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Abstract 12 

Human migration is both motivated and constrained by a multitude of socioeconomic and 13 

environmental factors, including climate-related factors. Climatic factors exert an influence on 14 

local and regional population density. Here, we examine implications for future motivation for 15 

humans to migrate by analyzing today’s relationships between climatic factors and population 16 

density, with all other factors held constant. Such ‘all other factors held constant’ analyses are 17 

unlikely to make quantitatively accurate predictions but the order-of-magnitude and spatial pattern 18 

that come out of such an analysis can help inform discussions about the influence of climate change 19 

on the possible scale and pattern of future incentives to migrate. Our results indicate that, within 20 

decades, climate change may provide to hundreds of millions of people additional incentive to 21 

migrate, largely from warm tropical and subtropical countries to cooler temperate countries, with 22 

India being the country with the greatest number of people with additional incentive to migrate. 23 

These climate-driven incentives would be among the broader constellation of incentives that 24 

influence migration decisions. Areas with the highest projected population growth rates tend to be 25 

areas that are likely to be most adversely affected by climate change.  26 

27 
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1. Introduction  28 

Human migration is a complex socioeconomic phenomena driven by mixture of historical, political, 29 

cultural, economic and geographical factors (Greenwood 1985), often by the need to adapt to 30 

environmental stressors (Adger et al. 2014) including those caused by climate change (Myers 1993; 31 

Núñez et al. 2002; Stapleton et al. 2017; Missirian and Schlenker 2017). Climate change is 32 

expected to lead to higher temperatures and an altered hydrological cycle in the coming decades 33 

(McLeman and Hunter 2010), and temperature and precipitation changes have been shown to 34 

influence human migration at local to regional scale (Barrios et al. 2006; Black et al. 2011; 35 

Marchiori et al. 2012; Gray and Bilsborrow 2013; Hsiang et al. 2013; Mueller et al. 2014; Bohra-36 

Mishra et al. 2014; Kelley et al. 2015).  37 

We apply a simple and transparent approach to estimate the number and geographic distribution 38 

of people for whom temperature and precipitation changes may provide an additional incentive 39 

migrate. Of course, people are subject to a wide range of incentives and constraints; therefore, 40 

actual future migration will depend on a much broader set of factors (Greenwood 1985; Adger et 41 

al. 2014). Ideally, projections of future human migration patterns would involve consideration of 42 

a wide range difficult-to-quantify factors (e.g., future wealth, efficacy of adaptive response, 43 

cultural factors, and non-linear interactions between climate change and population growth) 44 

(Holobinko 2012; Suweis 2018). Our goal is to identify what continuance of current relationships 45 

between climate variables and human population density would imply for future incentives to 46 

migrate. While these relationships will not remain fixed in time, it is nonetheless useful to 47 

understand what direct application of current relationships to future climate would contribute to 48 

the set of incentives that will influence future human migration. 49 

 50 
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2. Methods 51 

2.1 Overview 52 

Nordhaus (2006) applied a regression analysis on geographic and economic data to estimate the 53 

influence of climate variables on the areal density of Gross Domestic Product (GDP). Samson et 54 

al. (2011) used weighted regression model to identify ideal temperature and precipitation ranges 55 

for human habitation (as measured by population density), and studied how those ideal temperature 56 

and precipitation ranges may change in the future owing to climate change. Here we apply similar 57 

methods to the same dataset, the Geographically based Economic data (G-Econ), to estimate the 58 

influence of climate variables on population density.  59 

To estimate of the influence of climate on the attractiveness of different locations, we apply the 60 

historical relationship between climate variables and population density, along with projections 61 

(Taylor et al. 2012) of future climate change from the output of the Coupled Model 62 

Intercomparison Project Phase 5 (CMIP5) under Representative Concentration Pathways (Vuuren 63 

et al. 2011) (RCPs, including RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5) scenarios, incorporating 64 

future country-scale demographic population projections  from the United Nations’ World 65 

Population Prospects 2015 (United Nations, 2015). Details are in the Analysis section below, but 66 

the basic idea is that if, for example, historical relationships between population density and 67 

climate change would predict a 10% decrease in population density for a grid cell in a climate 68 

change scenario, we would estimate that there would be incentive for 10% of the future population 69 

(as estimated by the UN) to migrate from that grid cell. Of course, many other factors including 70 

family ties, linguistic barriers, lack of resources, employments relations, and so on, would be 71 

expected to influence migration decisions. 72 
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 73 

2.2 Data 74 

This research uses the Geographically based Economic data (G-Econ) dataset (Nordhaus 2006) for 75 

the historical climate and population data. The G-Econ dataset is originally developed for 76 

analyzing global economic activities and provides gridded (1°×1°) economic (e.g. Gross Cell 77 

Product, population) and geographical (e.g., climate, location, country, distance from seacoasts, 78 

soils and vegetation cover) information covering all terrestrial regions. In total, there are 27,445 79 

grid cells in the dataset. G-Econ’s climatology data, including annual mean air temperature (T, 80 

in °C) and annual precipitation (P, in mm year-1), were derived from the Climate Research Unit 81 

Average Climatology high-resolution data sets (New et al. 2002). The gridded population (N) was 82 

adapted from the Gridded Population of the World (GPW) dataset 83 

(http://sedac.ciesin.columbia.edu/data/collection/gpw-v3).  More details and the data download 84 

link is available at http://gecon.yale.edu/. 85 

In this study, from the G-Econ dataset, we used the population density (D) and the geographical 86 

data, including T, P, distance to lake (DL, in km), distance to major river (DMR, in km), distance 87 

to river (DR, in km), distance to ocean (DO, in km), elevation (E, in m), and surface roughness 88 

(Roughness, in m).  89 

To make our projections, we used T and P in historical (i.e., 1960-2005) climate, and future climate 90 

scenarios (2006-2100) from the output of the Coupled Model Intercomparison Project Phase 5 91 

(CMIP5), which produces state-of-art multi-model dataset to advance the knowledge of climate 92 

change. We collected the model projected T and P (20 model projects; see Table A1) under all 93 

Representative Concentration Pathways (RCPs, including RCP 2.6, RCP 4.5, RCP 6.0 and RCP 94 
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8.5) from CMIP5 dataset to represent the range of future climate projections. We regridded the 95 

CMIP5 data to a 1°×1° common grid using bilinear interpolation. 96 

We used the historical and predicted (median-variant) country-level population data from the 97 

World Population Prospects: The 2015 Revision by the United Nations Department of Economic 98 

and Social Affairs (United Nations, 2015). We use Wi,y to denote the population estimated by the 99 

UN for grid cell i in year y; we use Wc,y to denote the population estimated by the UN for country 100 

c in year y.  101 

2.3 Analysis 102 

Year 2005 population density and within-country distribution. Areal population density for year 103 

2005 in each grid cell i (Di) was calculated from the population (Ni) of 2005, grid area (Ai, in km2) 104 

and land fraction of the grid (Li, no unit) from G-Econ dataset: 105 

  i i i iD N A L    (1) 106 

We denote the fraction of population of country c living in grid cell i with the symbol di,c: 107 

 i i i
i c

d N N


    (2) 108 

where i∈c indicates that the summation is performed over all grid cells in country c. The 109 

distributional parameter, di,c, is considered to be constant in time. 110 

Linear regression model. Our methods for estimating climate influence on population density 111 

parallels methods previously applied (Nordhaus 2006) to estimate climate influence on areal 112 

density of GDP. The basic idea is to find a single set of coefficients that explain within-country 113 

relationships between population, climatic and geographic variables. For our regressions, we used 114 
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data from the G-Econ dataset18 and the Climate Research Unit Average Climatology high-115 

resolution data sets27 (for filling the missing data in the G-Econ dataset). To estimate logarithm of 116 

population density from both geographical (G) and climatic variables (C), we used the equation: 117 

 10 0log D  G C+ Gβ + Cβ   (3) 118 

where D is a vector of grid-scale population densities (i.e., Di for grid cell i). Specifically, 119 

  country soil DL DMR DR DO E roughnessG   (4) 120 

 2 3 2 3 2 2T T T p p p Tp T p p T   C   (5) 121 

where T is as defined above, and p is log10 P. country and soil  are categorical variables,  βG and βC 122 

are numerical coefficients vector on geographical and climatic variables, respectively.  123 

 , , , , , , , ,Transpose G country G soil G DL G DMR G DR G DO G E G roughness          Gβ   (6) 124 

and 125 

 2 3 2 3 2 2, , ,, , , , , ,
Transpose C T C p C TpC T C T C p C p C T p C p T

           Cβ   (7) 126 

Antarctica, Greenland, and grid cells with zero precipitation were excluded from this analysis.  127 

The values for the β-coefficients are determined by an area-weighted ordinary-least-squares curve 128 

fit to log10 D. Fitting the above linear regression model was conducted in MATLAB R2017a 129 

(http://www.mathworks.com/products/matlab/). In total, 20,503 grid cells had data for all 130 

parameters needed for the fitting procedure. Variability that is not explained by equation (3) is 131 

assumed to be the result of unknown factors which we treat as invariant with time.  132 
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Population change projections. We first calculated the ratio of population in the changed climate 133 

relative to the base-state climate (here taken to be the climate in the period preceding 2005) in 134 

region i for the climate in year y considering climate factors alone (ri,y): 135 

 ,
,

,2005

i y
i y

i

D
r

D
   (8) 136 

For each grid, we calculated ri,y for each year from 2006 to 2100 using equation (8) and 30-year 137 

moving average of T and P projected by each CMIP5 model. (The 30-year moving average ends 138 

on the period under consideration so that decisions are made on past but not future climate states.)   139 

In the absence of climate change, we would estimate the population in grid cell i in country c for 140 

year y (Wi,y) to be di,c×Wc,y, where c is the country containing grid cell i. If we directly apply the 141 

population change ratio under climate change (ri,y) to the population estimates, the population with 142 

taking climate change into account would be ri,y × Wi,y. However, this estimate must be scaled to 143 

conserve total population. Thus, the population Ni,y of grid cell i in year y can be estimated to be: 144 

 
, ,

, , ,
, , ,

i c c y
i c

i y i y i y
i y i c c y

i c

d W
N r W

r d W





  

 




  (9) 145 

By doing this adjustment, we conserve the world total population, but take climate change into 146 

account to estimate the spatial distribution of population. 147 

We then estimate the number of people for whom climate change is projected to provide additional 148 

incentive to migrate for grid-cell i and year y (indicated by ΔNi,y) as: 149 

 , , ,i y i y i yN N W     (10) 150 
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Negative values of ΔNi, are interpreted as indicating areas where climate change provides 151 

additional incentive to emigrate; positive values indicate areas that are projected to increase in 152 

relative attractiveness. (Even if everyplace were to decrease in absolute attractiveness due to 153 

climate change, the places with a smaller absolute decrease would increase in relative 154 

attractiveness.)  155 

We define fi,y = Ni,y / Wi,y, so that fi,y – 1 indicates the fractional change in population that would 156 

be required to offset the influence of climate change on the attractiveness of grid cell i in year y. 157 

When fi,y – 1 < 0, that means that grid cell i has become less attractive. We integrated Ni,y for grid 158 

cells in each country c to yield Nc,y and define fc,y = Nc,y / Wc,y. We calculate results independently 159 

for each of the CMIP5 models simulations (Taylor et al. 2012) and present median results. 160 

Where a range is reported, it encompasses results for 68% of the CMIP5 models. 161 

We report results with two significant digits. The computer scripts written in Matlab R2017a used 162 

to perform our analyses are available upon request. 163 

  164 
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 165 

Figure 1. The number of people for whom climate change is projected to provide additional incentive to 166 
migrate under RCP 8.5 per 1° × 1° grid cell (ΔNi,2100, in thousand people, panel a) and per country (ΔNc,2100, 167 
in billion people, panel b). The fractional change in population that would be required to offset the influence 168 
of climate change on the relative attractiveness of living in a particular location for year 2100 (fi,2100) under 169 
scenario RCP 8.5 (c). To isolate the effect of climate change on incentives to migrate, all factors are held 170 
constant, except for climate and country-level population. Of course, many other factors influence 171 
migration decisions.  172 
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Results 173 

The regression of population density against geographic and climate variables as described above 174 

(see also Methods and Supporting Material) explains 72% of the geographic variance in the 175 

logarithm of population density. Applying our regression equation to climate model and 176 

demographic projections, we find that ΔNi,y is negative (i.e., indicating decreased attractiveness) 177 

in regions that are already hot and are projected to experience substantial additional warming under 178 

climate change (primarily tropical and subtropical regions), whereas we find that ΔNi,y is positive 179 

(i.e., indicating increased attractiveness) in cooler regions (primarily in the temperate regions of 180 

the Northern Hemisphere; Figure 1a and A1,a,b,c).  181 

Under RCP 8.5, India has the largest negative ΔNc,2100 value among countries (0.89 [0.77 to 1.10] 182 

billion; Figure 1b), followed by Nigeria (0.46 [0.38 to 0.58] billion). The other countries with the 183 

largest negative values of ΔNi,2100 are Democratic Republic of Congo (0.20 billion), Indonesia 184 

(0.18 billion), Niger (0.14 billion), Sudan (0.11 billion), Philippines (0.10 billion), Bangladesh 185 

(0.09 billion), Tanzania (0.09 billion) and Pakistan (0.08 billion). In contrast, China, Russia and 186 

the United States all have positive values of ΔNc,2100.  187 

The metric fi,2100 is less than 0.3 in parts of the Northern African Tropical Savanna, Tropical South 188 

America and Tropical Asia under RCP 8.5, indicating that future incentives to migrate from those 189 

areas may be substantial. The metric fi,2100 is >5 in much of Canada, Russia and Scandinavia, and 190 

parts of the United States, and China (Figure 1c), which could indicate that in the absence of other 191 

barriers these regions could become migration destinations. Results for RCP 2.6, 4.5 and 6.0 show 192 

similar spatial patterns but at lower magnitude (Figure A1). 193 
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The countries with the largest projected population growth to year 2100 tend to be countries where 194 

the largest negative values of ΔNc,2100 (Fig. 2). The equation ΔNc,2100 = (1.79 ± 0.06) ΔWc,2100 + 195 

(0.21 ± 0.02) explains 79% of the variation in population-weighted ΔNc,2100 (best estimate ± 1 196 

standard error). Figure 2 shows average projected population increase from 2005 to 2100 (ΔWc,2100) 197 

on the horizontal axis is negatively correlated to the number of people in each country with 198 

additional incentive to emigrate (ΔNc,2100) on the vertical axis. About 70% of the world’s projected 199 

year 2100 population lives in a country that is expected to experience population growth and for 200 

which ΔNc,2100 is < 0 (lower right quadrant in Fig. 2). In contrast, 14% of the global population in 201 

2100 is projected to live in a country experiencing with a population lower than today and for 202 

which ΔNc,2100 is > 0 (upper left quadrant in Fig. 2). Similar patterns are found under other 203 

scenarios (Fig. A2).  204 

Figures 3 shows values of ΔNi,y integrated over all grid cells with  ΔNi,y < 0, indicating the number 205 

of people for whom climate change for whom climate change may produce an additional incentive 206 

to migrate. Under all of the RCP scenarios, this integrated value increases over the next few 207 

decades (Figure 3), reaching 0.6 to 1.9 billion people by 2050 (depending on RCP scenario). By 208 

year 2100 under RCP 8.5, this number increases to about 3.8 [3.3 to 4.9] billion people, which is 209 

about one-third of the projected global population in 2100.  210 
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 211 

Figure 2. Country-level projections for population increase in year 2100 relative to year 2005 212 
(ΔWc,2100=Wc,2100 – Wc,2005, horizontal axis) and the number of people for whom climate change is projected 213 
to provide additional incentive to migrate under RCP 8.5 (ΔNc,2100; vertical axis). Areas of circles are 214 
proportional to year 2100 population. Color scale is as per Figure 1b. The line shows the population-215 
weighted linear trend. Negative values on the vertical axis indicate additional incentive to emigrate; positive 216 
values indicate countries that increase in relative attractiveness. Results hold all factors constant, except for 217 
climate and country-level population. 218 
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 220 

Figure 3. Number of people projected to experience additional climate-related incentive to emigrate under 221 
four Representative Concentration Pathways. The lines show the median value across CMIP5 models with 222 
results from 66 % of the models falling within the shaded area. Results hold all factors constant, except for 223 
climate and country-level population. 224 

  225 
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Discussion and Conclusions 226 

In this section, we discuss some of the relevance of the results of our calculations for the real world. 227 

We intend our quantitative results to indicate possible orders-of-magnitude and global-scale spatial 228 

patterns of people with changed incentives; we do not intend our results to be interpreted as 229 

quantitative predictions of future climate-induced human migration.  230 

Our calculations take into account changes in temperature and precipitation only, under the 231 

artificial assumption that all other factors remain constant. Our highly idealized calculations are 232 

intended to indicate the scale and geographic distribution of people for whom climate change 233 

might provide an additional incentive to migrate. Our calculations also indicate which regions 234 

climate change might make more attractive to potential migrants. Clearly, migration decisions are 235 

influenced by a wide range of factors (McLeman and Hunter 2010; Fussell et al. 2014). Further, 236 

there is often a substantial incentive to avoid migration entirely, so additional incentive to migrate 237 

does not imply an overall positive net incentive to migrate. The number of people who will have 238 

positive net incentive to migrate as a result of climate change is thus less than the number of people 239 

for whom climate change will provide an additional incentive to migrate. Migration is one of many 240 

possible adaptive responses to climate change. For example, people might choose to cool interior 241 

spaces with air conditioners (Barreca et al. 2016). Another response could be to shift from 242 

agricultural work in rural environments to industrial or service-sector jobs in more urbanized 243 

environments (Neill et al. 2010; Jiang and O’Neill 2017), and thus migration flows can be 244 

influenced by differences in types of development and not only climatic factors.   245 

Our results indicate that India may be the country that will contain the largest number of people to 246 

whom climate change may provide an additional incentive to emigrate. West Africa, and in 247 

particular, Nigeria, may be the second most important area in this regard (Figure 1a,b). This is 248 
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largely a consequence of high population densities in areas that are already warm and projected to 249 

get warmer. Our results indicate that many people living in the Amazon region would have 250 

additional incentive to emigrate, but population density is generally low. More generally, climate 251 

change may provide additional incentive to emigrate to many people living in the tropics (Figure 252 

1c). In contrast, our regression equations indicate that, from a purely climatic perspective, climate 253 

change may increase the attractiveness of northern countries, such as China, Russia, Canada, 254 

Norway, Sweden and Finland, relative to most other parts of the world.  255 

There is a country-level correlation between projected population increase and the degree to which 256 

climate change is projected to provide an additional incentive to emigrate. This correlation 257 

suggests that population increases have the potential for exacerbating negative effects of climate 258 

change in much of the world. Over two-thirds of the world’s year 2100 population is projected to 259 

live in a country with greater population than today and for which climate change may provide 260 

additional incentive to emigrate. In contrast, about one out of seven people are projected to live in 261 

a country with a lower population and where climate change may cause to become relatively more 262 

attractive. China is the largest country that is expected to both experience a decrease in population 263 

and an increase in climate-related relative attractiveness. Moreover, our calculations suggest that 264 

India could be the largest potential source of climate emigrants, and that China could potentially 265 

be the largest potential destination for climate immigrants (Figure 1b). However, immigration in 266 

China is currently very limited (Abel and Sander 2014). Thus, barriers to migration in southeast 267 

Asia could potentially become an important source of future climate-related conflict (Hsiang et al. 268 

2013). 269 

Climate change may provide additional incentive to migrate to hundreds of millions of people 270 

within the next decades and potentially billions of people by the end of this century (Figure 3). 271 
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The number of people projected to have additional incentive to migrate by year 2100 under RCP 272 

4.5 or 6.0 is about half that projected under RCP 8.5, and the number project under RCP 2.6 is 273 

about half that projected under RCP 4.5 or 6.0. This result points to the important role that 274 

emissions reductions may play in reducing climate-related incentives to migrate. Successful local 275 

adaptation measures could greatly reduce incentives to migrate (Adger et al. 2014).  276 

Climate change is likely to induce a complex web of dynamical interactions at a range of spatial 277 

and temporal scales, and these interactions are not well represented by our model. For example, 278 

considerations of language, work, and family ties can provide strong incentive not to migrate. 279 

Projections of how climate change might affect migration are therefore fraught with uncertainty. 280 

Nevertheless, the results of our calculations may indicate areas that climate change can be expected 281 

provide large numbers of people, primarily in the tropics, an additional incentive to migrate, 282 

primarily to the middle and high latitudes of the Northern Hemisphere. This change in climate-283 

driven incentives to migrate is one factor among many that need to be included in a comprehensive 284 

understanding of possible future migration flows. 285 

 286 

Code/Data availability 287 

All the data used in this study is publicly available. The CMIP5 climate projections are available 288 

at https://cmip.llnl.gov/cmip5/data_portal.html. The G-Econ dataset is available at 289 

http://gecon.yale.edu/. The WPP2015 (World Population Prospects: The 2015 Revision by the 290 

United Nations Department of Economic and Social Affairs) data is available at 291 

http://esa.un.org/unpd/wpp/Download/Standard/Population/. 292 

293 

https://doi.org/10.5194/esd-2019-79
Preprint. Discussion started: 7 January 2020
c© Author(s) 2020. CC BY 4.0 License.



18 
 

References 294 

Abel GJ, Sander N (2014) Quantifying global international migration flows. Science 343:1520–2. doi: 295 
10.1126/science.1248676 296 

Adger WN, Pulhin JM, Barnett J, et al (2014) Human security. In: Field CB, Barros VR, Dokken DJ, et 297 
al. (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral 298 
Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental 299 
Panel of Climate Change. Cambridge University Press, Cambridge, United Kingdom and New 300 
York, NY, USA, pp 755–791 301 

Barreca A, Clay K, Deschenes O, et al (2016) Adapting to Climate Change: The Remarkable Decline in 302 
the US Temperature-Mortality Relationship over the Twentieth Century. J Polit Econ 124:105–159. 303 
doi: 10.1086/684582 304 

Barrios S, Bertinelli L, Strobl E (2006) Climatic change and rural–urban migration: The case of sub-305 
Saharan Africa. J Urban Econ 60:357–371. doi: http://dx.doi.org/10.1016/j.jue.2006.04.005 306 

Black R, Adger WN, Arnell NW, et al (2011) The effect of environmental change on human migration. 307 
Glob Environ Chang 21, Supple:S3–S11. doi: http://dx.doi.org/10.1016/j.gloenvcha.2011.10.001 308 

Bohra-Mishra P, Oppenheimer M, Hsiang SM (2014) Nonlinear permanent migration response to 309 
climatic variations but minimal response to disasters. Proc Natl Acad Sci  111:9780–9785. doi: 310 
10.1073/pnas.1317166111 311 

Fussell E, Hunter LM, Gray CL (2014) Measuring the environmental dimensions of human migration: 312 
The demographer’s toolkit. Glob Environ Chang 28:182–191. doi: 313 
https://doi.org/10.1016/j.gloenvcha.2014.07.001 314 

Gray C, Bilsborrow R (2013) Environmental Influences on Human Migration in Rural Ecuador. 315 
Demography 50:1217–1241. doi: 10.1007/s13524-012-0192-y 316 

Greenwood MJ (1985) HUMAN MIGRATION: THEORY, MODELS, AND EMPIRICAL STUDIES*. J 317 
Reg Sci 25:521–544. doi: 10.1111/j.1467-9787.1985.tb00321.x 318 

Holobinko A (2012) Theoretical and Methodological Approaches to Understanding Human Migration 319 
Patterns and their Utility in Forensic Human Identification Cases. Soc.  2 320 

Hsiang SM, Burke M, Miguel E (2013) Quantifying the Influence of Climate on Human Conflict. Science 321 
(80- ) 341: 322 

Jiang L, O’Neill BC (2017) Global urbanization projections for the Shared Socioeconomic Pathways. 323 
Glob Environ Chang 42:193–199. doi: https://doi.org/10.1016/j.gloenvcha.2015.03.008 324 

Kelley CP, Mohtadi S, Cane MA, et al (2015) Climate change in the Fertile Crescent and implications of 325 
the recent Syrian drought. Proc Natl Acad Sci  112:3241–3246. doi: 10.1073/pnas.1421533112 326 

Marchiori L, Maystadt J-F, Schumacher I (2012) The impact of weather anomalies on migration in sub-327 
Saharan Africa. J Environ Econ Manage 63:355–374. doi: 328 
http://dx.doi.org/10.1016/j.jeem.2012.02.001 329 

McLeman RA, Hunter LM (2010) Migration in the context of vulnerability and adaptation to climate 330 
change: insights from analogues. Wiley Interdiscip Rev Clim Chang 1:450–461. doi: 331 
10.1002/wcc.51 332 

Missirian A, Schlenker W (2017) Asylum applications respond to temperature fluctuations. Science (80- ) 333 
358:1610 LP – 1614 334 

Mueller V, Gray C, Kosec K (2014) Heat stress increases long-term human migration in rural Pakistan. 335 
Nat Clim Chang 4:182–185 336 

https://doi.org/10.5194/esd-2019-79
Preprint. Discussion started: 7 January 2020
c© Author(s) 2020. CC BY 4.0 License.



19 
 

Myers N (1993) Environmental Refugees in a Globally Warmed World: Estimating the scope of what 337 
could well become a prominent international phenomenon . Biosci  43:752–761. doi: 338 
10.2307/1312319 339 

Neill BC, Dalton M, Fuchs R, et al (2010) Global demographic trends and future carbon emissions. Proc 340 
Natl Acad Sci 107:17521 LP – 17526 341 

New M, Lister D, Hulme M (2002) A high-resolution data set of surface climate over global land areas . 342 
Clim Res 21:1–25 343 

Nordhaus WD (2006) Geography and macroeconomics: new data and new findings. Proc Natl Acad Sci U 344 
S A 103:3510–7. doi: 10.1073/pnas.0509842103 345 

Núñez L, Grosjean M, Cartajena I (2002) Human Occupations and Climate Change in the Puna de 346 
Atacama, Chile. Science (80- ) 298:821–824 347 

Samson J, Berteaux D, McGill JB, Humphries MM (2011) Geographic disparities and moral hazards in 348 
the predicted impacts of climate change on human populations. Glob Ecol Biogeogr 20:532–544. 349 
doi: 10.1111/j.1466-8238.2010.00632.x 350 

Stapleton SO, Nadin R, Watson C, Kellett J (2017) Climate change , migration and displacement and 351 
coherent approach 352 

Suweis KFD and AB and PD and S (2018) A universal model for predicting human migration under 353 
climate change: examining future sea level rise in Bangladesh. Environ Res Lett 13:64030 354 

Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the Experiment Design. Bull Am 355 
Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 356 

Vuuren DP, Edmonds J, Kainuma M, et al (2011) The representative concentration pathways: an 357 
overview. Clim Change 109:5–31. doi: 10.1007/s10584-011-0148-z 358 

United Nations, Department of Economic and Social Affairs, Population Division (2015). World 359 
Population Prospects: The 2015 Revision, Volume I: Comprehensive Tables. ST/ESA/SER.A/379. 360 

 361 

Acknowledgements 362 

The authors thank Bill Hayes for his efforts on processing CMIP5 data. We appreciate comments 363 

from Kate Ricke and Juan Moreno-Cruz on earlier drafts of this manuscript. This work supported 364 

by the Carnegie Institution for Science endowment and the Fund for Innovative Climate and 365 

Energy Research.  366 

 367 

Author Contributions 368 

M. C. and K. C. conceived and designed the project and performed the computational analysis. 369 

M.C. wrote the first draft of the manuscript with later development from K. C.  370 

 371 

Competing interests 372 

The author(s) declare no competing interests. 373 

  374 

https://doi.org/10.5194/esd-2019-79
Preprint. Discussion started: 7 January 2020
c© Author(s) 2020. CC BY 4.0 License.



Table A1. CMIP5 models used in this study. 382 

Model Country and Research 
Center 

Resolution (Latitude, 
Longitude) 

CCSM4 United States, NCAR (0.9424, 1.25) 
CESM1-CAM5 United States, NCAR (0.9424, 1.25) 
CSIRO-Mk3.6.0 Australia, CSIRO  (1.8653, 1.875) 
FIO-ESM China, The First Institute of 

Oceanography, SOA 
(2.8125, 2.8125) 

GFDL-CM3 United States, NOAA/GFDL (2, 2.5) 
GFDL-ESM2G United States, NOAA/GFDL (2.0225, 2) 
GFDL-ESM2M United States, NOAA/GFDL (2.0225, 2.5) 
GISS-E2-H United States, NASA GISS (2, 2.5) 
GISS-E2-R United States, NASA GISS (2, 2.5) 
HadGEM2-AO United Kingdom, MOHC (1.25, 1.875) 
IPSL-CM5A-LR France, IPSL (1.8947, 3.75) 
IPSL-CM5A-MR France, IPSL (1.2676, 2.5) 
MIROC-ESM Japan, JAMSTEC; 

Atmosphere and Ocean 
Research Institute (AORI); 
National Institute for 
Environmental Studies 
(NIES) 

(2.7906, 2.8125) 

MIROC-ESM-CHEM Japan, JAMSTEC; AORI; 
NIES 

(2.7906, 2.8125) 

MIROC5 Japan, JAMSTEC; AORI; 
NIES 

(1.4008, 1.40625) 

MRI-CGCM3 Japan, MRI (1.12148, 1.125) 
NorESM1-M Norway, Norwegian Climate 

Centre 
(1.8947, 2.5) 

NorESM1-ME Norway, Norwegian Climate 
Centre 

(1.8947, 2.5) 

BCC-CSM1.1 China, BCC (2.8125, 2.8125) 
BCC-CSM1.1-M China, BCC (1.125, 1.125) 

  383 

20 
 

https://doi.org/10.5194/esd-2019-79
Preprint. Discussion started: 7 January 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure A1. The number of people for whom climate change is projected to provide additional 384 

incentive to migrate under RCP 2.6, 4.5 and 6.0 per 1° × 1° grid cell (ΔNi,2100, in thousand people) 385 

and per country (ΔNc,2100, in billion people). The fractional change in population that would be 386 

required to offset the influence of climate change on the relative attractiveness of living in a 387 

particular location for year 2100 (fi,2100) under the scenarios. The three rows presents ΔNi,2100, 388 

ΔNc,2100 and fi,2100 under RCP 2.6, 4.5 and 6.0 (columns), respectively. Color schemes are the same 389 

as in Fig. 1. Results hold all factors constant, except for climate and country-level population. 390 

 391 

392 

21 
 

https://doi.org/10.5194/esd-2019-79
Preprint. Discussion started: 7 January 2020
c© Author(s) 2020. CC BY 4.0 License.



Figure A2. Country-level projections for population increase in year 2100 relative to year 2005 393 
(ΔWc,2100=Wc,2100 – Wc,2005, horizontal axis) and the number of people for whom climate change is projected 394 
to provide additional incentive to migrate under RCP 2.6, 4.5 and 6.0 (ΔNc,2100; vertical axis). Areas of 395 
circles are proportional to year 2100 population. Color scale is as per Figure 2. The line shows the 396 
population-weighted linear trend by fitting ΔNc,2100=aΔWc,2100+b, where a and b are parameters. For RCP 397 
2.6, a=-0.490.06, b=0.060.02 (best estimate ± 1 standard error), and R2=0.80; for RCP 4.5, a=-398 
0.920.06, b=0.100.02, and R2=0.79; for RCP 6.0, a=-1.080.06, b=0.130.02, and R2=0.79. Negative 399 
values on the vertical axis indicate additional incentive to emigrate; positive values indicate countries that 400 
increase in relative attractiveness. Results hold all factors constant, except for climate and country-level 401 
population. 402 
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