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Abstract. Various observational estimates indicate growing mass loss at Antarctica’s margins but also heavier precipitation

across the continent. In the future, heavier precipitation fallen on Antarctica will counteract any stronger iceberg discharge

and increased basal melting of floating ice shelves driven by a warming ocean. Here, we use from nine CMIP5 models future

projections, ranging from strong mitigation efforts to business-as-usual, to run an ensemble of ice-sheet simulations. We test,

how the precipitation boundary condition determines Antarctica’s sea-level contribution. The spatial and temporal varying5

climate forcings drive ice-sheet simulations. Hence, our ensemble inherits all spatial and temporal climate patterns, which is

in contrast to a spatial mean forcing. Regardless of the applied boundary condition and forcing, some areas will lose ice in

the future, such as the glaciers from the West Antarctic Ice Sheet draining into the Amundsen Sea. In general the simulated

ice-sheet thickness grows in a broad marginal strip, where incoming storms deliver topographically controlled precipitation.

This strip shows the largest ice thickness differences between the applied precipitation boundary conditions too. On average10

Antarctica’s ice mass shrinks for all future scenarios if the precipitation is scaled by the spatial temperature anomalies coming

from the CMIP5 models. In this approach, we use the relative precipitation increment per degree warming as invariant scaling

constant. In contrast, Antarctica gains mass in our simulations if we apply the simulated precipitation anomalies of the CMIP5

models directly. Here, the scaling factors show a distinct spatial pattern across Antarctica. Furthermore, the diagnosed mean

scaling across all considered climate forcings is larger than the values deduced from ice cores. In general, the scaling is higher15

across the East Antarctic Ice Sheet, lower across the West Antarctic Ice Sheet, and lowest around the Siple Coast. The latter is

located on the east side of the Ross Ice Shelf.

Plain Language Summary In the warmer future, the ice sheet of Antarctica will lose more ice at the margin, because more

icebergs may calve and the warming ocean melts more floating ice shelves from below. However, the hydrological cycle is also

stronger in a warmer world. As a consequence, more snowfall precipitates on Antarctica, which may balance the amplified20

marginal ice loss. In this study, we have used future climate scenarios from various global climate models to perform numerous

ice-sheet simulations. These simulations represent the Antarctic Ice Sheet. We analyze whether Antarctica will grow or shrink.

In all our simulations, we find that certain areas will lose ice under all circumstances. However, depending on the method used

to describe the precipitation reaching Antarctica in our simulations, parts of the Antarctic Ice Sheet may either grow or shrink

in the future. How strong the precipitation grows in a warming atmosphere, may be explained by the dissimilarity between25
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the applied methods to describe the precipitation. Furthermore, the dissimilarity is pronounced differently between the West

Antarctic and East Antarctic Ice Sheet.

1 Introduction

Sea level rise as a symptom of the progressing climate warming is of foremost importance for coastal societies because it

impacts globally numerous economic activities and threatens the population along coasts. Antarctica’s contribution to the30

future sea level is projected by either statistical approaches that take advantage of the deduced past behavior or dedicated

model simulations of, for instance, ice-sheet models (Church et al., 2013). To run ice-sheet models, commonly simplified

temporal forcing anomalies for the entire continent are applied on top of spatial background fields (e.g. Golledge et al., 2015;

Winkelmann et al., 2012; Pollard and DeConto, 2009). Those background or reference fields are simplified descriptions by

analytical equations (e.g., surface elevation and latitude dependence (Fortuin and Oerlemans, 1990)), come from regional35

climate models or climatological data sets. The simplified forcing, which usually does not show a dedicated spatial structure,

follows some ad hoc assumed temporal evolution or is constructed from a set of CMIP5 model simulations, for instance.

Here, we use various climate scenarios of an ensemble of CMIP5 models to drive the Parallel Ice Sheet Model (PISM, e.g.

Bueler and Brown, 2009; Winkelmann et al., 2011), where we exploit the full temporal and spatial pattern in the atmospheric

and oceanographic forcing. This approach is an enhancement to previous studies utilizing CMIP5 ensembles to infer only the40

temporal evolution of the future forcing (Golledge et al., 2015; Winkelmann et al., 2012).

The coupling between atmospheric warming and the enhanced hydrological cycle is often described as a Clausius-Clapeyron

process, where the saturation pressure of water vapor scales exponentially by about 7 % per Kelvin warming (Held and Soden,

2006) — it is implicitly assumed that the relative humidity does not change. Climate modeling studies representing the Last

Glacial Maximum (LGM), the pre-industrial (piControl) and historical period as well as climate warming scenarios (1pctCO2,45

abrupt4xCO2) show that the global precipitation increases in warmer climates and decreases in colder climates with a rate of

1 %K−1 to 4 %K−1 (Held and Soden, 2006; Li et al., 2013). Globally, this rate, which is the mean precipitation scaling, is

less than the suggested thermodynamically justified Clausius-Clapeyron process for various reasons. Decreasing precipitation

rates in the dry subtropics (Sun et al., 2007), covering a substantial part of the globe, limits the scaling. Dynamical and

thermodynamical processes contribute both to the actual precipitation change, even if dynamical changes, such as an altering50

circulation, play a secondary role globally (Emori and Brown, 2005). The balance of radiative fluxes in/out of the troposphere

and the latent energy flux at the surface limits evaporation, which restricts water vapor supply and ultimately the scaling (Allen

and Ingram, 2002).

A global analysis of observed precipitation and temperature changes reveals a low or even negative scaling in tropical land

regions driven by decreasing soil moisture, a near Clausius-Clapeyron scaling ≈ 7%K−1 over the open ocean, and a super55

Clausius-Clapeyron scaling (>7 %K−1) along extratropical coasts (Yin et al., 2018). In the latter case, the moisture supply

by the ocean in concert with the atmospheric circulation generates extreme precipitation events inland. These events cause
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high temperature scaling onshore. Ultimately, the local availability and recycling of moisture and the atmospheric dynamics

determine the size of the precipitation-temperature scaling (Yin et al., 2018).

In Antarctica, global model simulations until the end of the century show an average scaling of about 7.4 %K−1 (range:60

5.5 %K−1 – 24.5 %K−1 Palerme et al., 2017), which is in agreement with CloudSat estimates (years 2007 – 2010, 7.1 %K−1,

Palerme et al., 2017). For the last deglaciation, global climate models suggest a value of about 6 %K−1 in Antarctica, while

future projections of a high-resolution regional climate model show a lower value of 4.9 %K−1 in contrast to a higher value

of 6.1± 2.6 %K−1 coming from an ensemble of global climate system models (Frieler et al., 2015). Ice core data covering

10,000 years of marked temperature changes reveal a value of 5± 1 %K−1 (Frieler et al., 2015). In standalone ice-sheet65

modeling studies, the commonly used temperature scaling factor for precipitation amounts to approximately 5 %K−1 (e.g.

Gregory and Huybrechts, 2006) in Antarctica, as the latitudinal relation obtained from a CMIP5 model ensemble suggests

(Golledge et al., 2015). We consider 5 %K−1 as the reference value further on.

While in most regions both the local availability and recycling of moisture and the atmospheric dynamics determine the

size of the precipitation-temperature scaling (Yin et al., 2018), atmospheric dynamics dominate over the deep-frozen interior70

Antarctic continent probably due to negligible water buffering capacity of the frozen ground. The ocean surface conditions

around Antarctica sets the lower boundary condition for the atmosphere, which accounts for the spread of the precipitation

scaling among climate models. Atmosphere simulations over Antarctica, which are driven by boundary conditions from a

small ensemble of historical and future climate scenarios, show a weak impact of changed atmospheric conditions or enhanced

radiative forcing on the scaling factor (Krinner et al., 2014). In contrast, the ocean conditions are crucial for the precipitation75

scaling in Antarctica (Krinner et al., 2014). Sea ice cover has a decisive impact, where the mean historical sea ice concentration

is more important than the sea ice retreat rate (Bracegirdle et al., 2015).

Across Antarctica, the patterns of increasing as well as decreasing precipitation are consistent with the variability of the

large-scale moisture transport resembling the known Southern Hemispheric modes of variability, such as Amundsen Sea Low

(ASL) or Southern Annular Mode (SAM) (Fyke et al., 2017). Also, the baroclinic annular mode (BAM) and the two Pacific-80

South American teleconnections (PSA1 and PSA2) indices influence precipitation over Antarctica (Marshall et al., 2017). An

enhanced baroclinic annular mode, which corresponds to high storm amplitudes, increases the precipitation over the coastal

East Antarctic Ice Sheet, while an enhanced SAM causes stronger precipitation across the West Antarctic Ice Sheet (WAIS)

and the neighboring Antarctic Peninsula. The two Pacific-South American teleconnections impact mainly precipitation over

the West Antarctic Ice Sheet beside other regions across the Antarctic continent.85

In reanalysis products, no robust or statistically significant precipitation trend exists over Antarctica (Bromwich et al., 2011).

This result is in agreement with precipitation observations over the Southern Ocean (Bromwich et al., 2011). However, shallow

ice cores across Antarctica reveal a tendency for a positive precipitation trend over the last 50 years and 100 years. Since 1800,

the increase of the surface mass balance (SMB) is 7± 1.3 Gt decade−1 (Thomas et al., 2017).

In contrast, over the western region of the West Antarctic Ice Sheet (WAIS), next to the Ross Ice Shelf, a negative snow90

accumulation trend has been detected in monthly reanalysis products (ERA-Interim: 1979–2010 and ERA-20C: 1900–2010),

which is confirmed by a composite of 17 firn cores (Wang et al., 2017). The flow of available atmospheric moisture, which
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feeds the precipitation across the WAIS, is dominated by the Amundsen Sea Low (Thomas et al., 2017). A location shift of the

Amundsen Sea Low (ASL), expressed by its longitudinal position, exposes different regions to the inland-directed circulation

branch of moisture-rich air masses — on the eastern side of the Low’s center — or isolates them from moisture supply due to95

the offshore directed circulation branch — on the western side. Furthermore, the deepening of the ASL enhances the cyclonic

circulation, which strengthens precipitation — southeast of the Low’s center — over the Antarctic Peninsula and eastern WAIS.

However, less moisture-rich air masses reach the western WAIS, which ultimately leads to an accumulation deficit. Enlarged

sea ice extent in the Ross Sea (Haumann et al., 2016; Liu, 2004) damps evaporation to the atmosphere. In contrast, a decreasing

sea ice trend in the Amundsen Sea and Bellingshausen Sea (Haumann et al., 2016; Jacobs, 2006) enhances the moisture supply.100

To conclude, the observed accumulation reduction is driven by the deepening of the ASL and reinforced by a more extensive

sea ice extent in the Ross Sea (Wang et al., 2017).

Processes governing the balance between mass gain and mass loss determine if Antarctica contributes to a rising sea level.

Antarctica’s surface mass balance controls mass gain, while mass loss occurs predominantly by ocean-driven basal melting

of ice shelves and iceberg calving (Wingham et al., 2018). For individual ice shelves, the fraction between basal melting105

and iceberg calving ranges from 10 % to 90 % (Depoorter et al., 2013). Estimates about the total mass loss agree within the

uncertainties, even if they range from 2200 Gt year−1 to 2800 Gt year−1 (Depoorter et al., 2013; Liu et al., 2015; Rignot

et al., 2013). However, they differ in the relative contribution between basal melting and calving. The overall mass loss is either

driven by a nearly equal share between calving (1321± 144 Gt year−1) and basal melting (1454± 174 Gt year−1) (Depoorter

et al., 2013), or the basal melting (1516± 106 Gt year−1) contribution is twice as much as the calving (755± 24 Gt year−1)110

contribution (Liu et al., 2015). The surface mass balance is the difference between mass gain by precipitation — and here

predominantly snowfall — and surface meltwater that runs off, because it is not refrozen nor retained in the snowpack. Surface

melt ponds (Kingslake et al., 2017) and runoff exist on Antarctic ice shelves (Bell et al., 2017), but their contribution to the

total mass balance is considered to be negligible (Van Wessem et al., 2014), except for the (northern) Antarctic Peninsula

(Adusumilli et al., 2018).115

The focus of this paper is to identify common features of an ensemble of ice-sheet simulations forced by a multimodel

forcing ensemble. After the discussion on the temporal and spatial evolution of the climatic boundary conditions from nine

CMIP5 models, we diagnose the temperature scaling of the precipitation of these climate models. Afterwards, we investigate

how the deduced scaling impacts the global sea level in contrast to spatially homogeneous scaling, e.g inferred from ice core

data. The impact of these precipitation conditions on simulated ice-sheet thickness is analyzed before we attribute the climate120

models, which cause extreme changes. Before we conclude, we estimate differences in Antarctica’s sea-level contribution for

the variety of applied forcing and precipitation boundary conditions.

2 Material and Methods

The full temporally and spatially varying forcings are obtained from an ensemble of CMIP5 models representing a suite of

climate scenarios. These climate forcings drive the Parallel Ice Sheet Model (PISM) in order to estimate Antarctica’s future125
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sea-level contribution. In particular, the Ansatz of the precipitation determines whether the global sea level rises or falls. We

consider two precipitation boundary conditions. (1) On top of the reference background distributions (see Table 2), which

drive the ice-sheet model during the spin-up, we utilize both the temperature and the precipitation anomalies from CMIP5

models. (2) We take only the temperature anomalies from CMIP5 models and compute the precipitation anomalies scaled by

the temperature anomalies. The latter is common (Applegate et al., 2012; Bakker et al., 2016; de Boer et al., 2013, e.g), while130

some keep the surface mass balance constant (Feldmann and Levermann, 2015; Hughes et al., 2017). In some cases, negative

temperature scaling is considered unrealistic (Frieler et al., 2012).

Nine CMIP5 models deliver the following climate scenarios (see Table 1): control run (piControl), the historical period

(1850-2005), as well as RCP2.6, RCP4.5, and RCP8.5 (2006-2100). These models stem from different model families (Knutti

et al., 2013) and cover the range of current atmospheric (Agosta et al., 2015) and oceanographic (Sallée et al., 2013a) model135

uncertainties although model deficiencies such as insufficient resolution can exist across all models. The transient forcing from

1850 until 2100 comprises the historical and scenario periods. Afterward, the last 30 years (2071-2100) are repeated until the

year 5000 to keep the natural variability. From the control run of the climate model (piControl), we use either the first or the

last 50 years. By this procedure, we could quickly identify a drift in CMIP5 models and assess its impact. Additionally, the

number of scenarios is twice as large, since the mean states of the first and last 50 years differ commonly marginally. Anomaly140

forcing is computed relative to either the first or last 50 years of the control run. In the following, the first 50 years act generally

as reference.

Atmospheric and oceanic forcing is applied as annual mean forcing on top of the forcing used to spin-up the ice-sheet model

(Table 2). Since CMIP5 models do not resolve ice shelves, ocean temperatures are extrapolated horizontally into the ice shelves

to mimic isopycnical flow. To allow for surface melting under a warming climate, the surface mass balance (SMB) is calculated145

following the positive degree day (PDD) approach (Braithwaite, 1995; Hock, 2005; Ohmura, 2001), where the annual 2m-air

temperature standard deviation comes from daily CMIP5 model values.

The ice-sheet model PISM — based on version 0.7 — runs on a 16 km equidistant polar stereographic grid and it utilizes a

hybrid system combining the Shallow Ice Approximation (SIA) and Shallow Shelf Approximation (SSA). The model utilizes a

generalized version of the viscoelastic Lingle-Clark bedrock deformation model (Bueler et al., 2007; Lingle and Clark, 1985).150

In our simulations, only the viscous part has been used because of known implementation flaws in the elastic part in our and

later PISM versions. The basal resistance is described as plastic till by a Mohr-Coulomb formula to perform the yield stress

computation (Bueler and Brown, 2009; Schoof, 2006). The basal melting of ice shelves is proportional to the squared thermal

temperature forcing (∆T 2
force), which is the difference between the pressure-dependent melting temperature and the actual

ocean temperature above melting. Here, the parameterization considers the full depth-dependence of the ocean temperature155

field, as described in Sutter et al. (2019). Basal ice-shelf melting occurs only in fully floating grid points, while the grounding

line position is determined on a sub-grid space (Feldmann et al., 2014).

The calving occurs at the ice-shelf margin, and three sub-schemes determine it. (1) At the ocean-ice-shelf margin, ice-shelf

grid points with a thickness of less than 150 m calve. (2) Ice shelves calve that extend across the continental shelf edge and

progress into the depth ocean (defined by the 1500 m depth contour). (3) The Eigen-calving parameterization exploits the160
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stress field divergence (Levermann et al., 2012), with the proportionality constant of either 1 ·1017 or 1 ·1018. Two independent

spin-up runs delivering our initial conditions (PISM1Eq and PISM2Eq) utilize these constants. Ocean temperatures from the

World Ocean Atlas 2009 (Locarnini et al., 2010) and the multi-year mean surface mass balance (SMB) from the RACMO

2.3/ANT model (Van Wessem et al., 2014) drive PISM during spin-up (Table 2). A similar model setup has taken part in the

initMIP-Antarctica exercise under the name AWI_PISM1Eq with an adjusted Eigen-calving proportionality constant of 2 ·1018165

and no bed deformation (Seroussi et al., 2019a).

3 Results and Discussions

Depending on the applied CMIP5 forcing scenario, the ensemble mean climate signal is weaker for those scenarios following

an aggressive mitigation path and, hence, releasing less carbon dioxide. Around Antarctica, the here analyzed ensemble follows

the same pattern (Figure 2 and Figure 3). Since in the past decade greenhouse gas concentrations have followed most closely170

the RCP8.5 scenario path, we will focus on RCP8.5 if not otherwise stated.

3.1 Ensemble Forcing

From 1850 until the end of the 21st century, the ensemble mean 2m-air temperature in Antarctica (see the map of Figure 3d)

rises steadily by 6 K with a spread of 1 K (one standard deviation) (Figure 3a) while the mean precipitation accumulates

9± 3 cmyear−1 (water equivalent) in addition (Figure 3b). The average potential ocean temperature in the depth range of 150m175

to 500m depth along Antarctica’s coast (see the map of Figure 3e) warms by nearly 1± 0.18◦C (Figure 3c). In particular, since

the beginning of 21st century, these increases become stronger.

These changes are not homogeneous across the Antarctic continent (Figure 2d-l). The atmosphere warms strongest along the

Antarctic Peninsula (Mulvaney et al., 2012; Thomas et al., 2009, in agreement with current trends), the high plateau of the East

Antarctic Ice Sheet (EAIS) and to a lesser degree around the Filchner-Ronne-Ice Shelf region (Figure 2d, g, j). The warming180

is lowest in the coastal areas of East and West Antarctica that extend (clockwise) from the Greenwich Meridian via Wilkens

Land and the Ross Ice Shelf to the Marie Byrd Land, respectively, where the Amery Ice Shelf interrupts this coastal band

of moderate temperature rises. Please note that the inland coastal areas of the West Antarctic Ice Sheet (WAIS), the Wilkens

Land, and the region between the Greenwich Meridian and the Antarctic Peninsula (western Weddell Sea) warms less than the

adjacent ocean and ice-sheet interior.185

The precipitation increases marginally across the high plateau of the EAIS and east of the Ross Ice Shelf as part of the WAIS

(Figure 2e, h, k). In contrast, the coastal areas, where air masses with much precipitable water make landfall, receive more

precipitation. Since these air masses on their way into the interior are uplifted by the steep topography, the precipitation along

the coasts is topographically controlled. Areas of heavy precipitation under the reference climate (Figure 2b) also receive the

highest increments. The precipitation increases strongest along the western Antarctic Peninsula, where the lifting of eastward190

flowing air masses by mountain ranges leads to topographic precipitation, which is firmly enhanced; this resembles the observed

positive precipitation trend of the Antarctic Peninsula since 1900 (Wang et al., 2017).
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Under the control climate, the coldest potential ocean temperatures in the depth range from 150 m to 500 m exist offshore

the coasts of Antarctica (Figure 2c). We detect the lowest temperatures in front of the Filchner-Ronne, Amery, and Ross Ice

Shelves. Also, the Amundsen Sea in front of Pine Island Glacier and Thwaites Glacier is cold. Here, the temperature might be195

too cold, which justifies the applied melting correction.

The subsurface ocean-temperature warms vigorously along sections of the Antarctic Circumpolar Current (ACC) and in

the western Weddell Sea at the center of the ocean gyre. For instance, the warm spot in the western Weddell Sea emerges in

all ensemble members (Figure 2f, i, l). In the coastal strip surrounding Antarctica, the warming is of medium strength and

heterogeneous. There, most robust warming appears in the Amundsen Sea and along the coast of the EAIS (between Wilkens200

Land and Terre Adélie) opposite of Australia. Least warming occurs in front of both the western Ross Ice and Filchner-Ronne

Ice Shelves and the neighboring Antarctic Peninsula, where the ocean temperatures are lowest in the control climate (Figure 2c).

The spatial structure of the anomalies discussed above is in general independent of the applied forcing scenario, while

the scenarios determine, however, the strength of the anomalies. Regardless of the applied scenario, the discussion of the

atmospheric climate anomalies indicates already that both precipitation and temperature do not necessarily grow in parallel.205

Instead, regional differences are evident, and a simple scaling of the precipitation with temperature appears to be inadequate.

3.2 Precipitation scaling

Inspired by the Clausius-Clapeyron process, it is often assumed that with a warming atmosphere, the precipitation also raises.

ice-sheet simulations bridging several millennia often rely on climate anomalies deduced from ice cores, for instance. Based

on isotopic signatures in ice cores, temperature anomalies are deduced. Inferred accumulation anomalies from these cores are210

converted into precipitation anomalies. Together with the contemporary climate fields as a reference, the temperature scaling

of precipitation is

S(t,x) = ∆T (t,x)
∆P (t,x)
Pt=0(x)

· [100%], (1)

where ∆T is the temperature anomaly, ∆P the precipitation anomaly, and P0 = P (tref) the precipitation reference field. The215

scaled precipitation is

P (t,x) = ∆P (t,x) [1 + ∆T (t,x) ·S(t,x)] .

The scaling deduced from ice cores varies in Antarctica between 5 %K−1 and 7 %K−1, with a 2-sigma uncertainty of about

1 %K−1 – 3 %K−1 (Figure 4, Table 3).220

The corresponding scaling of the ensemble mean is generally larger at these locations. The difference is distinct for Vostok

and, to a less degree, also for EDML and EDC, while, within the uncertainties, the scaling of the Law Dome, Talos Dome,

and WAIS ice cores are indistinguishable from the corresponding ensemble means. Here, we have computed the scaling by

averaging the precipitation of the piControl run (first 50 years) to obtain the reference data and the last 50 years of the RCP8.5

scenario from 2051 until 2100 to get the anomalies. If we replace the reference period by the first 50 years of the historical225
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period (1850-1899), the results are similar, and the values change only slightly. Thus, we can safely restrict the analysis on the

first 50 years.

The spatial distribution of the scaling derived from our ensemble data is spatially heterogeneous and varies stronger than

the ice core data suggest. Values in the range between 4 %K−1 and 6 %K−1 occur at the Filchner-Ronne Ice Shelf and in the

coastal Terre Adélie region (see Map 1 for place names). Furthermore, as part of the WAIS these values are present in the230

coastal strip from the Antarctic Peninsula to the Ross Ice Shelf and along the eastern flank of the Transantarctic Mountain

Range (Figure 4).

The highest scaling factor emerges on the EAIS, where a c-like area as part of the high plateau has factors exceeding

12 %K−1. This area reaches out to the Dronning Maud Land with very high scaling factors too. The West Antarctic Ice Sheet

has scaling factors generally lower than 8 %K−1 and only on the elevated interior values up to 10 %K−1 are detected. Over235

the Ross Ice Shelf and the eastward adjacent Siple Coast, scaling factors are the lowest (Figure 4). Since we detect raised

scaling factors at a higher elevation, we aimed at determining whether we could find a relationship between elevation and

scaling. However, neither for the entire Antarctic continent nor for defined subregions (see below), we could identify any

robust relationship (not shown).

Our analysis focuses now on the scaling factors of all grounded ice, which, if lost, contributes to a rising sea level by240

Antarctica. Additionally, we analyze the scaling factors for the entire continent (label “glaciered”), and four glaciated regions

labeled “EAIS Atl”, “EAIS Ind”, “WAIS”, and “Siple Coast” (Figure 5 and Table 4). We detect a slight trend to higher values

if we restrict the analysis to ground ice. However, the difference between scenarios is more decisive than the choice between

“glaciered” and “grounded” for the ensemble mean as well as for numerous individual ensemble members (e.g., CCSM4,

CanESM2, HadGEM2-ES, NorESM1-M). Within their variability, many ensemble members are invariant against the applied245

scenario (e.g., CSIRO-Mk3-6-0, CNRM-CM5, MIROC-ESM, MRI-CGCM3) or may hint at an enlarged scaling for weaker

scenarios (e.g., MPI-ESM-LR). Frieler et al. (2015) found a low dependence of the scaling factors to four RCP scenarios for the

whole Antarctic continent. Anomalies are not as distinctly pronounced in RCP2.6 as in the other scenarios due to the weaker

forcing scenario. Please note, that CCSM4 is missing in the RCP2.6 (hence we have hatched the corresponding bar).

The boundaries of the three regions “EAIS Atl”, “EAIS Ind”, and “WAIS” resemble different oceanographic zones under250

the consideration of Antarctica’s large-scale drainage basins. This division of Antarctica does not produce surface area of equal

size. As already indicated by the spatial distribution (Figure 4), the ordering from high to low scaling factors would be “EAIS

Atl”, “EAIS Ind”, and “WAIS”. The difference between both “EAIS” regions is minor, with a tendency of higher values in

“EAIS Atl” in the ensemble mean and some individual ensemble members. Some ensemble members do not show a clear trend

between the scenario strength and scaling factor. For example, for MRI-CGCM3 the scaling decreases in “EAIS Atl” from255

RCP4.5 over RCP8.5 to RCP2.6, while in “EAIS Ind” the order is different from RCP8.5, RCP2.6, to RCP4.5 (Figure 5). It

indicates again, that regional differences matter.

The region “WAIS” has significantly lower scaling factors than both “EAIS” regions. This difference exists for all ensemble

means regardless of the applied scenarios and for almost all individual ensemble members (Figure A3), except some individual

ensemble members under the RCP2.6 scenario (MIROC-ESM, MPI-ESM-LR) and the HadGEM2-ES.260
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The region “Siple Coast” as a part of the “WAIS” region is different in many aspects. It has the smallest area compared to the

other regions (Table 4), and it shows the lowest ensemble mean scaling factors for all scenarios. Also, as before, no clear trend

exists between different scenarios across the entire ensemble, while the spread of trends among individual ensemble members

is substantial. Furthermore, some members exhibit a negative scaling, where precipitation decreases for rising temperatures:

MPI-ESM-LR under the RCP8.5 scenario and NorESM1-M under all scenarios (RCP8.5, RCP4.5, and RCP2.6). The inverted265

sign of the scaling is in stark contrast to the ensemble mean.

In the last decades, the detected downward trend in snow accumulation in this area (Wang et al., 2017) occurs while the wider

West Antarctic Ice Sheet region belongs to the most rapidly warming regions globally (Bromwich et al., 2012). It underpins

that less accumulation can befall under a warming climate. Furthermore, sea ice has expanded in the Ross Sea (Haumann et al.,

2016; Liu, 2004). Hence, some ensemble members seem to imitate that expanding sea ice modifies the evaporation from the270

ocean and impacts the atmospheric circulation, which controls the flow of humid air masses, delivering precipitation to the

Siple Coast. Even if NorESM1-M reproduces the overall seasonal sea ice extent cycle better than most CMIP5 models (Turner

et al., 2013), it shows a unrealistic declining February sea ice trend in the Ross Sea over 1979-2005 (Turner et al., 2013).

MPI-ESM-LR has large negative errors in sea ice extent over the year (Turner et al., 2013). Hence the mimicry of observed

features in models may occur for the wrong reason.275

In all four large regions (“glaciered”, “grounded”, “EAIS Atl”, “EAIS Ind”, and “WAIS”), we see a trend towards lower

scalings for weaker forcing scenarios in the ensemble mean, with the exception of “EAIS Ind”, where the factors for RCP8.5

and RPC4.5 are indistinguishable. Also, Frieler et al. (2015) found a low dependence of the scaling factors to the RCP scenario

in comparison with the dependence on the specific climate model. The region “WAIS” has on average a smaller precipitation

scaling than both regions of the East Antarctic Ice Sheet (“EAIS Atl” and “EAIS Ind”), which is also reflected by the maxima280

in these regions. Also, the Ross Ice Shelf and the adjacent Siple Coast feature on average the lowest scaling factors across the

entire ice sheet. Some individual ensemble members project even negative scaling: precipitation deficit for rising temperatures.

The Siple Coast highlights definitely that, at the continental scale, it is not adequate to describe the spatial evolution of the

precipitation by a fixed temperature scaling. Since the scaling exceeds mostly the commonly utilized value of 5 %K−1, for

instance, we diagnose the sea-level impact of applying the actual scaling distribution (e.g., Figure 4) versus a spatially and285

temporally constant scaling of 2 %K−1, 5 %K−1, or 8 %K−1 across Antarctica.

3.3 Sea Level Impact of Precipitation Scaling by Temperature

To understand how the precipitation boundary condition impacts Antarctica’s contribution to the global sea level, we inspect

the precipitation fallen on Antarctica (Figure 6). Therefore, we integrate it over the dark-blue masked region of grounded ice

(map on Figure 6), perform a cumulative summation since 1850, and restrict our analysis to all ensemble members driven by290

RCP8.5 (and anomalies relative to the first 50 years of the control run). Since accumulated precipitation over Antarctica lowers

the global sea level under the assumption that ice loss (basal melting or calving) does not occur, the temporally accumulated

sea-level impact curves have a negative slope (Figure 6a, b). Further on, this quantity is labeled “integrated precipitation,” and

the presented sea-level equivalent assumes a global ocean area of 3.61 · 1014m2 (Gill, 1982).
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The integrated precipitation declines more forcefully since the beginning of the 21st century, which is driven by the con-295

current increase of precipitation over Antarctica (Figure 3a). The integrated precipitation shows a more pronounced temporal

change, because the integral and not the mean precipitation is calculated, where the vast light precipitation regions lessen the

average precipitation signal. After the year 2100, the integrated precipitation declines linearly (Figure 6b), as we adopt the

forcing of the years 2071-2100 recurrently. By applying the actual precipitation anomalies (solid lines, Figure 6a, b), the sea-

level drop is stronger than using a scaling of 5 %K−1 (dashed lines, Figure 6b) because the models’ internal scaling exceeds300

5 %K−1 (Figure 5). Thus, in the year 5000, the maximal sea-level drop of 11 m (CCSM4) is nearly twice as large under the

precipitation anomalies, compared to less than 6 m (MIROC-ESM) for the 5 % scaling.

The difference of the integrated precipitation between 5 %K−1 scaled and directly applied precipitation anomalies is always

positive (solid lines in Figure 6 c, d). This difference ranges approximately from 1 cm (CISRO-Mk3-6-0) to 15 cm (CCSM4)

in the year 2100 and from 60 cm (MPI-ESM-LR) to 550 cm (CCSM4) in the year 5000. A lower scaling of 2 %K−1 causes305

a magnified difference (dotted line in Figure 6 c, d), which corresponds to a reduced sea-level impact if we would apply this

low scaling of 2 %K−1. It leads to differences ranging from 5 cm (MPI-ESM-LR) to 21 cm (CNRM-CM5) in 2100 and from

150 cm (MPI-ESM-LR) to 850 cm (CCSM4) in 5000.

A higher scaling of 8 %K−1 (dashed line in Figure 6c, d) exceeds ice core-based estimates (Table 3, Figure 4), while it cor-

responds approximately to the ensemble mean (RCP8.5 ≈ 8.2 %K−1, RCP4.5 ≈ 7.8 %K−1, Figure 5). Now, only the CCSM4310

model exhibits a positive difference because its scaling reaches 11 %K−1 (Figure 5). Four models are nearly balanced (CNRM-

CM5, MRI-CGCM3, HadGEM2-ES, NorESM1-M), while the remaining four feature negative differences (CISRO-Mk3-6-0,

CanESM2, MIROC-ESM, MPI-ESM-LR). Hence, the difference range is subject to a change of sign, and the individual dif-

ferences range from −5 cm (CISRO-Mk3-6-0) to 7 cm (CCSM4) in 2100 and from -170 cm (CISRO-Mk3-6-0) to 280 cm

(CCSM4) in 5000.315

Over the entire Antarctic continent, precipitation and temperature grow simultaneously in climate model simulations of

the future. In concert with estimates of accumulation changes and temperature anomalies obtained from ice cores, it may

(mis)lead us to scale the precipitation by the temporally evolving temperature. Therefore, fixed scaling factors are common.

However, a tendency towards higher scaling exists under more vigorous climate trends (Figure 5), and the scaling has a clear

spatial dependence (Figure 4 and 5). As a consequence, the on Antarctica accumulated snowfall for future climate projections320

differs between the methods, which ultimately leads to biased estimates of Antarctica’s contribution to the global sea level.

To assess the introduced bias, we analyze simulations of the Parallel Ice Sheet Model driven with numerous variants of the

above-discussed climate conditions and a diverse set of implemented boundary conditions.

3.4 Relation between Precipitation Boundary Condition and Ice Thickness

Starting in the year 1850, we performed numerous ice-sheet simulations to analyze how the implemented precipitation bound-325

ary condition impacts the ice-sheet thickness distribution. Each climate scenario from an individual climate model (as part

of the ensemble) drives an independent ice-sheet simulation. These together constitute the ensemble of ice-sheet simulations.

Hence, the average across ice-sheet simulations forms the ensemble mean. For the diagnostic, we also inspect the maximum and
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minimum thickness at each grid point across all ensemble members. Therefore, the field of joined extreme values could come

from a diverse set of ice-sheet ensemble members and, hence, does not necessarily lead to dynamically consistent distribution.330

Complementary ice-sheet (control) simulations are performed under the sole utilization of the reference forcing fields (Fig-

ure 2a-c). In these simulations, the detected trend of about 2 mmdecade−1 (sea-level equivalent) fades within the first 400

years and differs slightly between the two initial states (PISM1Eq and PISM2Eq). Hence, in the following, the subtracted trend

for each single ensemble member depends on its initial state.

In the year 2100, the ice thickness for both precipitation boundary conditions (precipitation anomaly deduced from the335

applied climate models versus scaled precipitation) increase over large parts of the Antarctic continent (Figure 7b-e). The

thickness for the simulations driven by scaled precipitation grows less over substantial parts of the interior than the simulations

forced by the precipitation anomalies (Figure 7a) as the difference between scaled precipitation and applied precipitation

anomaly is mostly negative. Thus, simulations driven by the precipitation anomalies accumulate more snow and grow thicker

ice, which leads to a stronger sea-level drop. This result supports the analysis above (Figure 6). A ring of a pronounced negative340

thickness difference follows the coast, where the precipitation anomaly (Figure 2e, h, k) is enhanced. This ring emerges for a

significant part of the coastal East Antarctic Ice Sheet (EAIS) and West Antarctic Ice Sheet (WAIS). For the latter ice sheet,

the negative area is shifted away from the coast towards the interior (Figure 7a). Also, a negative strip appears at the south side

of the Transantarctic Mountain Range, and some grounded ice streams flowing into the Filchner-Ronne Ice Shelf are negative.

Regions of positive differences coincide with thicker ice for simulations driven by scaled precipitation. These are located345

south of the Transantarctic Mountain Range at the northern edge of the Ross Ice Shelf, along the coastline of the WAIS, and in

the coastal Terre Adélie region. There, the scaling is generally lower or falls behind the constant scaling of 5% K-1. However,

this does not explain exclusively positive areas.

For both precipitation boundary conditions, the ice thicknesses of the ensemble means reveal a widespread weakening of

the floating ice shelves, such as Filchner-Ronne, Ross, and Amery Ice Shelves (Figure 7b, d). In the WAIS, both Pine Island350

Glacier and Ferrigno Ice Stream (an ice stream that flows into the Filchner Ice Shelf) thin drastically. Along the Antarctic

Peninsula, general shrinking occurs along the coasts. Also along the marginal EAIS, ice thins.

For some places, the ice thickness thins for both precipitation boundary conditions across all ensemble members as the

reduction of the maximal ice thickness highlights (Figure 8c, e). This reduction marks those outlet glaciers and ice shelves that

are extremely vulnerable. These are around the Rutford Ice Stream, Foundation Ice Stream, Ronne Ice Shelf, Amery Ice Shelf,355

three outlet glaciers (in “EAIS Ind” as part of Wilkens Land, Terre Adélie, and George V Land), northwestern Ross Ice Shelf

(Ross Island), and Pine Island together with Thwaites Glacier in the Amundsen Sea (Figure 8c, e).

To conclude, the ice thickness is indeed thicker for simulations driven by the precipitation anomalies (Figure 8). Regardless

of the applied precipitation boundary condition, there is widespread ice-shelf weakening, ice thinning at the margins in the

ensemble mean. Ice thinning for the ensemble member of the maximal thickness highlights the most vulnerable regions, such360

as Pine Island and Thwaites Glaciers, Amery Ice Shelf and some outlet glaciers of the EAIS.
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3.5 Attribution of the driving model

All ensemble members contribute to the ensemble mean, while at a given grid location the maximum and minimum are

determined by climate forcing from one particular climate model. We inspect which climate model may lead to ice thickness

growth or shrinking and restrict ourselves first to the model year 2100, where the precipitation anomalies of the period 1850–365

2100 shape the ice-sheet thickness distribution of the year 2100.

Directly at margins apart from the vast ice shelves, the attributed model that drives either the maximum or minimum ice

thickness shows a noisy small scale pattern, which is driven by the variety of the involved models (Figure 8d, e). The mean and

minimum thicknesses of the Filchner-Ronne and Ross Ice Shelves, and also to some extent the Amery Ice Shelf, are highlighted

by a nearly unique color patch indicating a reduced thickness. These patches are separated from the surroundings showing either370

a reduced thinning or even thickening. Intriguingly, the MIROC-ESM model, for instance, causes thicker grounded ice east

and west of the Ross Ice Shelf (Figure 8d), while it also drives its thinning of the Ross Ice Shelf (Figure 8e) predominantly.

Hence, the ocean forcing drives the ice-shelf thinning here. Since the spatial pattern of the atmospheric and ocean forcing that

promotes or undermines the ice thickness is not necessarily aligned, this may explain the small scale noisy pattern along the

coast.375

Beyond the direct coast strip, larger areas appear where the forcing from one climate model determines the maximum or

minimum thickness, respectively. However, these extended continuous regions are often interrupted by spots controlled by

the climate from other models. Also, the pattern is changing during the transient simulation starting in 1850 because the

temporal evolution of the 2m-air temperature and precipitation anomalies are different for each climate model as the integrated

precipitation highlights (Figure 6a, b). Furthermore, after the year 2100, where the same 30 years forcing period (2071–2100)380

drives the ice-sheet model recurrently, the pattern evolves further (Figure 9). Because the ice sheet has not reached the quasi-

equilibrium to the last 30 years forcing, the pattern alteration is ongoing.

For grounded ice, three models (CCSM4, CNRM-CM5, MIROC-ESM) determine predominantly the growing ice until the

year 2100 (Figure 8d), which is in-line with the diagnosed sea-level contribution (solid line, Figure 6a, b). CCSM4 dominates

the “EAIS Atl” sector, while CNRM-CM5 dominates a band from the “EAIS Ind” sector clockwise to the Antarctica Peninsula,385

which is interrupted by regional-scale patches of the MIROC-ESM. A spatial dominance is not apparent for the minimum ice

thickness, because the patchwork of five models (CSIRO-Mk3-6-0, HadGEM2-ES, MPI-ESM-LR, MRI-CGCM3, NorESM1-

M) dominates the year 2100. NorESM1-M influences the WAIS, which is in accordance with the detected lowest scaling in

the Siple Coast (Figure 5), CSIRO-Mk3-6-0 has an impact around the South Pole, MRI-CGCM3 has coastal zone in the EAIS,

while the control of MPI-ESM-LR and, to a lesser extent, HadGEM2-ES spreads across the entire continent. If we progress into390

the year 2200, where we have applied the 30 years forcing more than three times, the emerging picture shows a consolidation

of the influential spheres of the different models for both the maximum and minimum thicknesses (Figure 9).

If we now turn towards the temperature scaled model simulations, the mean, maximum, and minimum ice thickness dis-

tributions (Figure 10) are similar to the ones driven by the precipitation anomalies as discussed above (Figure 7). Also, the

same models determine the ice-shelf thickness of the Filchner-Ronne and Ross Ice Shelves. The latter shows that the ocean395
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controls ice-shelf thickness changes in our simulations primarily. However, we detect a stark contrast of the model determining

the maximum and minimum ice thickness. For the maximum, we still have the same three models (CCSM4, CNRM-CM5,

MIROC-ESM). However, the pattern has changed. CCSM4 controls a smaller area in the interior around the South Pole, and

MIROC-ESM some coastal regions of the East Antarctic Continent, while the remaining majority of the grounded ice is under

the control of CNRM-CM5. The most striking changes occur for the minimum. Now, NorESM1-M determines the entire WAIS400

and some parts of “EAIS Ind”, while MRI-CGCM3 dominates the remaining East Antarctic Ice Sheet.

In the latter case, temperature variations force the precipitation driven ice thickness evolution exclusively (see Equation 1).

These temperature changes do not necessarily reflect dynamical changes in the atmosphere that are accompanied by modified

circulation patterns that ultimately transport and deliver the precipitation for Antarctica. Hence, the applied scaling or pre-

cipitation boundary condition impacts the temporal evolution of the Antarctic Ice Sheet geometry, which ultimately shapes405

Antarctica’s contribution to the global sea level.

3.6 Ice losses

After the spin-up, the simulations have reached a quasi-equilibrium. For the discussion of the ice losses, we concentrate on the

transient period 1850-2100. The calving rate hardly changes (Figure A12), whereas the total ice-shelf area is nearly constant

until 2000 and declines afterward (Figure A15). The ocean-driven basal melting is proportional to the squared temperature410

difference between the pressure-dependent melting temperature and the actual ocean temperature. Since the ocean temperature

increases in general (Figure 2f, i, l and Figure 3c), also the mass loss by basal melting increases, while the total shelf ice area is

quasi-constant until 2000 and declines afterward (Figure A15). For RCP8.5, the basal melting increases at the end of the 21st

century quadratic. To conclude, the calving rate is nearly constant, while the basal melting increases by approximately 33 %

since the year 2000.415

The mean calving rate is about 8000 Gt year−1 and 5000 Gt year−1 for the ensemble member utilizing the parameters and

the initial state of PISM1Eq and PISM2Eq, respectively (Figure A12). The basal melting rates for PISM1Eq and PISM2Eq

are similar, however, the loss rates for PISM1Eq are slightly larger than PISM2Eq (Figure A13). The ensemble mean starts at

about 550 Gt year−1 in 1850 and reaches 900 Gt year−1 in 2100.

Since floating ice shelves nourish both ice losses, these ice losses do not impact the sea-level directly. Under the assump-420

tion that the inflow of former grounded ice compensates any shelf mass loss, the reported ice losses of 8500 Gt year−1–

9000 Gt year−1 (5500–6000 Gt year−1) would correspond to a sea-level rise of 2.58 cmyear1–2.74 cmyear1 (1.67 cmyear1–

1.83 cmyear1). The Integration over 250 years to match the period from 1850 to 2100 generates a sea-level equivalent of 6.47 m

– 6.85 m (4.19 m – 4.57 m). However, the actual ratio between total ice mass change and the corresponding sea level response

is not a 1:1 relation. Instead, on average less than 5 % of the total mass lost by both iceberg calving and floating ice-shelf425

melting is compensated by grounded ice that raises the sea level (Figure A8). Considering this ratio of 5 %, the sea level impact

reduces to 0.32 m – 0.34 m (0,21 m – 0.23 m). It is less than integrated precipitation anomalies across the Antarctic continent

(Figure 6a).
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Anyhow, the integrated basal melting rates are too low and the calving rates are too high compared to observational estimates

in our ensemble of ice-sheet model simulations. Besides the fact that the total loss exceeds recent observational estimates, our430

ice sheet is in a quasi-equilibrium after the spin-up. All this may indicate that the integrated precipitation driven accumulation

resulting from the RACMO precipitation reference field might be too large. However, the surface mass balance of RACMO

agrees well with observational estimates (Wang et al., 2016), while the uncertainty of the surface mass balance (sea-level

equivalent of ∼ 0.25 mmyear−1 (Van Wessem et al., 2014)) is of almost the same size as Antarctica’s sea-level contribution

(∼ 0.2 mmyear−1 between 1992 and 2011 (Shepherd et al., 2012; Wang et al., 2016)). Additionally, recent satellite-based435

estimates indicate clearly that the Antarctica Ice Sheet loses mass (sea-level equivalent: 0.4 mmyear−1) in the period 2011–

2017 (Sasgen et al., 2019).

Beyond the year 2100 (Figure A14), the calving rates decrease and reach a minimum in the period 3000–4000. Afterward,

calving increases again slightly. Basal melting rates are subject to a slight decreasing trend (RCP2.6), nearly constant values

(RCP4.5), or a negligible upward trend after the year 4000 (RCP8.5).440

3.7 Precipitation Boundary condition and Sea Level

In the following, we consider all ensemble members starting from both initial states PISM1Eq and PISM2Eq. They are driven

by the climate scenarios RCP2.6, RPC4.5, or RCP8.5. For each CMIP5 model, the applied anomalies have been computed

either relative to the first or last 50 years of the control run simulation (piControl). The sea-level curves are shifted so that

the sea-level contribution is 0 m in the year 2000. Since the spread of individual ensemble members may not follow a normal445

distribution, we present beside the mean also the median sea-level contribution. For the RCP8.5 scenario, we highlight the

spreading among models by depicting the standard deviation (1σ).

For the period 1850 until 2000, the simulated sea level contribution of Antarctica fluctuates slightly. Hence, the accumulation

balances nearly the ice loss at the margin while the basal melting rated of grounded ice is steady (Figure A9). Please note that

this is not driven by any trend in the continued ice-sheet simulations under the reference climate (Table 2) since we have450

subtracted this trend. We also detect an amplified signal for the simulations driven by the precipitation anomalies than scaled

precipitation, which corresponds to the above diagnosed sea-level impact of the precipitation (Figure 6).

After the year 2000, all our ensemble members, regardless of the forcing scenario, show a falling sea level (Figure 12).

The basal melting of grounded ice does not impact the sea level contribution, because this basal melting rate, expressed as

integrated sea-level equivalent since 1850, is the same and grows linearly for all scenarios until 2100, and only after the year455

2500 these curves diverge (Figure A9). Ultimately, the more vibrant growth of the accumulation in comparison to the negligible

increasing combined loss of iceberg calving and basal melting of ice shelves drive the falling sea level in our simulations after

the year 2000 (Figure 12). Depending on the applied forcing and precipitation boundary condition, the global sea-level drop

ranges from 2 cm to 11 cm until 2100 (Figure 12). This result is in contrast to various publications, and we discuss it below.

If we continue our ensemble with the last 30 years of forcing until the year 5000, the sea-level contribution of those ensemble460

members driven by the temperature scaled precipitation starts to stabilize and reaches a minimum around the year 2500.

Afterward, they begin to lose more ice at the margins than they gain in the interior. As a consequence, these will contribute
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after the year 3200 (RCP8.5) and 3900 (RCP2.6) to a globally rising sea level on average in our simulations, which outruns

the formerly fallen sea level since 1850. In the year 5000 at the end of our simulations, these runs show a trend towards a

continuously growing ice loss rate, because the curves have still an upward-directed tendency. Hence a quasi-equilibrium is not465

established. In contrast, the simulations driven by the precipitation anomalies continue to show a falling sea level. They always

contribute negatively to the global sea until the year 5000, and their ensemble mean and median sea levels tend to converge at

the end of the simulations.

3.7.1 Sea level contribution of corrected basal melting

Since the deduced Antarctica’s sea level contribution disagrees with the currently observed state showing mass loss, we apply470

a corrected time series representing the observational-based ocean-driven basal melting. These time series preserve the fluxes’

amplification over time, which is essentially the ratio of the higher end value to the lower start value. Hence, the corrected basal

melt flux replicates the original simulated amplification while the flux is identical to the observed reference value (Fref(tref))

at the reference time (tref ). Under the assumption that only a fraction of the adjusted basal mass contributes to the global sea

level, we apply the simulated ratio of the sea level change to the total ice mass change. For each ensemble member, this ratio is475

the median ratio over its entire time series (For details inspect please the appendix section "Bias-corrected fluxes" A3 on page

46). Since we examine enhanced mass loss, we do not adjust the iceberg calving rates that are already higher than observed.

The determined temporal evolution of the sea level correction (Figure A5, Equation A8) does impact the global sea level, but

it does not change the sign of the contemporary sea-level evolution. Consequently, the impact on the sea level is very small as

its evolution, which considers the correction, highlights (Figure A6). If we assume instead that all of the additional mass loss480

of floating ice shelves rises the sea level immediately, we obtain too extensive corrections of 30 cm between 1850 and 2000.

This sea-level rise is larger than the observed integrated sea level rise of about 20 cm since 1850 (Church and White, 2011),

which has been driven by world-wide land-water storage changes, shrinking glaciers around the globe, enhanced melting from

Greenland, and thermal expansion of the ocean (Cazenave and Remy, 2011; Leclercq et al., 2011; Church and White, 2011).

To conclude: The correction exceeds observational estimates significantly under the unrealistic assumption that all additional485

basal melting of ice shelves raises the sea level. It is unrealistic because disintegrating floating ice shelves do not impact the

sea level. The correction hardly corrects the discrepancy if we apply the inferred ration of about 5 % between the simulated

total ice mass loss and the simulated sea level contribution.

4 Conclusions

It is crucial for numerical simulations of Antarctica’s sea-level contribution, how the precipitation is implemented in ice-sheet490

simulations. The commonly used method of scaling the precipitation changes with the simulated temperature changes from

ice cores or global climate models leads to a positive Antarctic sea-level contribution, i.e., a sea-level rise. However, when

considering the simulated precipitation changes from the global climate models, the situation changes. In this case, numerical

projections simulate a negative sea-level contribution. Major uncertainties affect these simulations, such as the partitioning of
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ice losses into calving and basal melt — which is quite different from observational estimates due to very crude representations495

in the ice-sheet model — or the omission of important processes, such as the ocean-ice-shelf-ice-sheet interactions. While we

could improve some aspects of the involved process descriptions, our simulations are state-of-the-art and suffer, thence, the

same limitations as others.

In all CMIP5 models, the 2m-air temperature warms across the entire Antarctic continent without any exception (Figure 2d,

g, j, and 3a), because even the minimum 2m-air temperature anomaly is positive everywhere (Appendix Figure A2d, g, j). The500

warming enhances the hydrological cycle, which causes generally heavier precipitation (Figure 3b) in particular along the coast

of Antarctica (Figure 2e, h, k). However, the changing precipitation does not increase at the same rate with increasing tem-

perature because it is not only thermodynamically influenced but also dynamically controlled. Given that the ensemble mean

temperature scaling is different for the West and East Antarctic Ice Sheet (Figure 5) and has a considerable spatial dependence,

the dynamical component is not negligible. Instead, the region of reduced precipitation under rising air temperatures, which we505

have identified along the Siple Coast, highlights that the dynamics could compensate or even overwhelm the thermodynamics.

The continent-wide scaling is per se problematic, even if we would adjust the scaling factor to reproduce the continental-wide

average scaling. In this case, the total amount would be identical, but the spatial structure is still entirely different (Figure 4).

Hence for a proper projection of Antarctica’s sea-level contribution, the spatial pattern of the future accumulation of precipita-

tion shall also consider the dynamical effect.510

Independent of the applied precipitation boundary condition, we detect regions where the ice thickness thins for all ensemble

members. These regions are the Amundsen Sea Embayment with both Pine Island and Thwaites Glaciers, some outlet glaciers

of the East Antarctic Ice Sheet (EAIS) between George V and Wilkens Land, Amery Ice Sheet, and the Northern Antarctica

Peninsula. These regions correspond to those, which have been identified across sixteen models, where ocean warming wanes

marginal ice (Seroussi et al., 2019a).515

The ocean (Etourneau et al., 2019) and atmosphere (Mulvaney et al., 2012; Thomas et al., 2009; Morris and Vaughan, 2003)

is already warming along the Antarctic Peninsula. This results in a southward progressing of the annual 2m-air temperatures

of -9◦C or -5◦C isotherm, which presents the range of thresholds for the stability of ice shelves suggested by Morris and

Vaughan (2003, -9◦C) and Doake (2001, -5◦C), respectively. It may also enable the formation of meltwater ponds on ice

shelves (Kingslake et al., 2017) that precedes (van den Broeke, 2005) or even triggers ice-shelf disintegration (Banwell et al.,520

2013, 2019). After an ice shelf has decayed, the feeding ice streams are losing more ice, as seen for Larsen-B (Rott et al., 2011),

which lowers the thickness of grounded ice. Anyhow, ice shelves along the Antarctic Peninsula have collapsed or are retreating

(Cook and Vaughan, 2010; Rott et al., 1996). This observed retreat and the related ice loss will continue in our simulations

under RCP8.5.

For part of the EAIS, simulations show that grounded ice of the Wilkens Basin in the hinterland of George V Land may be525

prone to a massive ice loss if the ice front loses its buttressing effect (Mengel and Levermann, 2014). Our ensemble shows, on

average, a stable situation here. Ice in deep troughs that are in contact with the warming ocean thins at some spots further to

the west. It happens in front of the Astrolabe Trench (in Terre Adélie) and on the coast of the Wilkens Land, for example near

the Totten Glacier. Ice also thins in the deep trench leading to the Amery Ice Shelf.

16

https://doi.org/10.5194/esd-2019-78
Preprint. Discussion started: 6 January 2020
c© Author(s) 2020. CC BY 4.0 License.



Both the Pine Island and Thwaites Glaciers in the Amundsen Sea as part of the marginal West Antarctic Ice Sheet (Jeong530

et al., 2016; Milillo et al., 2019; Rignot et al., 2014; Scambos et al., 2017) lose ice. For them, continuous ice loss is inevitable

according to our simulations. Also, the Ferringo Ice Stream flowing into the Bellingshausen Sea will thin in the future.

Since our simulations presented here are in contrast to others that project a sea-level contribution from a shrinking Antarctic

Ice Sheet, we highlight the differences before we discuss the limitations of our simulations. Some simulate Antarctica with a

finer spatial resolution (Golledge et al., 2015; Pollard et al., 2015), which could improve the presentation of ice streams. These535

streams channelize the flow of grounded ice from the interior to the margins, where they feed the attached ice shelves and

discharge directly into the ocean. However, the simulated surface velocity distribution reproduces appropriate satellite-based

estimates (Appendix Figure A10 and Figure A11). Others used the cliff failure parameterization supporting ice loss together

with a constant ocean temperature offset of +2◦C (Pollard et al., 2015), twice as large as the amount found in our ensemble of

nine CMIP5 models (Figure 3), or utilized continuously raising atmospheric and oceanographic temperature forcing (Golledge540

et al., 2015; Mengel et al., 2015; Winkelmann et al., 2012, 2015) beyond the year 2100. These stronger forcings alone explain

a large part of the difference because we apply recurrently the forcing of the years 2071–2100 after 2100.

Since the precipitation boundary condition determines if Antarctica rises or lowers the global sea level, it may be appropriate

to utilize a more sophisticated surface mass balance (SMB) model. The recent publication that indicates a Greenlandification

of Antarctica’s margin at the end of the century (Bell et al., 2018) supports this approach, but the required atmospheric inputs545

fields are not available at sufficient temporal resolution. Hence, this will be an option for simulations driven by the forthcoming

CMIP6 model output.

Even if we apply anomalies on top of the reference background fields, we can not exclude a shock-like behavior of the

simulations entirely directly following the decades after the year 1850. Since we compute the anomalies relative to the first or

last 50 years, respectively, of the control run for each climate model, the anomalies are not necessarily zero at the beginning of550

the year 1850. Hence, the ice-sheet model may experience a small jump, which may cause a wrong trend initially. Nevertheless,

the long-term positive and negative sea-level contribution of Antarctica for simulations driven by temperature scaled and

directly applied precipitation anomalies, respectively, are robust.

An issue could be the parameterization of the grounding line migration, where only extremely high resolution relaxes its

need. However, PISM’s grounding line parameterizations at medium to lower resolution is consistent with higher-order models555

(Feldmann et al., 2014). It explains that the present-day grounding line position resembles the current state reasonably, and

the simulated grounding line retreat follows the bulk of simulations in the last model intercomparison (Seroussi et al., 2019a);

hence, we consider our grounding line migration as reasonable. The apparent stability of ice shelves in the runs driven by the

precipitation anomalies seems to comply with the safety band of ice shelves (Fürst et al., 2016), so the calving does stay outside

of ice-shelf regions essential for providing buttressing for the inflowing grounded ice streams.560

The ocean boundary condition, where ocean conditions are extrapolated into the ice-shelf cavities, drive basal ablation of ice

shelves. Here, we could undoubtedly improve simulations if the ice shelves would be coupled to the driving ocean model, so that

basal melting impacts the thermal structure of the ocean and, ultimately, the melt patterns. CMIP5 models neglect the ocean-

ice-shelf interaction (Meijers, 2014), and their coarse resolution around Antarctica does not allow to represent the regional

17

https://doi.org/10.5194/esd-2019-78
Preprint. Discussion started: 6 January 2020
c© Author(s) 2020. CC BY 4.0 License.



conditions (Heuzé et al., 2013; Sallée et al., 2013b). They are subject to unrealistic open-ocean convection (Heuzé et al., 2013;565

Meijers, 2014; Sallée et al., 2013a) instead of convection on or near the continental shelf (Årthun et al., 2013; Nicholls et al.,

2009). All these taint the hydrographic structure along Antarctica’s coasts. Hence, any improved parameterization can not

rectify the existing biases in the ocean forcing. These biases are reduced if we apply ocean temperature anomalies on top of an

observational-based climatological data set as performed in our study.

Since we extrapolate coastal ocean temperatures laterally into the ice-shelf cavities, the obtained ocean warming might be570

higher if we would include the rise of the strongly warming gyre centers. If this may have been incorporated in the forcing of

other groups obtaining a higher ice loss, depends on the setup details. However, it may help to bridge the gap between other

studies and our simulations.

Nevertheless, the detected sea-level decrease for the used precipitation anomaly forcing is in agreement with a growing

surface mass balance since 1800 AD, driven mainly by the Antarctic Peninsula region (Thomas et al., 2017). During intensive575

El Nino years, the accumulation-driven ice height increase between Dotson Ice Shelf and Ross Ice Shelf exceeds the height

reduction by basal melting processes (Paolo et al., 2018), but the ice mass is still decreasing since the low-density snowfall

replaces ice with a higher density. The stability arguments of Ritz et al. (2015) confirm the apparent stability of Antarctica in

our simulations. Furthermore, various recent ice-sheet model simulations, driven by selected CMIP5 climate model fields in

the framework of the ISMIP6 exercise, are subject to a negative sea-level contribution under a warming climate (Seroussi et al.,580

2019b).

To evaluate the impact of the precipitation boundary condition, fully coupled simulations between a dynamic ice-sheet/shelf

model and a global climate model are inevitable. The system would include the ice-shelf-ocean interaction of coupled ocean-

ice shelves at a sufficiently high spatial resolution around Antarctica. In addition, it would contain a sophisticated surface mass

balance computation. We hope these coupled atmosphere-ocean/sea-ice–ice-sheet/shelf models will overcome the discussed585

limitations.
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Tables

Table 1. List of CMIP5 models and the used RCP climate projections (Moss et al., 2010) beside historical (hist) piControl (piCtrl) scenarios.

Please note that we do not use the RCP2.6 scenario of the CCSM4 model.

Model Name RCP Projections Scenarios

CanESM2 RCP2.6, RCP4.5, RCP8.5 hist, piCtrl

CCSM4 RCP4.5, RCP8.5 hist, piCtrl

CNRM-CM5 RCP2.6, RCP4.5, RCP8.5 hist, piCtrl

CSIRO-Mk3.6.0 RCP2.6, RCP4.5, RCP8.5 hist, piCtrl

HadGEM2-ES RCP2.6, RCP4.5, RCP8.5 hist, piCtrl

MIROC-ESM RCP2.6, RCP4.5, RCP8.5 hist, piCtrl

MPI-ESM-LR RCP2.6, RCP4.5, RCP8.5 hist, piCtrl

MRI-CGCM3 RCP2.6, RCP4.5, RCP8.5 hist, piCtrl

NorESM1-M RCP2.6, RCP4.5, RCP8.5 hist, piCtrl
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Table 2. Forcing used for ice-sheet model spin-up and as reference fields for the anomaly forcing.

Forcing Period Label Reference Fields Reference

Atmosphere 1979–2011 RACMO 2.3/ANT 2m-air temperature, Van Wessem et al. (2014)

Total precipitation

Ocean Climatological World Ocean Atlas Potential ocean Locarnini et al. (2010)

mean 2009 (WOA09) temperature
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Table 3. Temperature scaling of the precipitation for six ice core locations in Antarctica. The second column lists the ensemble mean scaling

(RCP8.5, first 50 years, both initial states PISM1Eq and PISM2Eq) and standard deviation (2-sigma) across all ensemble members. The third

column provides scaling factors deduced from ice cores (Frieler et al., 2015), including the provided error margins (2-sigma). Please inspect

Figure 4 for the ice core locations.

Core Name Scaling of Scaling

Location Ensemble Mean Ice Core

EDML 11.0±6.6 5.0±2.8

Vostok 14.0±5.6 6.1±2.5

Law Dome 5.8±6.3 5.2±2.3

EDC 11.0±5.0 5.9±2.2

Talos Dome 8.4±5.2 6.8±2.8

WAIS 6.8±5.4 5.5±1.2
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Table 4. Defined areas as part of our diagnostic. The fraction is computed relative to “glaciered.” Figure 4 and Figure 5 depict these areas.

Region Area Fraction Longitude Comment

Label (106 km2) (%) Range

glaciered 13.6 100.0 [−180◦E,+180◦E[ Antarctica incl. ice shelves

grounded 11.9 87.5 [−180◦E,+180◦E[ Without ice shelves

EAIS Atl 3.77 27.6 [−45◦E,+55◦E]
Including floating

ice shelvesEAIS Ind 5.66 41.1 [+55◦E,+155◦E]

WAIS 4.26 31.3 [+155◦E,−45◦E]

Siple Coast 0.69 5.12 [+155◦E,−140◦E] Latitude> 85◦S
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Figure 1. Map of Antarctica. The seafloor depth is shown with a blue color scale, while the elevation of Antarctica above sea level is depicted

by a colorbar of dark-grey (low elevation) to white colors (high elevation). The font style of ocean labels is in bold and of ice shelves is in

italic. The smaller font size tags individual glacier (G) and ice streams (IS). The abbreviation “MR” stands for “Mountain Range”. Colored

labels define three regions: WAIS: West Antarctic Ice Sheet, EAIS Atl: East Antarctic Ice - Sheet Atlantic Sector, EAIS Ind: East Antarctic

Ice Sheet - Indian Ocean Sector. The Figures 4 and 5 show the boundaries of these regions. The here depicted bedrock topography and

surface orography are taken from Fretwell et al. (2013).
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Figure 2. Atmospheric (a, b) and oceanographic (c) reference forcing; ensemble mean anomalies (d–l). The top row represents the reference

fields to spin-up the ice-sheet model (Table 2). The 2m-air temperature (a) and the total precipitation (b) are mean fields from the regional

RACMO model, while the ocean temperatures come from the World Ocean Atlas 2009 (c); see Table 2 for more details. Each reference

field has its colorbar above its plot. Below each reference field, the related anomalies, including their colorbar, are compiled for the period

2071–2100. Here, the second (third and fourth) row shows the anomalies for RCP8.5 (RCP4.5, RCP2.6). In these atmospheric anomaly plots,

the dark-gray line follows the current coastline. All potential ocean temperatures (c, f, i, l) are a vertical mean of the depth interval from

150 m to 500 m. The white contour lines in the anomaly plots highlight the following precipitation threshold (e, h, k): 30 cm/yr. All these

anomalies are the ensemble mean of the models listed in Table 1; please note that CCSM4 is not part of RCP2.6. Appendix Figure A1 and

Figure A2 show the corresponding ensemble maximum and minimum fields, respectively. Antarctica’s contours are deduced from Fretwell

et al. (2013).
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Figure 3. Spatial mean of the a) 2m-air temperature and b) total precipitation anomalies on Antarctica (d). Spatial c) potential ocean temper-

ature mean averaged over the depth interval from 150 m to 500 m in the coastal zone (e) surrounding Antarctica. The ensemble mean values

are shown for the scenarios according to the legend in a). The dark red band highlights the 1-sigma standard deviation (66 %), while the

light red band shows the full range covered by all ensemble members for RCP8.5 only. The vertical golden line marks the transition from the

historical forcing to the RCP. The distinct temperature jump during the historical period in 1991 marks the Mount Pinatubo volcano eruption.

The contours of the Antarctic continent (d) follow the outer edges defined by the data set of Fretwell et al. (2013), while the coastal strip (e)

is an extension into the sea with smoothed northern edges.
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Figure 4. Ensemble mean of the temperature scaled precipitation for the period 2051–2100. This scaling under the RCP8.5 scenario comes

from nine CMIP5 models (Table 1), which are driven by anomalies relative to the first 50 years of piControl. In the dotted regions enclosed

by black contours, the combined simulated scaling and the standard deviation contains the value of 5 %K−1. Gray dashed lines follow this

5 %K−1 contour. The scaling values deduced from ice cores are shown at their location (Frieler et al., 2015) by using the same colorbar as

the spatial distribution within the circle. The neighboring printed values are the mean and the 2-sigma uncertainty. Three defined regions

(Table 4) named “WAIS”, “EAIS Atl”, and “EAIS Ind” are outlined by their green, blue, and red, respectively, boundaries (lower left legend).

For further details, inspect the text, please. Appendix Figure A3 provides corresponding distributions for each climate model ensemble

member. Antarctica’s contour is deduced from Fretwell et al. (2013).
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et al. (2013)). The gray bars represent the ensemble mean, whereas the individual symbols stand for CMIP5 models. Here the results apply

for both reference periods, where the anomalies are computed relative to the first or last 50 years of piControl. Each symbol is the model

average of both reference periods, while the attached line indicates the scatter range between the first and last 50 years reference period.

Please note, that the RCP2.6 scenario does not include the CCSM4 model; hence, the corresponding bar is hatched.
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Figure 6. The top row (a, b) shows the integrated sea-level equivalent of the precipitation falling on grounded ice in Antarctica (see dark-blue

mask in the lower left, the light-blue parts highlight ice shelves; The grounded and floating ice areas are derived from Fretwell et al. (2013))

for the anomaly forcing (solid lines) and temperature scaled precipitation (dashed lines) considering a scaling of 5 %K−1. The difference in

the sea-level impact between the anomalies and the temperature scaled precipitation is depicted in the lower row (c, d). Here, the solid lines

consider scaling of 5 %K−1, while the dotted and dashed lines consider a scaling of 2 %K−1 and 8 %K−1, respectively. The left subfigures

a) and c) are restricted to the period 1850-2100, while b) and d) cover the full period from 1850 until 5000. Every single colored line (see

legend in the upper left) represents one CMIP5 model (Table 1). The corresponding curves for the scenario RCP4.5 as well as for a different

mask that covers the entire continent are available in the Appendix Figure A4.
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Figure 7. Ice thickness changes under the RCP8.5 scenario in the year 2100 since the year 1850. The ensemble mean difference between

the runs forced by the scaled precipitation and the precipitation anomalies (a). For each climate model scenario, the anomalies are computed

relative to the 50 years of the related piControl scenario. The simulations driven with the precipitation anomaly (b, c) have the mean ice

thickness (b), and the maximum ice thickness (c) changes. The temperature scaled precipitation of 5 %K−1 gives the corresponding ensemble

mean (d) and maximum (e). Please note that all subplots share the same colorbar.

37

https://doi.org/10.5194/esd-2019-78
Preprint. Discussion started: 6 January 2020
c© Author(s) 2020. CC BY 4.0 License.



a)

b)

c)

d)

e)200

50

5

0

5

50

200

 (m)

CanESM2

CCSM4

CNRM-CM5

CSIRO-Mk3-6-0

HadGEM2-ES

MIROC-ESM

MPI-ESM-LR

MRI-CGCM3

NorESM1-M

Model

Figure 8. Ice thickness changes since 1850 under the RCP8.5 scenario for the actually applied precipitation anomaly in the year 2100.

Highlighted are the (a) ensemble mean, maximum (b), and minimum (c). The climate model that is used to drive the ice-sheet model

simulation causing the maximum and minimum thickness are shown in (d) and (e), respectively, next to the ensemble maximum (b) and

minimum (c).
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Figure 9. Ice thickness changes since 1850 under the RCP8.5 scenario for applied precipitation anomalies in the year 2200. Highlighted are

the (a) ensemble mean, maximum (b), and minimum (c). The climate model that is used to drive the ice-sheet model simulation causing the

maximum and minimum thickness are shown in (d) and (e), respectively, next to the ensemble maximum (b) and minimum (c).
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Figure 10. Ice thickness changes since the year 1850 under the RCP8.5 scenario in the model year 2100. Here the precipitation is scaled by

the temperature anomaly with a value of 5 %K−1. Depicted are the (a) ensemble mean, maximum (b), and minimum (c). The climate model

that is used to drive the ice-sheet model simulation causing the maximum and minimum thickness is shown in (d) and (e), respectively, next

to the ensemble maximum (b) and minimum (c). This figure is similar to Figure 8, but there the results under precipitation anomalies are

shown.
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Figure 11. Temporal evolution of the ocean-driven ice loss rates of the fringing ice shelves around Antarctica for the period from 1850 to

2100. The thin blue lines are all ensemble members starting from the initial state PISM1Eq, where the Eigen-calving parameter amounts

1018, while the green lines are the corresponding simulations starting from PISM2Eq (Eigen-calving parameter 1017). A running mean with

a window of 5 years has been applied for the thin lines. All simulations start under historical conditions and continue after 2005 under the

RCP8.5 (solid lines), RCP4.5 (dashed lines) or RCP2.6 (dotted lines) scenario. The thick black lines represent the ensemble mean of the

three future scenarios with a moving window length of 25 years. Recent estimates of the total loss rates (Top-left legend with the golden

circles). Estimated uncertainties are given as vertical lines if the uncertainties are larger than the symbol size.
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Figure 12. Sea level contribution of Antarctica computed by the ensemble of ice-sheet simulations (please see text for details). The solid

lines represent the ensemble averages for the applied precipitation anomalies and the temperature-scaled precipitation boundary conditions

according to the legend (lower left), while the dashed lines are the corresponding medians. For the RCP8.5 scenario, the shading highlights

the standard deviation (1-sigma) as a measure of the variability among the ice-sheet ensemble members driven by various climate models

(Table 1).
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Appendix A: Additional discussion

Regarding oceanic influence, we focus on the changes of the ensemble mean ocean temperature under the RCP8.5 scenario in a

depth range between 150 m and 500 m (Figure 3), because the water masses of this range flow into the ice-sheet cavities and are

in contact with large parts of ice shelve bases. Highest temperature increases occur in the Bellingshausen and Amundsen Seas

as part of the West Antarctic Ice Sheet (WAIS) and some spots along the East Antarctic Ice Sheet (EAIS). In the Bellingshausen855

and Amundsen Sea warm water masses that flow already into ice-shelf cavities and drive the highest basal melting rates, the

potential to trigger Marine Ice Sheet Instability (MISI) exists, because WAIS has a retrograde bedrock topography. The massive

ice shelves, Filchner-Ronne, Ross, and Amery, are influenced by moderate temperature increases. However, our setup misses

the interaction between the ice-shelf topography and the underlying dynamically evolving ocean. Hence, the setup does not

describe related circulation changes that may bring warmer water masses into the ice cavities. For instance, it has been found860

that warmer water masses could find their way into these ice-shelf cavities and cause a strongly amplified basal mass loss under

a changing climate (Hellmer et al., 2012). They have simulated an ocean warming by more then 2 ◦C in the Filchner Trough

(eastern Filchner-Ronne Ice Shelf). At the ice shelves edge of the Filchner-Ronne Ice Shelf, our ensemble maximum ocean

temperature anomaly (Figure A1) of about 1.5 ◦C generates a much weaker forcing.

A1 Temperature Scaling865

If one calculates temperature scaling factors out of the CMIP5 model simulated temperature and precipitation changes, it turns

out that the temperature scaling factor of the precipitation is different for each model and therefore shows an inhomogeneous

spatial pattern (Appendix Figure A3). Furthermore, the details of the scaling factors depend on if we determine the anomalies,

which drive our ice-sheet simulations, relative to the first or last 50 years of the corresponding piControl runs. If we alternatively

compute the anomalies relative to the first 30 years of the transient historical period (1850–2005), we obtain also slightly870

different results. However, all these differences do not changes the spatial structure significantly, and they have a neglectable

impact compared to the choice of the driving model.

The scaling across all model tends to be highest for the EAIS, where the part facing the Atlantic Ocean exhibits highest

scalings (Figure 5). The WAIS has a lower scaling and the embedded region “Siple Coast” has on average the lowest scaling.

There is a tendency for a higher scaling under a more vigorously changing climate across all regions, except for the smallest875

region “Ross.” This tendency exists for the ensemble mean and across models characterized by a larger than average scaling.

The detected precipitation deficit in reanalysis data and shallow ice cores in the “Siple Coast” region (Wang et al., 2017) is

represented by most models by a reduced scaling, while only NorESM1-M shows a precipitation deficit under a raising air

temperature for all future climate scenarios. When considering the whole Antarctica, the difference between the grounded ice

sheet only and all glaciated regions (including ice shelves) is small.880

The highest scaling spread between the first and last 50 years piControl reference period has MIROC-ESM across all in-

spected regions and scenarios, which is probably related to the pronounced trend of the global 2m-air temperature (0.67◦C)

between these two reference periods in our ensemble. Otherwise, the spread is related to enhanced/amplified long-term re-
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gional climate variability expressed by differing values in the reference period. For example, CCSM4 or MPI-ESM-LR are

subject to a larger spread in the Atlantic sector of the EAIS, while in the neighboring Indian sector the variability is negligible.885

The higher spread of the smaller subregion Ross within the WAIS sector supports this interpretation (at least for the models

CCSM4, CanESM2, HadGEM2-ESM).

There exists a tendency towards a higher scaling of coastal areas that are subject to incoming storm tracks, which potentially

deliver heavier precipitation events that are also controlled by the rising topography height towards the interior of Antarctica.

In the majority of the simulations, we identify a lower scaling in WAIS and also a low to negative scaling in the area of the890

Ross Ice Shelf and the adjacent parts of the WAIS.

A2 Marginal ice loss by ocean-driven basal melting and iceberg calving

We turn our analysis to the individual mass balance terms: Iceberg calving, basal melting in the ice-shelf cavities, and surface

mass balance. To recap: the surface mass balance is obtained by applying the individual spatial atmospheric model forcing on

top of the reference fields obtained from RACMO, while the basal melting is calculated by adding ocean anomalies on top of895

the World Ocean Atlas climatology (Table 2). The calving is composed of three processes (thickness calving, Eigen-calving,

kill mask calving) as part of the Parallel Ice Sheet Model (PISM) simulations. Here, the analysis focuses predominantly on the

period from 1850 to 2100, because after 2100, we reapply the forcing from 2071–2100 recurrently.

Until 2100, the temporal evolution of the iceberg calving rates of individual ensemble members is subject to some variability,

which is typical for such event-based mass losses. For some models, we could identify some reduced calving of 20 % around900

1850 and 1970, and some enhanced calving of 25 % around 1920 and 2050. These trends are noisy and are independent of

the applied forcing scenario RCP2.6, RCP4.5, and RCP8.5 (Figure A12). Overall, the temporal evolution of the calving does

not show a clear trend, and the average calving loss rate of the entire ensemble is about 5500 Gt year−1 (Figure A12). Clearly

separated are the calving rates of ensemble members starting from either the initial state PISM1Eq or PISM2Eq. The members

of the group starting from PISM1Eq have on average a calving rate of approximately 7500 Gt year−1, while it amounts to905

about 3500 Gt year−1 in the PISM2Eq. So a reduction of the Eigen-calving constant by an order of magnitude from 1018

(PISM1Eq) to 1017 (PISM2Eq) halves approximately the total calving rate, while in both cases the thickness calving is active

for marginal ice-shelf point with a thickness of less than 150 m.

Iceberg calving and basal ice-shelf melting control the overall mass loss of Antarctica, while the relative contribution

is unclear. Depoorter et al. (2013) report a nearly equal share between calving (1321± 144 Gt year−1) and basal melting910

(1454± 174 Gt year−1), Rignot et al. (2013) detect a slightly higher contribution from basal melting (1325± 235 Gt year−1

compared to calving with 1089± 139 Gt year−1), while Liu et al. (2015) find that the basal melting (1516± 106 Gt year−1)

contribution is twice as much as the calving (755± 24 Gt year−1) contribution. Both ensemble branches starting from PISM1Eq

and PISM2Eq overestimate the currently observed calving rates of less than 1500 Gt year−1 (Depoorter et al., 2013; Liu et al.,

2015; Rignot et al., 2013). Also the combined observed mass loss by calving and basal melting of ice shelves, which is about915

2500 Gt year−1 (Depoorter et al., 2013; Liu et al., 2015; Rignot et al., 2013), is on average smaller than the lower simulated

44

https://doi.org/10.5194/esd-2019-78
Preprint. Discussion started: 6 January 2020
c© Author(s) 2020. CC BY 4.0 License.



calving rate from our ensemble members starting from PISM2Eq. Therefore, our ensemble mean ice loss rate exceeds current

estimates, which could lead to an overestimation of the total sea-level rise in our simulations.

The basal melting rate of floating ice shelves, in the following just termed basal melting rates, is the second ice mass loss

process. The basal melting rate anomaly is computed relative to the 50 years between 1951 and 2000. We could identify920

immediately that the basal melting rates have risen between 10 % and 100 % since the 1850s (Figure A13). The simulated

historical trend is nearly independent of the initial state selection (PISM1Eq and PISM2Eq) and reference to compute the

ocean temperature anomaly. For each climate model scenario, the anomalies are computed relative to the first or last 50 years

of the pre-industrial climate (piControl) simulations. However, only for MIROC-ESM the reference state (first vs. last 50 years

piControl) matters, because this model is subject to not negligible trend during the piControl phase.925

In the future, the basal melting rate will further increase between 10 % and more than 100 %. The latter increase is consistent

with results from specialized ocean simulations. These simulations resolve ice shelves, include the ocean-ice-sheet interaction

explicity, are driven by future projection from various climate models (Naughten et al., 2018; Hellmer et al., 2012).

The temporal evolution of the actual basal melting rate (Figure A13) increases until 2100 and falls back afterward onto

the value of the year 2071 because we apply the last 30-years-forcing recurrently after 2100. Also, for the basal melting the930

separation of ensemble members starting from PISM1Eq and PISM2Eq is apparent. However, both groups are close to the

ensemble mean, which is in contrast to the calving rate. The basal melting rates of all ensemble members underestimate the

observational basal melting rates.

Since, in general, the observed calving rate is lower than the basal melting rate, our model ensemble swaps the importance

of basal melting and iceberg calving. Also the sum of the calving rate and basal melting rate exceeds the observed estimates.935

Hence, our simulations could tend to overestimate ice loss and, ultimately, sea-level rise.

The ensemble mean calving and basal melting rates stay nearly constant or reach a maximum of around 2100 and scenarios

with a higher forcing (RCP8.5 vs. RCP4.5, for instance) cause more ice loss by both calving and basal melting. Beyond 2100,

ice loss rates decrease in general (Figure A14). Since the temporal variability remains high also after 2100, our approach works

where the last 30 years of the forcing until 2100 is recurrently applied afterward. To highlight the primary trend in the temporal940

evolution after 2100, a 250-year running mean is applied after 2100.

The basal melting rates of the stronger forcing scenario RCP8.5 show a minimum of around 3500 and increase afterward

slightly, while the other scenarios (RCP4.5 and RCP2.6) indicate a tendency for stabilization at the end of our simulation in the

year 5000 (Figure A14). Over the entire period, the basal melting rate is higher for the stronger forcing scenarios. This result

reflects the dependence of the basal melting on the ocean temperature because the ocean temperature anomalies are warmer945

for the scenarios with a higher forcing.

The calving rates before 2100 tend to be slightly higher for the RCP8.5 scenario. However, after 2100, we detect the sharpest

fall of the ice loss rates for the scenario RCP8.5 and an average decrement for RCP4.5 and a moderate reduction for RCP2.6

(Figure A14). Around 3000, RCP8.5 calving reaches its minimum, followed by an enhanced increase for 500 years and a

moderate increase afterward. Forcing scenarios with a lower strength reach the minimum later, so that RCP4.5 has its minimum950

around 3200, while RCP2.6 shows the minimum around 3700. At this time, the ensemble mean calving rates of the RCP4.5
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and RCP2.6 are similar (please note that RCP2.6 does not include simulations driven by CCSM4). The trends of all scenarios

converge around 4000.

In the long term, the most active basal melting occurs for the stronger forcing scenarios, while the highest calving occurs

under scenarios with a lower forcing. The calving rate controls the evolution of the total ice mass loss in our simulations. Before955

the year 2100, RCP8.5 has the highest calving rates, while these are lowest shortly afterward. The ordering of the scenarios

with the highest calving rates (RCP2.6) is those with the lowest forcing (RCP2.6) and vise versa (RCP8.5). The ensemble mean

of the basal melting increases by 60 %–70 %, 70 %–85 %, and 90 %–115 %, for RCP2.6, RCP4.5, and RCP8.5, respectively.

The fractional calving change of the ensemble mean is between +2 %– −4 %, +2 %– −10 %, and +2 %– −19 % for RCP2.6,

RCP4.5, and RCP8.5, respectively. Across these, we detect that the most substantial ice-shelf area reduction occurs for RCP8.5960

and the lowest for RCP2.6. Our simulations suggest that the warmer climate causes a stronger ice-shelf retreat and a stronger

drop in the calving rate in the period, where the ice shelf could adjust to the quasi-equilibrium forcing. Based on these results

we conclude: warmer climate drives more basal melting and enhances calving so that we obtain smaller ice shelves. Under the

assumption that the smaller total integral of the ice shelves area is proportional to the calving probability (under else nearly

unaltered conditions), we ultimately reduce the calving rates.965

A3 Bias-corrected fluxes

Starting from original simulated ablation flux Forg, which could be the basal melting flux FB
org(t) or the iceberg discharge flux

FD
org(t), and the corresponding reference flux Fref(tref) at time tref , we define the following ratios. The fraction of the temporal

evolving flux (Forg(t)) to the original flux at the reference time (tref ):

r(t) =
Forg(t)

Forg(tref)
=⇒ r(tref) = 1, (A1)970

and the fraction of the original simulated flux to the reference flux (Fref )

q = q(tref) =
Fref(tref)
Forg(tref)

. (A2)

The corrected flux Fcor using Equation A1 is defined as

Fcor(t) = r(t) ·Fref(tref), (A3)

so that the flux difference ∆F (t) is975

∆F (t) = Fcor(t)−Forg(t)

= Forg(t)
[

Fref(tref)
Forg(tref)

− 1
]
.

With Equation A2 we obtain

∆F (t) = Forg(t) [q− 1] . (A4)
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The ratio p(t) of the sea level temporal deviation to the ice mass temporal deviation is980

p(t) =

dzl(t)

dt

dmice(t)

dt

, (A5)

where zl is the sea level and mice the total ice mass, which includes grounded and floating ice. We use here p = median(p(t))

so that each ensemble member is characterized by one value for its entire time series. If p = 1
ρAoce

, 100 % of flux difference

(Equation A4) contributes immediately to the sea level of the global ocean with an area of Aoce.

The total ice mass (mice) changes are driven by four terms985

mice

dt
=

[
FSMB(t) + FG(t)

]
︸ ︷︷ ︸
unchanged under correction

+FB(t) + FD(t),

where FSMB(t) is the surface mass balance flux and FG(t) the basal mass flux of grounded ice (Figure A9). We assume that

these two terms in the brackets do not change regardless of the applied corrections to the last two terms FB and FD. Hence

the difference in the ice mass change is

∆
dmice

dt
= ∆FB(t) + ∆FD(t) (A6)990

Now we relate the temporal evolution of the sea level to the total ice mass changes by utilizing the Equation A5

zlcor

dt
=

zlorg

dt
+ p(t) ·

[
∆FB

cor(t) + ∆FD
cor(t)

]
,

so that we obtain:

zlcor = zlorg + ∆zl(t), (A7)

where the sea-level difference ∆zl(t) is995

∆zl(t) =

t∫

t0

p(t̂)
[
∆FB

cor(t̂) + ∆FD
cor(t̂)

]
dt̂. (A8)

The Figures A5 and A7 depict the sea-level difference for two cases. If the additional mass loss contributes immediately

to a rising sea level (Figure A7), the sea level rise of 30 cm is larger than the actual sea level rise since 1850 of about 20 cm

(Church and White, 2011).This case is not realistic because a melting floating ice shelf does not impact the sea level. Only the

flow of grounded ice across the grounding line to feed an ice shelf or the direct loss of grounded ice rise the sea level.1000

In contrast, the sea level changes hardly (Figure A5) if the deduced ratio p(t) (Equation A5), which corresponds to the ratio

defined in Equation A5. It is computed for each ensemble mean as median of its time series. If the ratio between ice loss and

sea-level rise is constant under amplified basal melting of ice shelves is an open question. Strongly intensified ocean-driven ice
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loss will probably cause a retreating grounding line on a longer time scale, which ultimately releases grounded ice into the sea

and increases the sea level.1005

Figure A8 shows the proportion of the deduced ratio to the 100 % ratio. Only very few ensemble member losses about 15%

of the maximum value of p = 1/(ρ ·Aoce). In contrast, the mean and median value of this proportion is generally less then 5 %.

For all ensemble members driven by the precipitation anomaly, this proportion is on average 4.7 % with a median of 3.9 %.

It is even lower for ensemble members driven by the temperature scaled precipitation. The median amounts 0.7 % and the

corresponding mean is 0.9 %. Please note that some ensemble members under the temperature scaled precipitation are subject1010

to a negative scaling. This result confirms the above presented low positive and negative scaling seen for restricted regions

(Figure 5). It highlights also that simulations driven by temperature scaled precipitation could show unexpected results.
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A4 Appendix Figures
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Figure A1. Atmospheric (a, b) and oceanographic (c) reference forcing; ensemble maximum anomalies (d–l). The top row represents the

reference fields to spin-up the ice-sheet model (Table 2). The 2m-air temperature (a) and the total precipitation (b) are mean fields from the

regional RACMO model, while the ocean temperatures come from the World Ocean Atlas 2009 (c). Below each reference field, the related

maximum anomalies are compiled for the period 2071–2100. Here, the second (third and fourth) row shows the anomalies for RCP8.5

(RCP4.5, RCP2.6). The dark-gray line follows the current coastline. All potential ocean temperatures (c, f, i, l) are a vertical mean of the

depth interval from 150 m to 500 m. The white contour lines in the anomaly plots highlight the following thresholds. 2m-air temperature (d,

g, j): 8◦C; total precipitation (e, h, k) 50 cm year−1. All these anomalies are the ensemble maximum of the models listed in Table 1; please

note that CCSM4 is not part of RCP2.6. Figure 2 shows the corresponding ensemble mean fields.
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Figure A2. Atmospheric (a, b) and oceanographic (c) reference forcing; ensemble minimum anomalies (d–l). The top row represents the

reference fields to spin-up the ice-sheet model (Table 2). The 2m-air temperature (a) and the total precipitation (b) are mean fields from

the regional RACMO model, while the ocean temperatures come from the World Ocean Atlas 2009 (c). Below each reference field, the

related minimum anomalies are compiled for the period 2071-2100. Here, the second (third and fourth) row shows the anomalies for RCP8.5

(RCP4.5, RCP2.6). The dark-gray line follows the current coastline. All potential ocean temperatures (c, f, i, l) are a vertical mean of the

depth interval from 150 m to 500 m. The white-grey lines in the anomaly plots highlight the following thresholds. 2m-air temperature (d, g,

j): 0◦C; total precipitation (e, h, k) 0 cm year−1; potential ocean temperature 0◦C. All these anomalies are the ensemble minimum of the

models listed in Table 1; please note that CCSM4 is not part of RCP2.6. Figure 2 shows the corresponding ensemble mean fields.
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Figure A3. Temperature scaled precipitation under the RCP8.5 scenario for nine CMIP5 models (Table 1): Period 2051–2100. The ice-sheet

simulations are driven by anomalies relative to the first 50 years of the related piControl climate scenario. In the dotted regions enclosed

by black contours, the combined simulated scaling and the standard deviation contains the value of 5 %K−1. Gray dashed lines follow this

5 %K−1 contour. The scaling values deduced from ice cores are shown at their location (mean and the 2-sigma uncertainty). The regions

named “WAIS,” “EAIS Atl,” and “EAIS Ind” are outlined by their green, blue, and red, respectively, boundaries (lower left legend). For

further details, inspect the text, please. Figure 4 shows the corresponding ensemble mean. The contours of the Antarctic continent are

deduced from Fretwell et al. (2013).
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Figure A4. Integrated sea-level equivalent of the precipitation falling on Antarctica (see the mask in each subpanel) from the anomaly

forcing (a, b: solid lines) and temperature scaled precipitation (a, b: dashed lines). The sea-level impact between the anomalies and the

temperature scaled precipitation (c, d) is depicted for each CMIP5 model (legend on the lower left). The subpanels in the left and right

columns show the results under the RCP4.5 and RCP8.5 scenarios, respectively. The upper row depicts the scaling for the entire Antarctic

continent (“glaciered”), while the lower row is restricted to grounded ice. The lower left subpanel is identical to Figure 6. Please inspect this

figure for further details. The grounded and floating ice areas are derived from Fretwell et al. (2013)
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Figure A5. The diagnosed sea level correction as defined by Equation A8 covers the period from 1850 until 2100. Here, the ratio p(t)

(Equation A5) is the temporal median for each ensemble member (please see Figure A7 for the corresponding figure, where all additional

mass loss rises immediately the sea level). The correction is computed relative to the year 2000 as in Figure 12. The resulting sea level for the

entire period from 1850 until 5000 depicts the Figure A6. As reference value for the basal melting rate F B
ref(tref), we use 1431 Gt year−1,

which corresponds to the estimate of Depoorter et al. (2013) with 1454± 174 Gt year−1, while it falls below the values of Liu et al. (2015)

(1516± 106 Gt year−1), but is also exceed the rate of 1325± 235 Gt year−1 reported by Rignot et al. (2013); our reference F B
ref(tref)

corresponds to the mean of all these basal melting estimates: 1431 Gt year−1.
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Figure A6. The sea level considering the correction as defined by Equation A8 and Figure A5. The sea level is is computed relative to the

year 2000 as in Figure 12. Please inspect the Figure 12 for further details.
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Figure A7. The diagnosed sea level correction as defined by equation A8 covers the period from 1850 until 2100, where 100 % of the

additional mass loss contributes immediately to a rising sea level, hence the ratio p (Equation A5) equals p = 1/(ρAoce). The correction is

computed relative to the year 2000 as in Figure 12. The corresponding Figure A5 depicts the case where the correction considers the actual

deduced ratio p(t) of the each ensemble member.
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Figure A8. The ratio between the actual sea level contribution due to mass loss and the sea level equivalent of corresponding mass. Individual

ensemble members are shown as crosses. A red “x” represents a member that is driven by the precipitation anomaly, while a blue-green “+”

indicates those driven by the temperature scaled precipitation. In the latter case, light blue circles highlight members with negative ratios.

Vertical lines mark median values for these two groups; see also legend. The corresponding mean values are listed on the left side. The term

p(t) is defined by the Equation A5 and p100 = 1
ρ·Aoce

, where ρ is the density and Aoce represents the global ocean area.
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Figure A9. Cumulated basal melting of grounded ice as sea level equivalent. Shown are the results of the entire ensemble of ice-sheet

simulations. The solid lines represent the ensemble averages for the applied precipitation anomalies and the temperature-scaled precipitation

boundary conditions according to the legend (lower left). For the RCP8.5 scenario, the shading highlights the standard deviation (1-sigma)

as a measure of the variability among the ice-sheet ensemble members driven by various climate models (Table 1).
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Figure A10. Comparison between the initial state PISM1Eq and observational estimates. The top row depicts the surface elevation: a)

Bedmap2 data set (Fretwell et al., 2013), b) simulated ice elevation in PISM and c) point-wise comparison. The lower row shows the

surface velocity distribution: d) Observations (Rignot et al., 2016), e) simulation and f) point-wise comparison; please note that both axes are

logarithmic. For the point-wise comparison, the observations follow the x-axis (abscissa) while simulated values follow the y-axis (ordinate).
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Figure A11. Comparison between the initial state PISM2Eq and observational estimates. The top row depicts the surface elevation: a)

Bedmap2 data set (Fretwell et al., 2013), b) elevation in PISM and c) point-wise comparison, while the lower row shows the surface velocity:

d) Observations (Rignot et al., 2016), e) simulation and f) point-wise comparison. Please see also Figure A10 (PISM1Eq) for further details.
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Figure A12. Temporal evolution of Antarctic-wide calving rates for the period from 1850 to 2100. The thin blue lines are all ensemble mem-

bers starting from the initial state PISM1Eq, where the Eigen-calving parameter amounts 1018, while the green lines are the corresponding

simulations starting from PISM2Eq (Eigen-calving parameter 1017). A running mean with a window of 5 years has been applied for the

thin lines. All simulations start under historical conditions and continue after 2005 under the RCP8.5 (solid lines), RCP4.5 (dashed lines) or

RCP2.6 (dotted lines) scenario. The thick black lines represent the ensemble mean of the three future scenarios with a moving window of

25 years. Recent estimates of the total (orange circles) and the calving (red squares) ice mass loss are given for three studies (legend at the

top). Vertical bars depict the reported uncertainties of the shown estimates by Liu et al. (2015); Depoorter et al. (2013); Rignot et al. (2013).
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Figure A13. Temporal evolution of the basal melting rates in fringing ice shelves around Antarctica for the period from 1850 to 2100. The

thin blue lines are all ensemble members starting from the initial state PISM1Eq, where the Eigen-calving parameter amounts 1018, while

the green lines are the corresponding simulations starting from PISM2Eq (Eigen-calving parameter 1017). A running mean with a window

of 5 years has been applied for the thin lines. All simulations start under historical conditions and continue after 2005 under the RCP8.5

(solid lines), RCP4.5 (dashed lines) or RCP2.6 (dotted lines) scenario. The thick black lines represent the ensemble mean of the three future

scenarios with a moving window length of 25 years. Recent estimates of the basal melting (blue diamonds) and the calving (red squares)

ice mass loss are given for three studies (legend at the bottom, Liu et al. (2015); Depoorter et al. (2013); Rignot et al. (2013)). Related

uncertainties are given as vertical lines if the uncertainties are larger than the symbol size.
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Figure A14. Long-term temporal evolution of the ensemble mean basal melting and calving ice loss rates from 1850 to 2100 and beyond

until the year 5000. The upper panels show the calving rates, while the lower panels depict the basal melting rates. In the left columns,

individual model simulations (colored lines according to the legend) are grouped together, while the thick black lines are the overall means

as shown in the corresponding figures Figure A12 and A13. For the ensemble means of the period 1850–2100, a smoothing with a moving

window of 25 years is applied (left column), while the smoothing window length is 250 years for the right column covering the period from

2100 until 5000. Solid (dashed, dotted) lines represent the RCP8.5 (RCP4.5, RCP2.6) scenario.
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Figure A15. Area of floating ice shelves. A running mean window of 11 years is used for the entire ensemble of ice-sheet simulations. The

solid lines represent the ensemble averages for the PISM1Eq starting conditions, while the dashed lines are the corresponding PISM2Eq

condition. For the RCP8.5 scenario, the shading highlights the standard deviation (1-sigma) as a measure of the variability among the ice-

sheet ensemble members driven by various climate models (Table 1). Please note the different axes for both subfigures. The dashed frame in

the right subfigure depicts the value range of the left subfigure.
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