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We thank the editor and the reviewer for their careful evaluation of our manuscript and their 

constructive comments that helped us to improve the manuscript considerably. We have taken all 

the comments carefully into consideration when revising the paper. Please find our detailed 

responses to the review comments below. The main revisions include: 1) Assessing the sensitivity of 

crop yields to these oscillations by using a multivariate ridge regression framework, which controls 

for the co-variability of the oscillations; 2) Including an assessment about growing season weather 

teleconnections, and reflecting on how they relate to our main results; 3) Re-defining the allocation 

of annual growing seasons, so that the understanding of the teleconnections is better reflected in 

the analyses. 

 

  



Reviewer 

 

R1.1.: The authors use a suite of historical global gridded crop simulations from the AgMIP ensemble 

to examine the influence of natural climate oscillations on correlated crop yield impacts. Consistent 

with observed yield analyses, they find that ENSO variability can simultaneously affect nearly 50% of 

harvested areas for certain crops, while other modes of variability affect smaller areas but still have 

significant impacts. The authors suggest that this could help forecast climate shocks on the food 

system. Using additional simulations, they show that irrigation reduces the sensitivity to such 

climate variability but fertilizer application doesn’t have a significant influence on reducing the 

climate sensitivity on these crops. 

 

The study is an extension of work that has already been done by the authors on observed yields. 

While these simulations are helpful to isolate the role of climate variability and test scenarios of 

irrigation and fertilizer application, they do not provide a mechanistic explanation of the impacts or 

comparisons with the magnitude and extent of observed impacts. Although, I think this is a 

worthwhile study since crop models present some important tools to study the impacts of climate 

variability and management decisions, I have some major concerns about the methods and design of 

the study, which will affect the main conclusions. Before considering the merit of this manuscript for 

publication, I believe these following concerns need to be addressed. 

 

A1.1: Firstly, we want to thank the reviewer for the overall positive view of our study. We agree with 

the reviewer that using simulated crop yield data can provide important insights about climate 

impacts on crop productivity, while allowing to test for potential management options.  However, 

we agree that the statistical method used does not allow mechanistic explanation of impacts. This is 

outside of our scope in this study. 

 

As the reviewer notes, overall results are consistent with previous studies. Although, we relate our 

claims and results to existing knowledge throughout the text, detailed comparison with observed 

impacts is not performed – this is a highly complex task given the uncertainties and confounding 

variables in the reported crop statistics (e.g. technological change, management decisions, pest 

outbreaks, multiple cropping, crop rotations) as well as modelled data. In the following sections we 

explain how we have addressed the issues raised by the reviewer. 

 

R1.2.: The three indices used include ENSO, IOD and NAO. All 4 crops studied here have almost 

identical sensitivities to ENSO and IOD, with some differences likely due to slightly different time 

periods used. I have a strong suspicion that this is because the ENSO and IOD indices have strong co-

variability. Positive IOD’s tend to develop during the development of positive ENSO phases (e.g 

Zhang et al., 2015, Stuecker et al. 2017). IOD’s in the Fall are often followed by the peak of El Nino 

events in the winter. Based on how the time periods of the analyses are defined, this analysis is likely 

capturing the effect of El Ninos NOT IOD’s. 

 

A1.2.: We want to thank the reviewer for pointing out that the results for IOD are potentially 

affected by its co-variability with ENSO. Therefore, instead of calculating the direct relationship 

between the IOD index and crop yields (as done in original submission), we now calculate the 

sensitivity of crop yield to IOD by controlling for ENSO as well as NAO by using multivariate ridge 

regression. The ridge regression framework was selected because it allows the explanatory variables 

(here oscillation indices) to correlate amongst each other. 

 



After conducting the analysis with the updated method, for ENSO and NAO the patterns stayed 

relatively similar (Figure 1, some changes occurred also due to the changes made to the allocation of 

growing seasons), while for IOD the changes were larger, consistent with the reviewer’s hypothesis 

that the previous IOD results were capturing the effect of ENSO. For the IOD some changes occurred 

e.g. in the Middle East and the Americas, however, the most important teleconnections (e.g. in 

Australia) still remained the same. 

 

R1.3.: Relatedly, there needs to be some mechanistic explanation for how the NAO and IOD events 

influence yields in remote areas where they do not have strong (if any) climate teleconnections 

(reference Figure 1). For example, what is driving the yield sensitivity of crops in North America 

during IODs or in southern Africa during NAO events? I would recommend showing the underlying 

temperature and precipitation variability in response to each ENSO, IOD and NAO phases to support 

these findings. 

 

A1.3.: We agree with the reviewer that it is important to carefully reflect our results against existing 

understanding of the climate oscillations and their teleconnections. Hence, we have assessed how 

growing season temperature and soil moisture anomalies vary in relation to the oscillations included 

here (Figs S2-S3). In the main text, across Section 3.2, we then reflect on how the patterns found for 

weather variability relate to our main results. 

 

R1.4.: (Page 6, Section 2.3) In defining the oscillation specific harvest years, the evolution of the 

oscillations and their teleconnections in not correctly accounted for. The harvest years, in some 

places, cover multiple growing seasons. For example, IOD climate teleconnections do not typically 

last beyond the Fall season in which the IOD’s occur into the following year’s growing season, so 

including those subsequent seasons will provide spurious relationships. Similarly, El Nino’s affect 

certain areas of the tropics such as South Asia strongly during the developing phase (Kumar et al., 

2006). By defining the harvest year as starting on 1 December, these important connections are 

missed. Further, by extending them to the following growing season, when the impacts don’t occur 

or as is stated in the manuscript, phase changes might occur, these sensitivities are likely to be 

spurious. For ENSO, it might make sense to define the harvest year from the growing season of the 

year it starts to develop to the start of the following year’s growing season. For IOD and NAO, which 

are shorter lived, it might be more suitable to restrict harvest years to seasons when their impacts 

are known. 

 

A1.4.: In general, it is difficult to select the most appropriate harvest years for the oscillations, as 

different areas and crops have varying growing periods, which are impacted differently by the 

studied oscillations. For example, if the ENSO specific growing season was defined to begin at the 

beginning of the year, it could mask out some important maize and soybean teleconnections in 

northern South America, where, according to the models, maize and soybean planting occurs around 

January. Further, it should be noted that in GGCMI the models simulated only a single growing 

season annually. 

The only way to convincingly resolve this issue is to fully unpick the mechanisms involved, including 

capturing temporal relationships between: 1) oscillation indices and weather, 2) climate and growing 

conditions, e.g. soil water availability, 3) growing conditions and yield, including variability of 

weather during the season potentially induced by the teleconnection. This is outside the scope of 

this paper. 

 



However, we have re-defined the growing periods related to these oscillations so that the growing 

period for all these studied oscillations start in May and goes until the end of the following April, as 

this time period should capture the most important known teleconnections, e.g. in Australia, Asia 

and South America. It should be noted that due to these changes in the growing periods, some 

differences in the sensitivity direction occurred in the results for ENSO (Fig. 1), as the growing 

periods of e.g. soy and maize in the U.S. now fall in the period before ENSO would peak, while in the 

previous analyses their growing periods would’ve been after the ENSO peak. 

 

R1.5.: Page 6, Section 2.2) Regarding the El Nino index used, I would recommend using more 

commonly used metrics such as the Nino 3.4 index or at least test the sensitivity of your results to 

the Nino 3.4 Index, which is typically used to identify climate teleconnections. 

 

A1.5.: We have now conducted the same analysis using also the Niño 3.4 index (Figure S6), and the 

main results remain the same with this index as well. This helped increase the credibility of our 

results on ENSO impacts further. Thank you for the suggestion. 

 

R1.6.: I realize that the models used here have been evaluated in a different paper. However, it 

would be useful to include an evaluation of the models in the supplement for metrics relevant here. 

For instance, how does each model capture observed yield various across global harvested areas. 

While the authors state that no model is obviously superior, they do not state whether any of them 

are capable of simulating observed yields. 

 

A1.6.: We have now added a table (Table S1) adopted from Muller et al. (2017), which shows how 

well the simulated crop yields match reported yields from FAOSTAT at global level. 

 

R1.7.: (Page 7, Section 2.4) The authors have used a linear regression model here. As far as I can tell, 

each mode is tested separately. However, given that they are related, I would think it would be more 

appropriate to have a multiple regression framework to isolate their individual influences. 

 

A1.7.: Indeed, we agree that it is a good idea to use a multiple regression framework to account for 

the co-variability between the oscillations. Therefore, as described above (see reply to R1.2), we 

now use ridge regression to assess how the crop yields are impacted by these oscillations. 

 

R1.8.: I am a bit flabbergasted at the inclusion of 24 maps in one figure (!!!). I would strongly 

recommend either splitting this plot by index or phase or crop. 24 is too many and I imagine others, 

like me, might have difficulty processing the information in Figure 2. Instead of a separate figure for 

agreement, it would be helpful to show agreement on the maps in Figure 1 and 2, especially after 

splitting Figure 2. These changes will enhance the clarity of the figures and help decipher areas of 

model (dis)agreement more clearly. 

 

A1.8.: We appreciate that the number of maps can be overwhelming at first glance. The use of 

“small multiples” is, however, common in visualisation as an effective way of providing a quick 

overview so that large quantities of data can be compared. In this case, the figure allows comparison 

of spatial patterns across crops, phases and indices. Splitting by either of these would then hamper 

comparison. At the same time, the casual reader does not need to identify parameters by 

themselves – the patterns are discussed in text. To clarify this point, the caption now adds: “Patterns 

are discussed in Sections 3.1 and 3.2.” 

 



Rather than modifying Figure 3, we have tried to clarify its role in the paper. The original caption 

indicated that it shows “agreement” between models and methods, which falsely gave the 

impression that it should be primarily read with Figure 1 and 2. On the contrary, it is intended as a 

robust summary of locations where indices and yields are related. The caption now reads: “Summary 

of relationship between ENSO, IOD, and NAO and crop yields across models and methods” 

 

 R1.9.: Page 14, Lines 15-20, It is a bit misleading to say that the sensitivity of crops to climate 

variability, increases with fertilizer application, given the discussion in these lines. If crop yields are 

improved during suitable climate conditions, that is a net positive, and it would be useful to have a 

metric to capture that improvement rather than suggest a negative effect of adding fertilizers. 

 

A1.9.: We apologize that we have not clearly communicated our results. Indeed, we don’t imply that 

fertilizers are not useful in increasing crop yields, but merely that they may not be effective in 

mitigating weather related impacts; i.e. we were only discussing potential reasons, why these the 

numbers come out this way. We now mention this in the main text: “Note that this does not mean 

fertiliser fails to improve crop yields – only that it does not lead to more stable yields in the face of 

weather variability” (Page 14, Lines 23-24). 

 

R1.10.: In Figure 4, the sensitivity of all crops is higher in the fully irrigated scenarios vs rainfed, 

based on Column 1. How does this suggest that irrigation reduces the sensitivity? This is likely just 

my confusion because of the way the information is presented in Figure 4. In Figure 4, is column 1, 

the difference in sensitivities of yield variability in the irrigation scenario – the rainfed scenario or 

vice versa? Does a positive difference suggest higher sensitivity in the irrigation scenario relative to 

the rainfed scenario? 

 

A1.10.: We have now clarified the figure so that the panel titles indicate that the sensitivity 

differences are calculated as change in sensitivity relative to a baseline, which is the Fully irrigated 

scenario for the 1st panel, and the Actual scenario for the four other panels. 

 

R1.11.: The conclusions will change if the analysis is changed to include the suggestions above. The 

discussion and conclusions sections will need to be edited accordingly. 

 

A1.11.: We have modified the Discussion and Conclusions sections to reflect our revised results. 

However, as our main results did not change significantly, no large changes were needed in these 

sections. 

 

R1.12.: I encourage the author to include a discussion of the existing literature on the covariability of 

IOD/NAO and EL Nino indices. 

 

A1.12.: We have now included a paragraph discussing the covariability between IOD (as well as 

briefly NAO) and ENSO in the Discussion. 

 

R1.13.: Page 2 Line 16, what is the reference for IOD events being forecast months in advance? 

 

A1.13.: Two studies by Luo et al. (2005 & 2008) show successful prediction of three IOD events 

(1994, 2006 and 2007) with seasonal lead time. However, as these results don’t show that the status 

of IOD can be predicted at all times, the sentence was rephrased:  “As the phase and development of 

ENSO, IOD and NAO can potentially be forecasted from several months (IOD, NAO (Luo et al. 2008, 



Scaife et al. 2014)) up to one year (ENSO (Luo et al., 2005, Ludescher et al. 2014)) in advance, –“ 

(Page 2, Lines 17-18). 

 

R1.14.: Page 5 Line 1, what are the default model assumptions? 

 

A1.14.: The default model configurations are based on the management and technology 

assumptions typically used by the modelling groups for historical simulations. Hence, for the default 

configuration the GGCMI coordinators allowed the modelling teams to define their own assumptions 

for setting up the models. This is now more explicitly mentioned in the text explained: “To account 

for varying assumptions of growing season and fertilizer use, in GGCMI, model simulations were 

conducted for three configurations: standard model assumptions (default), harmonized growing 

season and nutrient input (fullharm), and harmonized growing season with no nutrient limitation 

(harm-suffN). For the default configuration each modelling group were instructed to use their own 

model assumptions” (Page 4 Line 6 - Page 5 Line 3). 

 

R1.15.: Page 5, Line 3, how are literature-based values different from default assumptions? 

 

A1.15.: For the harmonized configurations the growing season and assumptions about fertilizer use 

are fixed (based on reported patterns from literature) among the models, while for the default 

configuration the modelling teams were allowed to use their own normal assumptions, which can be 

dynamic (e.g. planting dates can change depending on pre-season weather condition). 

 

R1.16.: Page 7, Line 14, Where does the sample size number N=216 – 297 come from? Is that 12 

models * number of simulation years somehow? 

 

A1.16.: This is correct. The sample used for the regression is such that the crop yield time series of 

all the models is used for fitting the regression. This is now been more explicitly explained: “For the 

main analysis  (actual scenario)), the regression was calculated for each FPU separately using crop 

yield anomaly time series from all GGCMs that simulate the crop in question with the AgMERRA 

climate input (N=216-297, depending on crop). Hence, we utilize the crop yield time series of all the 

models in fitting the regression.” (Page 7, Lines 15-17). 

 

R1.17.: Section 2.5, What is the sample size for the comparison of the strong phases of each climate 

mode? 

 

A1.17.: The strong negative and positive phases were defined based on the 25% and 75% percentiles 

of the indices. Thus, sample sizes were 54-74, depending on the crop in question. This is now 

explicitly mentioned in the revised text: “Strongly negative (positive) phases of the oscillations were 

defined as the years when the respective oscillation index was smaller (larger) than the 25th (75th) 

percentile of all yearly index values (Nanomaly = 54-74, depending on crop)” (Page 8, Lines 8-10). 

 

R1.18.: Page 10, first para, it would be useful to define the regions referred to in the discussion. For 

instance, I do not see wheat yield increases in “eastern South Asia” in the Fig. 1 as is suggested here. 

 

A1.18.: We have now added a map about the regions we refer to in the text (Figure S1). 

 



R1.19.: Page 14, The result that irrigation reduces sensitivity of different crops makes sense. It would 

be helpful to have a metric that captures the relative areas of “actual” irrigation to explain the 

differences in sensitivity of different crops. 

 

A1.19.: The aim of this analysis was to look into the potential for changes in agricultural inputs, from 

the current baseline, to change the sensitivity of crop yields to these oscillations. Therefore, the 

current management conditions do impact the numbers obtained. We have included information 

about the current extent of irrigated areas to inform the reader that they do indeed affect the 

results: “This ranking is expected, as the majority of rice harvested areas are irrigated (62% globally) 

and soybean has the smallest irrigated area share of these four crops (8%), while maize (21%) and 

wheat (31%) fall in between (Portmann et al. 2010)” (Page 14, Lines 8-10). 

 

R1.20.: Figure 4, Please edit this figure for clarity. I would recommend either including boxes around 

each panel or lines to separate them. Also, please provide complete panel titles for the right 3 

columns. Is this “actual - fully irrigated” scenarios? 

 

A1.20.: We apologize that the figure was not clearly set up, and thank for the suggestions made to 

improve the figure. We have now divided the panels using shading, included the titles for all the 

panels, as well as updated the panel titles to better reflect the analyses conducted. 

 

R1.21.: In section 3, please refer to the specific panels in figure 4 in the discussion. I don’t know 

which panel is being referred to the discussion, especially given the incomplete panel titles. I would 

also recommend doing this for other figures as much as possible. 

 

A1.21.: We have now included more specific references to Figure 4, when discussing its results. 

 

R1.22.: References: 

 
Kumar, K. Krishna, B. Rajagopalan, M. Hoerling, G. Bates, M. Cane, 2006: Unraveling the Mystery of 
Indian Monsoon Failure During El Niño. Science, 314, 115-119. 
Zhang, W., Wang, Y., Jin, F.â˘ARˇ F., Stuecker, M. F., and Turner, A. G. ( 2015), Impact of different El 
Niño types on the El Niño/IOD relationship, Geophys. Res. Lett., 42, 8570– 8576, 
doi:10.1002/2015GL065703. 
 
Stuecker, M. F., Timmermann, A., Jin, F.â˘ARˇ F., Chikamoto, Y., Zhang, W., Wittenberg, A. T.,  
Widiasih, E., andZhao, S. ( 2017), Revisiting ENSO/Indian Ocean Dipole phase relationships, Geophys. 
Res. Lett., 44, 2481– 2492, doi:10.1002/2016GL072308. 
 

A1.22.: Thank you for directing us to these references. The references used in our replies, are listed 

below: 

 
Müller, C., Elliott, J., Chryssanthacopoulos, J., Arneth, A., Balkovic, J., Ciais, P., Deryng, D., Folberth, 
C., Glotter, M., Hoek, S., Iizumi, T., Izaurralde, R. C., Jones, C., Khabarov, N., Lawrence, P., Liu, W., 
Olin, S., Pugh, T. A. M., Ray, D. K., Reddy, A., Rosenzweig, C., Ruane, A. C., Sakurai, G., Schmid, E., 
Skalsky, R., Song, C. X., Wang, X., De Wit, A. and Yang, H.: Global gridded crop model evaluation: 
Benchmarking, skills, deficiencies and implications, Geoscientific Model Dev., 10, 1403-1422, 
10.5194/gmd-10-1403-2017, 2017. 
 



Luo, J., Masson, S., Behera, S., Shingu, S. and Yamagata T.; Seasonal climate predictability in a 
coupled OAGCM using a different approach for ensemble forecasts, J. Climate, 18, 4474–4497, 2005. 
Luo, J., Behera, S., Masumoto, Y., Sakuma, H. and Yamagata, T.: Successful prediction of the 
consecutive IOD in 2006 and 2007, Geophys. Res. Lett., 35, 2008. 
 

 

  



Editor 

 

R2.1.: This manuscript describes a regression analysis that seeks to identify the global spatial 

response of modeled crop yields to global teleconnection pattern index variations. The ability of the 

authors’ analysis to quantify the role of irrigation in damping the oscillations of crop yield due to 

climate variability seems potentially important. 

 

A2.1.: Firstly, we want to thank the editor for the overall positive view of our study. We agree with 

the editor that the data used in this study provides important insights into the role of irrigation in 

damping climate impacts on crop productivity. 

 

R2.2.: However, the results show some surprisingly strong responses in areas far afield from the 

action centers of some of the teleconnection patterns. For example, a strong response in the yield of 

maize to the Indian Ocean Dipole is observed along the US-Canadian border, while a strong response 

in the yield of maize and soybeans to the North America Oscillation is observed in Southeastern 

Australia. These are surprising, since I can’t find any evidence of a significant relationship between 

the IOD and sensible weather in North America, or between the NAO and sensible weather in 

Australia in global maps of these teleconnection patterns. It seems likely that these results are 

spurious, an accidental result of the large number of regions being modeled. 

 

A2.2.: The editor is correct that due to the large number of areas being modelled, some false 

positives for our statistical tests are expected. However, we don’t make any conclusions or 

recommendations based on our analysis alone, but reflect on how our results relate to the current 

knowledge before drawing conclusions. 

Also, in addition to analyzing how crop yields vary with these oscillations, we have now included 

analyses about the sensitivity (using multivariate ridge regression) of temperature and soil moisture 

anomalies to these oscillations (Figure S2-S3). Based on these results, there seems to be a statistical 

relationship between IOD and weather in North America (see also Fig. 21 in Saji and Yamagata 2003) 

as well as a small influence of NAO in temperature conditions in Australia. 

 

R2.3.: Before recommending this work for publication in Earth System Dynamics, I would like to see 

the a deeper exploration of the reliability of the relationships displayed. For example, it would be 

good see some scatterplots of the index values versus more directly relevant meteorological factors 

in each region (growing season length or precipitation) and of these factors versus yield, as well as 

between yield and index values, to get a sense of the predictive power of the relationships. 

 

A2.3.: We agree with the editor that it is important to analyse the reliability of our results, and 

therefore already in the original submission, we included a relatively thorough analysis about the 

uncertainty of our results related to the gridded crop model ensemble used here (especially Figure 

3).  

 

As described above, we have now included an assessment about how soil moisture and temperature 

variability is related to these oscillations. Further, as the analysis includes over 500 spatial units, 

instead of providing scatter plots about the relationships, we provide the R2 values for the regression 

results (Figure S13), which show that e.g. in Australia a substantial proportion of crop yield variability 

can be explained with the oscillations studied here. More extensive exploration of relationships with 

directly relevant meteorological factors  is out of scope, as it risks giving the reader the impression 

that we understand the mechanisms involved better than we actually do. 



 

R2.4.: Some other simple statistical tests would also be helpful. It would be good to see the whether 

the patterns of response of yield to teleconnection pattern presented in figures 1 and 2 are 

consistent when the timeseries are split into two parts (first half and second half). 

 

A2.4.: We want to thank the editor for the suggestion. However, the statistical significance of the 

sensitivity values is already assessed by bootstrapping, which means that, for each spatial unit, we 

have calculated the regression for 1000 sub-samples of the crop yield data (explained in Page 7, 

Lines 20-22). This is a more thorough alternative to split-sample testing, and we therefore expect to 

find statistically significant sensitivity values in the same areas even if the time series is split in half. 

 

R2.5.: Finally, the authors should discuss at greater length the relative predictability of the various 

teleconnection patterns and how that convolves with level of uncertainty in the unlagged annual 

relationships presented here. If the NAO can only be predicted a few months in advance, what 

remaining skill is available for forecasting of the NAO’s associated crop yield variability in advance of 

the harvest? It’s one thing to note that if a strong NAO will be present, crop yields in some parts of 

the world will be a few percent above normal, but how much knowledge of crop yield anomalies is 

left if we only know that there’s a 20% higher than normal chance of a strong NAO index averaged 

over next growing season? 

 

A2.5.: We fully agree that there is a long way to go before reliable forecasting is possible. This study 

only provides background knowledge on the (possible) existence of relationships. We have added a 

paragraph discussing the usefulness and limitations of our results in mitigating climate impacts on 

crop yields and society. In the paragraph we e.g. state that: “In Australia, there is significant 

potential to utilize the information of IOD along with ENSO, to understand crop yield fluctuations, as 

they can explain a large proportion of local crop yield variability (Fig. S13, Yuan and Yamagata 2015). 

-- However, the quality of predictions of this type would naturally depend on the skill of the climate 

forecasts as well as the strength of the teleconnection. This study only provides a first assessment of 

correlations, and further work is needed before reliable forecasts can be provided. “(page 16, Lines 

10-16). 

 

References: 

 

Saji, N. H. and Yamagata, T.: Possible impacts of Indian Ocean dipole mode events on global climate, 

Climate Research, 25, 151-169, 2003. 

 

Yuan, C. and Yamagata, T.: Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat 

yields in recent decades, Scientific reports, 5, 2015. 
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Abstract. Climate oscillations are periodically fluctuating oceanic and atmospheric phenomena, which are related to variations 

in weather patterns and crop yields worldwide. In terms of crop production, the most widespread impacts have been observed 10 

for the El Niño Southern Oscillation (ENSO), which has been found to impact crop yields in all continents that produce crops, 

while two other climate oscillations - the Indian Ocean Dipole (IOD) and the North Atlantic Oscillation (NAO) - have been 

shown to impact crop production especially in Australia and Europe, respectively. In this study, we analyse the impacts of 

ENSO, IOD and NAO on the growing conditions of maize, rice, soybean and wheat at the global scale, by utilizing crop yield 

data from an ensemble of global gridded crop models simulated for a range of crop management scenarios. Our results show 15 

that, while accounting for their potential co-variation, climate oscillations are correlated with simulated crop yield variability 

is correlated to climate oscillations to a wide extent (up to almost half of all maize and wheat harvested areas for ENSO) and 

in several important crop producing areas, e.g. in North America (ENSO, wheat), Australia (IOD & ENSO, wheat) and northern 

South America (ENSO, soybean). Further, our analyses show that higher sensitivity to these oscillations can be observed for 

rainfed, and fully fertilized scenarios, while the sensitivity tends to be lower if crops were to beare fully irrigated. Since, the 20 

development of ENSO, IOD and NAO can potentially be reliably forecasted well in advance, a better understanding about the 

relationship between crop production and these climate oscillations can improve the resilience of the global food system to 

climate related shocks. 
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1 Introduction 

Climate oscillations are periodically fluctuating oceanic and atmospheric phenomena, and they have been shown to impact 

hydroclimatological conditions (Dai et al. 1998, Hurrell et al. 2003, Saji and Yamagata 2003, Trenberth 1997, Ummenhofer 

et al. 2009, Ward et al. 2014) as well as crop productivity (Anderson et al. 2017, Ceglar et al. 2017, Heino et al. 2018, Iizumi 

et al. 2014, Yuan and Yamagata 2015) worldwide.  The most notorious climate oscillation, the El Niño Southern Oscillation 5 

(ENSO), is the most significant driver of global climate variability (Trenberth 1997), while two other prominent and widely 

studied climate oscillations, the Indian Ocean Dipole (IOD) (Saji et al. 1999), and the North Atlantic Oscillation (NAO) 

(Hurrell 1995), are also known to affect temperature and precipitation patterns around the globe (Hurrell et al. 2003, Saji and 

Yamagata 2003). 

All of these three climate oscillations have been shown to significantly impact crop productivity in global (Heino et al. 2018, 10 

Iizumi et al. 2014) as well as regional studies (Anderson et al. 2017, Ceglar et al. 2017, Yuan and Yamagata 2015).) studies. 

The IOD, for example, strongly affects Australia’s drought patterns (Ummenhofer et al. 2009) and crop production (e.g. wheat 

(Yuan and Yamagata 2015)), while NAO has been shown to impact crop productivity particularly in Europe (Ceglar et al. 

2017), but also in the Middle East, Northern Africa and some parts of Asia (Heino et al. 2018, Wang and You 2004). However, 

the largest fingerprint of these three oscillations is that of ENSO, which has been found to impact crop productivity in all 15 

continents that produce crops (Anderson et al. 2019, Iizumi et al. 2014). 

As the phase and development of ENSO, IOD and NAO can potentially be forecasted from several months (IOD, NAO (Luo 

et al. 2008, Scaife et al. 2014)) potentially up to one year (ENSO (Luo et al., 2005, Ludescher et al. 2014)) in advance, 

considerable possibilities arise from understanding the impacts of these climate oscillations on crop production. If these 

impacts were better understood, it would allow national food agencies, international aid organizations, as well as food 20 

industries and farmers to prepare for varying crop development conditions. This would yield great benefits in increasing the 

resilience of the global food system to climate related shocks. 

Until now, global scale studies about the relationship between crop production and climate oscillations have relied on 

individual satellite-based (Iizumi et al. 2014) or single-model simulated (Heino et al. 2018) crop yield estimates. The data 

produced and published in phase 1 of the global gridded crop model intercomparison (GGCMI) of the Agricultural Model 25 

Intercomparison and Improvement Project (AgMIP) now allows conducting assessments related to crop yield variability with 

an ensemble of models and a range of fertilizer use and irrigation set-ups (Elliott et al. 2015, Müller et al. 2019). Given the 

large variation in crop yield estimates across models (Müller et al. 2017, Rosenzweig et al. 2014), using an ensemble of models 

can allow for more robust estimates with better quantification of uncertainty in estimated yield impacts than using a single 

model. 30 
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By using the historical crop yield output derived from a multi-model ensemble of GGCMI, we aim to analyse the impacts of 

ENSO, NAO and IOD on maize, rice, soybean and wheat yields at the global scale. This extends previous studies, which are 

based on individual crop yield estimates from single datasets (Heino et al. 2018, Iizumi et al. 2014) and have assessed the 

impacts of solely ENSO (Iizumi et al. 2014) or the impacts of multiple oscillations on an aggregated crop productivity proxy 

(Heino et al. 2018). Further, since it is well known that agricultural management can have a major influence on climate induced 5 

crop yield variations (Challinor et al. 2014, Müller et al. 2018a2018), we assess these impacts in different irrigation and 

fertilizer use scenarios. As a result, we are able to highlight potential management options to mitigate the impacts of these 

oscillations on crop production. In the Results and Interpretation section we also compare our results with previous work in 

order to provide a comprehensive overview of known phenomena while avoiding repetition. 

2 Data and methods 10 

2.1 Physically simulated crop yield data 

Global data of physically simulated maize, rice, soybean and wheat yield (t ha-1) were obtained fromfor the global gridded 

crop models’models (GGCMs) simulations included in phase 1 of the GGCMI of AgMIP (Elliott et al. 2015, Müller et al. 

2019).). While most of the 12 models included here simulate the growth of all four target crops, a few simulate only some 

(Table 1): EPIC-TAMU (maize and wheat), pAPSIM (maize, soybean and wheat), and PEGASUS (maize, soybean and wheat). 15 

A recent study evaluated the performance of the models, included in the GGCMI of AgMIP, in reproducing reported historical 

yield anomalies, and did not find any GGCM clearly superior to any other (Müller et al. 2017, Figure S1), thus highlighting 

the benefits of utilizing a model ensemble in yield variability assessments to account for uncertainty in individual model results. 
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Table 1. Crop yield data used in this study. ‘All’ refers to all of the crops included in this study, i.e. maize (M), rice (R), soybean (S) 

and wheat (W). Three model configurations were utilized: harmonized growing season and nutrient input (fullharm), harmonized 

growing season and no nutrient limitation (harm-suffN), and standard model-specific assumptions (default). Details about the 

climate forcing data availability are given in the footnotes. 

 
Crops included for different model 

configurations 
 

 

 fullharm 
harm-

suffN 
default Model Reference Data reference 

CGMS-WOFOST - - All1 (de Wit and Van Diepen 2008) Hoek and de Wit (2018a, b, c, d) 

EPIC-Boku All1,2 All1,2 All1,2 (Izaurralde et al. 2006, 

Williams 1995) 

Schmid (2018a, b, c, d) 

EPIC-IIASA All1 All1 All1 (Izaurralde et al. 2006, 

Williams 1995) 

Balkovic et al. (2018a, b, c, d) 

EPIC-TAMU M, W1,2 M, W1,2 - (Izaurralde et al. 2012) Reddy et al. (2018a, b) 

GEPIC All1 All1 All1 (Folberth et al. 2012, Liu, J. et 

al. 2007, Williams 1995) 

Folberth (2018a, b, c, d) 

LPJ-GUESS - All1,2 All1 (Lindeskog et al. 2013, Smith et 

al. 2001) 

Pugh et al. (2018a, b, c, d) 

LPJmL - All1,2 All1,2 (Bondeau et al. 2007, Waha et 

al. 2012) 

Müller (2018b2018a, b, c, d, e) 

ORCHIDEE-crop M1,3, R1,3, 

S1,3, W1 

M1,3,  R1, 

S3, W1 

M1,  R1,3, 

S1, W1 

(Wu et al. 2016) Wang and Ciais (2018a, b, c, d) 

pAPSIM M, S, W1,2 M, S, W1,2 M, S, W1,2 (Elliott et al. 2014, Keating et 

al. 2003) 

Elliott (2018a, b, c) 

pDSSAT All1,2 All1,2 All1,2 (Elliott et al. 2014, Jones et al. 

2003) 

Elliott (2018d, e, f, g) 

PEGASUS M, S, W1,2 M, S, W1 M, S, W1 (Deryng et al. 2011, Deryng et 

al. 2014) 

Deryng (2018a, b, c) 

PEPIC All1 All1 All1 (Liu, W. et al. 2016, Williams 

1995) 

Liu and Yang (2018a, b, c, d) 

1) AgMERRA, Timespan: 1980-2010 

2) Princeton, Timespan: 1948-2008 

3) Princeton, Timespan: 1979-2010 

 

 

Yield variability in the GGCMs included in GGCMI is mainly driven by weather circumstances and CO2 concentration, while 5 

soil conditions and agricultural management practices are considered static (Müller et al. 20192017). To account for varying 

assumptions of growing season and fertilizer use, in GGCMI, model simulations were conducted for three configurations: 
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standard model assumptions (default), harmonized growing season and nutrient input (fullharm), and harmonized growing 

season with no nutrient limitation (harm-suffN). For the default configuration each modelling group used their own model 

assumptions. In the harmonized model set-ups, crop planting and harvesting dates were standardized among the models and 

are are based on literature-based (Elliott et al. 2015),, while fertilizer application rates are either unlimited (harm-suffN) or 

based on published data (fullharm). Further, all of the GGCMI simulation results are provided separately for irrigated and 5 

rainfed conditions. In the irrigated simulation settings, no restrictions on water availability are considered (Müller et al. 2019). 

In GGCMI, the models simulate only a single growing season per year.2017). Two models included in the GGCMI archive, 

PRYSBI2 and CLM-Crop, were excluded from this study because either the harmonization of growing season provided 

unreliable results (CLM-Crop) or the model does not distinguish between rainfed and irrigated crops (PRYSBI2). 

The “actual” cropping scenario, used in the main analyses (with  (literature based shares of rainfed and irrigated areas, see 10 

Sect. 2.3),2.3) cropping scenario, used in the main analyses, utilizes the fullharm set-up, and the harm-suffN setting for LPJ-

GUESS and LPJmL, which do not consider nitrogen limitation and thus cannot harmonize on fertilizer settings (Table 2). For 

comparison, the sensitivity analysis (see Sect 2.4) for the actual cropping scenario was repeated with the default model set-up 

(see Supplement), while the harm-suffN scenario was used in assessing the impacts of the oscillations in fully fertilized 

conditions. 15 

Table 2. The management scenarios used in this study. The actual set-up is used in the main analyses, while the fully irrigated, 

rainfed, fully fertilized, and the fully irrigated and fertilized management scenarios are used for comparing the impacts in different 

cropping systems.  

Management scenario Irrigated areas Fertilizer use 

Actual Literature based Literature based* 

Fully irrigated All areas irrigated Literature based 

Rainfed No areas irrigated, all areas rainfed Literature based 

Fully fertilized Literature based Fully fertilized 

Fully irrigated and fertilized All areas irrigated Fully fertilized 

*) For LPJ-GUESS and LPJmL, limitations on fertilizer use are not considered. These models are excluded from the 

“Actual” scenario for the comparison with varying fertilizer use.   

This study utilizes simulations driven with two historical meteorological forcing data sets (bias-corrected re-analysis weather 

data sets): AgMERRA (Ruane et al. 2015) and Princeton Global Forcing data set (Sheffield et al. 2006) (Table 1). AgMERRA 20 

was selected as the main climate input for this study, as a large number of GGCMs supplied data for this climate forcing data 

set, while the Princeton data was selected for reference due to its long timespan and previous use in a similar study (Heino et 
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al. 2018). A detailed description of the GGCMI phase 1 modelling protocol can be found in Elliott et al. (2015) and the output 

data set is described by Müller et al. (2019). 

2.2 Climate oscillation data 

To represent the historical fluctuations of ENSO, IOD and NAO, the following indices were chosen: the Japan Meteorological 

Agency (JMA) SST Index (Florida State University 2015), the SST Dipole Mode Index (NOAA Japan Agency for Marine-5 

Earth System Research Laboratory 2017Science and Technology 2010, Saji et al. 1999), and Hurrell’s North Atlantic 

Oscillation Index (primary component (PC)-based) (Hurrell 1995, National Center for Atmospheric Research 2015), 

respectively. These indices were selected because they are all well established and have already been used in several studies 

related to crop production (Heino et al. 2018, Kim and McCarl 2005, Yuan and Yamagata 2015). For ENSO, the Niño 3.4 

index (NOAA Earth System Research Laboratory 2019) was also tested given its common use in ENSO related studies 10 

(Stuecker et al. 2017, Zhang et al. 2015), with results shown in the Supplement. The indicesThey were transformed to annual 

values by calculating the mean index for the months when the oscillations tend to have the strongest signal, according to 

existing sources, (i.e. December, January, February for ENSO (Trenberth 1997) and NAO (Hurrell et al. 2003);  September, 

October and November for IOD (Saji et al. 1999).)). This therefore only tests for relationships with a phase-locked 

measurement of the oscillation rather than investigating intra-annual temporal effects. Using seasonal or monthly data increases 15 

the number of significance tests for a given location and therefore the risk of false positives, and interpretation of results would 

require understanding of how climate oscillations, local weather conditions and yield are connected over time. However, it 

requires accurate, high-resolution global crop calendars which are not available. Finally, in order to make the oscillation indices 

comparable with each other, each oscillation index time series was standardized (by subtracting the annual index values by 

their average index value from the annual values and dividing bywith their standard deviation). 20 

2.3 Crop yield data aggregation and de-trending 

The gridded crop yields were allocated to oscillation specific annual yields based on the sowingharvesting dates used in the 

harmonized GGCMI simulations. TheHence, oscillation-specific “harvest year t” is assigned to all harvests from growing 

seasons that years”, which start between May of from the actual year (t) and April of first day that the next year (t+1). This 

definitionrespective oscillation index is calculated, are defined. For NAO and ENSO (oscillation index calculated for harvest 25 

years was selected, because it ensures thatDJF), the average lifespans of all these oscillations are withinharvest year is from 

December 1st to November 30th, while for IOD (calculated for SON) the harvest year, and thus many of the major known 

teleconnections of these oscillations during the crop growing season are included in the analysis (e.g. in Australia, Africa, and 

South America). is from 1st of September until end of August.  

The crop yield data were aggregated spatially to the geographical scale of Food ProductionProducing Units (FPUs), which 30 

divide the world into 573 spatial units that are hybrids of river basins and administrative (economic) areas (Kummu et al. 
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2010). For the actual cropping scenario, rainfed and irrigated crop yields were combined by calculating the mean yield as the 

total production divided by the total harvested area across both cropping systems, using literature based values about harvested 

area (Portmann et al. 2010). The aggregation for irrigated and rainfed scenarios was conducted similarly by dividing total 

production by harvested areas but assuming that all cropland is either irrigated or rainfed, respectively. 

In order to extract the interannual variability of the crop yield data, they were de-trended. This was conducted by subtracting 5 

a five-year moving average yield from the annual yield values (three-year average at both ends of the time series),) yield from 

the annual yield values, similarly to several previously conducted studies about yield variability (Iizumi et al. 2014, Iizumi and 

Ramankutty 2016, Müller et al. 2017, Müller et al. 2018a2018). The anomalies were then divided by five-year (or three-year) 

averages to obtain proportional annual deviation from the normal values. The equation of the procedure is shown below: 

𝛥𝑌𝑓,𝑠,𝑚,𝑐,𝑡 =
𝑌𝑓,𝑠,𝑚,𝑐,𝑡 − �̅�𝑓,𝑠,𝑚,𝑐,𝑡

�̅�𝑓,𝑠,𝑚,𝑐,𝑡

∗ 100, (1) 10 

where 𝛥𝑌𝑓,𝑠,𝑚,𝑐,𝑡 denotes relative yield anomaly for each FPU (𝑓), scenario (𝑠), model (𝑚), crop (𝑐) and year (𝑡) compared to 

the average yield (�̅�𝑓,𝑠,𝑚,𝑐,𝑡) for the movingrolling time window around year t.in question. The use of a shorter time window at 

the beginning and end of the yield time series allows longer de-trended time series, and it is assumed that it would rarely lead 

to errors about the sign of yield anomalies and thus the derived relationships between climate oscillation and yield anomalies. 

Other studies have tested other de-trending methods as well, but have found no major impact from the method selected (Iizumi 15 

et al. 2014, Iizumi and Ramankutty 2016, Müller et al. 2017). 

2.4 Crop yield sensitivity to the oscillations 

The sensitivity of actual crop yield to the oscillations was investigated using a multivariate linear regularized ridge regression 

model, with the oscillation indices as explanatory variablesvariable and the annual crop yield anomalies as dependent variable. 

The ridge regression framework was selected because it allows accounting for correlations among the explanatory variables 20 

(here oscillation indices). In this linear regression model, the slope represents sensitivity. For the main analysis (actual 

scenario), the regression, a linear fit was calculated for each FPU separately using crop yield anomaly time series from all 

GGCMs that simulate the crop in question with the AgMERRA climate input (N=216-297, depending on crop). Hence, we 

utilize the crop yield time series of all the models in fitting the regression. In the regression model, the slope coefficients 

represent sensitivity. The optimal regularization value, for the regression, was selected by performing a generalized cross-25 

validation (tested regularisation values ranged between 10-6 and 10). 

[𝑆𝑓,𝑠,𝑐,𝑜  𝑖𝑓,𝑠,𝑐,𝑜] = (𝐼𝑜,𝑡
𝑇𝐼𝑜,𝑡)−1𝐼𝑜,𝑡

𝑇𝛥𝑌𝑓,𝑠,𝑚,𝑐,𝑡 , (2) 
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where 𝑆𝑓,𝑠,𝑐,𝑜 and 𝑖𝑓,𝑠,𝑐,𝑜 are the slope (i.e. sensitivity) and intercept of the regression model for each FPU (𝑓), scenario (𝑠), 

crop (𝑐), and oscillation (𝑜), respectively, and 𝐼𝑜,𝑡 is the oscillation index. The existence of significant relationshipsa linear 

relationship was assessed by calculating a multivariate ridge regression Pearson’s correlation from a random bootstrap 

samplessample (N = 1,000, with replacement) of crop yield–oscillation index combinations. Statistical significance therefore 

tests the robustness of observed ridge regression coefficients across different samples drawn from the time series. The optimal 5 

regularization value was selected for each bootstrap sample as described above, which follows the principle described in Abram 

et al. (2016).variable pairs. The linear relationship was defined to be significant (p < 0.1), if 95 % (two-sided test) of the 

sampled sensitivity valuescorrelations were either larger or smaller than zero. Thus, a 10 % probability was accepted of 

wrongly classifying a linear relationship as significant. Note that the relatively high risk level in statistical regression (p < 0.1) 

is commonly used in global climate-yield analysis because of the limited access to high quality yield data at the global scale 10 

(e.g., Ray et al., 2015). To check robustness of results, the same analysis was also conducted utilizing the crop yield data 

derived usingwith the Princeton climate input, different model configurations as well as individual models and average weather 

(soil moisture and temperature) conditions (Martens et al. 2017, Ruane et al. 2015) during the growing season.. Further, to 

illustrate the effect of using phase-locked indices rather than investigating intra-annual temporal variation (see Section 2.2), 

the sensitivity of crop yield to these oscillations was also assessed by using the average harvest season oscillation indices as 15 

explanatory variable (see Supplement). 

2.5 Average crop yield anomalies during strong oscillation phases 

The crop-specific average yield anomalies observed during strong oscillation phases were investigated for the actual cropping 

scenario. The crop yield changes that occur during years when the oscillations are in their strong phases were summarized by 

the median crop yield anomaly (in percentpercentage) of those years. The median anomaly was calculated using all the GGCMs 20 

that simulate the crop in question (N=216-297, depending on crop) for the actual scenario with AgMERRA climate input. 

Strongly negative (positive) phases of the oscillations were defined as the years when the respective oscillation index was 

smaller (larger) than the 25th (75th) percentile of all yearly index values (Nanomaly = 54-74, depending on crop).. The statistical 

significance (p < 0.1) of the changes was assessed by bootstrapping (n = 1,000, with replacement) the crop yield anomalies, 

and calculating the median of each bootstrap sample. If over 95 % (two-tailed test) of the sample of mediansmeans were either 25 

larger or smaller than zero, the change was considered statistically significant. Statistical significance therefore tests the 

robustness of observed anomalies across different samples drawn from the time series. 

2.6 Impacts in different cropping systems 

To assess how expanding or reducing the extent of irrigated area, and increasing fertilizer use would change the impacts of 

climate oscillations on crop yields, compared to the actual scenario, the main sensitivity analysis (see description above – Sect. 30 

2.4) was conducted for a set of scenarios (Table 2): i) all cropland was only rainfed (with fullharm setup), ii) all cropland was 
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fully irrigated (fullharm), iii) all cropland was fully fertilized (actual irrigation with fullharm-suffN), and iv) all cropland was 

fully irrigated and fertilized (fully irrigated with harm-suffN). In addition to analysing how the above mentioned four scenarios 

compare against the actual scenario, the fully irrigated and rainfed scenarios were also compared. To quantify how the impacts 

in these cropping systems vary, average sensitivity magnitudes were compared for each crop. Specifically, for a pair of 

scenarios, the average difference of their absolute sensitivity values was calculated across all oscillations and FPUs, where at 5 

least one of the scenarios shows a significant sensitivity. To obtain a measure relative to the actual (or irrigated when comparing 

irrigated and rainfed scenarios) scenario, the average difference values were divided with the average sensitivity magnitude of 

the actual (or irrigated) scenario for the FPUs included. The corresponding equation is: 

𝛥𝑆𝑠12,𝑐 = ∑  
|𝑆𝑠1,𝑐,𝑓,𝑜| − |𝑆𝑠2,𝑐,𝑓,𝑜|

|𝑆𝑠1,𝑐,𝑓,𝑜|𝑜,𝑓

𝑛𝐹,𝑂 ∗ 100 %, (2)⁄ 𝛥𝑆𝑠12,𝑐 = ∑  
|𝑆𝑠1,𝑐,𝑓,𝑜| − |𝑆𝑠2,𝑐,𝑓,𝑜|

|𝑆𝑠1,𝑐,𝑓,𝑜|𝑜,𝑓

𝑛𝐹,𝑂 ∗ 100 %, (3)⁄  

where at least of one |𝑆𝑓,𝑠1,𝑐,𝑜|  or |𝑆𝑓,𝑠2,𝑐,𝑜| is statistically significant. 𝑓, 𝑠 ∈ {𝑠1, 𝑠2}, 𝑐, and 𝑜 are indices of FPU, management 10 

scenario, crop, and oscillation respectively. 𝛥𝑆𝑠12,𝑐 denotes the average proportional sensitivity difference of each crop (𝑐) 

between the scenarios, while 𝑆𝑓,𝑠1,𝑐,𝑜 and 𝑆𝑓,𝑠2,𝑐,𝑜 represent the sensitivity in the respective management scenarios 𝑠1 and 𝑠2. 

𝑛𝐹,𝑂  is the number of cases (oscillation and FPU) where at least one of the scenarios has a significant sensitivity. 

 

For each crop, to assess whether the mean sensitivity magnitude difference is statistically significantly different from zero, a 15 

distribution of the mean sensitivity magnitude difference was created by calculating the average from bootstrapped (N = 1,000, 

with replacement) difference values of each FPU and oscillation. For the comparisons with varying fertilizer use, only those 

nine GGCMs which have data for both ‘fullharm’ and ‘harm-suffN’ settings and thus simulate nutrient stress (Table 1), were 

included. 

3 Results and Interpretation 20 

3.1 Global extent of climate oscillation impacts 

Globally, climate oscillations have widespread effects on crop yields (Table 32), but both the direction and magnitude of 

impacts vary spatially and across crops (Fig. 1). Out of the oscillations studied here, ENSO shows the widest impacts on yields 

of maizerice (statistically significant sensitivity in 5155 % of harvested areas), wheat (49 %) and rice (48soybean (66 %), while 

IOD and ENSO both show a similar extent of impacts on the yields of soy (53 %wheat and maize (45-50 %, respectively) 25 

(Table 3). Generally,%). NAO seems to have the smallest impacts on the yields of the crop types inspected here in terms of 

harvested areas, although it still shows relatively strong influence on wheat (4237 %) and maize (3527 %) yields. In terms of 

sensitivity direction, it is notably more widespread for yield to increasedecrease towards the positive phase of ENSO (i.e. El 

Niño) for all crop types inspected heremaize, rice and soybean (i.e. positivenegative sensitivity). For IOD and NAO, the results 

are more mixed, though both show larger harvested areas where yield decreasesincreases towards the positive phase for 30 
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maizewheat. These results align withare backed up by crop yield anomalies during strong oscillation phases, as they also show 

widespread average impacts (Table S2crop yield anomalies during strong oscillation phases (Table S1). 
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Table 32. Extent of significant sensitivity. Crop-specific harvested area (106 ha) extent (and percent of total crop-specific harvested 

area), where actual crop yield shows statistically significant positive (+) or negative (-) sensitivity to ENSO, IOD and NAO, i.e. there 

is a statistically significant (two-sided p-value < 0.1) linear relationship between crop yield anomalies and the studied oscillations 

(see Methods). Extent affected by significant anomalies is shown in Table S2S1. 

 5 

3.2 Impacts in different areas 

ENSO’s relationship with crop yield seems to provide the most distinct spatial patterns across the crop types, crop models and 

oscillations studied here (Figs 1-3, Figs S4-S10S1-S6, Supplementary zip-file). Crop yields tend to decrease towards the 

positive phase of ENSO (El Niño) in a large proportion of sub-Saharansouthern Africa, as well as eastern parts of South 

America and Australia, while yields seem to increase towards the positive phase on the coast of Peru and North Americaeastern 10 

Africa (Fig. 1, global regions mapped in Fig. S1). In general, these results align well with the spatial patterns found in existing 

studies on the Palmer Drought Severity Index (Dai et al. 1998) as well as soil moisture and temperature anomalies (Figs S2-

S3).crop productivity (Heino et al. 2018). Also, in terms of model and methodological agreement, consistent increase 

(decrease) of wheat yields in eastern South Asia and parts of the Middle East can be observed for ENSO towards its positive 

(negative) phase (Figs 1-3, Figs S11-S12). For the southern tipparts of AfricaNorth America, wheat and soybean seem to be 15 

related with opposite impacts. This is potentially because of differences in harvest timing and the related weather conditions; 

winter wheat is harvested inbefore the autumnsummer, while soybean is harvested the following spring, and thusautumn, 

which is more exposedwhen an ENSO event of opposite sign might have started to the drier conditions related to develop 

(Anderson et al. 2017). If the sensitivity for soybean is calculated for ENSO during the boreal winter (Fig. S2, Philippon et al. 

2012) .autumn, it is closer to what is observed for wheat (Fig. 1, Figs S7-S8). 20 

When comparing our results to a study about ENSO’s crop yield impacts, which utilized satellite-based crop yields (Iizumi et 

al. 2014, Iizumi et al. 2018a), the agreement of the impacts varies. Our results agree with existing studies for example for large 

parts of Africa and eastern Asia, where El Niño is mostly related to negative impacts, while results do not agree as well in 

 ENSO IOD NAO 

Sensitivity − + − + − + 

Maize 
30 (2048 

(32 %) 

46 (3125 (17 

%) 

36 (2432 (21 

%) 

18 (1244 (29 

%) 

44 (2930 (20 

%) 
10 (611 (7 %) 

Rice 
31 (1968 

(41 %) 

47 (2923 (14 

%) 

22 (1364 (38 

%) 

16 (1019 (11 

%) 
1 (06 (4 %) 8 (518 (11 %) 

Soybean 
6 (839 (52 

%) 

31 (4210 (14 

%) 

32 (4223 (31 

%) 

8 (1121 (28 

%) 

22 (299 (12 

%) 
6 (8 %) 

Wheat 
28 (1345 

(21 %) 

77 (3654 (25 

%) 

45 (2133 (16 

%) 

46 (2176 (35 

%) 

20 (1024 (11 

%) 

69 (3255 (26 

%) 



 

12 

 

North America (wheat, maize) and Australiacentral South America (maize, soybean). However, it should be noted, that these 

differences are no surprise, since it has been shown that only a third of global crop yield variability can be attributed to seasonal 

climate variation (Ray et al. 2015). In contrast to the satellite-based data, the models used here deliberately focus on weather 

impacts on crop yield, and do not consider the impacts of e.g. multiple cropping or weather triggered pest outbreaks and 

management responses, which can also be major contributors to crop yield variations. 5 

For IOD, strong and consistent impacts (Figs 1-2) among crop models (Fig. 3) can be observed in eastern Australia, especially 

for soybean and wheat (Figs 1-3), where the IOD is related to drier and warmer weather conditions (Figs S2-S3).). This 

corroborates a previous study conducted on the relationship between IOD and wheat yields, which showed that around 40 % 

of Australia’s wheat yield variability can be attributed to the IOD (Yuan and Yamagata 2015), and where the oscillations are 

together also able to explain a substantial portion of crop yield variability (>25 %, Fig. S13).). Further, consistent results among 10 

models and methods (Figs 1-3) for IOD can be observed in parts of Eastern EuropeRussia and Central Asia, where the positive 

(negative) phase of the IOD is related to an a decrease (increase (decrease) in wheat, maize and soybean yields. In India, 

Southeast Asia, and southern Africa, the impacts of the IOD vary between crops. For example, in Southeast Asia, ricesouthern 

Africa, wheat shows a positive sensitivity (increasing yield towards the positive phase) while maize and soybeanrice show a 

negative one., again, potentially because of different times of harvest and the related weather conditions. In eastern China, 15 

maize, wheatrice and soybean yield variability seems to be related to the IOD to some extent. However, these relationships are 

less certain, as they are not consistently found by the majority of the individual models (Fig.Figure 3). 

For NAO, the relationships are generally less certain in terms of model agreement compared to ENSO and IOD (Fig. 3). NAO’s 

most significant impacts can be observed in eastern Europe and the Middle East on maize, soybean and wheat yields (Figs 1-

2). In the Middle East, for the sensitivity of wheat and maize (soybean) crop yield to NAO seemstends to be negative 20 

(positiveincreasing yield towards the negative phase), while mostly positive sensitivity is found in Europe and western Russia 

for maize, soybean and wheat.. These results align with results from previous studies about weather patterns and crop 

productivity (Cullen et al. 2002, Heino et al. 2018, Hurrell et al. 2003). Although, the results for NAO are relatively similar 

between different model configurations (Figs S4-S6S2-S3), the results are not as consistent among the GGCMs as for the other 

oscillations (Fig. 3). 25 
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Figure 1. Actual maize (a-c), rice (d-f), soybean (g-i), and wheat (j-l) yield sensitivity to ENSO, IOD and NAO at FPU scale. The 

sensitivity values are derived using crop yield data from all GGCMs that simulate the crop in question with the AgMERRA climate 

input. Statistically insignificant (p > 0.1) sensitivity values are marked as zero (colour grey). White colour denotes that the crop in 

question is not produced in that area. Results with Princeton climate input and default model setup are shown in Figs S1 and S2, 5 
respectively. Median, maximum and minimum sensitivities as well as consistency across individual models are shown in Figs S3-S6, 

respectively. Results for individual models are shown in a Supplementary zip-file. Results with oscillation indices calculated in the 

harvest season are shown in Fig. S7, with the associated seasons shown in Fig. S8. 
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Figure 2. Actual maize (a-f), rice (g-l), soybean (m-r), and wheat (s-x) yield anomalies during strong phases of ENSO, IOD and NAO 

at FPU scale. The anomaly values are derived from a sample including crop yield data from all GGCMs that simulate the crop in 

question with the AgMERRA climate input. Statistically insignificant (p > 0.1) anomaly values are marked as zero (colour grey). 

White colour denotes that the crop in question is not produced in that area. Patterns are discussed in Sections 3.1 and 3.2. 5 
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Figure 3. Summary of relationship between ENSO, IOD, and NAO and crop yields acrossAgreement between models and methods 

for maize (a-c), rice (d-f), soybean (g-i), and wheat (j-l). The y-axis of the colour bar shows whether there is agreement between the 

sensitivity analysis (Fig. 1) and the average anomalies during strong oscillation phases (Fig. 2): ‘Neither’ denotes that the strong 

oscillation phases are not related to significant average crop yield anomalies that are consistent with the sensitivity analysis, ‘One’ 5 
means that either positive or negative oscillation phase shows a significant average anomaly that is consistent with the sensitivity 

result (e.g. positive sensitivity, and positive anomaly during a positive oscillation phase), ‘Both’ means that both phases of the 

oscillations show consistent average anomalies during the strong oscillation phases (e.g. positive anomaly during a positive oscillation 

phase, and negative anomaly during a negative oscillation phase in an FPU with positive sensitivity). The x-axis of the colour bar 

shows the proportion of individual models that show significant sensitivity of same sign compared to the result from the ensemble 10 
analysis (see Fig. 1 above, Fig. S6 and Supplementary zip-files). Areas where the ensemble results do not show a statistically 

significant relationship are marked in grey, while white colour denotes that the crop in question is not grown in that area 
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3.3 Magnitude of impacts in different cropping systems 

Irrigation plays a key role in reducing crop yield sensitivity to climate oscillations, with yield varying up to three times more 

(for wheat) across the range of oscillations when comparing fully irrigated and rainfed scenarios (Fig. 4). Comparing rainfed 

to actual conditions shows that irrigation has already substantially reduced the effects of climate oscillations on crop yields. 

The average difference in sensitivity is largest for rice, where average sensitivity would be over two times higher, i.e. yield 5 

would vary two times more across the range of the oscillations if all cropland was rainfed (Fig. 4g).. The difference in 

sensitivity is smallest for soybean (29 %, Fig. 4l),30 %), while maize and wheat show a relative increase in sensitivity increase 

of 47 % (Fig. 4b)68 % and 60 % (Fig. 4q),63 %, respectively. This ranking is expected, as the majority of rice 

harvestedproduction areas areis irrigated (62 % globally)%) and soybean has the smallest irrigated area share of these four 

crops (8 %), while maize (21 %) and wheat (31 %) fall in between (% globally, Portmann et al. 2010). 10 

Conversely, average sensitivity would be reducedsmaller if crops were fully irrigated without any limitations on water 

availability, compared to the actual situation, for all the inspected crop types. Benefits of further irrigation are limited by its 

current use, which might be why rice shows the smallest difference in average impacts (most of the rice harvested area is 

already irrigated, Fig. 4h). The average decrease in crop yield sensitivity to the oscillations is largest for wheat (54soybean (43 

%, i.e. yield varying 5443 % less across the oscillations compared to actual conditions, Fig. 4r4) and soybean (39 %, Fig. 15 

4m),wheat (48 %), while maize shows a 35 % (Fig. 4c)34 % average decrease. 

Unlimited fertilizer (fully fertilized scenario) use yields statistically significantly larger average sensitivity compared to actual 

conditions for maize (21 %, Fig. 4d), rice (11 %, Fig. 4i)22 %) and wheat (18 %, %) (Fig. 4s3). For these crops, these climate 

oscillations have a stronger impact on yields in cropping systems that do not have limitations related to nutrient availability. 

This reflects previous research that has found increased crop yield variability under additional fertilizer inputs (Müller et al. 20 

2018a2018). This is potentially because in low crop yield years, fertilizer use is not the main limiting factor, so yields are not 

significantly improved, while in years when climate conditions are suitable for crop growth, yields become even higher, which 

would increase the sensitivity value as well (Fig. S24). Note that this does not mean fertiliser fails to improve crop yields – 

only that it does not lead to more stable yields in the face of weather variability.S19). Soybean has very little change in 

sensitivity under full fertilisation (Fig. 4n).. This is likely because it is a legume and has lower nitrogen requirements – nitrogen 25 

availability is not even considered in soybean simulations in some models. 

Combining both unlimited irrigation and fertilizers, all of the crop types show smaller average sensitivity compared to the 

actual cropping system scenario (Fig. 4). The decreased sensitivity due to increased irrigation dominates the increased 

sensitivity due to increased fertilizer use. However, the differences in sensitivity magnitude are large between crops, with 

wheatsoybean having the largest decreases in average sensitivity magnitude (39 %, Fig. 4t),41 %), and rice having the smallest 30 

(16 %, Fig. 4j).12 %).   
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The above mentioned results can be observed spatially Supplementary Figs S14-S23S9-S17), which e.g. clearly show that, in 

most areas, the sensitivity magnitude is larger in the rainfed as well as fully fertilized scenarios, i.e. yields vary more across 

the range of the oscillation index. The spatial results also highlight areas with potential to reduce impact of oscillations, for 

example for ENSO in northern South America (soybean and rice) as well as for IOD in Australia (wheat), where high sensitivity 

to the respective oscillations can be observed for the actual scenario. 5 
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Figure 4. Relative average difference in sensitivity magnitude of maize (a-e), rice (f-j), soybean (k-o) and wheat (p-t) between a range 

of cropping scenarios through all the studied oscillations and FPUs. To quantify how the impacts in these cropping systems vary, 

average sensitivity magnitudes were compared for each crop. Specifically, for a pair of scenarios, the average difference of their 

absolute sensitivity values were calculated across all oscillations and FPUs, where at least either scenario shows a significant 5 
sensitivity. To obtain a measure relative to the actual (or irrigated when comparing irrigated and rainfed scenarios) scenario, the 

average difference values were divided with the average sensitivity magnitude of the actual (irrigated) scenario for the FPUs 

included. For each crop, to assess whether the mean sensitivity magnitude difference is statistically significantly different from zero, 

a distribution of the mean difference was created by calculating the average from bootstrapped (N = 1,000, with replacement) 

difference values of each FPU and oscillation. For the scenarios with varying fertilizer use set-up, we included only those nine 10 
GGCMs which have data for both ‘fullharm’ and ‘harm-suffN’ settings and also simulate nutrient stress, i.e. pDSSAT, EPIC-Boku, 

EPIC-IIASA, GEPIC, pAPSIM, PEGASUS, EPIC-TAMU, ORCHIDEE-crop, and PEPIC. Triple, double and single asterisks 

denote the confidence level at 99.9 %, 99 % and 90 %, respectively. Maps of sensitivity for each cropping system are shown in Figs 

S14-S18S9-S13 and difference in sensitivity magnitude in Figs S19-S23S14-S18. Please note different scale in x-axis between the 

columns. 15 

4 Discussion 

In this study, we inspected the historical relationship between crop yield variability and climate oscillations in a range of 

cropping systems by utilizing an ensemble of historical crop yield simulations generated in GGCMI. The results of this study 

highlight the widespread impacts that ENSO, IOD and NAO have on crop yields at the global scale, as well as potential options 

for mitigating their impacts.mitigation. Further, we find robust impacts for these oscillations in many areas around the globe, 20 
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e.g. in southern parts of Africa and northern South America for ENSO, and in eastern Australia for IOD, where these 

insightsinformation can potentially be utilized in efforts mitigating weather driven variations in crop productivity (Iizumi et 

al. 2018b).) 

The reliability and usefulness of these results vary significantly between regions, crops and oscillations. In general, the 

teleconnections related to ENSO are the strongest, which is sensible, since ENSO has been shown to be the most significant 5 

driver of global climate variability (Dai et al. 1998, Trenberth 1997). Various institutions (including the United Nations) 

already provide action plans to mitigate ENSO’s impacts on society. In Australia, there is significant potential to utilize the 

information of IOD along with ENSO, to understand crop yield fluctuations, as they can explain a large proportion of local 

crop yield variability (Fig. S13, Yuan and Yamagata 2015). Some promise also exists in using oscillation forecasts in predicting 

crop yield variability (Nobre et al. 2019). However, the quality of predictions of this type would naturally depend on the skill 10 

of the climate forecasts as well as the strength of the teleconnection. This study only provides a first assessment of correlations, 

and further work is needed before reliable forecasts can be provided. 

Our results join existing research (Müller et al. 2018a2018, Schauberger et al. 2016, Okada et al., 2018) in highlighting the 

major role of irrigation in mitigating climate related crop yield variations, and thus securing global food production. This is an 

important point, since water supplies are highly stressed in many important crop-producing production areas (Kummu et al. 15 

2016), which are also impacted by climate oscillations, such as parts of North America and South Asia. Thus, diminishing 

water resources could pose a major barrier in mitigating future negative impacts related to climate oscillations and climate 

variability in general. This can be very problematic, given that climate change will likely increase the occurrence of extreme 

weather in the future (Coumou and Robinson 2013). With given water shortages in some regions (Heinke et al. 2019), 

exploiting potentials to improve sustainable water use in agriculture (Jägermeyr et al. 2017) may thus be highly important for 20 

maintaining the long-term stability of the global crop production system. ItHowever, it should also be noted that there is 

substantial potential to improve water use efficiency with integrated crop water management measurements (Jägermeyr et al. 

2016). 

Interestingly, at thea global level, increasing fertilizer use does not seem to decrease the sensitivity of crop yields to oscillations, 

potentially because low crop yield years remain the same while in years when conditions are suitable for crop growth, yields 25 

become even higher (Müller et al. 2018a2018), which would increase the sensitivity value as well. This explanation aligns 

with previous research, which has shown that increasing fertilizer use has limited potential to increase crop yields during years 

when weather conditions limitis not suitable for crop growth (Liebig’s law). In other words, additional fertilizer use in years 

with unfavourable seasonal climate condition does not lead to yield gain and is not cost effective, even if it is beneficial in 

normal conditions.. Therefore, decision support systems which guide farmers about optimal fertilizer use under predicted 30 

growing season climate can be useful to avoid investments in fertilizers in bad years (Hayashi et al., 2018).  
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4.1 Limitations and way forward 

The selection of the time windows for calculating the oscillation metric can have an impact on the spatial crop yield sensitivity 

footprintsignature, as briefly illustrated in this study as well (Fig. 1, Fig. S7). Previously used approaches for identifying these 

relationships include e.g. looking at crop yield anomalies during the year (Heino et al. 2018, Iizumi et al. 2014, Yuan and 

Yamagata 2015) and years around (Anderson et al. 2017) strong oscillation anomalies. In these studies, strong oscillation 5 

anomalies are calculated either for the season in whichthat the oscillations shows the strongest signal (Heino et al. 2018, 

Anderson et al. 2017, Yuan and Yamagata 2015) or the harvest season (Iizumi et al. 2014) show the strongest signal.). In 

general, it can be said that it is very difficult to find metrics for the oscillations that would work perfectly everywhere. A lack 

of accurate, spatially-detailed crop calendars makes addressing this issue particularly challenging. The justification for the 

methods used here is to look at how crop yields vary aroundduring the time, in whichyear after these oscillations show their 10 

strongest signal, which can provide valuable information for early warning systems. 

Future work could try to trace intermediate effects in order to explain the mechanisms at play, e.g., e.g. combining the effect 

of oscillations on weather, the effect of each aspect of weather on crop planting, development and harvest, and the final result 

in terms of crop yield. Such research could additionally provide useful information for decreasing crop yield 

variationsvariability, and thus increasing the resilience of crop production to climate variability. 15 

The teleconnection patterns related to the IOD can be difficult to fully disentangle from ENSO due to their coevolution. 

Previous studies have shown that around 20 % to 45 % of IOD variability could be explained by ENSO depending on the data 

and the investigated time frame (Saji and Yamagata 2003, Zhang et al. 2015). The nature of this relationship is still debated 

(Hameed et al. 2018, Stuecker et al. 2017), and determining the influence of ENSO on the IOD and vice-versa is not in the 

scope of this study. However, through the use of multivariate ridge regression, we aim to filter the influence of ENSO from 20 

the IOD patterns. Also, the relationship between ENSO and NAO has been studied, but that relationship has been shown to be 

relatively weak (Hurrell et al. 2003).variation. 

The data used here are from state of the art global gridded crop models included in phase 1 of the GGCMI of AgMIP. However, 

major uncertainties in the simulated crop yields still exist, and the relationships observed here between crop yields and these 

oscillations are often not consistent throughout the ensemble of crop models (see Fig. 3). Differences and uncertainties among 25 

the models arise e.g. from soil and crop type parametrisations as well as handling of water and nutrient stress (e.g. Folberth et 

al. 20192016). Additionally, uncertainties in these GGCMs arise from the simulated cropping systems, as simulations 

assumehave only a single annual harvest per crop and per grid cell, whereas multiple harvests are common for e.g. rice. In 

general, simulated crop yields seem to be most reliable in high nutrient-input areas (Müller et al. 2017), where observed climate 

variability also explainsexplain a majority of reported crop yield variation (Ray et al. 2015). 30 
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This study has included comparison with fully fertilized and irrigated management scenarios intended to capture (unattainable) 

ideal management, with no water or nutrient stress anywhere. This helps understand the physical potential of the management 

measures for mitigating crop yield variability related to these oscillations, according to the models used. In future, practical 

limitations could also be taken into account by limiting water and fertilizer use to locally available resources. 

The three climate oscillations included here are only a share of the whole range of periodically fluctuating climatological 5 

phenomena that could impact crop growing conditions. Thus, studying the relationship between simulated crop yields and 

other climate oscillations, not included here, such as Scandinavian Pattern or the Arctic Oscillation, would provide additional 

insights to this topic, as demonstrated by a recent study by Ceglar et al. (2017). 

5 Conclusions 

This study strengthens the evidence that climate oscillations are drivers of crop yield variability around the world. In several 10 

areas, where these oscillations show robust impacts on crop production, e.g. Australia, southern Africa, as well as parts of 

North and South America, local risk reduction effortsdisaster control as well as global efforts can already benefit from utilizing 

these known relationships to improve the stakeholders’ preparedness against in mitigating crop production shocks associated 

with the climate oscillations.against climatologically driven variations. Information for maintaining the stability of global crop 

production is of high importance, given that anticipated climate change and population growth will keep increasing the pressure 15 

towards the global food system. Finally, ourFinally, we want to highlight the importance of water in mitigating crop yield 

variability. Our results suggest that increases (decreases) in the extent of irrigated area would, on average, reduce (amplify) 

the impacts of these oscillations on crop yields, which highlights the importance of . Hence, sustainable water use inis crucial 

for maintaining the long-term stability of the global crop production system.  

6 Code and data availability 20 

The processing scripts are available from GitHubgithub: https://github.com/matheino/crops_and_oscillations. The simulated 

crop yield data were retrieved from the GGCMI data archive: http://www.rdcep.org/research-projects/ggcmi, and they are also 

available through the links provided in the references of Table 1. 
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