

::::::
RWF’185

::::::::
constraint

::
is

:::::::::::
implemented

:::::
using

:
a
::::::::::
log-normal

::::
prior

:::
on

::::::::
Transient

:::::::
Climate

::::::::
Response

::::
with

:::::
5–95

:::::::::
percentiles

:::
of

::::::
1.0–2.5

::
K
:::
as

::
in

::::::::::::::::
Millar et al. (2017c)

:
,
:::
and

:
a
::::::::
Gaussian

::::
prior

:::
on

::::
RWF

::::
(the

::::
ratio

:::::::
between

::::
LTE

:::
and

:::::
TCR)

::::
with

:::::
mean

:::
0.6,

:::
and

:::
5th

::::
and

:::
9th

:::::::::
percentiles

::
of

::::
0.45

:::
and

:::::
0.75.

::::
The

::::::::
emissions

:::::::
scaling

::::::::
parameter

::
is
:::::::
subject

::
to

::::::::
Gaussian

::::
prior

::::::
which

::::
was

:::::::
adjusted

::::
such

::::
that

::::::::::
uncertainty

::
in

:::::
5-95%

::::::::::
cumulative

::::
CO2::::::::

emissions
:::
in

::::
2016

::::::
reflects

::::::::::::
observational

:::::::::::
uncertainties.

::
It

:::
was

::::::
found

:::::::::
empirically

::::
that

:
a
::::::::
Gaussian

:::::
prior

::::
with

:
a
:::::
mean

::::::
scaling

::::::::
parameter

::
of

::
1,

::::
and

:::::::
standard

::::::::
deviations

::
of

:::
0.1

::::
well

::::::::::
represented

::::::::
published

:::::::::::
uncertainties,

::::::
largely

::::::::::
attributable190

::
to

:::::::
uncertain

::::
land

::::
use

::::::::
emissions

:::::::::::::::::::::::::::::::::::::::::::::
(Le Quéré et al., 2017; Millar and Friedlingstein, 2018)

:::
(see

::::::
Figure

::::
S3).

2
::::::
Results

2.1
:::

The
::::::
impact

::
of

:::::
prior

:::::::::::
assumptions

:::
on

:::::::
carbon

::::::::
dynamics

We consider a number of different constraint assumptions on model parameters and how they influence the range of future

projections under different scenarios (Figure 1). If the model parameters are conditioned only on historical emissions and195

temperature (Figure 1(a,b)), transient warming under continued positive emissions is well constrained, such that temperatures

follow the effective TCRE relationship under a high emission scenario (RCP8.5, Riahi et al. (2011)) emissions. However, the

relationship is not robust under long term negative emissions in a decarbonization scenario (RCP2.6, Van Vuuren et al. (2011))

where some model variants in the posterior parameter distribution allow hysteresis in which temperatures continue to rise over

the following centuries under a regime of net negative emissions.200

Adding information on historical deep and shallow ocean heat content (Zanna et al., 2019) does not significantly constrain

the system (Figure 1(a,c)). However, assuming addition information about long term equilibrium climate sensitivity is known

from paleo-climate data (Royer et al., 2011)
:::::::::::::::::::::::::::::::::::
(Royer et al., 2011; Goodwin et al., 2018b), does provide constraint on the degree

of possible hysteresis (Figure 1(d)) as does the assumption of a known Realized Warming Fraction (RWF, the fraction of

present day warming relative to equilibrium warming associated with current forcing) which is a very strong constraint on205

cumulative-emissions temperature proportionality
:::::::::
TCRE-like

::::::::
behavior. This prior, used in Millar et al. (2017b) produces a

model configuration in which a proportional relationship between cumulative emissions-temperature is robust during both

positive and negative phases of the emissions scenario (Figure (Figure 1(e)).

This raises the question of the degree to which we are confident in our knowledge of the values of ECS and RWF. In Millar

et al. (2017b), the RWF prior is derived from the observation that the Transient Climate Response (TCR, the warming at the time210

of CO2 doubling in a transient simulation where CO2 increases by 1 percent per year) and Effective Climate Sensitivity (EffCS)

are correlated in the CMIP5 ensemble (Millar et al., 2015) (where EffCS is the estimation of equilibrium response through the

linear extrapolation of temperature change as a function of net top of atmosphere radiative imbalance in an instantaneous CO2

quadrupling experiment (Gregory et al., 2004)).
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Figure 1. Posterior distributions of future global mean temperature projections constrained by 1850-2016 historical temperatures in a range

of scenarios, priors and structural choices as a function of (a) time and (b-e) cumulative emissions of carbon (with 1000 years of climate

evolution plotted from 1851-2850). Colored lines represent RCP8.5 (red) and RCP2.6 (blue). (b) and dashed lines in (a) show 2-timescale

model posterior constrained using emissions (C) and temperature (T) only, (c) and solid lines in (a) are constrained using C,T and ocean

heat content (H), (d) and dot-dash lines in (a) use C,T and RWF. (e) and dotted lines C,T and a paleoclimate prior on ECS. Shaded re-

gions indicate the 10-90th percentile range. Solid black lines show observed HadCRUT values
:::::
global

::::
mean

:::::::::
temperature

::::::
median

:::::::
estimate

::::::::::::::::::
(Cowtan and Way, 2013) and historical

:::
most

:::::
likely

:::::::
estimates

::
of
::::::::
combined

::::
land

:::
use

:::
and

::::
fossil

::::
fuel

:::::::
emissions

:::::::::::::::::
(Le Quéré et al., 2017)

:
.
::::
Grey

:::
lines

:::::
show

:::::::::
uncertainties

::
in

:::::::
observed

::::::::::::::::::
temperature-cumulative emissions

:::::::
following

:::::::::::::::::::::::
Millar and Friedlingstein (2018).
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However, the Equilibrium Climate Sensitivity (ECS), realized over a multi-century to millennial timescale, is often signifi-215

cantly greater than the Effective Climate Sensitivity (Rugenstein et al., 2016; Knutti et al., 2017) and its value may not be well

constrained by observed warming (Proistosescu and Huybers, 2017; Andrews et al., 2018). As such, and it is not apparent that

the long-term ECS in a model like Myhre et al. (2013) can be constrained by TCR
::::
(with

::::
large

:::::::::::
implications

::
for

::::::::::::::
millennial-scale

::::::::::
temperature

::::::::
evolution,

::
as

::::
seen

::
in

::::::::::::
Supplemental

::::::
Figure

::::
S16).

These prior assumptions strongly impact the range of possible behavior under strong negative emissions in RCP2.6. How-220

ever, under RCP8.5, the ensembles constrained by historical temperatures show a near-linear relationship between cumulative

emissions and temperature, irrespective of prior assumptions and constraints used (Figure 1(b-e), red lines), this can be broadly

understood by considering that in RCP8.5, radiative forcing continues to increase at current rates and thus long term warming

is broadly a function of TCR, which is itself constrained by historical temperature evolution.

:::
The

::::::::
scenarios

:::::::::
considered

::::
here

:::
are

::::::::
multi-gas,

::::
with

::::
both

::::
CO2

::::::::
emissions

::::
and

:::::::
non-CO2

:::::::
forcers.

::
As

::::::::
expected

:::::::::::::::::
(Mengis et al., 2018)225

:
,
:::::::
non-CO2

:::::::
forcing

::::::::::
assumptions

:::
can

:::::
alter

::
the

::::::::
effective

::::::
TCRE

::::
seen

::
in

:::::::
transient

:::::::
RCP8.5

::::::::::
simulations

:::
and

:::::::
RCP2.6

:::::::::
projections

:::
on

::::::
shorter

::::::::
timescales

::
of

::::
less

::::
than

:
a
::::::
century

::::
(see

:::::::::::
Supplemental

::::::
Figure

::::
S4),

:::::::
however

:::
the

:::::::
potential

:::
for

::::::::
hysteresis

::
on

::::::
longer

:::::::::
timescales

:
is
::::::
similar

::
in
::::::::
multi-gas

::::
and

::::
CO2

::::
only

:::::::::::
experiments.

2.2 Implications for meeting Paris temperature targets

If we consider a ‘high risk’ world where ECS (and its relationship to TCR) is not independently constrained, corresponding230

to subplot (b) in Figure 1, the cumulative emissions framework is not guaranteed to hold under negative emissions, and the

concept of an indefinite cumulative carbon budget associated with a temperature target may not be helpful for near-term carbon

mitigation planning (results for other prior assumptions are shown in the additional material).

We illustrate this in some idealized caseswhere ,
:::::
using

:::::::
adaptive

::::::::
scenarios

::
in

:::::
which

:::::::::
emissions

:::
are

:::::::
adjusted

::
in

::::
order

::
to

:::::::
achieve

1.5 and 2 degree C climates are achieved post 2100.
::::
2100

::::::
(similar

::
to

:::::
those

:::::::::
considered

::
in

::::::::::::::::::::::::::::::::::::::::::::
Sanderson et al. (2016b, 2017); Goodwin et al. (2018a)235

:
).
::::
The

:::::::::::::::::::::
Sanderson et al. (2016b)

:::::::
approach

::::::
allows

:::::::
iteration

:::
of

::::::::
scenarios

::::
such

::::
that

::::::
targets

::::
can

::
be

::::
met

::
in

::::::
almost

:::
all

:::::
cases,

::::
but

::
the

:::::::::::
optimization

::
is

::::::::
"forward

:::::::
looking"

:::
(in

:::::::
contrast

::
to
::::::::::::::::::::

Goodwin et al. (2018a),
::::::
which

::::::::
simulates

::::::::
decisions

:::::
made

::
in

::::::::
response

::
to

:::::::
observed

::::::::
warming

::
to

:::
date

:::::::
without

::::::
perfect

:::::::::
knowledge

::
of

:::
the

::::::
future).

:::::
Here,

:::
we

:::::
follow

:
a
::::::
similar

:::::::
strategy

::
to

::::::::::::::::::::
Sanderson et al. (2016b)

:
,
:::::
where

::::::::
scenarios

:::
are

::::::::
designed

:::::
using

::
a

:::::
small

::::::
number

:::
of

:::::::::
parameters

::::::
which

:::
are

::::
then

:::::::::
optimized

::
to

:::::
meet

:
a
:::::::::::
stabilization

:::::
target

:::::::::
post-2100.

:
240

Scenarios are conducted in 3 phases: before 2020 is the ‘historical’ period, where emissions follow RCP2.6 (which is broadly

consistent with observations before 2020). Between 2020 and 2040, the ‘uninformed’ period, CO2 emissions follow one of a

range of linear mitigation pathways such that 2040 CO2 emissions are chosen at random for each scenario, ranging from

0GtC/yr to 10GtC/yr (our focus here is on low emission futures, and we do not consider here futures where emissions

increase post-2020).245

::::
Each

::::::::
ensemble

:::::::
member

:::::
uses

:
a
::::::
single

::::::::
parameter

:::
set

:::::
draw

::::
from

:::
the

::::::::
posterior

::::::::::
distribution

::
of
:::::::

models
:::::::::
calculated

::::::
during

:::
the

::::::
MCMC

:::::::::
constraint

::
of

::::::
model

::::::::
parameter

::::::
space

::
in

::::::
Section

::::::
1.1.1.

::::::::
Emissions

::::::
follow

:::::::
RCP2.6

:::::
from

::::
1850

:::::
until

:::::
2020,

::::
after

::::::
which

::::
CO2:::::::::

emissions
:::
are

::
by

::
a
::::::
’pchip’

::::::
spline

:::::
which

::
is
:::::

fixed
::
at

::
a
:::::::
number

::
of

::::::
points,

:::
the

::::
first

::
of

::::::
which

:::
are

:::::
2010

:::
and

:::::
2020

:::::::
RCP2.6
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::::::::
emissions

:
-
::::::::
ensuring

:
a
:::::::
smooth

::::::::
transition

:::::
from

:::
the

::::
RCP

::::::::::
time-series

::
to

:::
the

:::::::::
post-2020

:::::::::
timeseries.

:::
An

:::::::::::
’uninformed’

:::::::::
emissions

::::::::
trajectory

::::
takes

:::::
place

::::
from

:::::
2020

::
to

:::::
2040,

:::::
where

::::::::
emissions

::::::
evolve

::::
from

:::::::
RCP2.6

:::::
2020

:::::
levels

::::::::::::
(10.26GtC/yr)

::
to

:
a
::::
2040

:::::::::
emissions250

::::
level

:::::
drawn

::::::::
randomly

:::::
from

:
a
:::::::
uniform

::::::::::
distribution

::::
with

::::::
bounds

::
at

::::::::
0GtC/yr

::::
and

::::::::::
10GtC/yr.

Post 2040, in the ‘adaptive’ period, an emission scenario is calculated iteratively to achieve temperature stabilization at a

defined target post-2100, allowing for a temperature overshoot before 2100 with a large but finite lower limit on net negative

emissions capacity in line with the largest negative emissions values seen in the integrated assessment literature for 1.5 degree

temperature stabilization targets (−20GtC/yr, First (2018)). Non-CO2 gas emissions follow RCP2.6 throughout the simula-255

tion in all cases (as such these scenarios cannot
::::::
clearly,

:::::
these

::::::::
scenarios

:::::
should

::::
not be treated as socioeconomically plausible

scenarios, rather as idealized illustrations of Earth System Response to a range of forcing pathways).

:::::::::
Parametric

::::::
control

::
of

:::
the

:::::::
adaptive

::::::
phase

:
is
::::::::

achieved
:::
by

:::::::::
specifying

:
3
::::
time

::::::
points

:::
(the

:::::
first,

:::
tp1 ::

in
:::
the

:::::
range

::::::::::
2060-2100,

:::
the

::::::
second

::::
(tp2)

::
in

:::
the

:::::
range

:::::::::
2101-2300

::::
and

:::
the

::::
third

:::
tp3::::

fixed
::
at
:::
the

::::
end

::
of

:::
the

:::::::::
simulation

::
in

:::::
2764.

::::
Each

:::::
time

::::
point

::
is

:::::::::
associated

::::
with

::
an

:::::::::
emissions

:::
rate

:::::::
Ep1,2,3::::::

which
:::
are

::::
each

::::::
weakly

::::::::::
constrained

::
to
:::

lie
::
in

:::
the

::::::
range

:::
-40

::
to

::::
+10

::::::
GtC/yr.

::::::::::::
Optimization

::::
uses260

::::::::::
MATLAB’s

:::::::
fmincon

::::::::
algorithm

:::
to

::::
find

::::::
optimal

::::::
values

:::
of

::::
tp1,2::::

and
:::::::
Ep1,2,3,

::::::
where

:::
the

::::::
model

::
is

:::
run

:::::::::
iteratively

:::
for

::
a

:::::
given

:::::::
physical

::::::::
parameter

:::
set

::
to

::::
find

:
a
:::::::
solution

::::::
which

:::::::::
minimizes

:::
the

::::::
RMSE

::::
from

:::
the

::::::
desired

::::::
annual

:::::
mean

::::::
global

:::::
mean

::::::::::
temperature

::::::::
timeseries

:::::
target

::::
(1.5

::
or

:::::
2.0C,

::
in

:::
this

:::::
case)

::::
over

:::
the

::::
date

:::::
range

:::::::::
2100-2500.

:

The temperature trajectories are illustrated in Figure 2(a). Each member of the posterior distribution of possible simple

climate models in Figure 1(a,b) is then paired with a random 2020-2050 emissions reduction pathway and then a post-2050265

emissions pathway is calculated to optimize for stabilization at 1.5 or 2 degrees post-2100. This framework allows us to consider

what would be required for long term stabilization in a model configuration where the cumulative emissions-temperature

relationship does not necessarily hold.

The resulting scenarios are idealized, some requiring a very rapid switch to large net-negative values after 2040 in order to

stabilize temperatures at 1.5C (Figure 2(b)), and such rapid decarbonization may not be achievable in reality (Sanderson et al., 2016a)270

::::::::::::::::::::
(Sanderson et al., 2016b), but we can learn some useful properties of the system response by studying the relationships be-

tween near term and long term emissions commitments.
::::::::
Non-CO2

:::::::::
emissions

::::::
remain

::
at

:::::::
RCP2.6

:::::
levels

::
in

::
all

:::::
cases

:::::::
(though

:::
the

:::::::
non-CO2

:::::::
forcing

:::::
varies

::
as

:
a
::::::::

function
::
of

:::
the

::
fr::::::::::

parameter).

The range of long-term
:::::::
emission trajectories for temperature stabilization is diverse (Figure 2(c)), allowing for large positive

or negative fluxes over the following centuries in some cases as global mean temperatures remain stable (by construction). This275

implies that although in nearly all cases, temperatures have stabilized by
:::::::
requiring

:::::
large

:::::::
negative

::::::::
emissions

::
in
:::
the

:::::
latter

::::
half

::
of

::
the

::::
21st

:::::::
century

::
to

::::::
achieve

::::::::::
temperature

::::::::::
stabilization

:::::
after 2100 (Figure 2(a)), the .

::::
The cumulative carbon budget plume allows

for a 1.5C(2.0C) budget of -250 to 200GtC (75 to 650GtC
::::::::
post-2010

::::::
budget

::
of

::::
-300

::
to

:::::::
400GtC

::
(0

::
to

:::::::
900GtC) by 2100, a budget

which continues to grow more uncertain over the centuries which follow (Figure 2(
:
c,d)). This is in contrast to the indefinite

cumulative carbon budget for
::::
Most

::
of

:::
the 1.5or 2 degrees calculated from assumed effective TCRE - which is relatively tightly280

constrained as 160-200GtC (300-380GtC) for
::
C

::::::::::
simulations

::::::::
overshoot

:::
the

:::::
target

::
in

:::
the

:::::
latter

::::
half

::
of

:::
the

::::
21st

::::::
century

:::::::
(Figure

::::
2(a)),

::::
and

::::::::
post-2010

::::::
budget

:::
for

:::::
initial

::::::::::
exceedance

::
of 1.5C (2.0C) stabilization after corrections for present day warming due to

non-CO2 gases (Figure 2(d)
::
C

::
is

::::
more

::::::
tightly

:::::::::
constrained

::
at
:::::::::::
250-400GtC

:::::
(most

:::
2C

:::::::::
simulations

:::
do

:::
not

::::::::::
significantly

:::::::::
overshoot).
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Figure 2. Plots showing idealized pathways to 1.5 or 2.0C temperature stabilization for an ensemble of coupled carbon-climate model

configurations. (a) shows the global mean temperature as a function of time for 1.5 and 2.0C stabilization ensembles (b) shows emissions

in the historical, uniformed and adaptive stages of the simulation (c) shows the global mean temperatures above pre-industrial/2006-2015

::::::::
2006-2016 (left/right axis) levels as a function of post-2010 cumulative CO2 emissions while (d) shows the cumulative carbon emissions

total for ensemble members as a function of time. Shaded regions in (a,b,d) indicate 10th-90th percentile range of the ensemble distribution,

while dotted lines shown the 50th percentile. Gray/blue/black areas refer to uninformed/adaptive for 2.0C/adaptive for 1.5C respectively.

Box/whisker plots in (c) show the long term cumulative carbon budget assessed in 2100 for 1.5 and 2.0C stabilization from 1850-2500.

Box/whisker plots in (d) show the effective TCRE estimate of carbon budget with (median shown by ’+’) and without (median shown by ’x’)

non-CO2 gas correction.
:::
Red

:::::
circle

::::
shows

::::::::
ensemble

::::
mean

:::::::
warming

:::
and

::::::::
post-2010

::::::::
cumulative

:::::::
emissions

::
in
:::::
2020.
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Figure 3. Plots showing (a) the relationship between mid-century cumulative carbon budgets and (b) mid-century warming and associated

likelihoods of long term carbon removal requirements for temperature stabilization. (a) shows the ensemble relationship between the net

carbon emitted between 2020 and 2040 (uninformed period in Figure 1) and the associated range of possible carbon removal required later

in the century in the adaptive phase for 1.5C (green) and 2.0C (blue) stabilization. Filled circles represent an individual ensemble member,

while shaded blue/green areas represent a moving estimate of the 10-90th percentile range of the 2.0C/1.5C distribution (solid blue/green

lines are 2.0/1.5C median. (b) shows 2050-2100 allowable carbon budget as a function of 2050 warming above pre-industrial levels. Dots and

shading show ensemble distribution as in (a). Horizontal box/whisker plots show 10th,25th,50th,75th and 90th percentiles of 2050 warming

consistent with labeled 2020-2040 carbon budgets and the associated percentage reduction in 2040 emissions relative to 2020. Gray bar

shows the range of reference 2100 net carbon budgets considered for end of century 1.5 degree overshoot scenarios in the IPCC spacial

report on 1.5 degrees (First, 2018)).

This large uncertainty in the face of long term stabilization scenarios draws into question the utility of an indefinite carbon

budget , hence we
::
(in

:::
the

::::
case

::::::
where

::
we

:::::
have

::
no

:::::
prior

::::::::::
information

::
on

::::::::::
equilibrium

:::::::::
response).

:::
We can consider to what degree285

we can constrain future response using a definite budget with a 2020-2050 timeframe (Figure 3). Firstly, even in the face of

response timescale uncertainty
:::::::
possible

::::::::
hysteresis

::
of

::::::::::
temperature

:::
as

:
a
:::::::
function

::
of

:::::::::
cumulative

::::::
carbon

:::::::::
emissions, there is a linear

relationship between 2020-2040 budgets and associated late century carbon removal rates required for stabilization (Figure

3(a)).

For example, if a late century net carbon emission of -2.9 GtC/yr is assumed for late century (corresponding to the central290

estimate of 1.5 degree, low overshoot stabilization from the IPCC Special Report on 1.5C warming (First, 2018), a 50 percent

chance of 1.5 degrees requires a 2020-2040 budget of 150GtC, which would require a 60 percent cut in emissions from present

day levels by 2040. A 75 percent chance of meeting the target would require a 2020-2040 budget of 100GtC - requiring just

over 100 percent cut in carbon emissions by 2040.

Here again, the choice of prior constraint on model parameters has an important effect. If the Paleoclimate (or RWF )295

constraint on ECS is usedas in Figure 1(e, or d)
:
or

:::::
RWF

::
is
:::::
used, a 75 percent chance of 1.5 degrees given the

::
an

::::::::
assumed

-2.9GtC/yr late century removal rate would allow a 160GtC(or 220GtC) budget from 2020-2040 (see Additional Material

Figure S14(c,or d).
:::
d)).

::::::::
Similarly,

::::::::
estimated

::::::
carbon

:::::::
budgets

:::::::
become

::::
more

:::::::::
consistent

::::
with

:::::
TCRE

:::::::
derived

::::::::
estimates

::
if

::
an

:::::
RWF

::::
prior

::
is

:::::
used,

::::
with

::::
2100

:::::::
budgets

::
of

:::::::
120-430

::::
GtC

::::::::::::
(500-900GtC)

:::
for

::::
1.5C

:::::::
(2.0C).

::::
This

:::
can

:::
be

::::::::
compared

::::
with

:::
the

:::::
IPCC

::::::
SR1.5

:::::::::
assessment

::
of

:::::::::::
115-230GtC

::::::::::::
(320-550GtC)

::::::::::
respectively,

::::::
which

:::::::
includes

:::::::::::
uncertainties

::
in

::::::::
non-CO2

:::::::::
emissions

:::
and

:::::::
forcings

::::
and300

::::
long

::::::::
timescale

::::::
carbon

::::
cycle

:::::::::
feedbacks.

:

However, in all cases, by
:::::
These

:::::::
findings

:::::::
support

::
the

:::::::
framing

::
of

:::::::::
emissions

:::::
policy

::
in

:::::
terms

::
of

::::
near

:::::
term

::::::::
emissions

:::::::::
reductions

:::::
rather

::::
than

::::::::
indefinite

::::::
carbon

::::::
budgets

::::::::::::::::::
(Rogelj et al., 2019b)

:
.
::
By

:
mid 21st century, observed warming will provide a good indi-

cation of the degree of negative emissions required for stabilization - as the average realized warming in 2040-2060 provides

quite a strong constraint on budgets for the latter half of the century (Figure 3(b)). The degree of possible mid-century warm-305

ing can be reduced by minimizing the 2020-2040 carbon budget, but there still exists uncertainty due to the degree of thermal

inertia in the system as greenhouse gas concentrations stabilize.
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The strong relationship between mid-century warming and late century carbon removal requirements for 1.5 or 2.0C stabi-

lization occurs because 2040-2060 warming can be potentially decreased either by fortuity (with a small value of real-world

equilibrium climate sensitivity) or by action (by minimizing near-term emissions), both of which reduce late century net carbon310

removal requirements. Conversely, high climate sensitivity or slow decarbonization would both result in greater mid-century

warming and greater necessity for negative emissions deployment.

3 Discussion

Recent climate policy discussions have been framed in the context of a carbon budget, an allowable net total of cumulative emis-

sions which are consistent with a desired limit on planetary warming (Allen et al., 2009; Millar et al., 2016). Nuances in the es-315

timation of this budget have been noted relating to bias correction of existing models (Millar et al., 2017a), the compensation for

the effects of non-CO2 anthropogenic emissions (Rogelj et al., 2015a)
::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rogelj et al., 2015a; MacDougall et al., 2015; Mengis et al., 2018)

and the need for additional carbon fluxes for temperature stabilization after net-zero emissions have been achieved (Rogelj et al., 2016b; Jones et al., in review)

.

But in the current framework, these
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rogelj et al., 2016b; Jones et al., in review; Mengis et al., 2018).

::::::
These factors are deemed320

to be corrections to the effective TCRE-computed carbon budgets (Rogelj et al., 2019a), and value of effective TCRE informed

by a combination of model response historical records of global surface temperatures (Gillett et al., 2013; Steinacher and Joos,

2016) form the basis for published model estimates on carbon budgets for temperature stabilization (Matthews et al., 2017a,

a).

Limitations in the applicability of the cumulative-emissions/temperature relationship due to the response timescales of the325

Earth System have been noted before (Rogelj et al., 2019a) in terms of
:
It

:::
has

:::::
been

:::::
noted

:::::
before

::::
that

::
at
::::
any

:::::
given

:::::
time,

:::
the

:::::
TCRE

::::
can

::
be

:::::::::
expressed

:::
as

:
a
:::::::

product
:::
of

:
3
:::::::::::

components:
::::

the the discrepancy between
:::::::::
dependence

::
of

:::::::
surface

::::::::
warming

:::
on

:::::::
radiative

:::::::
forcing,

:::
the

:::::::::
fractional

::::::::::
dependence

::
of

::::::::
radiative

:::::::
forcing

::
on

:::::::::::
atmospheric

:::::
CO2 :::

and
:::

the
:::::::::::

dependence
::
of

:::::::::::
atmospheric

:::
CO

:
2
:::

on
::::::
carbon

:::::::::
emissions

:::::::::::::::::::
(Goodwin et al., 2015)

:
-
:::
but

:::::
each

::
of

:::::
these

::::::::
elements

:::
can

:::::::::
potentially

::::::
evolve

::
in
:::::

time
::
as

:::::::::
feedbacks

::
are

::::::::
realized

::
on

::::::::
different

:::::::::
timescales

:::::::::::::::::::::::::::::::::::::
(Rogelj et al., 2019a; Goodwin et al., 2018a).

:::::
This

:::
has

:::::
been

:::::::::
addressed

:::
by

::::::::::
introducing330

"Threshold Avoidance Budgets" and "Threshold Exceedance Budgets" (Rogelj et al., 2016b) which differ due to the lag of

peak temperatures after net-zero emissions have been achieved as slower timescale components of the system equilibrate
::
or

:::
due

:::
the

::::::
effects

::
of
:::::::::

non-CO2
::::::
forcers. But, the scale of these effects is generally assumed to be small - on the order of 1-2

decades (Ricke and Caldeira, 2014; Zickfeld and Herrington, 2015).
::::::::
Idealized

:::::::::::
experiments

::
to

:::::
assess

::::::::::::
zero-emission

::::::::
warming

:::::::::::::::::::::::::::::::
commitment(MacDougall et al., 2020)

::
in

::::
both

::::::
EMICs

:::
and

::::::
ESMs

::::::
suggest

:::
the

::::
ZEC

::
is

:::::
small

::
on

::
a

::
50

::::
year

::::::::
timescale

:::
but

::::::::
uncertain335

::
on

:
a
:::::::
century

::::::::
timescale,

::::
with

::
a
::::
large

::::::::
diversity

::
of

:::::::::
magnitude,

::::
sign

::::
and

:::
rate

::
of

::::::::
warming

::::::::::::
post-cessation

::
of

:::::::::
emissions.

However, as we have seen, models can be
:
It
:::
has

::::
also

::::
been

:::::::::::
demonstrated

:::
that

::::::::
effective

::::::
climate

:::::::::
sensitivity

::::
likely

:::::::
evolves

::
in

::::
time

:::::::::::::::::::::::::::::::
(Goodwin, 2018; Rohling et al., 2018),

::::::
which

:::
will

::::::::
influence

:::::
TCRE

::::::::::::::::::::
(Goodwin et al., 2015)

::
and

::::
thus

::::::
carbon

:::::::
budgets

:::
for

:
a
:::::
given

::::::::::
temperature

:::::
target

:::::::::::::::::::
(Goodwin et al., 2018b)

:
;
::::
thus

:::::::
attempts

::
to

:::::::
quantify

:::::
fixed

:::
real

:::::
world

::::::::
estimates

:::
for

::::::
TCRE

::
or

:::::::
effective

:::::::
climate

::::::::
sensitivity

::::
must

:::
be

:::::::
qualified

:::
for

::::
long

::::::::
timescales

:::::::::::::::::::::
(Rugenstein et al., 2019)

::
or

:::::::
extended

:::
net

:::::::
negative

::::::::::::::::::::::::::::::
emissions(Ehlert and Zickfeld, 2018)340
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:
.
::
In

:::
this

:::::
study,

:::
the

:::::::::::::
pulse-response

::::::::::
formulation

::::::
allows

::
for

:::
the

::::::::
idealized

:::::::::
separation

::
of

:::::::
process

:::::::
response

::::
both

::
in
:::

the
:::::::::

evolution
::
of

::::::::::
atmospheric

::::
CO2

::
in

::::::::
response

::
to

:::::::::
emissions

:::
and

::
in

:::
the

:::::::
thermal

::::::::
response

::
of

:::
the

::::::
system

::
to
:::::::

forcing,
::::::::
allowing

:::
the

::
an

::::::::::
illustration

::
of

::::
how

:::::
prior

::::::::::
assumptions

::::::
impact

:::::::::
feedbacks

:::
on

::::::::
different

:::::::::
timescales.

::::::
Future

:::::
work

::::::
should

::::::::
consider

::::::
further

::::
how

:::::
these

:::::
fixed

:::::::::
parameters

::
of

:::
the

:::::::::::::
carbon-climate

::::::
system

:::
can

::
be

::::::
further

::::::::::::
independently

::::::::::
constrained

:::
and

:::::::::
integrated

::::
with

:::::::
existing

::::::::::::
understanding

::
of

:::::::::::
time-evolving

:::
net

:::::::
climate

:::::::::
feedbacks.345

:::
We

:::
find

::::
that

:::
the

::::::::::::
pulse-response

::::::
model

::
is

:::
not constrained to follow cumulative-emissions/temperature proportionality under

negative emissions
:::::::::
TCRE-like

::::::::
behaviour

:::::::
without

::::
prior

::::::::::
knowledge

::
of

::::::::::
equilibrium

::::::
climate

:::::::::
sensitivity.

::::::::::
Considering

:::::
other

::::::
simple

::::::
models,

:::::
such

:::::
priors

:::
are

:::::
often

::::
used

::::::
(either

::::::::
explicitly

::
or

::::::::::
implicitly). The parameters of the FAIR (Millar et al., 2017c; Smith

et al., 2018) simple climate model, for example, are constrained using a prior on RWF . This constraint arises due to
:::::::
(whereas

:::::::
projected

::::::::::
uncertainty

::::::
ranges

:::::
using

:::::
other

::::::
models

:::::
such

::
as

::::::::::::::::::::
Goodwin et al. (2018b)

::
use

:::
no

::::
such

::::::
prior).

::::
The

::::::::
constraint

:::
in

:::::
FAIR350

:
is
:::::::
justified

:::::
with an observed relationship between Effective Climate Sensitivity and TCR

::
in

:::::
CMIP

:::::::
models, and is thus likely

overly constraining on possible model behavior consistent with state of art GCMs (see Additional Material section S1).

:::::
Other

::::::
models

::
do

:::
not

::::::::
explicitly

::::::::
constrain

:::::
RWF,

::
but

:::
do

::::::::
constrain

:::::::::
equilibrium

:::::::
climate

::::::::
sensitivity

:
-
:::
the

::::::
WASP

:::::
model

:::::::::::::::::::::::::::::::::
(Goodwin et al., 2015; Goodwin, 2016)

::::::::
considers

:
a
:::::::
multiple

:::::::::
timescales

::
of

::::::::
response

:::
and

::
a
:::::::::
geological

::::
prior

:::
on

:::::::::
equilibrium

::::::::
warming

::::::::
response

::
to

:::::::::
emissions,

:::::
which

::::
acts

::
to

:::::::
preclude

:::
the355

Similarly, in the MAGICC model (Meinshausen et al., 2011a), non-stationary feedbacks are represented in two ways - using

an allowance for an oceanic surface and and land surface feedback strengths, as well as having forcing dependent feedback

strengths. However, ECS values calculated using MAGICC when calibrated as an emulator of CMIP GCM simulations remain

very close to the Effective Climate Sensitivities of the target model (Meinshausen et al., 2011a) - even though in some cases we

know that the true ECS realized in millennial time-frames is significantly greater than the EffCS value (Rugenstein et al., 2019).360

This requires further research, but is possibly explained by the consensus that multiple feedback timescales arise from warming

patterns associated with shallow and deep ocean warming (Li et al., 2013; Geoffroy et al., 2013). Representing feedbacks as a

function of the warming of the ocean surface warming is therefore a strong structural assumption which may not capture this

effect.

Indeed, recent
::::::
Recent work has made clear that the long timescale response of the Earth system is not well constrained365

by past observations (Proistosescu and Huybers, 2017; Andrews et al., 2018), drawing into question whether recent transient

warming is able to constrain Equilibrium Climate Sensitivity (Otto et al., 2013) or the Realized Warming Fraction (Millar et al.,

2015). In the absence of these constraints, we cannot rule out without additional data that the slow timescale response of the

Earth System associated with deep ocean warming may lead to a world which exhibits a (relatively) low TCR but a high ECS

realized over centuries or millennia (Rugenstein et al., 2019) which, as we show here, may complicate the use of an indefinite370

carbon budget for temperature targets.

::::
Here,

:::
we

::::
find

:::
that

:::::
these

::::::
factors

:::::
result

::
in

:::::
large

::::::::::
uncertainties

:::
on

:::::::::
remaining

::::::
carbon

::::::
budgets

:::::
until

:::::
2100,

::::
with

:::
the

:::::::::
possibility

::
of

:::::
unless

:::::
prior

::::::::::
information

::
is

:::::::
assumed

:::
on

:::
the

:::::
value

::
of

::::
ECS

:::
or

:::::
RWF

::::::::::::
(Supplemental

::::::
Figure

:::::
S10).

:::::
Using

:::
an

:::::
RWF

:::::
prior,

::::::
carbon

::::::
budgets

:::
for

:::::
1.5C

:::
and

:::
2C

:::
are

:::::::
broadly

::::::::
consistent

::::
with

:::::::::::::
TCRE-derived

::::::::
estimates

::
in

::::::::::::::::
Rogelj et al. (2018),

::::
but

::::::::
removing

:::
this

:::::
prior

::::::
reduces

:::
the

:::::
lower

::::::
bound

::
of

:::
the

::::::
budget

::::
from

:::::::
positive

:::::::
120GtC

::::
with

:
a
:::::
RWF

:::::
prior

::
(as

::::::::
assessed

::
in

::::
2100

:::
for

:::::
1.5C

:::::::::::
stabilization)

::
to375
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:::::::
negative

:::::::
300GtC

:
if
:::
the

:::::
prior

::
is

::::::::
removed.

:::::
These

::::::
factors

:::
are

::
in

:::::::
addition

::
to

:::::::
existing

:::::::::::
uncertainties

::::::
arising

::::
from

::::::::
non-CO2

:::::::
forcing

:::
and

:::::::
scenario

:::::::::::
assumptions

:::::::::::::
(approximately

:::::::::
±200GtC

::
in

::::
long

:::::
term

:::::::
budgets)

::::
and

:::::::::::
uncertainties

::
in

::::::::::::
pre-industrial

:::::::::::
temperatures

::::::::::::
(approximately

:::::::::
±100GtC

::
in

::::
long

::::
term

:::::::
budgets)

:::::::::::::::::
(Rogelj et al., 2018).

:

Other sources of information which may yet resolve the uncertainty. Independent information to constrain ECS from pale-

oclimate (Royer et al., 2011) or process understanding (Sherwood et al., 2014; Zhai et al., 2015; Tian, 2015; Tan et al., 2016;380

Cox et al., 2018) may help constrain the potential for temperature hysteresis. But many constraints to date have considered

only effective climate sensitivity (Gregory et al., 2004) - whereas it is increasingly clear that both the timescale and amplitude

of climate feedbacks need to be constrained in order to understand Earth System response to future forcing pathways (Armour

et al., 2013). Such avenues could and should be explored further.

:::
The

:::::
pulse

::::::::
response

:::::
model

:::
of

:::
the

::::
type

::::
used

::::
here

::
is
::::

also
::

a
::::::::::::
simplification

::
of

::::::
global

::::::::
response,

:::::
albeit

::
a

:::::::::
commonly

::::
used

::::
one385

:::::::::::::::
(Joos et al., 2013) -

::::::
which

:::::::
resolves

::
the

:::::::
degrees

::
of

:::::::
freedom

::
in

:::
the

:::::
range

::
of

::::::::
responses

::::::::
exhibited

::
in

:::::::
physical

:::::
Earth

::::::
System

:::::::
Models.

:::
The

:::::::::::::::
anthropogenically

:::::
forced

::::::::
warming

::
in

:::::::::
2040-2060

:::::
would

:::
be

::::::
subject

:
to
:::::::
internal

:::::::::
variability

::
of

::::
order

::::
0.1C

::::::::::::::::::::::::::::::::::::::::::::
(Dai et al., 2015; Rogelj et al., 2017; Kay et al., 2015)

:::::
which

:::::
could

:::::::::
potentially

::
be

::::::::
improved

::::
with

::::::::
detection

:::::::::
approaches

::::::::::::::::::
(Haustein et al., 2017)

:
.
::
As

:::::
such,

:::::::
observed

:::::::::::
mid-century

:::::::
warming

:::::
would

::
be

:::
of

::::
some

:::::
value

::
in

:::::::::::
constraining

:::::::
negative

::::::::
emissions

:::::::::::
requirements

::::
later

::
in

:::
the

:::::::
century

:::::
which

:::::
spans

:::::
nearly

:::::
0.6C

::::
over

:::
the

::::::::
ensemble

::::
range

:::::::
(Figure

:::::
3(b)).390

Clearly, the models used here are idealizations. Emission rates and rates of change are not constrained by technological or

societal limitations, and only CO2 pathways are modified from the RCP2.6 scenario - and so results are only illustrative of how

the Earth System might respond to different hypothetical pathways. Finding pathways for technology and policy which can ac-

tually achieve these pathways is a question for Integrated Assessment Models. However, the present standard approach of pro-

ducing scenarios through forward-looking solvers (O’Neill et al., 2016) is unable to capture the risk highlighted here associated395

with actors who act today with imperfect knowledge about future technology
::::::::::::::::::::::::::::::::::::::
(Fuss et al., 2014; Anderson and Peters, 2016)

and Earth System response.

The pulse response model of the type used here is also a simplification of global response, albeit a commonly used one

(Joos et al., 2013) - which resolves the degrees of freedom in the range of responses exhibited in physical Earth System

Models. However, the model only resolves the central tendency of the long term equilibration of the Earth System to a400

forcing change, without any estimate of climate variability. The real-world climatological temperature in 2040-2060 would

be subject to internal variability (Kay et al., 2015), but such variation in annual mean temperatures is of the order 0.1-0.2C

(Rogelj et al., 2017), and decadal average deviations from climatology of global mean temperature due to internal variability

are of order 0.1C (Dai et al., 2015), which implies that by 2060, observed mid-century warming will be of some value in

constraining negative emissions requirements later in the century which spans nearly 0.7C over the ensemble range (Figure405

3(b))
::::
This

:::
has

:::
led

::
to

:
a
::::
call

::
to

:::::
frame

::
of

::::::
policy

::
in

:::::
terms

::
of

::::::::
near-term

::::::::
emissions

::::::
which

:::
are

:::::::::
compatible

::::
with

::::::::
projected

:::::
peak

:::::
levels

::
of

:::::::
warming

::::::::::::::::::
(Rogelj et al., 2019b).

In summary, even
:::
The

::::::
results

::
of

::::
this

:::::
study

:::::::
support

:::
this

:::::
logic.

:::::
Even

:
in the presence of large uncertainty on long term re-

sponse to emissions, near-term climate policy can be well posed through the use of a time-limited net carbon budget, or

equivalently, a near-term commitment for a percentage reduction in emissions by a certain date (Sachs et al., 2016; Kaya410
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et al., 2019). Such a framework allows near-term emissions reduction requirements to broadly be considered separately

from the negative emission fluxes required for temperature stabilization, the feasibility of which remains deeply uncertain

(Fuss et al., 2014; Anderson and Peters, 2016), and does not require waiting for peak warming to occur (Rogelj et al., 2019b)

in order to inform the required scale of negative emissions capacity (especially in the theoretical case where peak warming

occurs significantly after net zero emissions are reached).415

Observed warming over the coming decades will provide additional information on our commitments to implement negative

emissions infrastructure for temperature stabilization - commitments which may or may not prove feasible to realize. But a

near-term budget would provide decision-makers with the tools to assess the risk of failure to meet temperature targets as a

function of clearly defined targets for near-term decarbonization.

Data availability. CMIP5 and CMIP6 data are available through a distributed data archive developed and operated by the Earth System Grid420

Federation (ESGF).

Code and data availability. Code for this study is available on Github at https://github.com/benmsanderson/matlab_pulse

Appendix: Methods

A1 Simple Climate Model Implementation

The temperature portion of the code allows for 2 representative temperatures, each with an equilibration timescale dj (for425

2 timescales, j following Myhre et al. (2013); Millar et al. (2017c)), producing a simple model for temperature and radiation

response to a step change in forcing:

P (t) = F4xCO2

3∑
n=1

qn(1− exp(−t/dn))

R(t) = F4xCO2

3∑
n=1

rn(exp(−t/dn)),

where P (t) is the annual global mean temperature and R(t) is the net top-of atmosphere radiative imbalance (used only430

for the calculation of Effective Climate Sensitivity), and F4xCO2 is the instantaneous global mean radiative forcing associated

with a quadrupling of CO2, taken here to be 3.7Wm−2(Myhre et al., 2013).

Constraining thermal parameters from historical temperatures and emissions requires a consideration of both the carbon

cycle as well as other relevant climate forcers. MCMC optimization of even a simple model of this form requires 107 or more

calculations, so a very rapid model is required for computational tractability. This study employs a fast pulse-response model435
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to represent the response of surface global mean surface temperatures to emissions. The model is implemented as a digital

filter in MATLAB (see attached code) - allowing efficient computation and enabling Markov-Chain Monte Carlo parameter

estimation for the physical parameters.

The carbon scheme is a simple pulse dissipation model, with four atmospheric carbon pools Ri (where i= 0..3, following

Myhre et al. (2013)) with dissipation timescales τi as detailed in Table 1. Each unit pulse of emissions is allocated to each of440

the four pools with a fraction ai:

dRi
dt

= aiE(t)− Ri
τi
,

for which the solution for a unit emissions pulse δ(t) can be written:

Ri(t) = ai(1− e−t/τi).

A generic emissions time-series E(t) can then be expressed as a sum of discrete pulses, allowing the corresponding carbon445

pools Ci(t) to be expressed as a sum of pulse-responses Ri(t)

Ci(t) =

t∫
0

dE(t′)

dt
Ri(t− t′)dt′.

Atmospheric CO2 concentrations C are calculated as the sum of the four pools C(t) = C0 +
∑
iCi(t), and are converted

into a radiative forcing estimate assuming the standard logarithmic relationship:

F (t) = 5.4ln

(
C(t)

C0

)
+ frFext(t)450

following Myhre et al. (2013), and all other forcings (aerosols, and non-CO2 greenhouse gases) are combined into a single term

Fext(t) using global mean RCP values from Meinshausen et al. (2011b). Uncertainty in the amplitude of non-CO2 forcings is

simply represented simply by an uncertainty factor fr, which is also optimized in the course of the MCMC calibration (Table

1). The thermal response is calculated by expressing the derivative of the forcing timeseries F (t) as a series of step functions

and using the CO2 quadrupling response Tp from equation A1 to calculate the integrated thermal response.455

T (t) =

t∫
0

dF
dt (t′)

F4xCO2
Tp(t− t′)dt′.

This is again performed in a computationally efficient manner using MATLAB’s ‘filter’ function.

A0.1 Model Optimization
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The earth system configuration of the pulse model has time-series inputs emissions of CO2, along with radiative estimates from

Meinshausen et al. (2011b) of non-CO2 forcing agents. We optimize the thermal model parameters for 2 timescales [q,d,r],460

the carbon dissipation parameters [a, τ ] for 4 pools and the non-CO2 forcing factor fr. Optimization, as for the 4xCO2 case

is conducted with the Goodman and Weare (2010) MCMC implementation, using flat initial parameter distributions as shown

in Table 1, 200 walkers and 50,000 iterations for each optimization. Cost functions are computed for global mean temperature

(T), global CO2 concentrations (C), Shallow Ocean Heat Content (H) and Deep Ocean Heat Content (D):

ET =
∑
t

(
(T (t)−TGCM (t))√

2σT

)2

465

EC =
∑
t

(
(C(t)−CGCM (t))√

2σC

)2

,EH =
∑
t

(
(H(t)−HGCM (t))√

2σH

)2

,ED =
∑
t

(
(D(t)−DGCM (t))√

2σD

)2

,

where σT is defined as for the abrupt-CO2 case as the standard deviation of HadCRUT 1850-1950 values. For σC , we lack

an unforced standard deviation estimate - so a normalization constant of σC = 0.3ppm was chosen empirically to produce a

±1 ppmv range in 2016 observed concentrations in the posterior distribution. Shallow and Deep Ocean heat is taken as the

0-300m and 300m+ heat content respectively in Zanna et al. (2019), with σH and σD taken as 1850-1950 standard deviations470

from the same dataset.

In the ’C, T constraint’ case, optimization is conducted using −ET and −EC as log likelihoods in the MCMC optimizer,

with parameter boundaries as listed in Table 1. The ’C, T, Heat constraint’ case uses the sum of −ET , −EC , ED and −EH
cost functions. The ’C,T, paleo’ case is implemented using the likely value and upper bound on Earth System Sensitivity

from Goodman and Weare (2010) fit the median and 90th percentile of a gamma distribution for equilibrium. The ’C,T, RWF’475

constraint is implemented using a log-normal prior on Transient Climate Response with 5–95 percentiles of 1.0–2.5 K as in

Millar et al. (2017c), and a Gaussian prior on RWF (the ratio between LTE and TCR) with mean 0.6, and 5th and 9th percentiles

of 0.45 and 0.75.

A0.1 Adaptive scenario design

We propose an ensemble of simulations which achieve post-2100 stabilization at the 1.5 and 2.0C levels referred to in the Paris480

Agreement (United Nations, 2015). Each ensemble member uses a single parameter set draw from the posterior distribution

of models calculated during the MCMC constraint of model parameter space in Section 1.1.1. Emissions follow RCP2.6

from 1850 until 2020, after which CO2 emissions are by a ’pchip’ spline which is fixed at a number of points, the first

of which are 2010 and 2020 RCP2.6 emissions - ensuring a smooth transition from the RCP time-series to the post-2020

timeseries. An ’uninformed’ emissions trajectory takes place from 2020 to 2040, where emissions evolve from RCP2.6 2020485

levels (10.26GtC/yr) to a 2040 emissions level drawn randomly from a uniform distribution with bounds at 0GtC/yr and

10GtC/yr.
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Post 2050, the emissions are defined by an ’adaptive’ phase - with 3 time points (the first, tp1 in the range 2060-2100, the

second (tp2) in the range 2101-2300 and the third tp3 fixed at the end of the simulation in 2764. Each time point is associated

with an emissions rate Ep1,2,3 which are each weakly constrained to lie in the range -40 to +10 GtC/yr. Optimization uses490

MATLAB’s fmincon algorithm to find optimal values of tp1,2 and Ep1,2,3, where the model is run iteratively for a given

physical parameter set to find a solution which minimizes the RMSE from the desired annual mean global mean temperature

timeseries target (1.5 or 2.0C, in this case) over the date range 2100-2500.

Long name Symbol Default Min Max Geological re-absorption fraction a0 0.26 0.1 .3 Deep ocean invasion/equilibration

fraction a1 0.14 0.1 .3 Biospheric uptake/ocean thermocline invasion fraction a2 0.22 0.1 .3 Rapid Biospheric uptake/ocean495

thermocline invasion fraction* a3 n/a n/a n/a Geological re-absorption timescale (years)** τ0 106 106 106 Deep ocean

invasion/equilibration timescale (years) τ1 200 200 1000 Biospheric uptake/ocean thermocline invasion timescale (years)τ2

40 40 100 Rapid biospheric uptake/ocean mixed-layer invasion timescale (years) τ3 1 1 10 Thermal equilibration of deep

ocean Sensitivity (KWm−2) q1 0 0 10* Thermal adjustment of upper ocean Sensitivity (KWm−2) q2 0 0 10 Thermal

equilibration of deep ocean timescale (years) d1 239 80 3000 Thermal adjustment of upper ocean timescale (years) d2 30 1500

40 Fraction of forcing in deep ocean response r1 0 0.33 0.5 Fraction of forcing in upper ocean response r2 0 0.33 0.5 Non-CO2

Forcing ratio fr 0.7 1 1.3 A table showing default model parameter values and minimum and maximum values used in model

optimization. *deep ocean thermal response is limited to zero for 2 timescale model. *a3 is calculated as the 1−
∑
i=1:3(ai).

**following Millar et al. (2017c), deep ocean carbon uptake timescale is not included in the optimization (the timescale is

effectively infinite: sufficiently longer than the scenarios considered here for the a3 pool to not absorb significant carbon).505
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Appendix : Supplementary Material

S1 Prior assumptions on Realized Warming Fraction

The RWF constraint refers to the observation in Millar et al. (2015) that in CMIP5, at least, the TCR and ECS values are

well correlated, such that the ratio of the two values TCR : ECS lies between 0.45 and 0.75 throughout the ensemble. This755

is apparent by considering Figure S2(a), which shows the joint CMIP5 distribution for the two quantities. The consistency of

this relationship informed the parameter distribution choice for a pulse-response model ensemble used in Millar et al. (2017c),

where a relationship between ECS and TCR was represented in the distribution of plausible models.

However, as is shown in Proistosescu and Huybers (2017) and in Figure S1, for most models in the CMIP5 and CMIP6

ensembles, the constant feedback ECS is likely an underestimate of true equilibrium response to forcing. Fitting a 2-timescale760

model directly to model output time-series allows the computation of the possible values of equilibrium climate sensitivity

consistent with the first 150 years of simulation (Figure S1). In many cases the extrapolated equilibrium temperature is not

strongly constrained by the 150 year simulations. However, some features are generally discernible: in most models the uncer-

tainty distribution contains values which are generally greater than the Effective Climate Sensitivity estimate (Gregory et al.,

2004).765

Figure S2 shows EffCS and ECS as a function of TCR for each model in CMIP5 (and some available models in CMIP6).

ECS is estimated as in Gregory et al. (2004), while EffCS is calculated by performing an MCMC fit (as in section 1.1.1 using

the 150 year global mean surface temperature timeseries of each CMIP5 and CMIP6 model’s abrupt4xCO2 simulation to the

2 timescale pulse response model (itself forced by a step function forcing timeseries corresponding to 7.2Wm−2 after the first

timestep). The resulting posterior distribution of the combined value of q1 and q2 then informs the range of plausible values of770

ECS which are consistent with the CMIP5 or CMIP6 simulation.

It is notable that there is no discernible relationship between possible values of ECS (fitted here with a flat prior allowing

values between 0 and 40) and TCR in CMIP5 because the values of ECS are not strongly constrained. As such, there is little

basis to assume that the equilibrium sensitivity of the system is well constrained by the TCR in the form of an RWF prior.

S2 Joint distributions of parameters in MCMC optimization775

Figures S5, S6, S7 and S8 and show pairwise posterior distributions of the parameters optimized using historical emissions

and HadCRUT
::::::::::::
HadCRUT-CW

:
temperature evolution from 1850-2016 in the ’C.T’, ’C,T.H’, ’C,T, RWF’ and ’C,T,Paleo’

constraints respectively.

In all cases, it is apparent that there are a range of solutions allowing for different timescales of response in the pulse-

response model which can describe climate evolution to date within the provided constraints. For example, in Figure S5, there780

is a trade-off between q2 and d2 parameters, which represent equilibrium climate response on fast timescales and timescale

of the shallow ocean thermal response of the system. There is also a trade-off between the q2 and q1 (the component of ECS

associated with slow feedbacks associated with warming of the deep ocean component). Introducing a constraint on ocean heat
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Figure S1. A Figure showing the temperature response to a quadrupling of carbon dioxide. Red points show annual mean temperature from

the model’s 150 year simulation, the red central line shows the best fitting 2 timescale pulse response model, while the pink area shows the

10th and 90th percentiles of the MCMC distribution of possible pulse response models. The dashed black line shows the Effective climate

sensitivity(Gregory et al., 2004).

content, at least in this configuration, constrains r1, the fraction of heat absorbed by the deep ocean - but has only a minor

constraining effect on ECS S6.785

The ’RWF’ cases (Figure S7), however, has a significant effect on ECS. The deep ocean/slow component of ECS (q1) is

constrained to be small by the RWF constraint (which states that 40-60 percent of equilibrium warming associated with current

greenhouse gas concentrations has already been realized). S8) constrain the sum of the 2 equilibrium responses qn, which is

apparent in the parameter distributions by the truncated distribution for q1 in Figure S8 and increased values for q2, implying

that a greater fraction of present day warming is explained by warming on decadal timescales. The paleo constraint has a790

similar, but less dramatic effect - constraining the upper bound of the distribution for q1 relative to the ’C,T’ case.
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Figure S2. Black circles show Effective Climate Sensitivity (calculated as a constant feedback extrapolation following Gregory et al. (2004))

as a function of Transient Climate Response (warming at time of CO2 concentration doubling in each model’s 1 percent CO2 ramping

experiment. Each point shows one model in the CMIP5/6 ensemble, and the circle shows the 5th percentile of the prior joint distribution for

ECS and TCR used in Millar et al. (2017c). Red whisker plots show the relationship between TCR and ECS calculated using the 2-timescale

pulse-response model fits to the abrupt4xCO2 simulation of the corresponding CMIP5 model.

0 0.5 1 1.5 2 2.5 3
TCR at CO

2
 doubling (K)

0

2

4

6

8

10

12

14

16

18

20

(K
)

CMIP5/6 ECS
RWF prior
CMIP5/6 ESS

S3 Sensitivity of scenario pathways to different historical constraints

The main paper considers scenarios in the case where only historical emissions and concentrations are known, but we can also

consider the impact of different historical constraints on the pathways for 1.5C and 2.0C climate stabilization pathways. The

temperature pathways are achievable, irrespective of the historical ensemble constraints used due to the large allowed negative795

emissions fluxes in the late 21st century (Figure S9), but the range of possible future emissions is dependent upon the prior

assumptions (Figure S11) - the use of either the RWF or Paleo constraints tends to reduce the post-2050 negative emissions

burden.

It is apparent that, as for the RCP2.6 case in Figure 1(b-e), there are large differences in the cumulative-emissions/temperature

behavior for the different ensembles (Figure S12). Solutions with substantial hysteresis are possible with ’C,T’, ’C,T,Heat’ and800

’C,T,Paleo’ constraints - but not in the case of the ’C,T,RWF’ constraint. Associated net 2100 cumulative carbon budgets for 1.5

and 2C stabilization also vary by prior - with significantly larger allowances when the RWF or Paleo constraints are employed.

The relationship between mid-century temperatures and late century carbon removal requirements, however, remains rela-

tively robust irrespective of ensemble constraint (Figure S13), though expected mid-century warming for a given amount of

2020-2050 net emissions is reduced by 0.1-0.2K if the RWF or Paleo constraint is used (Figure S15). For example, a 2020-2050805

budget of 100GtC produces a likely 2050 warming of 1.6K if ’C,T’ constraints are used, and 1.45K if ’C,T,RWF is used’.
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Figure S3.
::::::::
Illustration

::
of
::::::::

ensemble
:::::
spread

:::::
(given

:::::::
different

::::
prior

::::::::::
assumptions)

::
in

:::::
global

::::
mean

:::::::::
temperature

:::::::
(a,c,e,g)

:::
and

::::::::
cumulative

::::::
carbon

:::::::
emissions

:::::::
(b,d,f,h)

::
for

:::
the

:::::::
observed

::::::
period.

::::::::::
Observational

::::::
median

::
is
::::
grey

::::
line,

::::
while

::::::
5-95%

::::::::::
observational

:::::::
uncertain

::::::
ranges

::
are

::::::
shown

::
in

:::
grey

:::::
shade

:::::::::::::::::::
(Cowtan and Way (2013)

::
for

:::::::::
temperature

:::
and

:::::::::::::::::::::::::::::::::::::::::
Le Quéré et al. (2017); Millar and Friedlingstein (2018)

::
for

::::::::
cumulative

:::::::::
emissions).

:::::::
Ensemble

::::::
median

::
in

::
the

:::::::
historical

::::::
period

:
is
:::::
shown

::
in

:::
red,

::::
with

:::::
5-95%

::::::::
ensemble

::::
range

::
in

:::
red

:::::
shade.
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(a) C,T constraints
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(c)  C,T,RWF constraints
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(d)   C,T,Paleo constraints
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Figure S4.
::::::::
Illustration

::
of

:::
the

:::::
impact

::
of
::::::::

non-CO2
:::::
forcers

:::
on

:::::
model

::::::::
behaviour

::
on

::::::::::::::::::
temperature-cumulative

::::::::
emissions

::::::::::
relationships,

:::::
using

::::::
different

::::
prior

:::::::::
assumptions

:
.
::::
Each

::::::
subplot

:::::
shows

:::
the

::::::
10-90th

:::::::
percentile

:::::
ranges

::
of
:::::::
projected

:::::::
response

::
to

::::::::
cumulative

::::::::
emissions

:::::::::::
corresponding

:
to
::::::
Figure

:
1
::
in

::
the

:::::
main

::::
study.

::::::::
Solid/solid

:::::
shade

::::::
regions

::::
show

:::
the

::
all

::::::
forcing

::::::::
simulation,

:::::
while

:::::::::::
hatched/dotted

:::
lines

:::::
show

::
the

:::::::
response

::
of

:::
the

::::
same

:::::::
ensemble

::
to

:
a
::::::::::::
CO2-emissions

:::
only

:::::::::
simulation,

:::
with

:::
all

::::
other

::::::
forcings

:::
set

:
to
::::
zero.

:::::::::::::
RCP8.5/RCP2.6

::
are

:::::
shown

::
in
:::::::
red/blue

:::::::::
respectively.
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Figure S5. A ’corner-plot’ showing pairwise posterior parameter distributions for models constrained using HadCRUT temperature anoma-

lies from 1850-2016. Plots on the diagonal show parameter distributions for each of the parameters in Table 1 considered in the MCMC

optimization only historical emissions and temperatures. Off-diagonal plots illustrate 2 dimensional distributions.
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Figure S6. As for Figure S5, but with ’C,T’ only constraints in gray and ’C,T and Heat’ constraints i red.
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Figure S7. As for Figure S5, but with ’C,T’ only constraints in gray and using ’C,T,RWF’ constraints in red.
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Figure S8. As for Figure S5, but with ’C,T’ only constraints in gray and ’C,T,Paleo’ constraints in red.
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(a) C,T constraints
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(b) C,T,heat constraints
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(c) C,T,RWF constraints
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(d) C,T,Paleo constraints
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Figure S9. As for Figure 2(a), for each of the constraints considered in Figure 1(b-e).
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(a) C,T constraints
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(b) C,T,heat constraints
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(c) C,T,RWF constraints
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(d) C,T,Paleo constraints
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Figure S10.
::
As

:::
for

:::::
Figure

::::
2(d),

::
for

::::
each

::
of

:::
the

::::::::
constraints

::::::::
considered

::
in

:::::
Figure

::::::
1(b-e).

:
.

38



(a) C,T constraints
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(b) C,T,heat constraints
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(c) C,T,RWF constraints
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(d) C,T,Paleo constraints

1950 2000 2050 2100 2150 2200 2250
Year

-10

-5

0

5

10

15

20

E
m

is
si

on
s 

(G
tC

)

Figure S11. As for Figure 2(b), for each of the constraints considered in Figure 1(b-e).
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(a) C,T constraints
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(b) C,T,heat constraints
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(c) C,T,RWF constraints
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(d) C,T,Paleo constraints

Figure S12. As for Figure 2(c), for each of the constraints considered in Figure 1(b-e).
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(a) C,T constraints
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(b) C,T,heat constraints
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(c) C,T,RWF constraints
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(d) C,T,Paleo constraints
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Figure S13. As for Figure 3(b), for each of the constraints considered in Figure 1(b-e).
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(b) C,T,heat constraints
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(c) C,T,RWF constraints
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(d) C,T,Paleo constraints

Figure S14. As for Figure 3(a), for each of the constraints considered in Figure 1(b-e).
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(a) C,T constraints
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(b) C,T,heat constraints
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(c) C,T,RWF constraints

50 100 150 200 250 300 350 400 450 500
2020-2050 net carbon emitted (GtC)

1

1.5

2

2.5
20

50
 w

ar
m

in
g 

ab
ov

e 
pr

e-
in

du
st

ria
l (

K
)

-150 -100 -50 0 50 100
Change in 2050 emissions from 2020 (% 2020 emissions)

-20

-10

0

10

20
50

-2
10

0 
ra

te
 o

f n
et

ca
rb

on
 r

em
ov

al
 fo

r 
st

ab
ili

za
tio

n 
(G

tC
/y

r)

(d) C,T,Paleo constraints

Figure S15. As for Figure 3(b), for each of the constraints considered in Figure 1(b-e).
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Figure S16.
::
As

:::
for

:::::
Figure

::::
1(a),

:::
with

:::
the

:::
time

::::
axis

::::::
showing

::::::::::::
millennial-scale

::::::::
evolution,

:::
with

::::
2300

::::::::
emissions

:::::::
remaining

:::::::
constant

::::
until

::
the

::::
year

::::
3000

:
in
:::

all
::::
cases.

:
.

However, the 2050-2100 negative emission requirements are broadly similar for a given level of observed 2050 warming,

irrespective of the constraint. For example, if observed warming in 2050 is 1.5C - this corresponds to allowable 2050-2100

emissions of -150 to +200GtC if C,T constraints are used, and 0 to +200GtC if C,T and RWF are used.
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