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Abstract. Can we summarize uncertainties in global response to greenhouse gas forcing with a single number?
Here, we assess the degree to which traditional metrics are related to future warming indices using an ensemble
of simple climate models together with results from the Coupled Model Intercomparison Project phases 5 and
6 (CMIP5 and CMIP6). We consider effective climate sensitivity (EffCS), transient climate response (TCR) at
CO2 quadrupling (T140) and a proposed simple metric of temperature change 140 years after a quadrupling
of carbon dioxide (A140). In a perfectly equilibrated model, future temperatures under RCP8.5 (Representative
Concentration Pathway 8.5) are almost perfectly described by T140, whereas in a mitigation scenario such as
RCP2.6, both EffCS and T140 are found to be poor predictors of 21st century warming, and future temperatures
are better correlated with A140. We show further that T140 and EffCS calculated in full CMIP simulations are
subject to errors arising from control model drift and internal variability, with greater relative errors in estimation
for T140. As such, if starting from a non-equilibrated state, measured values of effective climate sensitivity
can be better correlated with true TCR than measured values of TCR itself. We propose that this could be an
explanatory factor in the previously noted surprising result that EffCS is a better predictor than TCR of future
transient warming under RCP8.5.

1 Introduction

Summarizing the response of the Earth system to anthro-
pogenic forcers with metrics has long been practised as a way
to illustrate uncertainty in Earth system response to green-
house gases. For example, the concept of the equilibrium cli-
mate sensitivity (ECS), the equilibrium global mean temper-
ature increase which would be observed in response to a dou-
bling of atmospheric carbon dioxide concentrations (Hansen
et al., 1984), has existed for over 50 years (Charney et al.,
1979) and a significant amount of literature has been devoted
to constraining its value (Knutti et al., 2017).

The Earth system responds to a step change in forc-
ing on timescales ranging from days to millennia (Knutti
and Rugenstein, 2015), so an “effective climate sensitiv-
ity” (EffCS here on) is often used as a proxy for decadal
to centennial feedbacks. EffCS is generally calculated in a
coupled atmosphere–ocean model from the output of the

“abrupt4xCO2” simulation, a standard experiment in which
CO2 concentrations are quadrupled instantaneously from
pre-industrial levels and the model is allowed to evolve (Gre-
gory et al., 2004).

EffCS is calculated by assuming that a model is associated
with a single feedback parameter (i.e. a rate of change of top
of atmosphere radiative flux per unit surface temperature in-
crease), allowing the equilibrium temperature response to a
step change forcing to be predicted by linear extrapolation.
Another metric, the transient climate response (TCR) at the
time of CO2 doubling or quadrupling (T140) is calculated
from an “1pctCO2” idealized experiment in which CO2 con-
centrations are increased by 1 % each year, starting from a
pre-industrial state, resulting in linearly increasing forcing.

Although it was generally assumed that TCR would be a
better predictor of transient warming under a high emissions
scenario such as Representative Concentration Pathway 8.5
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(RCP8.5) (Riahi et al., 2011), a complication has arisen due
to the fact that EffCS seems to be better correlated than TCR
with 21st century warming from present-day levels under a
business-as-usual scenario (Grose et al., 2018). The reason
for this is not yet well understood given that the radiative
pathway in RCP8.5 leading up to 2100 is relatively similar
to that of the 1 % annual increase experiment used to mea-
sure T140. Furthermore, neither EffCS nor TCR is well cor-
related with end-of-century temperatures in a mitigation sce-
nario (Grose et al., 2018) such as RCP2.6 (van Vuuren et al.,
2011), which calls into question the relevance of such sum-
mary metrics in the discussion of mitigation adaptations.

Similarly, a number of studies have shown that the EffCS
approximation does not well describe the true equilibrium
behaviour of most models (Knutti et al., 2017). When gen-
eral circulation model (GCM) abrupt4xCO2 simulations are
continued for thousands of years, many are found to deviate
significantly from the linear trend line one would fit to a 150-
year simulation (Andrews et al., 2015; Knutti et al., 2017;
Senior and Mitchell, 2000; Rugenstein et al., 2016).

The conceptual models representing the evolving feed-
backs as a function of timescales vary slightly between stud-
ies – either modulating the efficacy of deep ocean heat uptake
(Geoffroy et al., 2013; Winton et al., 2010; Held et al., 2010)
or by representing the climate system as sum of warming pat-
terns which emerge on different adjustment timescales (Ar-
mour et al., 2013; Rugenstein et al., 2016), each associated
with their own feedback parameter. However, the analytical
set of solutions for the temperature response to a step change
in forcing is the same in either case – a superposition of de-
caying exponential modes with different timescales varying
between a few years and a few centuries (Proistosescu and
Huybers, 2017). It has been shown that the implications of
these additional degrees of freedom and ambiguity over con-
tributions from different timescales of response might im-
ply that EffCS may not be strongly constrained by tempera-
ture change over the last century (Proistosescu and Huybers,
2017; Andrews et al., 2018), and that the long-term equilib-
rium (LTE) sensitivity may be greater than that implied by
EffCS (Otto et al., 2013; Lewis, 2013).

This state of understanding leads to a number of emerging
critical questions which we discuss in this paper – can we
explain the non-intuitive result that EffCS is a better predic-
tor than T140 of end-of-century temperatures under RCP8.5?
Which summary metrics of global sensitivity to greenhouse
gas forcing are most useful for effective policy decisions?
Finally, do the implicit structural assumptions underpinning
the applicability of these metrics to the real world cause us to
mis-categorize and potentially underestimate future warming
risk?

2 A simple model example

We begin by considering an idealized ensemble of climate
model simulations. We use a two-timescale thermal response
model, conceptually representing the deep ocean (with a re-
sponse timescale of a century or more) and shallow ocean
response timescales (with a response timescale of 10 to
50 years). Such a model, although simple, is capable of re-
solving evolving feedback amplitudes and can emulate the
climatological responses of complex Earth system models
on two timescales. Such a model makes a structural assump-
tion that the Earth can be modelled as a discrete sum of lin-
ear decaying exponential responses to forcing, but this model
has been found to well describe GCM evolution on a century
timescale (Proistosescu and Huybers, 2017; Geoffroy et al.,
2013) and is sufficiently complex to illustrate the limitations
of defining system sensitivity through TCR or EffCS.

To efficiently describe the response of the system to a
generic forcing, this study employs a linear Green function
which describes the forcing by convolution with an impulse
response (Ruelle, 1998 – in this case, the step change in CO2
forcing). This approach can be used to approximate and sim-
plify global climate dynamics (Ragone et al., 2015; Lucarini
et al., 2017), and its computational efficiency allows Markov
chain Monte Carlo parameter estimation for the physical
parameters. Furthermore (and critically for this study), the
pulse–response formulation can be used to self-consistently
relate different metrics of climate sensitivity on a range of
timescales (Lucarini et al., 2017).

2.1 Model formulation

The two-timescale impulse response model follows the ther-
mal feedback-timescale implementation from the FAIR sim-
ple climate model (Smith et al., 2018; Millar et al., 2017),
which follows Hasselmann et al. (1993):

dTn
dt
=
qnF − Tn

dn
; T =

∑
n

Tn; n= 1,2, (1)

where Tn is global mean temperature and for each
timescale n. Tn is the component of warming associated with
that timescale, qn is the feedback parameter, and dn is the
response timescale.

Note the use of n= 2 timescales is a structural choice,
used here both for relevance to parameterization choices in
commonly used simple models (Smith et al., 2018; Geof-
froy et al., 2013; Goodwin et al., 2018; Meinshausen et al.,
2011) and because the parameters of two-timescale model
can be readily interpreted and unambiguously fitted to com-
plex model output. The n= 1 timescale provides a signif-
icantly poorer fit to temperature evolution in abrupt4xCO2
Coupled Model Intercomparison Project (CMIP) simula-
tions (see Fig. S5). Notably, some authors have considered
three timescale models (Caldeira and Myhrvold, 2013; Joos
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et al., 2013; Tsutsui, 2017) or general linear response func-
tions (Ragone et al., 2015; Lucarini et al., 2017; Lembo et al.,
2020) which allow (effectively) for an unlimited number of
exponential response modes (Lucarini, 2018). While we ob-
serve a small further improvement in fit is apparent for some
models with n= 3 modes, not all models appear to express
three response timescales, which causes unstable fitting be-
haviour in those cases and a difficulty in comparing and in-
terpretation of the values of fitted parameters across CMIP.
Nevertheless, further understanding the feedback timescale
dynamics of different CMIP models is an important topic for
further research.

Total heat flux into the system R is divided into shallow
and deep ocean fluxes, defined as a function of the same two
timescales:

R =

2∑
n=1

Rn; (2)

s.t.
2∑
n=1

rn = 1; Rn = rn (F − Tn/qn) ; (3)

where rn is an efficacy factor for heat absorbed by the deep
(n= 1) or shallow (n= 2) ocean, which sum to unity given
the boundary condition that R(0)= F (0)= F4xCO2 at t = 0
(allowing just one degree of freedom r1 – the fraction of heat
which is allocated to deep ocean storage).

The particular solutions for temperature and radiation re-
sponse to a step change in forcing F4xCO2 at time t = 0 can
be expressed as a sum of exponential decay functions:

Tp(t)= F4xCO2

2∑
n=1

qn (1− exp(−t/dn)) (4)

Rp(t)= F4xCO2

2∑
n=1

rn (exp(−t/dn)) , (5)

where Tp(t) is the annual global mean temperature, Rp(t) is
the net top-of-atmosphere (TOA) radiative imbalance at
time t , and F4xCO2 is the instantaneous global mean radiative
forcing associated with a quadrupling of CO2, taken here to
be 7.4 W m−2 (Myhre et al., 2013).

We define a historical forcing time series as a function
of CO2 concentrations C(t) and a non-CO2 forcing time se-
ries FnonCO2(t) (both taken from Meinshausen et al., 2011):

F (t)=
F4xCO2

ln(4)
ln
(
C(t)
C0

)
+ frFaer+Fother, (6)

where fr is a free parameter to allow scaling of aerosol forc-
ing (conceptually allowing for forcing uncertainty in the his-
torical time series), and Fother is all other anthropogenic and
natural forcers (summed from Meinshausen et al., 2011). The
thermal response is calculated by expressing the numerical
time derivative of the forcing time series F (t) where the
change in forcing in a given time step in a given year 1F (t ′)

is [F (t ′)−F (t ′−1)]. The forcing time series can thus be ex-
pressed a series of step functions, and Tp from Eq. (4) can be
used to calculate the integrated thermal response.

T (t)=
t∑

t ′=0

1F (t ′)
2∑
n=1

qn

(
1− exp

(
−(t − t ′)
dn

))
(7)

Heat fluxes into the deep (D(t)) and shallow (H (t)) ocean
components are represented by numerical integration of the
slow (n= 1) and fast (n= 2) pulse response components
of Rp(t) in Eq. (5):

D(t)= r1
t∑

t ′=0

1F (t ′)exp
(
−(t − t ′)
d1

)
, (8)

H (t)= (1− r1)
t∑

t ′=0

1F (t ′)exp
(
−(t − t ′)
d2

)
. (9)

2.1.1 Model optimization

The model input time series for calibration are observed CO2
concentrations, along with radiative estimates from Mein-
shausen et al. (2011) of non-CO2 forcing agents. We opti-
mize the thermal model parameters for two timescales and
the non-CO2 forcing factor (see Table 1).

A Markov chain Monte Carlo (MCMC) optimization pro-
cedure produces an ensemble of parameter configurations
such that the density of the simulations in parameter space
reflects the likelihood as reflected in a cost function (as rep-
resented by a number of pre-defined likelihood metrics).
MCMC algorithms employ a random walk in parameter
space which ultimately seeks to produce a representative
sample of the distribution.

The classical approach to this random walk is the
Metropolis–Hastings algorithm (MacKay, 2002), which iter-
atively moves a set of “walkers” or sample points throughout
the parameter space. This approach, however, is computa-
tionally inefficient, as it requires the specification of the tran-
sition distribution with a large number of degrees of freedom.
Here, we follow the Goodman and Weare (2010) MCMC im-
plementation which updates a walker position using a vec-
tor defined stochastically from the remaining ensemble of
walkers. This approach has fewer degrees of freedom and
is a well-tested approach for multidimensional optimization
problems (Foreman-Mackey et al., 2013). We use flat initial
parameter distributions as shown in Table 1, 200 walkers and
50 000 iterations for each optimization.
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Table 1. A table showing model parameter values and minimum and maximum values allowed in model optimization.

Long name Symbol Min Max

Thermal adjustment of deep ocean sensitivity (KW m−2) q1 0 10
Thermal adjustment of upper ocean sensitivity (KW m−2) q2 0 10
Thermal adjustment of deep ocean timescale (years) d1 100 4000
Thermal adjustment of upper ocean timescale (years) d2 10 100
Fraction of forcing in deep ocean response r1 0.0 1
Non-CO2 forcing ratio fr 0.7 1.3

Cost functions are computed for global mean temperature,
shallow and deep ocean content:

ET =
∑
t

(
(T (t)− Tobs(t))
√

2σT

)2

(10)

EH =
∑
t

(
(H (t)−Hobs(t))
√

2σH

)2

, (11)

ED =
∑
t

(
(D(t)−Dobs(t))
√

2σD

)2

, (12)

where Tobs is HadCRUT 4.6 ensemble median global mean
temperature anomalies (Morice et al., 2012) relative to a
1850–1900 baseline, and σT is defined as the standard de-
viation of HadCRUT 1850–1900 values. Shallow and deep
ocean heat fluxes are taken as the 0–300 and 300 m plus heat
content derivatives, respectively, in Zanna et al. (2019), with
σH and σD taken as 1850–1900 standard deviations from the
same dataset.

Flat priors are used for all parameters, with an additional
prior on true equilibrium climate sensitivity using the likely
value and upper bound on equilibrium climate sensitivity
from Goodman and Weare (2010) to specify the median and
90th percentile of a gamma distribution for equilibrium sen-
sitivity (i.e. warming as t→∞).

We demonstrate that this technique is able to capture the
broad uncertainty associated with future projections of CMIP
models by using pre-2020 temperatures in RCP8.5 to cali-
brate the simple model outlined above (see Fig. S3). In most
cases, the future projection for each scenario falls within the
distribution arising from the MCMC ensemble fit, with some
specific exceptions – FIO-ESM, FGoals-G2, CCSM4 (which
share some common heritage) and the NASA Goddard Insti-
tute for Space Studies (GISS) models. As such, the observa-
tionally fitted MCMC ensemble explores broadly compara-
ble uncertainty to that seen in the bulk of the CMIP ensem-
ble, with the caveat that the ensemble tends to undersample
cases where there is little or no long-term warming response
to emissions.

The physical parameters of this simple model are con-
strained by historical carbon dioxide concentrations together
with observed global mean temperatures from 1870 to the
present day (together with aggregate forcing estimates repre-
senting other anthropogenic emissions (Meinshausen et al.,

2011), which are not the focus of this study). The poste-
rior parameter distribution for the model can then be used
to project the corresponding range of response in probabilis-
tic projections of the future scenarios or in idealized exper-
iments which simulate a range of self-consistent values for
various climate sensitivity metrics.

2.1.2 Idealized simulations

Effective climate sensitivity is measured by implementing a
step change abrupt CO2 quadrupling and following Gregory
et al. (2004) to assess the linear extrapolation of warming
at the point of net TOA energetic balance. A140 is calcu-
lated as the average of years 131–150 of the abrupt4xCO2
simulation. TCR and T140 are calculated as the average of
years 61–80 and 131–150, respectively, of the 1pctCO2 sim-
ulation (during which the CO2 concentrations are doubled
and quadrupled, respectively), where CO2 concentrations are
increased annually by 1 % , resulting in a linear increase in
climate forcing. RCP scenario temperature trajectories are
calculated for each parameter set using concentration and
forcing time series from Meinshausen et al. (2011) from 1850
to 2300.

Resulting EffCS values (to a doubling of CO2) range from
2.4 to 4.6 K (5th and 95th percentiles) and values of TCR
from 1.6 to 2.2 K (Fig. 1b and e). This results in a range
of 21st century warming under two scenarios considered:
RCP2.6 (RCP8.5) 2100 warming ranges from 1.4 to 2.4 K
(3.8 to 5.1 K), respectively (5th and 95th percentiles; see
Fig. 1a).

We then consider, in the context of this observationally
constrained ensemble of simple models, which idealized
metrics of system response are most informative for describ-
ing 21st century warming. We consider a number of sensi-
tivity metrics: the EffCS, TCR and T140 (transient warming
under an annual compounded 1 % increase in CO2 concen-
trations at the time of CO2 doubling and quadrupling, corre-
sponding to years 70 and 140 of the simulation). Finally, we
consider A140 as a possible metric for consideration, defined
as the global mean warming above pre-emission levels in the
abrupt4xCO2 simulation calculated 140 years after time of
CO2 quadrupling (here and throughout estimated as the mean
from years 131 to 150). Figure 2 illustrates how ensemble
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B. Sanderson: Relating climate sensitivity indices to projection uncertainty 5

Figure 1. An observationally constrained ensemble of simple models. Panel (a) shows the global mean temperature both historically and
under the RCP2.6 and RCP8.5 scenarios. Black lines show the HadCRUT data used in calibration, whereas shaded regions show the 10 %–
90 % range of scenario projections in the posterior simple model ensemble distribution. Panel (b) shows the corresponding time series
posterior distributions for the abrupt4xCO2 and 1pctCO2 simulated experiments, with grey error bars showing range of EffCS for CO2
quadrupling (boxes and whiskers show 25th–75th and 1st–99th percentiles, respectively). Panels (c, d) show relationships between different
sensitivity indicators and 2000–2100 temperature changes under RCP8.5/RCP2.6, respectively; panel (e) shows the posterior cumulative
probability density functions for the four sensitivity variables considered; and panel (f) shows the parameter regression coefficients relating
the five normalized model input parameters to the four normalized sensitivity metrics.

spread would be impacted for a set of different scenarios if
each of these metrics were constrained to lie within a nar-
row range (nominally the 45–55th percentile range of values
present in the entire observationally constrained ensemble).

In the high emissions RCP8.5 scenario (Riahi et al., 2011),
2000–2100 warming is nearly perfectly described (R2

=

0.99) by T140, the transient climate response after 140 years
in a 1 % CO2 simulation (Figs. 1c and 2k). The correspond-
ing response after only 70 years (TCR) is a much poorer pre-
dictor at R2

= 0.31.
These results are physically intuitive. The climate forcing

and rate of change of forcing in RCP8.5 at the end of the

21st century are of similar magnitude to those in year 140 of
the 1 % CO2 simulation, and so it is unsurprising that T140
is an efficient predictor for RCP8.5. TCR is a poor predic-
tor in the simple model ensemble largely because TCR itself
is already highly constrained by historical warming (Fig. 1e),
and thus the ensemble is effectively conditioned on a value of
TCR and it has little additional explanatory value in explain-
ing the ensemble variance in the RCP projections (Fig. 2f
and g).

EffCS and A140 are also well correlated with the RCP8.5
warming (R2

= 0.77 and 0.76, respectively) but less so than
T140. For the mitigation scenario (RCP2.6), the most effec-
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6 B. Sanderson: Relating climate sensitivity indices to projection uncertainty

Figure 2. An illustration of how constraining different types of global sensitivity metric impact the idealized spread of global mean tem-
perature evolution under different scenarios. Each row illustrates one constraint: effective climate sensitivity to CO2 doubling (EffCS), TCR
(70 years, CO2 doubling), T140 (140 years, CO2 quadrupling) and A140. Lines in grey show the entire posterior distribution of models from
Fig. 1, while lines in black show the 45th–55th percentiles of the distribution of the respective quantity. Panels (a–s) show global mean tem-
perature time series of a scenario or idealized experiment – RCP8.5, RCP2.6, 1 % ramping CO2, abrupt CO2 quadrupling (the fifth column
shows energetic imbalance as a function of surface temperature in the abrupt4xCO2 experiment). Histograms show the resulting distribution
of temperature in 2150 (RCP8.5/2.6) or year 140 (1pctCO2, abrupt4xCO2) for the complete distribution (grey) and 45th–55th percentile
range (black). Red lines show the distribution of values of effective climate sensitivity (d, i, n, s) and the trend lines used to compute
it (e, j, o, t).

tive predictor of 2000–2100 warming is A140 (R2
= 0.91).

Both EffCS and T140 are weakly correlated (R2
= 0.62

and 0.65, respectively), and TCR shows no significant cor-
relation.

To help understand these relationships, we can perform
a regression analysis of the metrics as a function of model
ensemble parameters (Fig. 1f), which suggests A140 and
RCP2.6 warming from 2000 to 2100 is controlled by the dif-
ference between the slow and fast components of sensitivity.
We can understand this in the context of the way the model
is constrained by historical temperatures.

There is a trade-off between fast and slow components of
climate sensitivity in the posterior parameter distribution of
the ensemble (see Fig. 3), which broadly determines the frac-
tion of equilibrium warming associated with current forcing
levels that has already been experienced. There is also a cor-
relation between fast sensitivity and fast timescale. These re-
lationships should be broadly expected if we consider that
the observed transient warming of the model has been con-
strained by the model. If we consider the analytical expres-
sion for TCR (warming after 70 years of 1 % annual increase
in CO2) in a two-timescale model (from Eq. 7 following
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Smith et al., 2018):

TCR= F2xCO2

[(
q1

(
1− d1/70

(
1− e−70/d1

)))
+q2

(
1− d2/70

(
1+ e−70/d2

))]
, (13)

where F2xCO2 is the forcing from a doubling of atmospheric
CO2, q1, d1 are the fast sensitivity and timescale, and q2,
d2 are the slow sensitivity and timescale. In the limit that
d1� 70 and d2� 70, we obtain the following:

TCR≈ F2xCO2

(
q1

1+ d1
70

+
q2

2

(
70
d2

)2
)
. (14)

This expression explains the primary features apparent in
the MCMC posterior distribution if we consider that the ob-
servations broadly fix the value of TCR: an inverse relation-
ship is expected between q1 and q2, and we observe this
in Fig. 3. The fast component (left-hand term in Eq. 14) is
constrained by the historical warming time series to be non-
zero (see Fig. 3) – and there is a tight proportionality in
constrained values of q1 and d1. Only the lower bound of
the slow timescale d2 is constrained for a given value of q2;
i.e. the transient warming alone provides no information on
the upper bound of the slow response timescale.

Thus, if a greater fraction of today’s observed warming is
explained with the faster component of model response, we
would expect less unrealized warming in a mitigation sce-
nario later in the century. This causes large uncertainties in
RCP2.6 evolution in the constrained ensemble, even in the
case that we had confidence in the values of EffCS, TCR or
T140 (Fig. 2b, g and l).

The constrained distribution for fast-timescale sensitiv-
ity is near Gaussian and non-zero in all ensemble mem-
bers, whereas slow-timescale sensitivity is more weakly con-
strained by the observations ranging from near-zero to large
(20 K W m2) long-term equilibrium responses. The slow
feedback component strongly controls A140 and RCP2.6
warming (Figs. 1d, f and 2q).

RCP8.5 warming and T140, however, are associated with
a near-linear increase in forcing throughout the simulation
which results in a near-linear temperature increase. The rel-
ative fraction of warming associated with fast- and slow-
timescale feedbacks remains constant over time, and thus
warming to date (effectively fixing TCR, subject to aerosol
forcing uncertainty) better constrains relative error in future
response in a non-mitigation scenario (Fig. 2f).

3 Considering the multi-model ensemble

But how do the findings in the simple model framework rec-
oncile with findings in the CMIP5 and CMIP6 multi-model
ensembles? Firstly, it is plausible that there is some common-
ality in the lack of skill of TCR (the transient response after

70 years) in our simple model ensemble and in the CMIP en-
sembles. In our simple model case, the ensemble members
were explicitly calibrated to reproduce the 20th and early
21st century warming – which is a very strong constraint on
the value of TCR in this idealized setup.

Earth system model calibration is conducted in a much
larger parameter space by groups with a wide range of ob-
jectives which complicate interpretation (Mauritsen et al.,
2012; Sanderson and Knutti, 2012), but simulations are gen-
erally only published using models which are able to ade-
quately describe the 20th century and thus might be subject
to a similar effective constraint on TCR which renders the
metric ineffective for describing variance in the future evo-
lution of the model. But there remains a direct contradiction
for T140, where the simple model suggests T140 should be
a better predictor than EffCS for non-mitigation warming in
the 21st century, whereas the opposite was found in the CMIP
correlations (see Fig. S2 and Grose et al., 2018).

To understand this, we need to consider how the prop-
erties of the simple model ensemble differ from the CMIP
archive. Although the thermal response of the simple model
is broadly able to represent the climatological response of
CMIP models to step forcing and transient forcing in CO2
over a century timescale (Geoffroy et al., 2013; Proistosescu
and Huybers, 2017), it contains no internal climate variabil-
ity, and all experiments in Sect. 2 are conducted from an ide-
alized, perfectly spun-up state.

Both of these assumptions are not true for CMIP5 or
CMIP6. Measurements of EffCS and TCR are complicated
by internal variability (Knutti and Rugenstein, 2015), and
many models still exhibit some temperature drift in the con-
trol simulation from which the 1pctCO2 simulations and
abrupt4xCO2 simulations are branched (Fig. 4). This creates
uncertainty from two sources – firstly, it is not always appar-
ent at what point during the control simulations the 1pctCO2
simulation has been branched; thus, there is uncertainty in
how the anomaly should be measured. Secondly, there is
the potential for an unknown contribution of control drift to
be erroneously included in the temperature evolution of the
1pctCO2 and abrupt4xCO2 simulations.

To assess the contribution of control drift bias in sensitiv-
ity metrics, we implement idealized representations of non-
equilibration into our simple model from Sect. 2. We then
create an idealized distribution of drift similar to that seen in
the CMIP ensembles in the simple model ensemble by ini-
tializing the model 500 years before the experiment begins,
defining an effective “baseline” period from which anoma-
lies are measured to be the average temperature between the
years 400 and 500. Climate internal variability is represented
by a second-order autoregressive model, which is fitted to
each CMIP model in turn. The ensemble-mean autoregres-
sive parameters are used to create artificial “noisy” simula-
tions by linearly adding noise generated from the autoregres-
sive model to the output of the simple model.

https://doi.org/10.5194/esd-11-1-2020 Earth Syst. Dynam., 11, 1–15, 2020



8 B. Sanderson: Relating climate sensitivity indices to projection uncertainty

Figure 3. A “corner plot” showing the posterior parameter distribution attained by MCMC calibration of the simple climate model. Diagonal
plots show posterior histograms for each of the parameter values optimized in the calibration, where the x-axis range reflects the bounding
values of the initial flat prior distribution. Off-diagonal plots show pairwise distributions of parameters in the posterior distribution.

We consider the range of control drifts observed in the
CMIP5 and CMIP6 ensembles (illustrated in Fig. 4l) which
range from −0.3 to +0.6 K per century in the CMIP5 and
CMIP6 models considered in this study. An idealized distri-
bution of drift in the simple model ensemble is created by
initializing the model 500 years before the abrupt4xCO2 or
1pctCO2 simulation with a non-zero, constant forcing drawn
from a flat distribution ranging from−1 to+1 Wm−2, which
results in a distribution of control drift of−0.4 to+0.4 K per
century (i.e. broadly comparable to the CMIP case). For each
simulation, we consider a baseline for temperature to be de-
fined by the average global mean temperature in years 400–
500.

To represent the first-order effect of climate noise, we fit
a second-order autoregressive model to the detrended global
mean temperature time series in each available model in the
CMIP5/6 ensemble. Taking CMIP mean parameters for the
variance and autoregressive parameters, we generate noise
for each realization of the simple model (though we note, in
practice, that the noise characteristics vary by CMIP model).

The results are illustrated in Fig. 5a, where the simple
model ensemble is initialized in a non-equilibrium state
with additive Gaussian noise. With these additional sources
of error, both EffCS and A140 are not strongly impacted
when measured in the noisy/non-equilibrated model variants
(Fig. 5b and c), but the T140 measurement is strongly de-
graded (Fig. refdriftd). Indeed, in this ensemble, the biased
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Figure 4. (a–k) Control simulation global mean temperatures from a selection of models in the CMIP5 and CMIP6 ensembles. Control
simulations (blue) and initial years of 1pctCO2 simulations (pink) are plotted. Dotted lines show linear fit to the available time series. Blue
and pink circles show the intersection of the linear temperature fit at the start of the simulation. (l) Histogram showing the distribution of
control model trend in CMIP (black) and in an idealized ensemble of non-equilibrated simple models considered in Fig. 5 (grey).

measurements of EffCS or A140 are slightly better correlated
with true T140 than the biased measurement of T140 itself.
This provides a possible explanation for why T140 may be a
poor predictor of RCP8.5 warming in CMIP.

In our simple framework, the reasons for the more accurate
measurement of EffCS are primarily associated with the lack
of equilibration. Simply adding noise from the autoregres-
sive model has little effect on the accuracy of EffCS, T140
or A140 (where both T140 and A140 are estimated using the
average of years 131 to 150 in the simulation; see Table 2).

Both A140 and EffCS are less sensitive to non-equilibrated
initial states than T140. The former experiences the same
variance due to the uncertain climate drift, but the absolute
value of A140 tends to be larger than T140; thus, there is
less relative error in its estimation. The effect on the drift on
EffCS is muted because the near-linear climate drift primar-
ily biases the estimation of slow rather than fast feedbacks
(see Fig. S1 in the Supplement). Because EffCS is primar-
ily a measure of fast-mode feedback strength (see Fig. 1f),
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Figure 5. An idealized ensemble of simple models, where model parameters are identical to those considered in Fig. 1b, but models are
initialized in a non-equilibrium state such that the baseline period is subject to some control drift, and model output is also subject to
interannual variability of a similar magnitude to models in the CMIP archive. Panel (a) shows global mean temperature evolution for the
control period (grey), abrupt4xCO2 simulation (blue) and 1pctCO2 simulation (green). Panels (b, c) show the true value of (EffCS, A140) as
calculated in the noise-free, equilibrated simulations, plotted as a function of the measured value of (EffCS, A140) in a noisy, non-equilibrated
simulation. Panels (d, f, g) show the true value of (T140, RCP2.6, RCP8.5 2000–2100 warming) plotted as a function of the measured values
of T140, EffCS and A140, respectively.

its value is less impacted if experiments are started from a
non-equilibrium state.

There is some evidence that the lack of equilibration has an
outsized effect on the estimation of TCR in the CMIP mod-
els. In Fig. 6, we attempt to unbias the estimate of TCR in
two ways. Firstly, we estimate the baseline temperature by re-
gressing the temperatures in the first 20 years of the 1 % CO2
ramp experiment as a function of time (see Fig. S4). Anoma-
lies in temperature (and TOA fluxes for ECS) are measured
relative to the corrected baselines derived from the 1pctCO2
simulation, and estimated linear pre-industrial trends are sub-
tracted from the 1pctCO2 and abrupt4xCO2 time series. This
pre-processing of the temperature time series improves the
correlation between TCR and 21st century warming under
RCP8.5 from 0.86 to 0.89. It also improves the correlation

between EffCS and 21st century warming slightly from 0.94
to 0.95 (and A140 from 0.89 to 0.91).

These “corrected” values (listed in Table 3) are estimates
only, given that we would expect the regression estimate
based on a short 20-year period to be itself subject to internal
variability noise, and we are assuming that the abrupt4xCO2
simulation and 1pctCO2 simulation have the same base-
lines. However, the improvement in correlation with future
warming seen over the case with the pre-industrial aver-
age baseline supports the hypothesis that control drift adds
uncertainty to the estimation of all quantities (and particu-
larly TCR). However, it is not a complete explanation –and
even after this adjustment, EffCS remains better correlated
to RCP8.5 transient warming than TCR in the multi-model
ensemble.
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Table 2. A table showing R2 regression statistics relating a set of predictors to a set of unbiased model properties. Predictors are tran-
sient climate sensitivity at quadrupling of CO2 (T140), effective climate sensitivity (EffCS) and warming 140 years after a quadrupling of
CO2 (A140); additional rows show these values measured experiments conducted with non-equilibrated base climates (drift), additive au-
toregressive noise (noise) and a combination of both factors (drift plus noise). “True” output model properties (T140, EffCS, A140, RCP8.5
and RCP2.6 warming from 2000 to 2100) are derived from the equilibrated model without noise.

Predictor T140 EffCS A140 RCP8.5 RCP2.6
2000–2100 2000–2100

T140 (true) 1.00 0.78 0.77 0.99 0.65
EffCS (true) 0.78 1.00 0.70 0.77 0.62
A140 (true) 0.77 0.70 1.00 0.76 0.91
T140 (drift) 0.74 0.58 0.59 0.73 0.50
EffCS (drift) 0.73 0.94 0.67 0.73 0.59
A140 (drift) 0.74 0.67 0.95 0.73 0.86
T140 (noise) 0.99 0.77 0.76 0.98 0.65
EffCS (noise) 0.78 1.00 0.69 0.77 0.61
A140 (noise) 0.78 0.70 1.00 0.77 0.91
T140 (drift+ noise) 0.70 0.55 0.55 0.69 0.47
EffCS (drift+ noise) 0.72 0.93 0.65 0.71 0.58
A140 (drift+ noise) 0.73 0.66 0.94 0.72 0.85

Figure 6. Plots showing the correlation between TCR (a), EffCS (b) and A140 (c) with 21st century warming, here represented by the
difference between 2001–2020 and 2081–2100 global mean temperatures in the first ensemble member for each model in the CMIP5 archive
for the RCP8.5 scenario. Each plot shows the “original” calculation, where the baseline temperatures (and TOA fluxes for EffCS) are taken
as the piControl mean. In the “corrected” calculation, a correction term for the baseline temperature and control drift is applied. Correlation
coefficients are shown for the original and corrected cases.

4 Conclusions

The question of which metric of climate sensitivity is most
useful for summarizing uncertainty in future projections is
conditional on a number of factors. Any single metric of
sensitivity, even if known perfectly, cannot constrain Earth
system response on all timescales and scenarios. We have
shown here that one can produce a number of model variants
which can exhibit the same value of EffCS or TCR but with
a range of responses, especially in a mitigation scenario such
as RCP2.6.

In an idealized environment where models can be brought
to a complete equilibrium control state, and ensemble sizes
for “1pctCO2” simulations are large enough to avoid the ef-
fects of internal variability, the T140 metric would be the best
idealized warming measure for century-scale warming un-
der a high emissions scenario. However, the presence of even
moderate control drift can act as a significant source of error
in the measurement of T140, and so here we find that EffCS
is likely to be a more accurate practical sensitivity metric in
Earth system model applications where full equilibration is
difficult to achieve.
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Table 3. A table showing various sensitivity metrics estimated from the CMIP5 and CMIP6 ensembles (in K), using both pre-industrial
average baseline temperatures (org) and baseline temperatures estimated from a regression fit to the first 20 years of the 1cptCO2 simulation
(corr), where the linear fit is used to estimate temperatures and radiative fluxes at t = 0. Warming is shown (where available) for corre-
sponding RCP2.6 and RCP8.5 simulations, where the difference between 2001–2020 and 2081–2100 in the first ensemble member for the
corresponding model is used to assess 21st century warming.

Model EffCS EffCS A140 A140 T140 T140 RCP8.5 RCP2.6
(org) (corr) (org) (corr) (org) (corr) 2000–2100 2000–2100

ACCESS1_0 3.48 3.53 5.48 5.60 4.45 4.57 3.72 –
ACCESS1_3 3.30 3.38 4.84 5.02 3.93 4.11 3.59 –
BNU_ESM 3.86 3.80 6.17 6.05 4.98 4.86 3.88 0.63
CCSM4 2.84 2.87 4.80 4.86 4.02 4.08 3.20 0.44
CESM1_CAM5_1_FV2 3.31 2.89 5.29 4.44 – – – –
CNRM_CM5 3.22 3.28 5.17 5.30 4.42 4.54 3.06 0.68
CNRM_CM5_2 3.37 3.37 5.11 5.12 4.29 4.29 – –
CSIRO_Mk3_6_0 3.53 3.63 5.66 5.86 4.25 4.45 3.67 1.09
CanESM2 3.61 3.59 5.92 5.89 5.08 5.05 3.91 0.92
FGOALS_s2 3.85 3.78 5.90 5.76 4.76 4.62 – –
GFDL_CM3 3.69 3.87 5.66 6.02 4.55 4.90 4.08 1.25
GFDL_ESM2G 2.37 2.34 3.86 3.80 – – 2.49 −0.08
GFDL_ESM2M 2.52 2.60 3.78 3.93 – – 2.39 0.32
GISS_E2_H 2.20 2.42 3.79 4.23 3.35 3.79 2.53 0.36
GISS_E2_R 2.03 2.01 3.37 3.34 2.98 2.94 2.18 0.09
HadGEM2_ES 4.25 4.34 6.27 6.45 5.13 5.30 4.10 0.87
IPSL_CM5A_LR 3.90 3.92 5.78 5.78 4.81 4.81 4.03 0.80
IPSL_CM5A_MR 3.96 4.01 5.84 5.93 4.84 4.93 3.91 0.59
IPSL_CM5B_LR 2.43 2.54 4.20 4.43 3.45 3.67 3.07 –
MIROC_ESM 4.45 4.51 6.35 6.56 5.10 5.30 4.34 1.26
MIROC5 2.60 2.62 4.20 4.27 3.61 3.68 2.93 0.62
MPI_ESM_LR 3.50 3.45 5.91 5.82 4.82 4.74 3.20 0.43
MPI_ESM_MR 3.35 3.42 5.71 5.84 4.66 4.80 3.15 0.36
MPI_ESM_P 3.34 3.31 5.71 5.64 4.57 4.49 – –
NorESM1_M 2.63 2.68 4.19 4.29 3.39 3.49 2.89 0.55
bcc_csm1_1 2.77 2.77 4.85 4.87 4.00 4.02 3.01 0.52
bcc_csm1_1_m 2.76 2.68 5.00 4.84 4.27 4.11 2.78 0.30
inmcm4 1.96 2.00 3.03 3.13 2.80 2.89 2.41 –
BCC_CSM2_MR 2.87 2.91 4.75 4.89 3.88 4.02 – –
CESM2 4.70 4.80 7.20 7.40 5.01 5.20 – –
CESM2_WACCM 4.32 4.43 6.51 6.74 4.68 4.91 – –
GISS_E2_1_G 2.61 2.66 4.18 4.27 1.95 2.04 – –
GISS_E2_1_H 2.99 3.09 4.94 5.13 4.11 4.31 – –
MIROC6 2.40 2.40 3.96 3.98 3.47 3.49 – –
CNRM_CM6_1 4.69 4.67 6.75 6.71 5.49 5.46 – –
CNRM_ESM2_1 4.35 4.30 6.16 6.07 5.12 5.02 – –
UKESM1_0_LL 5.26 5.14 7.66 7.41 6.36 6.11 – –
E3SM_1_0 5.26 4.68 – – – – – –

EffCS itself has limitations; it is relatively insensitive to
slow timescale feedbacks, which means that it poorly cor-
related with century-scale warming under RCP2.6 (where a
large fraction of warming occurs due to slow feedback re-
sponse to historical emissions) and for warming on multi-
century timescales under a high emissions scenario (where
concentrations stabilize post-2100). We find that a simple but
useful alternative is to simply use the mean warming from
years 131 to 150 of the abrupt4xCO2 simulation – which is

skilled comparably to EffCS in predicting RCP8.5 warming
in 2100 but more sensitive to century timescale feedbacks
than EffCS – therefore, it is better correlated with RCP2.6
end-of-century warming.

It is notable that the most common metrics of sensitiv-
ity (EffCS, T140 and TCR) provide very little guidance on
peak warming expected under climate mitigation. The focus
on these metrics has also given rise to the issue that slow
feedbacks in Earth system models are not well constrained
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by the set of experiments currently conducted by default in
CMIP. The standard 150-year simulation used to calculate
effective climate sensitivity does not constrain true equilib-
rium climate sensitivity, and only a limited set of CMIP-class
models have run models for long enough to be informative
about equilibrium response (Rugenstein et al., 2020).

It should be noted that these conclusions are derived from
the consideration of a relatively simple two-timescale pulse
response model. In this model, we can show that certain
sensitivity metrics are insufficient to constrain future pro-
jections, and that non-equilibration may confound measure-
ment. However, the constrained distributions for the met-
rics are subject to the structural assumptions of the model.
The real world may have more than two response timescales
(Aengenheyster et al., 2018) or may be better described as
a continuous sum (Ragone et al., 2015; Lembo et al., 2020).
Further work should identify how such complexity impacts
uncertainty in relevant climate metrics.

The diversity of simulated global mean dynamical re-
sponse to greenhouse gas forcing over the coming centuries
can be represented in simple models with a relatively small
number of parameters (Smith et al., 2018; Meinshausen et al.,
2011), but we cannot reduce uncertainty in climate projec-
tions on all timescales to a single degree of freedom. Sum-
mary metrics of climate response have value if the context
of those metrics (and their range of applicability in relation
to projection uncertainty) is well understood, but their limi-
tations should be kept in mind.
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