Response to Reviewer 1

This paper introduces an interesting concept of how to account for the long-term effects (such
as changing climate feedback parameter) in the carbon budgets framework. However, | found it
challenging to understand this study in the context of applications to carbon budgets, and how
these findings should be interpreted. | would recommend revising the framing of this paper to
make it more relevant and easier to follow for readers familiar with the carbon budgets literature.
Many thanks to the reviewer for the extensive review - and | recognise (from both reviews) that
the initial submission required better context in the existing carbon budgets literature. | have
endeavoured to incorporate the suggestions and better frame the paper in the revised version.

The paper could also benefit from clarifications, and consistency with the most recent literature
on carbon budgets and TCRE. In particular, the role of non-COZ2 forcing on hysteresis of the
effective TCRE curves discussed in the paper should be clearly separated from making claims
on hysteresis in TCRE alone (which applies to CO2-induced warming only). | included several
suggestions that potentially could help to clarify the points of confusion. Also, | would suggest
putting the findings of this paper in the context of the overall uncertainties in carbon budgets
(see IPCC Special Report, Table 2.2, Chapter 2, for a summary of different uncertainties), which
| suppose are much larger than the uncertainties in carbon budgets due to changing climate
feedbacks.

Point well taken - | have worked to make clear in the revised version that there is potential for
hysteresis from a number of factors, of which this study only deeply considers one - with better
reference to the SR15 conclusions.

Furthermore, | would suggest discussing the uncertainties in the observational datasets
explicitly in the main text, and how they affect the results of constraining the simple model.
Agreed, | have structured the methods to be inline with the document - including the
observational uncertainties.

Major points

1. Model description

It is unclear what model is used in this study -is it a version of the FalR model with additional
components that would account for changing long-term feedbacks, or is it a simpler
impulse-response model that contains less processes than FalR? (the references are a bit
vague).



Sorry about this - I've made the current version more clear. It's a Green'’s function solution of
the core carbon-climate equations in FAIR - not the whole model (i.e. there’s no complex
chemistry - just a single bulk forcing term for aerosols.)

I would suggest to include basic description of the model in the main text (e.g. on lines 70-75) in
the context of recent climate model emulators (or how it differs component-wise from FalR) for
the readers to have a brief idea of how the climate response is determined without the need of
referring to the appendix.

The methods are now inline with the document, with an expanded description of the model

Lines 180-185: It is unclear how the emulator used here differs from the FalR emulator? Is this
an extension of FalR that accounts for the possibility of changing feedbacks, or is it a simplified
version of it.

This should be clearer now - it's a green’s function implementation of the core dynamical
assumptions which is fast enough to run MCMC calculations (I started out using FAIR itself, but
the solver was too slow to run the number of iterations needed to calculate posterior
distributions).

2. Observational constraints from the historical period

It is unclear how the observational uncertainty both in the observed warming and in the
estimates of cumulative CO2 emissions from the global carbon project affects the results.
Thanks for this point. I've made efforts to expand the discussion of observational uncertainty -
and have updated the analysis to better consider these aspects.

The approach of Millar and Friedlingstein 2018 (MF18) is not possible here - given the MCMC
optimization is computationally demanding so repeating the probabilistic assessment for each
member of Cowtan and Way (CW hereon) observational ensemble would not be practical, nor
would the results be particularly meaningful (an ensemble of posterior distributions).

Given this - I've attempted to ensure that observational uncertainties are appropriately
considered in the model’s parameter space. For the case of climate sensitivity parameters,
showing that the range of 20th C warming is consistent with the CW spread. For emissions
uncertainty - I've introduced a new parameter which introduces uncertainty into the emissions in
a given year to account for land use emissions uncertainty. A prior on this parameter is now
chosen such that distribution of cumulative emissions in 2016 is consistent with MF18.

I would suggest either illustrating it on Figure 1 or at least discussing the following points in the
main text:

Figure 1: ‘observed’ cumulative CO2 emissions — Please include references to the observational
datasets in the perhaps in the figure caption, and specify if they include the total CO2 emissions
(from fossil fuels and land use change?)

Done - now total land use and fossil emissions from GCP 2019.



If so, the uncertainty on estimated COZ2 land use change emissions in the historical period is
quite large (even up to +/-50 percent for the annual E luc emissions), and it should be indicated
on the figure or at least mentioned in the text and the figure caption. (e.g. see Table 5 from the
recent Global Carbon Project 2019).

Thanks for this point. The revised manuscript allows for uncertainty in historical cumulative
emissions by introducing a new parameter in the model, for which the prior is manually
adjusted to replicate (very well) the distribution of historical emissions in MF18, see new Figure
S3.

Figure 1: observed warming from HadCRUT4 — is it adjusted for the blending-masking effects?
If not, it is not like-for-like comparison with the global (and complete coverage) climate models’
output. In such case, at least a caveat in the figure caption and a short mention of this point
would be useful. (e.g. see Cowtan et al. 2015; Richardson et al. 2016, 2018).

I've shifted to using the Cowtan/Way 2015 ensemble median (for calibration target) and
ensemble to assess the sigma T parameter which conveys the degree to which we trust that
data in the MCMC calibration

Uncertainties in the other observation-based quantities (heat content, paleo and RWF) should
be discussed, as some of those inputs/constraints have narrower uncertainties, while others are
a lot larger.

I’'ve made clear for other constraints (heat, Paleo-ECS and RWF) that they are idealized - they
illustrate what the effect would be on our confidence in the event that we knew that data.

Lines 70-75: Please discuss the uncertainty in the observational parameters that are used to
constrain the model output. Also, perhaps include a figure showing the observation-based priors
used.

The confidence in temperatures is now covered in the context of the discussion of the selection
of sigma_T, and informed by the range of observed warming seen in the Cowtan-Way
ensemble.

Do historical emissions include emissions from land use change? If so, the uncertainty on
cumulative emissions is much larger than the uncertainty resulting from observed temperature.

Confidence in cumulative emissions is replicated from Millar/Friedlingstein 2018 - itself informed
by uncertainty estimates in GCP2016. This is represented in the model with a scaling
parameter on emissions, which is calibrated to represent this uncertainty.

Also, the discussion regarding constraints from the historical record could use the following
reference and a short discussion:

Millar, R. J. Friedlingstein, P. The ultility of the historical record for assessing the transient
climate response to cumulative emissions.Phil. Trans. R. Soc. A 376, 20160449 (2018).



Well noted -this is now discussed in the introduction

References:

Cowtan, K. et al. Robust comparison of climate models with observations using blended land air
and ocean sea surface temperatures. Geophysical Research Letters 42, 6526—-6534 (2015).
Richardson, M., Cowtan, K., Hawkins, E. Stolpe, M. B. Reconciled climate response estimates
from climate models and the energy budget of Earth. Nature Climate Change 6, 931 (2016).
Richardson, M., Cowtan, K. Millar, R. J. Global temperature definition affects achievement of
long-term climate goals. Environ. Res. Lett. 13, 0564004 (2018).

3. TCRE definition, non-CO2 forcing and the effective TCRE hysteresis

Please note that the definition of TCRE should be applied to CO2-induced warming alone. If
calculating carbon budgets directly from RCP scenarios that are subject to CO2 and non-CO2
forcing, please refer to the Effective TCRE (Matthews et al. 2016). The current version of the
manuscript confuses these two concepts, referring to TCRE even if non-CO2 forcing is present,
making the arguments difficult to follow, since the effective TCRE, per definition, is not
necessarily linear, due to the non-linearities arising from non-COZ2 forcing. This should be
clarified throughout the text.

Point well taken, and apologies for this confusion. | have made efforts to clarify the definitions
throughout.

Based on eatrlier studies (e.g. MacDougall et al. 2015; Tokarska et al. 2019), | would expect that
the apparent hysteresis behaviour depends on non-CO2 forcing scenario, and | am not
convinced that observational constraints address this non-linearity.

| have now noted these papers - but my paper is exploring uncertainties which are not present
in these studies. MacDougal 2015 considers only a single feedback timescale (i.e. constant
sensitivity parameter) - therefore is omitting the major development considered here. Tokarska
2019 uses only a single model configuration in which thermal effects and carbon cycle
nonlinearities cancel to produce a near constant TCRE - but the results are not generalised to
all possible configurations of the model, Neither study is addressing the key issue here -
whether historical temperatures can constrain the free parameters of model which allows for
feedbacks on multiple timescales.

Furthermore, if considering TCRE to CO2-emissions alone (with no non-CO2 influence), TCRE
would likely be fully reversible (no hysteresis)- e.g. see Figure 2a in MacDougall et al. 2015.

Figure S3 shows the response to CO2 emissions alone for each posterior parameter
distribution. The effective TCRE is clearly different to the TCRE, as would be expected, but the
hysteresis behaviour is not strongly influenced by the non-CO2 forcing - arising primarily from
unresolved uncertainty on fraction of warming to date which is explained by slow timescale and
fast timescale feedbacks.



Thus, regarding Figure 1, | would suggest discussing the effect on CO2-only response
separately, as | suppose most of these non-linearities arises due to the specific nonCO2
emission scenarios, and is not necessatrily an inherent property of TCRE alone. One way to
address this issue would be to repeat the analysis using CO2-only simulations (according to
RCP 2.6 scenarios), to illustrate if such hysteresis also arises in the absence of non-CO2
forcing.

Thanks for this suggestion - | have conducted the sensitivity study as suggested, which
illustrates that although non-CO2 forcing assumptions do scale inferred TCRE, they do not play
a strong role in hysteresis on a multi-century timescale (illustrated in supplemental figure S4).
Scenarios with non-CO2 forcers set to zero show different apparent TCRE in RCP8.5 (as
expected), but the hysteresis behaviour in RCP2.6 remains primarily a function of the choice of
prior assumptions on the model behavior.

References:

MacDougall, A. H., Zickfeld, K., Knutti, R. Matthews, H. D. Sensitivity of carbon budgets

to permafrost carbon feedbacks and non-CO2 forcings. Environ. Res. Lett. 10, 125003 (2015).
Tokarska, K. B., Zickfeld, K. Rogelj, J. Path independence of carbon budgets when

meeting a stringent global mean temperature target after an overshoot. Earth’s Future (2019).

Specific comments:

Lines 15-25: Please note that TCRE refers to CO2-only induced warming (originally defined in
simulations where atmospheric CO2 concentrations increase at a rate of 1
Corrected as suggested

Lines 20-25: | found this sentence confusing and inaccurate: ‘the range of TCRE values
observed in Earth System Models (ESMs) can be used to infer model-based carbon budgets
which are compatible with 1.5 and 2 degree Celsius targets of the Paris Agreement. . .” Is this
referring to model-based TCRE that is used then in conjunction with other quantities (such as
estimates of observed warming and future warming from non-CO2 forcing, as in Rogelj et al.
2019a framework) to infer remaining carbon budgets? Or is this sentence referring to carbon
budgets at 1.5 C and 2.0C directly inferred from ESM output, as in AR5, for example? (in that
case, those budgets already account for CO2 and non-CO2 warming in RCP scenarios, for
example), but those budgets are not calculated directly from TCRE.

Paragraph completely rewritten in light of the reviewer's comment.

Lines 115-125: Since CO2 emissions follow different trajectories, but non-CO2 forcing follows
the RCP 2.6 trajectory for each section, it is unclear how is the role of non-COZ2 forcing distinct
from CO2-induced changes? TCRE is pathway independent for CO2 emissions (both positive
and negative), but if non-COZ2 emissions are evolving in time (according to the RCP 2.6



scenario), the effective TCRE (to CO2 and non-CO2 forcing) is scenario-dependent, and heavily
depends on the chosen non-CO2 scenatrio.

e.g. Reference: Mengis, N., Partanen, A.-I., Jalbert, J. Matthews, H. D. 1.5 - C carbon budget
dependent on carbon cycle uncertainty and future non-CO2 forcing. Sci Rep 8, 5831 (2018).

I've added a paragraph at the end of section 2.1 to discuss non-CO2 forcers. But the CO2-only
experiments in Figure S3 show fairly convincingly that this is not the major factor in explaining
the possibility for hysteresis without the RWF prior.

4. Robustness of TCRE under negative emissions

Please note that there are several recent studies using climate models of different complexity,
including comprehensive ESMs and EMICs, that should be cited on lines 30-40. Currently, the
paper gives an impression that this topic has not been studied in depth, while quite the opposite
is true. Some discussion of these more recent studies would also be helpful on lines 25-40.

Regarding Earth system response to negative emissions in ESMs and EMICs:

Ehlert, D. Zickfeld, K. Irreversible ocean thermal expansion under carbon dioxide removal. Earth
System Dynamics 9, 197-210 (2018).

Tokarska, K. B. Zickfeld, K. The effectiveness of net negative carbon dioxide emissions

in reversing anthropogenic climate change. Environ. Res. Lett. 10, 094013 (2015).

Thanks - these are added in a new dedicated paragraph in the introduction on EMICs

Jones, C. D. et al. Simulating the Earth system response to negative emissions. Environmental
Research Letters 11, 095012 (2016).
Mentioned in a dedicated paragraph on ESMs

Regarding TCRE behaviour under negative emissions:

Zickfeld, K., MacDougall, A. H. Matthews, H. D. On the proportionality between global
temperature change and cumulative CO2 emissions during periods of net negative CO 2
emissions. Environ. Res. Lett. 11, 055006 (2016).

Noted in the EMIC discussion

Tokarska, K. B., Zickfeld, K. Rogelj, J. Path independence of carbon budgets when meeting a
stringent global mean temperature target after an overshoot. Earth’s Future (2019).

Noted in the EMIC discussion

MacDougall, A. H., Zickfeld, K., Knutti, R. Matthews, H. D. Sensitivity of carbon budgets to
permafrost carbon feedbacks and non-CO2 forcings. Environ. Res. Lett. 10, 125003 (2015).
Noted in the EMIC discussion



Lines 30-35: [TCRE] robustness in complex models under large negative emissions is relatively
unexplored’ — There are at least several recent studies that look at ESM model responses under
different amounts of negative emission scenarios, and reversibility of TCRE after an overshoot
(see several examples above).

Noted in the ESM discussion

Lines 80-85 claim that the TCRE relationship is not robust under negative emissions. However,
it is unclear what fraction of this hysteresis behaviour is due to non-CQOZ2 forcing. In
intermediate-complexity model (UVic ESM) TCRE is reversible under negative CO2 emissions.
At least a discussion of this claim in the context of these two following studies would be helpful
here.

This paragraph has been highly restructured, with a more extensive literature review. | now note
in the EMIC paragraph in the introduction that the net negative emission cumulative emission
behavior is well tested in the U.Vic model. It is also noteworthy that the vast majority of the
literature on the matter is conditional on the structural assumptions in a single EMIC - with very
few studies formally sampling uncertain parameters of the model in tests of reversibility.

Lines 105-110: Figure 1b is not discussed in the previous section. | find it unconvincing why the
TCRE framework would not hold under negative emissions even if model output is constrained
by temperature and cumulative COZ2 emissions (see major point above regarding reversibility ).
Please explain more your claim, possibly process-wise). Also, this hysteresis in the effective
TCRE shown here may arise due to time-dependent non-COZ2 forcing. Please see my
comments below and in the above section 3 regarding the separation of CO2 and non-CO2
effects on the reversibility of TCRE.

As noted in the previous section, in this setup, the non-CO2 forcers are not a significant factor in
the potential for hysteresis (the dominant factor being whether a prior is assumed for RWF or
long term ECS). The model with the RWF prior does show more hysteresis in the all-forcing
RCP2.6 compared with the CO2-only RCP2.6 (Figure S4(c)), but the choice of prior is by far the
dominant constraint on hysteresis-like behavior in the model (compare Figure S4(a) with S4(c))

Line 80: This paragraph suggests that TCRE relationship is not robust under negative
emissions. However, TCRE (due to CO2 emissions alone, as originally defined) has shown to
be reversible in overshoot scenarios with negative emissions, including RCP scenarios (see
major point 3 above).

| would argue it has not been shown to be true in a general sense - it has been demonstrated,
for the most part, to hold in the UVic model, with limited evidence on shorter timescales in
ESMs, and for simple climate models making strong structural assumptions on feedback
timescales.

The non-linearity probably arises due to time-varying non-CQOZ2 forcing. This should be clarified
here,



As for the point above - supplemental plot S3 shows that the potential for hysteresis arises from
the timescale dynamics of the thermal response, not from non-CO2 forcing assumptions.

and please refer to effective TCRE, if non-CO2 forcing is included.

corrected

Also, this behaviour depends on non-CO2 forcing scenario, and | am not convinced that
observational constraints address this

See response to major point 3 and figure S3

Non-linearity.

Lines 85 to 90: | would suggest discussing the effect on COZ2-only response separately, as |
suppose most of these non-linearities arises due to the specific non-CO2 emission scenarios,
and is not necessarily an inherent property of TCRE alone.

See response to major point 3 and figure S3

Line 107: ‘cumulative emissions framework is not guaranteed to hold under negative emissions’
— This is a strong statement, which | am not convinced about. | would expect non-CO2 forcing in
RCP 2.6 to be responsible for this hysteresis, and if considering RCP 2.6 COZ2-only simulation,
this hysteresis effect would be a lot smaller, if at all Present?

See response to major point 3 and figure S3

5. Committed warming (after emissions reach net-zero):

The paper refers to peak warming occurring after the emissions reach net-zero. However, there
is no discussion with the literature on the committed warming occurring after emissions are
stopped, which is directly relevant to the carbon budgets framework. For example, a short
mention in the introduction (e.g. lines 25-40) and a discussion of how this paper fits within
earlier studies would be valuable.

Ehlert, D. Zickfeld, K. What determines the warming commitment after cessation of CO 2
emissions? Environ. Res. Lett. 12, 015002 (2017).

MacDougall, A. H. et al. Z. M. MacDougall, A.H, Frélicher, T.L., Jones, C.D., Rogelj,J.,
Matthews, H.D., Zickfeld K., Arora, V.K., Barrett, N.J., Brovkin, V., Burger, F.A., Eby, M.,
Eliseev, A.V., Mokhov, I.l., Hajima, T., Holden, P.B., Jeltsch-Thémmes,A., Séférian, R., Michou,
M., Shaffer, G., Sokolov, A., Wiltshire, A., Ziehnand, T., Menviel, L. How much warming remains
in the pipeline? A multi-model analysis of the CO2 zero emission commitment. (discussion
paper/ in review). https://www.biogeosciencesdiscuss.net/bg-2019-492/

Thanks for these suggestions - the papers are now discussed in the introduction.

Also, regarding the parameter choices and how they influence TCRE — perhaps it would be
valuable to discuss the results of this study in the context of earlier studies, for example:


https://www.biogeosciencesdiscuss.net/bg-2019-492/

MacDougall, A. H., Swart, N. C. Knutti, R. The Uncertainty in the Transient Climate Response to
Cumulative CO2 Emissions Arising from the Uncertainty in Physical Climate Parameters. J.
Climate 30, 813-827 (2016).

Thanks - paper noted in introduction.

Lines 170-175: | would suggest also discussing the zero-emission commitment (see examples
above), which suggests, that on average, ZEC is close to zero for CO2 emission pathways (in
ESMs).

Noted - for decadal timescales - but the focus of this study is century timescales. The
MacDougal paper itself shows a large diversity of response on century timescales (Figure 3a,
https://www.biogeosciences-discuss.net/bg-2019-492/) , with only a subset of models having
performed integrations long enough to assess the long term response.

Also, part of the difference between the threshold exceedance and avoidance budgets may be
non-CO2 forcing, which is not part of the TCRE relationship (it would be part of the effective

TCRE, which, however, is not expected to be linear due to non-CO2 influence). Please see
above major comments regarding framing.

I've now noted this point in the discussion.

Line 60: Please note that recent studies suggest that the peak warming after emissions are
zeroed is likely to be close to zero (see examples above)

Note that the focus of this study is on century timescales - where the MacDougal 2019 review
shows a large diversity of sign and magnitude of post-cessation warming.

6. Long-term uncertainties in the context of overall carbon budget
uncertainties

Lines 215-220: It would be good to put it in the context of other uncertainties on carbon budgets
(see IPCC SR Ch2, Table 2.2). | would expect that other uncertainties such as permafrost
carbon cycle feedbacks, model response to non-CO2 forcings, and nonCO2 forcing scenario
uncertainty are still the dominant sources of uncertainness in the remaining carbon budgets.

Thanks for this suggestion. I've quantified the impact of the prior assumption uncertainty on
2100 budgets in the results section, added a new figure S12 to illustrate budgets as a function
of time in each experiment. I've also added a discussion paragraph to consider these
uncertainties in the context of other factors, as you suggest, tabulated in SR1.5 Table 2.2

Minor suggestions:

Title: I would suggest for the title to reflect more that the scope of this paper is also
focusing on carbon budgets and TCRE framework
Fair point.


https://www.biogeosciences-discuss.net/bg-2019-492/

Title is now: The role of prior assumptions in carbon budget calculations

Abstract: The abstract gives the impression that the main source of uncertainties for near-term
policy decisions is future negative emissions capacity and the long-term response to climate
forcers as the main sources of uncertainty in the near-term policy decisions. However, carbon
budgets and related net-zero emissions targets are subject to much larger transient uncertainty
from the future non-CO2 forcing (at the time of 1.5C or target warming level), and climate
models’ response to non-CO2 forcing, which varies largely among models, contributing to a
large spread in the remaining carbon budgets. (See IPCC Special Report, Chapter 2, Table 2.2.
therein for quantification of different sources of uncertainties). While non-CO2 forcing is not the
main scope of this paper, | would suggest revising this framing to avoid the misconception about
the key sources of uncertainties in the remaining carbon budgets and near-term emission
Targets.

Thanks for this - and | agree, non-CO2 forcing uncertainty should be discussed in the abstract.

Abstract: ‘definite cumulative emissions budget’ -1 would suggest following terminology from
Rogelj et al. 2019a framework, for consistency with other studies. Please specify if that is
referring to the total or remaining budget?

Done - abstract rewritten to support the Rogelj model (a paper which came out during the late
stages of writing)

Lines 90-100: While it is an interesting discussion, it is unclear how it relates to the transient
timescales shown on Figure 1. (For example, it would be interesting to see the emulator
behaviour until year 3000, for example, to assess the effect of non-linearities discussed in this
study).

Added Supplemental Figure S16 to show evolution up to year 3000 for all simulations.

Figure 2 c. | found this plot confusing, and it is unclear what the baselines are. Following the
SR1.5 and Rogelj et al 2019b recommendations, | would suggest plotting only the warming
since 2006-2016, and offset it (as in SR 1.5 Table 2.2), so that the 1.5C and 2.0C target levels
are clearly readable,

Done. x- and y-axis now anomalies from 2010.

Are cumulative emissions since 2010 or since 20207 (the figure caption and x-axis labels are
inconsistent or confusing).

Now 2010 throughout.

Similarly, | suggest using the present-day warming baseline (as in SR 1.5), for consistency, in
the whisker plots.

Done.



Perhaps, to clarify the point of this figure, it would be also useful to show whisker plots for the
remaining carbon budgets at the time when 1.5C and 2.0C target is reached for the first time
(before the overshoot), which would help to illustrate the difference in the transient and
long-term budgets.

Thanks for this suggestion. Done.

However, they are not expected to be the same due to the ongoing non-COZ2 forcing
contribution. This point would need to be clarified as well.

As noted in response to major point 3 - this is a factor, but a secondary one to the choice of
prior on thermal response parameters.

Lines 130-135: | found this paragraph unclear and confusing. It seems to be comparing carbon
budgets calculated from scenarios that non-CO2 forcing is constantly evolving over time, with
carbon budget estimates directly inferred from TCRE, but how that latter estimate accounts for
the future contribution from non-CO2 forcing?

I've removed the TCRE estimate comparison from the text and Figure 2d, now just citing the
SR1.5.

Lines 135-155 and Figure 3: It is unclear how the budgets can be compared for the different
time periods, given that they entail different levels of non-CO2 forcing that is evolving in time in
the simulations considered in this study. (i.e. since those budgets depend on the future
non-CO2 forcing levels that differ, how can they be compared in a like-for-like manner?)

The non-CO2 emissions are fixed here at RCP2.6 emission levels, but the forcing is allowed to
vary as an uncertain parameter in the model configuration - and that uncertainty is represented
in the vertical spread of the distribution of points in Figure 3. I've made efforts to make this
clearer in the text.

Lines 200-205: Perhaps a brief discussion in the context of more recent literature would be
interesting (e.g. see Rogelj et al. 2019)
Thanks - restructured such that the end of the discussion explicitly supports the Rogelj framing.

Lines 205-215: Please note that carbon budgets should be calculated from anthropogenic
warming estimate (Rogelj et al. 2019b. Haustein et al. 2017), which is not subject to internal
variability. Reference: Haustein, K. et al. A real-time Global Warming Index. Scientific Reports 7,
15417 (2017).

| disagree that the Haustein estimate is not subject to internal variability, for reasons | laid out in
this realclimate piece:

http://www.realclimate.org/index.php/archives/2017/10/1-50c-geophysically-impossible-or-not/



http://www.realclimate.org/index.php/archives/2017/10/1-5oc-geophysically-impossible-or-not/

The thesis of which was that the anthropogenic warming estimate is itself particularly sensitive
to temperatures in the last few years of the timeseries, and repeating the approach in a large
ensemble produces a distribution of forced warming estimates varying by over 0.2K. As such,
I’'m reluctant to recommend a regression approach as the preferred means of assessing forced
warming trends for carbon budgeting.

That said - in the context of the present paper, | agree that the regression reconstruction would
be more skillful by mid-century - and have cited these references in this context.



Response to reviewer 2

Summary: This study explores the long-term warming of climate for heavily mitigated scenarios,
discussing the reasons behind changes in the sensitivity of warming to cumulative carbon
emitted over time. An efficient model ensemble is generated and integrated with both prescribed
concentration pathways (e.g. Figure 1), and an adaptive pathway algorithm to generate warming
scenatrios that restore towards the desired warming targets (e.g. Figure 2).

The study discusses how the required mitigation efforts are affected by changes in the
sensitivity of surface warming to cumulative carbon emitted over time (the TCRE), and how a
constant TCRE framework may not be able to account for such effects.

I found the study, as currently written, difficult to place in the context of existing literature. In
particular, this study is missing comparisons to existing literature using
observationally-constrained ensembles to explore the future carbon budget, adaptive mitigation
pathways, and the time evolutions of effective climate sensitivity and transient climate response
to emission.

Before such comparisons are made, it is difficult to say what in this study is new, and how it fits
within existing knowledge.

Many thanks to the reviewer,

I have made efforts to clarify the framing in the revised version. The central focus of the study,
and novel aspects are:

1 - the adequacy of TCRE-based carbon budgeting for temperature stabilization targets and the
potential for hysteresis in the cumulative carbon-temperature relationship.

2 - how including different types of common prior assumptions (which vary across the literature)
in the Bayesian model can alter the appropriateness of meta-frameworks for policy such as
carbon budgeting.

The use of adaptive pathways and the simple model itself were never intended to by the novel
aspects of this study (the adaptive mitigation pathway concept follows previous studies -
Sanderson et al 2016, Sanderson et al 2017). That said, | apologise for missing important
comparisons in the methodological aspects of the study. I've endeavoured to place the revised
version in the context of the studies raised - which are certainly relevant.

In particular, the Goodwin studies are very relevant and make good efforts to quantify the
effects of prior assumptions - but they do not focus on the question of reversibility and
hysteresis. However, there are a number of studies and approaches in common usage which



make stronger structural assumptions (fixed lambda or RWF) which are used to justify the
cumulative emissions budgeting framework. The point of this study is to examine those
assumptions, and how they influence model dynamics if imposed.

Major points: Significant areas of existing literature missing from
discussion.

1. Observation-constrained ensembles exploring the future carbon budget

The study as currently written is missing comparisons to existing literature on
observation-constrained calculations of future carbon budget for this century (Goodwin et al.,
2018a) and out to year 2300 (Goodwin et al., 2018b) generated using the WASP model.

Many apologies for these omissions. | now discuss the papers in both results and introduction.

More details are required for the method used here for generating an observationally
constrained ensemble. A full methodology needs to be presented containing prior assumptions,
observational constraints and how the observational constraints are applied.

The method has been expanded, and now incorporated into the main text body.

This method used here should then be compared to the Monte Carlo plus history matching
method presented in Goodwin et al. (2018a).

This is a good point. | now discuss the Goodwin paper at the start of the optimization chapter -
because it represents an important design choice. In FAIR, at least - the Python code requires
seconds to run - which made MCMC quite impractical to optimize the model (though a brief
inspection suggests that in WASP, as compiled C++ code, might be fast enough).

The solution | proposed was to recode the core elements of the FAIR as a pulse-response
model, fast enough that full MCMC is feasible to estimate the posterior (i.e. thousands of
simulations per second) - which avoids the design issues of history matching (difficulty in
automation of the selection of cutoff values and sampling uniformly from the posterior).

But - | accept that my approach has downsides, the model is an accurate representation of the
FAIR core dynamics - but every aspect of the model and forcing must be represented in the
pulse/response framework, which might limit further developments (e.g. a more detailed
breakdown of non-CO2 forcers

Note that both Goodwin et al. (2018a) and (2018b) studies adopt an efficacy on the ocean heat
uptake, which is equivalent to allowing the effective climate sensitivity to change over time
(where the ocean heat uptake efficacy is greater than 1 the effective climate sensitivity in the



present day is less than the equilibrium climate sensitivity on multi-century timescales, and
where the efficacy is less than 1 the effective climate sensitivity for the present day is greater
than the equilibrium value). As such, both studies allow the effective climate sensitivity to vary
implicitly over time, and do not assume a relationship between TCR and ECS like the FalR
model studies (an approach which this study critiques).

I've now explicitly noted in the discussion that WASP does not contain this prior assumption.

The fact that no relationship is assumed between TCR and ECS in this study is currently
discussed, but to assess whether the method is novel is needs to be compared to the WASP
model methodology, for which this is also true.

The novelty in this study is not the omission of the TCR/ECS relationship - but the point that
including it or not has large implications on the robustness of the TCRE framework.

2. Comparison to adaptive mitigation pathway algorithms in the literature

The Goodwin et al (2018b) study in Earth’s Future presents and uses an adaptive mitigation
pathway approach to restore a large ensemble of observation-constrained efficient model
simulations to 1.5 and 2.0 - C targets — in a very similar manor to the results presented in this
study in Figure 2. Given the similarity of the method, the results in this study should be
compared to this existing Goodwin et al (2018b) study in the literature. The ‘Adaptive scenario
design’ used here (Figure 2, Appendix A1.2) should be compared to the ‘Adaptive Mitigation
Pathway’ algorithm presented in Goodwin et al (2018b) and used in Brown et al. (2018) and
Nicholls et al (2018). The resulting model output in this study, for compatible carbon emission
pathways, should then be compared to the similar output generated in these previous studies in
the literature.

I have now cited Goodwin 2018b as also using an adaptive scenario design. However, the
approach considered here follows our earlier works, which predate the Goodwin studies
(Sanderson et al 2016, used in Sanderson et al 2017) - which detail the methodology for
adaptive mitigation pathways used here. As such, | didn’t consider this aspect of my present
study to be novel. | am simply applying an established approach to produce idealized
pathways. Apologies if this was unclear in the previous version.

There are, however, some interesting distinctions between the two approaches. Sanderson
2016 is ‘forward looking’ - i.e. scenario parameters are iteratively adjusted until targets are met,
while Goodwin 2018b represents to some degree the state of knowledge of decision makers
based on observed TCRE. I've noted this at the start of Section 2.2.

3. Comparisons to existing literature on the reasons behind continued
warming after emissions cease and the non-constancy of the TCRE

This study is missing comparisons to existing literature:



on the reasons behind continued surface warming after emissions cease (e.g. Frélicher et al.,
2014; Williams et al., 2017a)
These are now cited in the introductory paragraphs on ZEC.

on the reasons behind near-constancy (or otherwise) of the TCRE (e.g. Goodwin et al., 2015;
Williams et al., 2017b).
| now cite both papers in the introduction in the paragraph introducing TCRE.

One of the potential reasons that TCRE is non-constant is a change in effective climate
sensitivity. However, other possible reasons are discussed in the studies mentioned here. The
reasons behind nonconstancy of the TCRE in the model simulations presented here should be
quantified in a way that relates to previous studies in the literature such as these.

This is an interesting point. The pulse-response framing here and the gradient framing of
Goodwin 2015 potentially give two different perspectives on the role of the ocean which are
perhaps complementary. In the Goodwin framework - the TCRE at a given time is decomposed
into the dependence of surface warming on radiative forcing, the fractional dependence of
radiative forcing from atmospheric and the dependence of radiative forcing from atmospheric
CO 2 on carbon emissions, each of which evolve in time and whose interaction explains why
TCRE remains constant (or not).

The Greens function/pulse response method used here could provide a different framing, with
discrete responses to emissions which emerge on different exponentially decaying timescales.
The model is already defined in terms of the set of exponential decays which describe p_CO2
as a function of emissions, and a second set which define warming as a function of p_CO2.
The response parameters do not evolve in time because the time evolution is coded into the
pulse response. As such - one can clearly see the effect of a prior on timescales of model
response (e.g. imposing the RWF prior suppresses the long timescale sensitivity parameter).

| see these two frameworks as being complementary, the advantage of this approach being that
it provides fixed parameters which can then be estimated for the real world (rather than
time-evolving diagnostics) - and have added a paragraph to this effect in the discussion. A
comprehensive use of the Greens function description as a framework for decomonsing system
response to be compared the Goodwin framework is beyond scope in an already long paper,
given it’s not the focus - but it would make for an interesting followup which I'd be keen to work
on.



4. Constraints on the time-evolution of effective climate sensitivity in the
literature

One effect leading to a change in TCRE over different response timescales is that the effective
climate sensitivity also evolves over different response timescales. Again, here the discussion is
missing sections of the literature.

For example, Goodwin (2018) generates a large ensemble of model simulations with explicitly
time-evolving effective climate sensitivity, and then uses historic observations to constrain how
effective climate sensitivity evolves on different response timescales. This reveals an increase in
effective climate sensitivity over time (Goodwin, 2018) that will, crucially for this study, affect
future mitigation requirements for a given warming target. Rohling et al. (2018) presents a
similar account of time-evolving effective climate sensitivity from a paleo-perspective. These
studies should be discussed and the results of this study compared to these previous findings.

I now discuss this study in some length in the discussion as a proposal for future work. Broadly
- the non-stationarity of EffCS and TCRE mean that attempts to quantify these parameters from
observations should be qualified - and that an alternative is to explicitly calibrate carbon and
thermal feedbacks on different timescales. To do this properly requires future work - specifically
considering additional information (other than global mean evolution) which might be used to
constrain system response at different timescales.

It should also be noted that unlike the FalR model methodology that is currently discussed for
comparison (e.g. section 2, Lines 170-185), the WASP model methodology in Goodwin et al.
(2018a; 2018b) and Goodwin (2018) does not assume a prior relationship between TCR and
ECS or a near-constant TCRE. Therefore, comparisons to the WASP methodology deserve a
separate discussion in section 2.

Now noted - | broadly cite the Goodwin 2018 approach as being an example of using a
geological prior on ECS, in contrast to FAIR which uses a prior on RWF.
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Relevant Changes to Manuscript

Methods now inline with document

Title altered following suggestion of reviewer 1

Clarified framing of paper in response to reviewer 2

Significantly extended literature review, notably Goodwin papers.

Added discussion of Monte-Carlo vs. history matching approaches

Discussed prior adaptive mitigation scenarios - including Sanderson 2016 (followed in
this study) and Goodwin 2018

Clarification of results in context of wider literature and other uncertainties, using IPCC
SR1.5 framing

Clarification of model design, and relationship to FAIR

Added discussion of observational uncertainties and introduced parameter to represent
uncertainty in historical land use emissions

Changed observational carbon estimates to GCP2019

Changed observational temperature estimate to Cowtan and Way

Added new figure S3 to illustrate uncertainty in land use emissions

Added new Supplemental Figure S4 to show the impact of non-CO2 forcers on
hysteresis, and associated discussion in main text

Expanded literature discussion of negative emission commitments and committed
warming

Added supplemental Flgure S16 to show millennial carbon budget implications
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Abstract. Cumulative emissions budgets and net-zero emission target dates are often used to frame climate negotiations (Frame
et al., 2014; Millar et al., 2016; Van Vuuren et al., 2016; Rogelj et al., 2015b; Matthews et al., 2012). However, their utility for

near-term policy decisions is confounded by an uncertainties in future negative emissions capacity (Fuss et al., 2014; Smith

et al., 2016; Larkin et al., 2018; Anderson and Peters, 2016) the role of non-CO2 forcers (MacDougall et al., 2015) and in

long term Earth System response to forcing

Rugenstein et al., 2019; Knutti et al., 2017; Armour, 2017). Such uncertainties may impact the utility of an indefinite-absolute

carbon budget if peak temperatures occur significantly after net zero emissions are achieved, the likelihood of which in-a-simple

modekis-is shown here to be conditional on prior assumptions about the long term dynamics of the Earth System. Here-we

Wﬁ@%ﬁ%ﬂﬁﬂmﬁgmmmwmime necessny and scope for negative
emissions deployment later in the century te i 0

adescan be conditioned

on near term emissions, providing support for a scenario framework which focuses on emissions reductions rather than absolute
budgets(Rogelj et al., 2019b).

Introduction

The climate policy discussion has adopted some convenient frameworks which act as proxies for the drivers and consequences
of climate change. For example, it is broadly assumed that climate risks scale with global mean temperature (O’Neill et al.,
2017). International climate agreements have thus been framed in this context (United Nations, 2015), necessitating Earth sys-
tem parameters which relate future emissions trajectories to temperatures. This relationship is often framed through the Tran-
sient Climate Response to cumulative carbon Emissions (TCRE - the ratio of the globally averaged transient CO5 induced sur-

face temperature change per unit carbon dioxide emitted,
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provides a basis for cumulative carbon budgets corresponding to temperature targets (England et al., 2009; Gillett et al., 2013)
» though its application to real-world carbon budgets is complicated by the effect of non-CO2 forcers. The "effective TCRE"
(Matthews et al., 20172) is thus the warming rate per unit carbon dioxide emitted in a scenario where forcers other than CO2
are acting on the system (such as aerosols and other greenhouse gases), which adds some uncertainty to the estimation of

Meanwhile;understanding-Understanding of how the Earth System reaches equilibrium in response to climate forcing has
advanced :reeent-in recent years; a number of studies have highlighted that existing 150 year simulations are insufficiently

short to assess the Equilibrium Climate Sensitivity (ECS, the equilibrium response of surface temperatures to a doubling of
carbon dioxide concentrations) of General Circulation Models, and assuming a single feedback parameter associated with
Effective Climate Sensitivity (Gregory et al., 2004) can lead to a significant underestimation of long term response (Gregory
and Andrews, 2016; Geoffroy et al., 2013; Senior and Mitchell, 2000; Winton et al., 2010; Armour et al., 2013; Li et al., 2013;
Rose et al., 2014; Andrews et al., 2018).

What is less clear at present is whether these findings have any relevance for the use of {effeetive)TCRE in emissions policy

decisions. %ﬁmﬁwmmm&mmmmm robust in transient

scenarios in which emissions remain mostly positive

Fisrobustnessincomplex-meodels(Zickfeld et al., 2012; Krasting et al., 2014; Herrington and Zickfeld, 2014; Goodwin et al., 2015)

».and its value can be to some degree constrained by emissions and observed temperatures to date - even in the context of
observational uncertainties (Millar and Friedlingstein, 2018). This path-independence has been explained by the fact that both
heat and carbon are absorbed into the ocean on similar timescales, the former acting to realize warming in response to forcing

However, the robustness of temperature-cumulative emissions scaling in Farth System Models under large negative emis-
sions 18 i on longer timescales is less well understood (Boucher et al., 2012; Vichi et al., 2013; Cao and

Caldeira, 2010). Although an experimental design to test the long term robustness of TCRE under zero or negative emissions
(Jones et al., 2019) o
be highly valuable, only a small selection of Earth System Models have ﬂe{—geﬂefaﬂlfperformed this type of experiment to

9have been proposed and would

date-

e, finding large uncertainties in land and ocean
carbon sinks (Jones et al., 2016) and in the long-term dynamics of equilibrium response to forcing (Rugenstein et al., 2019).

Earth systems model of intermediate complexity (EMICs) allow a more compuationally tractable integration of long timescale
changes and in these cases, cumulative emissions-temperature propomonahty has been ebserveditrests—to-theroughlytest
ersfound to be

relatively insensitive to emissions pathway (Zickfeld and Herrington, 2015; Tokarska and Zickfeld, 2015; Tokarska et al., 2019a; Zickfeld
. However, many of these results are conditional on the structural assumptions of a single EMIC: the U.Vic Model (Weaver et al., 2001
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. Within this structure, parametric sensitivities for TCRE itself have been comprehensively tested (MacDougall et al., 2017)

and reversibility in the U.Vic model has been tested to a degree (Ehlert and Zickfeld, 2018), but uncertainties remain in these
results due to structural assumptions and parametric choices in the U.Vic model.
Simple climate models allow for very fast simulations which are capable of wide-scale parameter searches, but in many cases

results are still subject to structural assumptions. For example, a fixed climate feedback parameter (Ricke and Caldeira, 2014; MacDougall ¢

or a prior constraint on fraction of equilibrium warming which has already been realized to date (Millar et al., 2017¢c). These

assumptions have been called into question by recent advances in understanding on Earth System response timescales (Rugenstein et al., 20

. Other models are less structurally constrained, but assume prior information on the equilibrium climate sensitivity of the real
world (Goodwin et al., 2018b). The effect of this set of assumptions on the TCRE framework has not been assessed.
A number of studies have considered the "Zero Emission Warming Commitment" (ZEC), or the warming expected after

and modifications to the cumulative emissions/ carbon budgeting framework have been proposed (Roegelj-et-al;2019a)-to-allow

(Rogelj et al., 2019a; Froelicher and Paynter, 2015)
to allow continued post-zero emissions temperature evolution Jenes-et-al;2619)-and unforeseen earth-system feedbacks or

"tipping-points’ which change biosphere or climate feedbacks (Brook et al., 2013). An complementary framework proposes a
policy framework focused on net zero emissions and associated peak warming (Rogelj et al., 2019b). However, these frame-
works are most useful if the zero emissions commitment is a small and finite correction to the net carbon budget, which is only
true if peak warming occurs within a small number of decades of net-zero emissions.

Aside from physical modeling uncertainties in the long term stability of the TCRE assumption, indefinite carbon budgeting
in policy making requires the combination of the effects of near term emissions reductions (Knutti et al., 2016; Rogelj et al.,
2016a; Eom et al., 2015) and long term carbon removal technology which is subject to large socioeconomic, technological and
physical uncertainties (Fuss et al., 2014; Smith et al., 2016; Larkin et al., 2018).

Similarly, the framing of climate policy in terms of a net zero emissions target also combines decarbonization of infras-
tructure (of which some sectors are highly difficult (Bataille et al., 2018)) and mid-century negative emissions capacity. These
two components are conceptually different—; the former is at least partly a function of structural choices which are currently
available, while the latter is conditional on deeply uncertain biophysical (Smith et al., 2016), technological (Lomax et al., 2015)
and social (Anderson and Peters, 2016) factors.

Here, we consider long term emissions scenarios in a simple model informed by recent advances in understanding in the
thermal response of the Earth system to climate forcing on a range of timescales (Armour et al., 2013; Geoffroy et al., 2013;
Winton et al., 2010; Held et al., 2010; Proistosescu and Huybers, 2017; Rugenstein et al., 2016), and how prior assumptions
on model parameters have an impact on the long term robustness of a cumulative carbon emissions budget and the possible
commitment to long term negative emissions to maintain a stable climate. We discuss the plausibility of the-Earth-exhibiting

hysteresis-behavier-of-hysteresis in global mean temperature as a function of cumulative emissions and thatpeak-warmingmay
oeeurof peak warming occurring significantly after net zero emissions have been achieved.

emissions cease. This quantity can potentially be positive or negative in different models (MacDougall et al., 2020; Ehlert and Zickfeld, 201



Finally, we propose that a policy approach which relies primarily on indefinite carbon budgets is not useful in the light

95 of large geophysical and socioeconomic uncertainties, and that more robust decisions can be made if near term mitigation
priorities are decided independently from absolute commitments on long term negative emissions capacity, which can be
revised later (Rogelj et al., 2019b). Furthermore, we show that global temperature evolution on the timescale of the mid 21st

century would enable a better constraint on future negative emissions requirements for temperature stabilization.

1 ResultsMethods

100 1.1 Can-transientobservations-eonstrainmodelrespense?Model Description

We first consider to what degree historical observations can constrain the long term coupled carbon-climate evolution of the

Earth System. To-address-this;we-eonsideraIn order to produce a posterior parameter distribution conditioned on observations
OQur approach here is employ Bayesian calibration, a Markov-Chain Monte Carlo (MCMC) optimization (Goodman and Weare, 2010).
105 in which a posterior parameter distribution is iteratively calculated by such that the sample density is representative of an
underlying likelihood function. This approach is generally considered as an accurate approach but the number of model
iterations required is often too computationally demanding to be practical (Oliver and Chen. 2011).
Computationally efficient alternatives include "History Matching” approaches which rule out members of a random sample
which are not consistent with observations (Goodwin et al., 2018b; Williamson et al., 2013), an a
110 the posterior in a computationally efficient manner subject to careful treatment of stochastic errors and prior assumptions
MMWWMMWWWW timescale ther-
mal response model ;i
%@mﬁ
)
115 The thermal model in FAIR represents temperatures as a combination of two components with fast and slow inherent

roach which can aj

AT, _ auF T,
—T = To;n=1,2, 1
s Z in = 1)

where T;, is global mean temperature and for each timescale n. 7,, is the component of warming associated with that
timescale, q,, is the feedback parameter and d,, is the response timescale. We consider the heat flux into the shallow and dee

120 ocean to be functions of the same timescale:

Ry=1(F=To/gn)iR=Y Rp;» rp=1Lin=12 )
n n



where 7, is an efficacy factor for heat absorbed by the deep (n = 1) or shallow (n = 2) ocean, which sum to unity given the
boundary condition that R(0) = F'(0) = F, att =
is allocated to deep ocean storage).

125 The thermal model is made sufficiently fast for MCMC calibration using the particular solution to the step-change in forcin
which can be convoluted with a generic forcing timeseries to provide a general solution (Ruelle, 1998; Ragone et al., 2016; Lucarini et al.

0 (allowing just one degree of freedom 7 - the fraction of heat which

2

2

. The particular solutions for temperature and radiation response to a step change in forcing F, at time £ =0 can be
expressed as a sum of exponential decay functions:

2

Ty(t)= Fizcos Y an(1— exp(—t/dy)) (3)
n=1
2
180 Ry(1)=Fiacon 3 raleap(~t/dy)) @

n=1

where Tp(t) is the annual global mean temperature and R,(t) is the net top-of atmosphere radiative imbalance at time

L, and Fiycoq is the instantaneous global mean radiative forcing associated with a quadrupling of CO,, taken here to be
The thermal model is coupled to a simple-emissions driven pulse model (asin-Myhre-et-al(2013);- Millaret-al«(2017¢);-Smith-et-al(204
135 see-addittonal-materiab-in which each unit of emitted carbon dioxide is allocated to one of four pools with its own represen-

tative decay time—We-then-ask-whether-). The carbon scheme has four atmospheric carbon pools R; (where ¢ = 0..3, followin,

Myhre et al. (2013)) with dissipation timescales 7; as detailed in Table 1. Each unit pulse of emissions
the four pools with a fraction a;:
dR; R;

o PO ®

is allocated to each of

140 for which the solution for a unit emissions pulse §(¢) can be written:

Ri(0) = a1 =), ©

A generic emissions time-series £/ (t) can then be expressed as a sum of discrete pulses, allowing the corresponding carbon
ools C;(t) to be expressed as a sum of pulse-responses R;(t

t
dE(t'
Ci(t) :/ ( )R,-(t—t’)dt’. 7
dt
0
145 Atmospheric CO, concentrations C' are calculated as the sum of the four pools C(t) = Cp + > . C;(t), and are converted

into a radiative forcing estimate assuming the standard logarithmic relationship:
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_ Fawcoz, (C(t)
(t) ln(4) In ( CO ) + fTFaer + Fothem (8)

where f,. is a free parameter to allow scaling of aerosol forcing (conceptually allowing for forcing uncertainty in the historical

timeseries), and F ;7,0 a,¢ 18 all other anthropogenic and and natural forcers (summed from (Meinshausen et al., 2011b)). The
thermal response is calculated by expressing the numerical time derivative of the forcing timeseries F'(¢) where the change in
s[F(t)Y-Ft -1

forcing in a given time-step in a given year AF' (¢’ . The forcing timeseries can thus be expressed a series

of step functions, and 7}, from equation A1 can be used to calculate the integrated thermal response.

Heat fluxes into the deep (D (¢)) and shallow (H (¢)) ocean components are represented by numerical integration of the slow
n=1) and fast (n=2) pulse response components of () in Equation 4:

QA(E): r1 ZAF(t’)exp <_(td:t/)> , (10)
VNS S5 NN O

H(t)= (1—r1)ZAF(t’)exp <_(tdgt/)> , (11
NUUSUSI UV

This is again performed in a computationally efficient manner using MATLAB'’s ‘filter’ function.
1.1.1 Model Optimization

We then assess the degree to which the physical parameters of this simple model (detailed in Table 1) can be constrained by
along with radiative estimates from Meinshausen et al. (2011b) of non-COZ2 forcing agents. We optimize the thermal model
parameters for 2 timescales, the carbon dissipation parameters for 4 pools and the non-CO?2 forcing factor fr..

Optimization is conducted with the Goodman and Weare (2010) MCMC implementation, using flat initial parameter distributions

2

as shown in Table 1, 200 walkers and 50,000 iterations for each optimization. Cost functions are computed for global mean
temperature (T), global C'O, concentrations (C), Shallow Ocean Heat Content (H) and Deep Ocean Heat Content (D):

_ (T(t) — Taenm(®)\
b= Zt: ( V207 )
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Long name_ Symbol  Default ~ Min ~ Max

Deep ocean invasion/equilibration fraction ay ol4 0l 3
Biospheric uptake/ocean thermocline invasion fraction. @ 022 0L 3
Rapid Biospheric uptake/ocean thermocline invasion fraction® az n/a na  na
Deep ocean invasion/equilibration timescale (years) L 200 200 1000
Biospheric uptake/ocean thermocline invasion timescale (years) ™ 40 40 100
Rapid biospheric uptake/ocean mixed-layer invasion timescale (years) T3 RS 11
Thermal equilibration of deep ocean Sensitivity (KWm %), Q. 0 0. 107
Thermal adjustment of upper ocean Sensitivity (KWm~?) @ o 010
Thermal equilibration of deep ocean timescale (years) 4y 239 80 3000
Thermal adjustment of upper ocean timescale (years) dy 30 1 4
Fraction of forcing in deep ocean response 553 o 033 05
Fraction of forcing in upper ocean response. T2 o 033 05
Non-CO2 Forcing ratio L 0.7 1o L3
Table 1. A table showing default model parameter values and minimum and maximum values used in model optimization. *deep ocean

thermal response is limited to zero for 2 timescale model. *a3 is calculated asthe 1 — > . . . (a;

. **following Millar et al. (2017¢), deep ocean carbon uptake timescale is not included in the optimization (the timescale is effectivel

infinite: sufficiently longer than the scenarios considered here for the a3 pool to not absorb significant carbon).

where o7 represents the confidence in observed temperature values. To estimate this value, we use 2000-2019 annual global
mean temperature anomalies from 1850-1900 in the HadCRUT-CW_100 member observational ensemble, where o is the
standard deviation of 2000 point (20 years, and 100 ensemble members), which represents uncertainty due to both natural
variability and observational processing uncertainties (Cowtan and Way, 2013; Cowtan et al., 2015).

For o, we lack an unforced standard deviation estimate - so a normalization constant of o~ = 0.3ppm_was chosen

empirically to produce a =1 ppmv range in 2016 observed concentrations in the posterior distribution (though uncertainties in

emissions are much larger, and represented with the emissions scaling parameter s...
Shallow and Deep Ocean heat uptake (in cases where they are used) is taken as the 0-300m and 300m+ heat content

respectively in Zanna et al. (2019), with o and o taken as 1850-1950 standard deviations from the same dataset. Confidence
estimates in these timeseries is not available, so o7 and op nominally represents uncertainty due to natural variability - so

C,T, Heat" results should be considered to be an idealized estimate of how ocean heat information could constrain models if

A AN N AR A N R A AR N A R N A A A R R AN A A R R A R N N A R A AN A AN N R A A A R R R A N A R R N N N N A AN R A AN N A N N N R A A N N N A A A AN NN NS AN NN N NN SR AN N AANAANASRANAA

we were confident in that information.
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In the 'C, T constraint’ case, optimization is conducted using —Fr and —F¢ as log likelihoods in the MCMC optimizer,
with parameter boundaries as listed in Table 1. The *C, T, Heat constraint’ case uses the sum of —Fr, —FE¢, ip and —Fy_
cost functions. The *C,T, paleo’ case is implemented using the likely value and upper bound on Earth System Sensitivity.
from Goodman and Weare (2010) fit the median and 90th percentile of a gamma distribution for equilibrium. The *C, T, RWF’
constraint is implemented using a log-normal prior on Transient Climate Response with 5-95 percentiles of 1.0-2.5 K as in
Millar et al. (2017¢), and a Gaussian prior on RWE (the ratio between LTE and TCR) with mean 0.6, and Sth and 9th percentiles
of 045 and 0.75. The emissions scaling parameter is subject to Gaussian prior which was adjusted such that uncertainty in
5-95% cumulative CO, emissions in 2016 reflects observational uncertainties. It was found empirically that a Gaussian prior

with a mean scaling parameter of 1, and standard deviations of 0.1 well represented published uncertainties, largely attributable
Le Quéré et al., 2017; Millar and Friedlingstein, 2018) (see Figure S3).

to uncertain land use emissions

2 Results

2.1 The impact of prior assumptions on carbon dynamics

We consider a number of different constraint assumptions on model parameters and how they influence the range of future
projections under different scenarios (Figure 1). If the model parameters are conditioned only on historical emissions and
temperature (Figure 1(a,b)), transient warming under continued positive emissions is well constrained, such that temperatures
follow the effeetive-TCRE relationship under a high emission scenario (RCP8.5, Riahi et al. (2011)) emissions. However, the
relationship is not robust under long term negative emissions in a decarbonization scenario (RCP2.6, Van Vuuren et al. (2011))
where some model variants in the posterior parameter distribution allow hysteresis in which temperatures continue to rise over
the following centuries under a regime of net negative emissions.

Adding information on historical deep and shallow ocean heat content (Zanna et al., 2019) does not significantly constrain
the system (Figure 1(a,c)). However, assuming addition information about long term equilibrium climate sensitivity is known
from paleo-climate data (Reyer-etal5-204)(Royer et al., 2011; Goodwin et al., 2018b), does provide constraint on the degree
of possible hysteresis (Figure 1(d)) as does the assumption of a known Realized Warming Fraction (RWEF, the fraction of
present day warming relative to equilibrium warming associated with current forcing) which is a very strong constraint on
cumulative-emissions—temperature-propertionality ICRE-like behavior. This prior, used in Millar et al. (2017b) produces a
model configuration in which a proportional relationship between cumulative emissions-temperature is robust during both
positive and negative phases of the emissions scenario (Figure (Figure 1(e)).

This raises the question of the degree to which we are confident in our knowledge of the values of ECS and RWF. In Millar
etal. (2017b), the RWF prior is derived from the observation that the Transient Climate Response (TCR, the warming at the time
of CO, doubling in a transient simulation where CO» increases by 1 percent per year) and Effective Climate Sensitivity (EffCS)
are correlated in the CMIPS ensemble (Millar et al., 2015) (where EffCS is the estimation of equilibrium response through the
linear extrapolation of temperature change as a function of net top of atmosphere radiative imbalance in an instantaneous CO2

quadrupling experiment (Gregory et al., 2004)).
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Figure 1. Posterior distributions of future global mean temperature projections constrained by 1850-2016 historical temperatures in a range
of scenarios, priors and structural choices as a function of (a) time and (b-e) cumulative emissions of carbon (with 1000 years of climate
evolution plotted from 1851-2850). Colored lines represent RCP8.5 (red) and RCP2.6 (blue). (b) and dashed lines in (a) show 2-timescale
model posterior constrained using emissions (C) and temperature (T) only, (c) and solid lines in (a) are constrained using C,T and ocean
heat content (H), (d) and dot-dash lines in (a) use C,T and RWF. (e) and dotted lines C,T and a paleoclimate prior on ECS. Shaded re-
gions indicate the 10-90th percentile range. Solid black lines show observed HadC€RUT-vatues-global mean temperature median estimate
(Cowtan and Way, 2013) and histerieak-most likely estimates of combined land use and fossil fuel emissions (Le Quéré et al., 2017). Grey.
lines show uncertainties in observed temperature-cumulative emissions following Millar and Friedlingstein (2018).



215 However, the Equilibrium Climate Sensitivity (ECS), realized over a multi-century to millennial timescale, is often signifi-
cantly greater than the Effective Climate Sensitivity (Rugenstein et al., 2016; Knutti et al., 2017) and its value may not be well
constrained by observed warming (Proistosescu and Huybers, 2017; Andrews et al., 2018). As such, and it is not apparent that
the long-term ECS in a model like Myhre et al. (2013) can be constrained by TCR (with large implications for millennial-scale

220 These prior assumptions strongly impact the range of possible behavior under strong negative emissions in RCP2.6. How-
ever, under RCP8.5, the ensembles constrained by historical temperatures show a near-linear relationship between cumulative
emissions and temperature, irrespective of prior assumptions and constraints used (Figure 1(b-e), red lines), this can be broadly
understood by considering that in RCP8.5, radiative forcing continues to increase at current rates and thus long term warming

is broadly a function of TCR, which is itself constrained by historical temperature evolution.

225 The scenarios considered here are multi- ,2018

non-CO2 forcing assumptions can alter the effective TCRE seen in transient RCP8.5 simulations and RCP2.6 projections on
shorter timescales of less than a century (see Supplemental Figure S4), however the potential for hysteresis on longer timescales
is similar in multi-gas and CO2 only experiments.

as, with both CO2 emissions and non-CO2 forcers. As expected (Mengis et al.

2.2 Implications for meeting Paris temperature targets

230 If we consider a ‘high risk” world where ECS (and its relationship to TCR) is not independently constrained, corresponding
to subplot (b) in Figure 1, the cumulative emissions framework is not guaranteed to hold under negative emissions, and the
concept of an indefinite cumulative carbon budget associated with a temperature target may not be helpful for near-term carbon

mitigation planning (results for other prior assumptions are shown in the additional material).

‘We illustrate this in some idealized caseswhere-, using adaptive scenarios in which emissions are adjusted in order to achieve
235 1.5 and 2 degree C climates are achieved post 24+06-2100 (similar to those considered in Sanderson et al. (2016b, 2017); Goodwin et al. (20
. The Sanderson et al. (2016b) approach allows iteration of scenarios such that targets can be met in almost all cases, but

"

the optimization is "forward looking" (in contrast to Goodwin et al. (2018a), which simulates decisions made in response to

observed warming to date without perfect knowledge of the future). Here, we follow a similar strategy to Sanderson et al. (2016b
where scenarios are designed using a small number of parameters which are then optimized to meet a stabilization target
240 post-2100.

Scenarios are conducted in 3 phases: before 2020 is the ‘historical’ period, where emissions follow RCP2.6 (which is broadly

consistent with observations before 2020). Between 2020 and 2040, the ‘uninformed’ period, CO, emissions follow one of a
range of linear mitigation pathways such that 2040 CO, emissions are chosen at random for each scenario, ranging from
0GtC/yr to 10GtC'/yr (our focus here is on low emission futures, and we do not consider here futures where emissions

245 increase post-2020).

Each ensemble member uses a single parameter set draw from the posterior distribution of models calculated during the
MCMC constraint of model parameter space in Section 1.1.1. Emissions follow RCP2.6 from 1850 until 2020, after which
CO4 emissions are by a ’pchip’ spline which is fixed at a number of points, the first of which are 2010 and 2020 RCP2.6

10



emissions - ensuring a smooth transition from the RCP time-series to the post-2020 timeseries. An "uninformed’ emissions
250 trajectory takes place from 2020 to 2040, where emissions evolve from RCP2.6 2020 levels (10.26GtC/yr) to a 2040 emissions
level drawn randomly from a uniform distribution with bounds at 0GtC /yr and 10GtC /yr.

Post 2040, in the ‘adaptive’ period, an emission scenario is calculated iteratively to achieve temperature stabilization at a
defined target post-2100, allowing for a temperature overshoot before 2100 with a large but finite lower limit on net negative
emissions capacity in line with the largest negative emissions values seen in the integrated assessment literature for 1.5 degree

255 temperature stabilization targets (—20GtC'/yr, First (2018)). Non-CO- gas emissions follow RCP2.6 throughout the simula-
tion in all cases (as-such-these-seenarios—ecannotclearly, these scenarios should not be treated as socioeconomically plausible
scenarios, rather as idealized illustrations of Earth System Response to a range of forcing pathways).
second (Zps) in the range 2101-2300 and the third ¢p3 fixed at the end of the simulation in 2764. Each time point is associated

260 with an emissions rate [/, 5,3 which are each weakly constrained to lie in the range -40 to +10 GtC/yr. Optimization uses
physical parameter set to find a solution which minimizes the RMSE from the desired annual mean global mean temperature

The temperature trajectories are illustrated in Figure 2(a). Each member of the posterior distribution of possible simple
265 climate models in Figure 1(a,b) is then paired with a random 2020-2050 emissions reduction pathway and then a post-2050
emissions pathway is calculated to optimize for stabilization at 1.5 or 2 degrees post-2100. This framework allows us to consider
what would be required for long term stabilization in a model configuration where the cumulative emissions-temperature
relationship does not necessarily hold.
The resulting scenarios are idealized, some requiring a very rapid switch to large net-negative values after 2040 in order to
270 stabilize temperatures at 1.5C (Figure 2(b)), and such rapid decarbonization may not be achievable in reality {Sanderson-et-al;2016a)
(Sanderson et al., 2016b), but we can learn some useful properties of the system response by studying the relationships be-
tween near term and long term emissions commitments. Non-CO2 emissions remain at RCP2.6 levels in all cases (though the
non-CO2 forcing varies as a function of the arameter).

The range of long-term emission trajectories for temperature stabilization is diverse (Figure 2(c)), alowingfortarge positive

275 e%ﬁega%we—ﬂuxes—eveﬁ&te—feﬂewmgeeﬁmﬂes‘m some cases as—g}ebal—me&ﬁ{empef&&}feﬁemam—se&b}eéby—eeﬂﬁme&eﬂ)%ﬂ
7-requiring large negative emissions in the latter half of
the 21st century to achieve temperature stabilization after 2100 (Figure 2(a));-the-. The cumulative carbon budget plume allows

for a 1.5C(2.0C) budgetof-256-t0-2006tC(75-t0-656GtEpost-2010 budget of -300 to 400GtC (0 to 900GtC) by 2100, a budget
which continues to grow more uncertain over the centuries which follow (Figure 2(c, d)) This-is-in-contrast-to-the-indefinite
280 eumulative-carbon-budgetfor-Most of the 1.56 i
constrained-as160-200GtE300-380GtC)fer-C simulations overshoot the target in the latter half of the 21st century (Figure
2(a)), and post-2010 budget for initial exceedance of 1.5€2:0C) stabitizationaftereorrectionsforpresent day-warming due-to
nen-€O2-gases-(Figure 2(HC is more tightly constrained at 250-400GtC (most 2C simulations do not significantly overshoot).
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Figure 2. Plots showing idealized pathways to 1.5 or 2.0C temperature stabilization for an ensemble of coupled carbon-climate model
configurations. (a) shows the global mean temperature as a function of time for 1.5 and 2.0C stabilization ensembles (b) shows emissions
in the historical, uniformed and adaptive stages of the simulation (c) shows the global mean temperatures above pre-industrial/2006-2015
2006-2016 (left/right axis) levels as a function of post-2010 cumulative CO2 emissions while (d) shows the cumulative carbon emissions
total for ensemble members as a function of time. Shaded regions in (a,b,d) indicate 10th-90th percentile range of the ensemble distribution,
while dotted lines shown the 50th percentile. Gray/blue/black areas refer to uninformed/adaptive for 2.0C/adaptive for 1.5C respectively.
Box/whisker plots in (c) show the long term cumulative carbon budget assessed in 2100 for 1.5 and 2.0C stabilization from 1850-2500.
Box/whisker plots in (d) show the effeetive-TCRE estimate of carbon budget with (median shown by "+’) and without (median shown by ’x”)

Accounting date

non-CO?2 gas correction. Red circle shows ensemble mean warming and post-2010 cumulative emissions in 2020.
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Figure 3. Plots showing (a) the relationship between mid-century cumulative carbon budgets and (b) mid-century warming and associated
likelihoods of long term carbon removal requirements for temperature stabilization. (a) shows the ensemble relationship between the net
carbon emitted between 2020 and 2040 (uninformed period in Figure 1) and the associated range of possible carbon removal required later
in the century in the adaptive phase for 1.5C (green) and 2.0C (blue) stabilization. Filled circles represent an individual ensemble member,
while shaded blue/green areas represent a moving estimate of the 10-90th percentile range of the 2.0C/1.5C distribution (solid blue/green
lines are 2.0/1.5C median. (b) shows 2050-2100 allowable carbon budget as a function of 2050 warming above pre-industrial levels. Dots and
shading show ensemble distribution as in (a). Horizontal box/whisker plots show 10th,25th,50th,75th and 90th percentiles of 2050 warming
consistent with labeled 2020-2040 carbon budgets and the associated percentage reduction in 2040 emissions relative to 2020. Gray bar
shows the range of reference 2100 net carbon budgets considered for end of century 1.5 degree overshoot scenarios in the IPCC spacial

report on 1.5 degrees (First, 2018)).

This large uncertainty in the face of long term stabilization scenarios draws into question the utility of an indefinite carbon

budget ;-henee-we-(in the case where we have no prior information on equilibrium response). We can consider to what degree

we can constrain future response using a definite budget with a 2020-2050 timeframe (Figure 3). Firstly, even in the face of
response timeseale-uneertaintypossible hysteresis of temperature as a function of cumulative carbon emissions, there is a linear
relationship between 2020-2040 budgets and associated late century carbon removal rates required for stabilization (Figure
3(a)).

For example, if a late century net carbon emission of -2.9 GtC/yr is assumed for late century (corresponding to the central
estimate of 1.5 degree, low overshoot stabilization from the IPCC Special Report on 1.5C warming (First, 2018), a 50 percent
chance of 1.5 degrees requires a 2020-2040 budget of 150GtC, which would require a 60 percent cut in emissions from present
day levels by 2040. A 75 percent chance of meeting the target would require a 2020-2040 budget of 100GtC - requiring just
over 100 percent cut in carbon emissions by 2040.

Here again, the choice of prior constraint on model parameters has an important effect. If the Paleoclimate terRWF-)

or RWF is used, a 75 percent chance of 1.5 degrees given the-an assumed
-2.9GtC/yr late century removal rate would allow a 160GtC(or 220GtC) budget from 2020-2040 (see Additional Material
rior is used, with 2100 budgets of 120-430 GtC (500-900GtC) for 1.5C (2.0C). This can be compared with the IPCC SR1.5
assessment of 115-230GtC (320-550GtC) respectivel

long timescale carbon cycle feedbacks.

Heweverin-all-ecases;by-These findings support the framing of emissions policy in terms of near term emissions reductions
rather than indefinite carbon budgets (Rogel;j et al., 2019b). By mid 21st century, observed warming will provide a good indi-

cation of the degree of negative emissions required for stabilization - as the average realized warming in 2040-2060 provides

which includes uncertainties in non-CO2 emissions and forcings and

quite a strong constraint on budgets for the latter half of the century (Figure 3(b)). The degree of possible mid-century warm-
ing can be reduced by minimizing the 2020-2040 carbon budget, but there still exists uncertainty due to the degree of thermal

inertia in the system as greenhouse gas concentrations stabilize.
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The strong relationship between mid-century warming and late century carbon removal requirements for 1.5 or 2.0C stabi-

lization occurs because 2040-2060 warming can be potentially decreased either by fortuity (with a small value of real-world

310 equilibrium climate sensitivity) or by action (by minimizing near-term emissions), both of which reduce late century net carbon
removal requirements. Conversely, high climate sensitivity or slow decarbonization would both result in greater mid-century

warming and greater necessity for negative emissions deployment.

3 Discussion

Recent climate policy discussions have been framed in the context of a carbon budget, an allowable net total of cumulative emis-
315 sions which are consistent with a desired limit on planetary warming (Allen et al., 2009; Millar et al., 2016). Nuances in the es-
timation of this budget have been noted relating to bias correction of existing models (Millar et al., 2017a), the compensation for
the effects of non-CO2 anthropogenic emissions {Rogelj-et-al;20+5a)(Rogelj et al., 2015a; MacDougall et al., 2015; Mengis et al., 2018)

and the need for additional carbon fluxes for temperature stabilization after net-zero emissions have been achieved (Regeljet-al;20+6b:Jon

320 Butin-theeurrent-frameworkthese(Rogelj et al., 2016b; Jones et al., in review; Mengis et al., 2018). These factors are deemed

to be corrections to the effeetive TCRE-computed carbon budgets (Rogelj et al., 2019a), and value of effeetive- TCRE informed

2

by a combination of model response historical records of global surface temperatures (Gillett et al., 2013; Steinacher and Joos,

2016) form the basis for published model estimates on carbon budgets for temperature stabilization (Matthews et al., 2017a,

325
Earth-System-have-been-—noted-before(Rogelj-et-al52019a)y-in—terms-of-It has been noted before that at any given time, the
TCRE can be expressed as a product of 3 components: the the discrepaney-between-dependence of surface warming on
radiative forcing, the fractional dependence of radiative forcing on atmospheric CO» and the dependence of atmospheric
€O 2 on carbon emissions (Goodwin et al., 2015) - but each of these elements can potentially evolve in time as feedbacks

330 are realized on different timescales (Rogelj et al., 2019a; Goodwin et al., 2018a). This has been addressed by introducing

"Threshold Avoidance Budgets" and "Threshold Exceedance Budgets" (Rogelj et al., 2016b) which differ due to the lag of
peak temperatures after net-zero emissions have been achieved as slower timescale components of the system equilibrate or
due the effects of non-CO2 forcers. But, the scale of these effects is generally assumed to be small - on the order of 1-2

decades (Ricke and Caldeira, 2014; Zickfeld and Herrington, 2015). Idealized experiments to assess zero-emission warmin

335 commitment(MacDougall et al., 2020) in both EMICs and ESMs suggest the ZEC is small on a 50 year timescale but uncertain

on a century timescale, with a large diversity of magnitude, sign and rate of warming post-cessation of emissions.
Heweveras-we-haveseen;medelseanbeIt has also been demonstrated that effective climate sensitivity likely evolves in time

Goodwin, 2018:; Rohling et al., 2018), which will influence TCRE (Goodwin et al., 2015) and thus carbon budgets for a given

temperature target (Goodwin et al., 2018b); thus attempts to quantify fixed real world estimates for TCRE or effective climate

340 sensitivity must be qualified for long timescales (Rugenstein et al., 2019) or extended net negative emissions(Ehlert and Zickfeld, 2018)
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370

375

- In this study, the pulse-response formulation allows for the idealized separation of process response both in the evolution of
atmospheric CO2 in response to emissions and in the thermal response of the system to forcing, allowing the an illustration
of how prior assumptions impact feedbacks on different timescales. Future work should consider further how these fixed
parameters of the carbon-climate system can be further independently constrained and integrated with existing understanding
of time-evolving net climate feedbacks.

We find that the pulse-response model is not constrained to follow eumulative-emissions/temperature-proportionality-under
models, such priors are often used (either explicitly or implicitly). The parameters of the FAIR (Millar et al., 2017¢; Smith
et al., 2018) simple climate model, for example, are constrained using a prior on RWF —This-constraint-arises-due-to-(whereas
projected uncertainty ranges using other models such as Goodwin et al. (2018b) use no such prior). The constraint in FAIR
is justified with an observed relationship between Effective Climate Sensitivity and TCR in CMIP models, and is thus likely
overly constraining on possible model behavior consistent with state of art GCMs (see Additional Material section S1).

Other models do not explicitly constrain RWF, but do constrain equilibrium climate sensitivity - the WASP model (Goodwin et al., 2015; |

considers a multiple timescales of response and a geological prior on equilibrium warming response to emissions, which acts
to preclude the

Similarly, in the MAGICC model (Meinshausen et al., 2011a), non-stationary feedbacks are represented in two ways - using

an allowance for an oceanic surface and and land surface feedback strengths, as well as having forcing dependent feedback
strengths. However, ECS values calculated using MAGICC when calibrated as an emulator of CMIP GCM simulations remain
very close to the Effective Climate Sensitivities of the target model (Meinshausen et al., 2011a) - even though in some cases we
know that the true ECS realized in millennial time-frames is significantly greater than the EffCS value (Rugenstein et al., 2019).
This requires further research, but is possibly explained by the consensus that multiple feedback timescales arise from warming
patterns associated with shallow and deep ocean warming (Li et al., 2013; Geoffroy et al., 2013). Representing feedbacks as a
function of the warming of the ocean surface warming is therefore a strong structural assumption which may not capture this
effect.

Indeed;reecent-Recent work has made clear that the long timescale response of the Earth system is not well constrained
by past observations (Proistosescu and Huybers, 2017; Andrews et al., 2018), drawing into question whether recent transient
warming is able to constrain Equilibrium Climate Sensitivity (Otto et al., 2013) or the Realized Warming Fraction (Millar et al.,
2015). In the absence of these constraints, we cannot rule out without additional data that the slow timescale response of the
Earth System associated with deep ocean warming may lead to a world which exhibits a (relatively) low TCR but a high ECS
realized over centuries or millennia (Rugenstein et al., 2019) which, as we show here, may complicate the use of an indefinite

carbon budget for temperature targets.

Here, we find that these factors result in large uncertainties on remaining carbon budgets until 2100, with the possibility of
unless prior information is assumed on the value of ECS or RWFE (Supplemental Figure S10). Using an RWE prior, carbon
budgets for 1.5C and 2C are broadly consistent with TCRE-derived estimates in Rogelj et al. (2018), but removing this prior
reduces the lower bound of the budget from positive 120GtC with a RWE prior (as assessed in 2100 for 1.5C stabilization) to
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negative 300GtC if the prior is removed. These factors are in addition to existing uncertainties arising from non-CO2 forcin
and scenario assumptions (approximately £200GtC in long term budgets) and uncertainties in pre-industrial temperatures
approximately +100GtC in long term budgets) (Rogelj et al., 2018).

Other sources of information which may yet resolve the uncertainty. Independent information to constrain ECS from pale-

380 oclimate (Royer et al., 2011) or process understanding (Sherwood et al., 2014; Zhai et al., 2015; Tian, 2015; Tan et al., 2016;
Cox et al., 2018) may help constrain the potential for temperature hysteresis. But many constraints to date have considered

only effective climate sensitivity (Gregory et al., 2004) - whereas it is increasingly clear that both the timescale and amplitude

of climate feedbacks need to be constrained in order to understand Earth System response to future forcing pathways (Armour

et al., 2013). Such avenues could and should be explored further.

385  The pulse response model of the type used here is also a simplification of global response, albeit a commonly used one
(Joos et al., 2013) - which resolves the degrees of freedom in the range of responses exhibited in physical Earth System Models.

The anthropogenically forced warming in 2040-2060 would be subject to internal variability of order 0.1C (Dai et al., 2015; Rogelj et al., 2(
which could potentially be improved with detection approaches (Haustein et al., 2017). As such, observed mid-century warming
would be of some value in constraining negative emissions requirements later in the century which spans nearly 0.6C over the

390  ensemble range (Figure 3(b)).

Clearly, the models used here are idealizations. Emission rates and rates of change are not constrained by technological or

societal limitations, and only CO2 pathways are modified from the RCP2.6 scenario - and so results are only illustrative of how
the Earth System might respond to different hypothetical pathways. Finding pathways for technology and policy which can ac-
tually achieve these pathways is a question for Integrated Assessment Models. However, the present standard approach of pro-
395 ducing scenarios through forward-looking solvers (O’Neill et al., 2016) is unable to capture the risk highlighted here associated

with actors who act today with imperfect knowledge about future technology (Fuss et al., 2014; Anderson and Peters, 2016)

and Earth System response.

400

405
3(b»HThis has led to a call to frame of policy in terms of near-term emissions which are compatible with projected peak levels

of warming (Rogelj et al., 2019b).
T-summary;even—-Lhe results of this study support this logic. Even in the presence of large uncertainty on long term re-

sponse to emissions, near-term climate policy can be well posed through the use of a time-limited net carbon budget, or

410 equivalently, a near-term commitment for a percentage reduction in emissions by a certain date (Sachs et al., 2016; Kaya
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415 OEECHES f‘i gﬂiﬁe‘iﬂﬂj‘ af{ef netzero emif‘f‘ieﬂs are fe']ehed).
Observed warming over the coming decades will provide additional information on our commitments to implement negative
emissions infrastructure for temperature stabilization - commitments which may or may not prove feasible to realize. But a
near-term budget would provide decision-makers with the tools to assess the risk of failure to meet temperature targets as a

function of clearly defined targets for near-term decarbonization.

420 Data availability. CMIP5 and CMIP6 data are available through a distributed data archive developed and operated by the Earth System Grid
Federation (ESGF).

Code and data availability. Code for this study is available on Github at https://github.com/benmsanderson/matlab_pulse

Appendix: Methods

425

3
P(f) - F4;c002 an(l - exp(_f/dn))

n=1

3
R(t) = Fizco2 »_ rn(exp(—t/dy)),

n=1
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Appendix : Supplementary Material
S1 Prior assumptions on Realized Warming Fraction

The RWF constraint refers to the observation in Millar et al. (2015) that in CMIP5, at least, the TCR and ECS values are
well correlated, such that the ratio of the two values TC'R : EC'S lies between 0.45 and 0.75 throughout the ensemble. This
is apparent by considering Figure S2(a), which shows the joint CMIP5 distribution for the two quantities. The consistency of
this relationship informed the parameter distribution choice for a pulse-response model ensemble used in Millar et al. (2017c¢),
where a relationship between ECS and TCR was represented in the distribution of plausible models.

However, as is shown in Proistosescu and Huybers (2017) and in Figure S1, for most models in the CMIP5 and CMIP6
ensembles, the constant feedback ECS is likely an underestimate of true equilibrium response to forcing. Fitting a 2-timescale
model directly to model output time-series allows the computation of the possible values of equilibrium climate sensitivity
consistent with the first 150 years of simulation (Figure S1). In many cases the extrapolated equilibrium temperature is not
strongly constrained by the 150 year simulations. However, some features are generally discernible: in most models the uncer-
tainty distribution contains values which are generally greater than the Effective Climate Sensitivity estimate (Gregory et al.,
2004).

Figure S2 shows EffCS and ECS as a function of TCR for each model in CMIP5 (and some available models in CMIP6).
ECS is estimated as in Gregory et al. (2004), while EffCS is calculated by performing an MCMC fit (as in section 1.1.1 using
the 150 year global mean surface temperature timeseries of each CMIP5 and CMIP6 model’s abrupt4xCO2 simulation to the
2 timescale pulse response model (itself forced by a step function forcing timeseries corresponding to 7.2Wm ™2 after the first
timestep). The resulting posterior distribution of the combined value of ¢; and g5 then informs the range of plausible values of
ECS which are consistent with the CMIP5 or CMIP6 simulation.

It is notable that there is no discernible relationship between possible values of ECS (fitted here with a flat prior allowing
values between 0 and 40) and TCR in CMIP5 because the values of ECS are not strongly constrained. As such, there is little

basis to assume that the equilibrium sensitivity of the system is well constrained by the TCR in the form of an RWF prior.
S2 Joint distributions of parameters in MCMC optimization

Figures S5, S6, S7 and S8 and show pairwise posterior distributions of the parameters optimized using historical emissions
and HadCRUT-HadCRUT-CW temperature evolution from 1850-2016 in the *C.T’, ’C,TH’, ’C,T, RWF’ and ’C,T,Paleo’
constraints respectively.

In all cases, it is apparent that there are a range of solutions allowing for different timescales of response in the pulse-
response model which can describe climate evolution to date within the provided constraints. For example, in Figure S5, there
is a trade-off between ¢o and ds parameters, which represent equilibrium climate response on fast timescales and timescale
of the shallow ocean thermal response of the system. There is also a trade-off between the ¢, and ¢; (the component of ECS

associated with slow feedbacks associated with warming of the deep ocean component). Introducing a constraint on ocean heat
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Figure S1. A Figure showing the temperature response to a quadrupling of carbon dioxide. Red points show annual mean temperature from
the model’s 150 year simulation, the red central line shows the best fitting 2 timescale pulse response model, while the pink area shows the
10th and 90th percentiles of the MCMC distribution of possible pulse response models. The dashed black line shows the Effective climate
sensitivity(Gregory et al., 2004).

content, at least in this configuration, constrains 1, the fraction of heat absorbed by the deep ocean - but has only a minor
constraining effect on ECS Sé6.

The 'RWF’ cases (Figure S7), however, has a significant effect on ECS. The deep ocean/slow component of ECS (q) is
constrained to be small by the RWF constraint (which states that 40-60 percent of equilibrium warming associated with current
greenhouse gas concentrations has already been realized). S8) constrain the sum of the 2 equilibrium responses g,,, which is
apparent in the parameter distributions by the truncated distribution for ¢; in Figure S8 and increased values for g2, implying
that a greater fraction of present day warming is explained by warming on decadal timescales. The paleo constraint has a

similar, but less dramatic effect - constraining the upper bound of the distribution for ¢; relative to the ’C, T’ case.
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Figure S2. Black circles show Effective Climate Sensitivity (calculated as a constant feedback extrapolation following Gregory et al. (2004))
as a function of Transient Climate Response (warming at time of CO2 concentration doubling in each model’s 1 percent CO2 ramping
experiment. Each point shows one model in the CMIP5/6 ensemble, and the circle shows the 5th percentile of the prior joint distribution for
ECS and TCR used in Millar et al. (2017c). Red whisker plots show the relationship between TCR and ECS calculated using the 2-timescale
pulse-response model fits to the abrupt4xCO2 simulation of the corresponding CMIP5 model.
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S3 Sensitivity of scenario pathways to different historical constraints

The main paper considers scenarios in the case where only historical emissions and concentrations are known, but we can also
consider the impact of different historical constraints on the pathways for 1.5C and 2.0C climate stabilization pathways. The
temperature pathways are achievable, irrespective of the historical ensemble constraints used due to the large allowed negative
emissions fluxes in the late 21st century (Figure S9), but the range of possible future emissions is dependent upon the prior
assumptions (Figure S11) - the use of either the RWF or Paleo constraints tends to reduce the post-2050 negative emissions
burden.

It is apparent that, as for the RCP2.6 case in Figure 1(b-e), there are large differences in the cumulative-emissions/temperature
behavior for the different ensembles (Figure S12). Solutions with substantial hysteresis are possible with *C,T’, *’C,T,Heat” and
"C,T,Paleo’ constraints - but not in the case of the ’C,T,RWF’ constraint. Associated net 2100 cumulative carbon budgets for 1.5
and 2C stabilization also vary by prior - with significantly larger allowances when the RWF or Paleo constraints are employed.

The relationship between mid-century temperatures and late century carbon removal requirements, however, remains rela-
tively robust irrespective of ensemble constraint (Figure S13), though expected mid-century warming for a given amount of
2020-2050 net emissions is reduced by 0.1-0.2K if the RWF or Paleo constraint is used (Figure S15). For example, a 2020-2050
budget of 100GtC produces a likely 2050 warming of 1.6K if C, T’ constraints are used, and 1.45K if *’C,T,RWF is used’.
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(b) C,T constraints
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Figure S3. Illustration of ensemble spread (given different prior assumptions) in global mean temperature (a,c,e,g) and cumulative carbon
emissions (b,d.f,h) for the observed period. Observational median is grey line, while 5-95% observational uncertain ranges are shown in
grey shade (Cowtan and Way (2013) for temperature and Le Quéré et al. (2017); Millar and Friedlingstein (2018) for cumulative emissions).
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Figure S4. Illustration of the impact of non-CO2 forcers on model behaviour on temperature-cumulative emissions relationships, usin

different prior assumptions . Each subplot shows the 10-90th percentd@ ranges of projected response to cumulative emissions correspondin

to Figure 1 in the main study. Solid/solid shade regions show the all forcing simulation, while hatched/dotted lines show the response of the

same ensemble to a CO2-emissions only simulation, with all other forcings set to zero. RCP8.5/RCP2.6 are shown in red/blue respectively.
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Figure S5. A ’corner-plot’ showing pairwise posterior parameter distributions for models constrained using HadCRUT temperature anoma-
lies from 1850-2016. Plots on the diagonal show parameter distributions for each of the parameters in Table 1 considered in the MCMC

optimization only historical emissions and temperatures. Off-diagonal plots illustrate 2 dimensional distributions.
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Figure S6. As for Figure S5, but with *C,T” only constraints in gray and *C,T and Heat’ constraints i red.
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Figure S8. As for Figure S5, but with *C,T” only constraints in gray and *C,T,Paleo’ constraints in red.
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Figure S9. As for Figure 2(a), for each of the constraints considered in Figure 1(b-e).

37



(a) C,T constraints

1000

800 [

600 |

400 1

200

Post 2010 Cumulative
Emissions budget (GtC)

-200

L L L

2000 2050 2100 2150 2200 2250 2300

Accouting date

(c) C, T,RWF constraints

1000

800 |

600 |

Post 2010 Cumulative

e,
L,

o
o
s
s
5
<
5

Emissions budget (GtC)

L L L L L L

(b) C,T,heat constraints

1000 :
800 r 1
00O
> =
22 600 1
'35 -
400 1 1
g2
8 8 S "'-.‘
Q.S 200f S 1
)] g * ‘e,
8 0 s ., "o,‘
a E 0 s . x'm
-200 | e
2000 2050 2100 2150 2200 2250 2300
Accouting date
(d) C,T,Paleo constraints
1000 T T T T T
800 f . 1
00 . e,
S = - AR TP
gL 600} N v, |
= ’
Eg :
400 | i :
©3 g.... .3
@ B o
QS 200t § 1
—_ N
g .0
o LIEJ 0 s
-200 1
2000 2050 2100 2150 2200 2250 2300

2000 2050 2100 2150 2200 2250 2300

Accouting date

Accouting date

Figure S10. As for Figure 2(d), for each of the constraints considered in Figure 1(b-e).
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Figure S11. As for Figure 2(b), for each of the constraints considered in Figure 1(b-e).
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Figure S12. As for Figure 2(c), for each of the constraints considered in Figure 1(b-e).
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Figure S13. As for Figure 3(b), for each of the constraints considered in Figure 1(b-e).
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Figure S14. As for Figure 3(a), for each of the constraints considered in Figure 1(b-e).
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Figure S15. As for Figure 3(b), for each of the constraints considered in Figure 1(b-e).
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Figure S16. As for Figure 1(a), with the time axis showing millennial-scale evolution, with 2300 emissions remaining constant until the year
3000 in all cases.

However, the 2050-2100 negative emission requirements are broadly similar for a given level of observed 2050 warming,
irrespective of the constraint. For example, if observed warming in 2050 is 1.5C - this corresponds to allowable 2050-2100

emissions of -150 to +200GtC if C,T constraints are used, and 0 to +200GtC if C,T and RWF are used.
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