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Abstract. Can we summarize uncertainties in global response to greenhouse gas forcing with a single number? Here we assess

the degree to which traditional metrics are related to future warming indices using an ensemble of simple climate models

together with results from CMIP5 and CMIP6. We consider Effective Climate Sensitivity (EffCS), Transient Climate Response

at CO2 quadrupling (T140) and a proposed simple metric of temperature change 140 years after a quadrupling of carbon

dioxide (A140). In a perfectly equilibrated model, future temperatures under RCP(Representative Concentration Pathway)8.55

are almost perfectly described by T140, whereas in a mitigation scenario such as RCP2.6, both Equilibrium Climate Sensitivity

(ECS)
::::
EffCS

:
and T140 are found to be poor predictors of 21st century warming, and future temperatures are better correlated

with A140. However, we show
:::
We

:::::
show

::::::
further

:
that T140 and EffCS calculated in full CMIP simulations are subject to

errors arising from control model drift and internal variability. Simulating these factors in the simple model leads to greater

error in the measured value of
:
,
::::
with

::::::
greater

::::::
relative

::::::
errors

::
in

:::::::::
estimation

:::
for T140than for EffCS. As such, if starting from a10

non-equilibrated state, measured values of Effective Climate Sensitivity can be better correlated with true Transient Climate

Response (TCR) than measured values of TCR itself. We propose that this could be an explanatory factor in the previously

noted surprising result that EffCS is a better predictor than TCR of future transient warming under RCP8.5.

Introduction

Summarizing the response of the Earth System to anthropogenic forcers with metrics has long been practised as a way to15

illustrate uncertainty in Earth system response to greenhouse gases. For example, the concept of the Equilibrium Climate

Sensitivity (ECS), the equilibrium global mean temperature increase which would be observed in response to a doubling of

atmospheric carbon dioxide concentrations (Hansen et al., 1984) has existed for over 50 years (Charney et al., 1979) and

significant amount of literature has been devoted to constraining its value (Knutti et al., 2017).

The Earth system responds to a step-change in forcing on timescales ranging from days to millennia (Reto and Rugenstein20

Maria A., 2015), so an ‘Effective Climate Sensitivity’ (EffCS hereon) is often used as a proxy for decadal to centennial feed-

backs. EffCS is generally calculated in a coupled atmosphere-ocean model from the output of the ‘abrupt4xCO2’ simulation,

a standard experiment in which CO2 concentrations are quadrupled instantaneously from pre-industrial levels and the model

is allowed to evolve (Gregory et al., 2004).

EffCS is calculated by assuming that a model is associated with a single feedback parameter (i.e. a rate of change of top25

of atmosphere radiative flux per unit surface temperature increase), allowing the equilibrium temperature response to a step
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change forcing to be predicted by linear extrapolation(we refer to this approach henceforth as the Constant Feedback (CF)

approximation, with EffCS referring to the estimate of ECS made using this approach). Another metric, the Transient Climate

Response at the time of CO2 doubling (TCR) or quadrupling (T140) is calculated from an ‘1pctCO2’ idealized experiment

in which CO2 concentrations are increased by 1 percent each year, starting from a pre-industrial state, resulting in linearly30

increasing forcing.

Although it was generally assumed that TCR would be a better predictor of transient warming under a high emissions

scenario such as RCP8.5 (Riahi et al., 2011), a complication has arisen due to the fact that EffCS seems to be better correlated

than TCR with 21st Century warming from present day levels under a business-as-usual scenario (Grose et al., 2018). The

reason for this is not yet well understood given that the radiative pathway in RCP8.5 leading up to 2100 is relatively similar to35

that of the 1 percent annual increase experiment used to measure T140. Furthermore, neither EffCS nor TCR is well correlated

with end of century temperatures in a mitigation scenario (Grose et al., 2018) such as RCP2.6 (van Vuuren et al., 2011), which

calls in to question the relevance of such summary metrics in the discussion of mitigation adaptions.

Similarly, a number of studies have shown that the EffCS approximation does not well describe the true equilibrium be-

haviour of most models (Knutti et al., 2017). When GCM abrupt-4xCO2 simulations are continued for thousands of years,40

many are found to deviate significantly from the linear trend-line one would fit to a 150 year simulation (Andrews et al., 2015;

Knutti et al., 2017; Senior and Mitchell, 2000; Rugenstein et al., 2016).

The conceptual models representing the evolving feedbacks as a function of timescales vary slightly between studies -

either modulating the efficacy of deep ocean heat uptake (Geoffroy et al., 2013; Winton et al., 2010; Held et al., 2010) or by

representing the climate system as sum of warming patterns which emerge on different adjustment timescales (Armour et al.,45

2013; Rugenstein et al., 2016), each associated with their own feedback parameter. However, the analytical set of solutions

for the temperature response to a step change in forcing is the same in either case - a superposition of decaying exponential

modes with different timescales varying between a few years and a few centuries (Proistosescu and Huybers, 2017). It has been

shown that the implications of these additional degrees of freedom, and ambiguity over contributions from different timescales

of response might imply that EffCS may not be strongly constrained by temperature change over the last century (Proistosescu50

and Huybers, 2017; Andrews et al., 2018), and that the Long Term Equilibrium (LTE) sensitivity may be greater than that

implied by estimates which use the CF framework
:::::
EffCS (Otto et al., 2013; Lewis, 2013).

This state of understanding leads to a number of emerging critical questions which we discuss in this paper - can we

explain the non-intuitive result that EffCS is a better predictor then T140 of end-of-century temperatures under RCP8.5? Which

summary metrics of global sensitivity to greenhouse gas forcing are most useful for effective policy decisions? Finally, do the55

implicit structural assumptions underpinning the applicability of these metrics to the real world cause us to mis-categorize and

potentially underestimate future warming risk?
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1 A simple model example

We begin by considering an idealized ensemble of climate model simulations. We use a two timescale thermal response

model, conceptually representing the deep ocean (with a response timescale of a century or more) and shallow ocean response60

timescales (with a response timescale of 10 to 50 years). Such a model, although simple, is capable of resolving evolving

feedback amplitudes and can emulate the climatological responses of complex Earth System Models on two timescales. Such a

model makes a structural assumption that the Earth can be modelled as a discrete sum of linear decaying exponential responses

to forcing, but this model has been found to well describe GCM evolution on a century timescale (Proistosescu and Huybers,

2017; Geoffroy et al., 2013) and is sufficiently complex to illustrate the limitations of defining system sensitivity through TCR65

or EffCS.

To efficiently describe the response of the system to a generic forcing, this study employs a linear Green’s function which de-

scribes the forcing by convolution with an impulse response Ruelle (1998) (
::::::::::::
(Ruelle, 1998 -

:
in this case, the step change in CO2

forcing). This approach can be used to approximate and simplify global climate dynamics Ragone et al. (2015); Lucarini et al. (2017)

::::::::::::::::::::::::::::::::::
(Ragone et al., 2015; Lucarini et al., 2017), and its computational efficiency allows Markov-Chain Monte Carlo parameter es-70

timation for the physical parameters. Furthermore (and critically for this study), the pulse-response formulation can be used to

self-consistently relate different metrics of climate sensitivity on a range of timescales (Lucarini et al., 2017).

1.1 Model Formulation

The two-timescale impulse response model follows the thermal feedback-timescale implementation from the FAIR simple

climate model (Smith et al., 2018; Millar et al., 2017), which follows Hasselmann et al. (1993):75

dTn
dt

=
qnF −Tn

dn
;T =

∑
n

Tn;n= 1,2, (1)

where Tn is global mean temperature and for each timescale n. Tn is the component of warming associated with that

timescale, qn is the feedback parameter and dn is the response timescale.

Note the use of n= 2 timescales is a structural choice, used here both for relevance to parameterisation choices in simple

models in common use
:::::::::
commonly

::::
used

::::::
simple

::::::
models (Smith et al., 2018; Geoffroy et al., 2013; Goodwin et al., 2018; Mein-80

shausen et al., 2011) and because the parameters of two timescale model can be readily interpreted and unambiguously fitted to

complex model output. n= 1 timescales provides a significantly poorer fit to temperature evolution in abrupt4xCO2 CMIP sim-

ulations (see Supplemental material, figure ??
:::::
Figure

::
S5). Notably, some authors have considered 3 timescale models (Caldeira

and Myhrvold, 2013; Joos et al., 2013; Tsutsui, 2017) or general linear response functions (Ragone et al., 2015; Lucarini et al., 2017; Lembo et al., 2019)

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Ragone et al., 2015; Lucarini et al., 2017; Lembo et al., 2020) which allow (effectively) for an unlimited number of exponen-85

tial response modes Lucarini (2018)
:::::::::::::
(Lucarini, 2018). While we observe a small further improvement in fit is apparent for some

models with n= 3 modes, not all models appear to express 3 response timescales, which causes unstable fitting behaviour in
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those cases and a difficulty in comparing and interpretation of the values of fitted parameters across CMIP. Nevertheless further

understanding the feedback timescale dynamics of different CMIP models is an important topic for further research.

Total heat flux into the system R is divided into shallow and deep ocean fluxes, defined as a function of the same two90

timescales:

R=

2∑
n=1

Rn; (2)

s.t.
2∑

n=1

rn = 1;

Rn = rn(F −Tn/qn);

(3)

where rn is an efficacy factor for heat absorbed by the deep (n= 1) or shallow (n= 2) ocean, which sum to unity given the

boundary condition that R(0) = F (0) = F4xCO2 at t= 0 (allowing just one degree of freedom r1 - the fraction of heat which95

is allocated to deep ocean storage).

The particular solutions for temperature and radiation response to a step change in forcing F4xCO2 at time t= 0 can be

expressed as a sum of exponential decay functions:

Tp(t) = F4xCO2

2∑
n=1

qn(1− exp(−t/dn)) (4)

Rp(t) = F4xCO2

2∑
n=1

rn(exp(−t/dn)), (5)100

where TP (t) is the annual global mean temperature and Rp(t) is the net top-of atmosphere radiative imbalance at time t, and

F4xCO2 is the instantaneous global mean radiative forcing associated with a quadrupling of CO2, taken here to be 7.4Wm−2

(Myhre et al., 2013).

We define a historical forcing timeseries as a function of CO2 concentrations C(t) and a non-CO2 forcing timeseries

FnonCO2(t) (both taken from Meinshausen et al. (2011)):105

F (t) =
F4xCO2

ln(4)
ln

(
C(t)

C0

)
+ frFaer +Fother, (6)

where fr is a free parameter to allow scaling of aerosol forcing (conceptually allowing for forcing uncertainty in the historical

timeseries), and Fother is all other anthropogenic and and natural forcers (summed from Meinshausen et al. (2011)). The

thermal response is calculated by expressing the numerical time derivative of the forcing timeseries F (t) where the change in

forcing in a given time-step in a given year ∆F (t′) is [F (t′)−F (t′−1)]. The forcing timeseries can thus be expressed a series110

of step functions, and Tp from equation 4 can be used to calculate the integrated thermal response.

T (t) =

t∑
t′=0

∆F (t′)

2∑
n=1

qn

(
1− exp

(
−(t− t′)
dn

))
, (7)
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Heat fluxes into the deep (D(t)) and shallow (H(t)) ocean components are represented by numerical integration of the slow

(n=1) and fast (n=2) pulse response components of Rp(t) in Equation 5:

D(t) = r1

t∑
t′=0

∆F (t′)exp

(
−(t− t′)

d1

)
, (8)115

H(t) = (1− r1)

t∑
t′=0

∆F (t′)exp

(
−(t− t′)

d2

)
, (9)

1.1.1 Model Optimization

The model input time-series for calibration are observed CO2 concentrations, along with radiative estimates from Meinshausen

et al. (2011) of non-CO2 forcing agents. We optimize the thermal model parameters for 2 timescales and the non-CO2 forcing

factor (see Table 1).120

A Markov-Chain Monte-Carlo (MCMC) optimization procedure produces an ensemble of parameter configurations such

that the density of the simulations in parameter space reflects the likelihood as reflected in a cost function (as represented by

a number of pre-defined likelihood metrics). MCMC algorithms employ a random walk in parameter space which ultimately

seeks to produce a representative sample of the distribution.

The classical approach to this random walk is the Metropolis Hastings algorithm (MacKay, 2002), which iteratively moves125

a set of ‘walkers’ or sample points throughout the parameter space. This approach, however is computationally inefficient,

as it requires the specification of the transition distribution with a large number of degrees of freedom. Here, we follow the

Goodman and Weare (2010) MCMC implementation which updates a walker position using a vector defined stochastically

from the remaining ensemble of walkers. This approach has fewer degrees of freedom and is a well-tested approach for

multidimensional optimization problems (Foreman-Mackey et al., 2013). We use flat initial parameter distributions as shown130

in Table 1, 200 walkers and 50,000 iterations for each optimization.

Cost functions are computed for global mean temperature, shallow and deep ocean content:

ET =
∑
t

(
(T (t)−Tobs(t))√

2σT

)2

(10)

EH =
∑
t

(
(H(t)−Hobs(t))√

2σH

)2

, (11)

ED =
∑
t

(
(D(t)−Dobs(t))√

2σD

)2

, (12)135

where Tobs are HadCRUT 4.6 ensemble median global mean temperature anomalies (Morice et al., 2012) relative to a 1850-

1900 baseline and σT is defined as the standard deviation of HadCRUT 1850-1900 values. Shallow and Deep Ocean heat

fluxes are taken as the 0-300m and 300m+ heat content derivatives respectively in Zanna et al. (2019), with σH and σD taken

as 1850-1900 standard deviations from the same dataset.
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Flat priors are used for all parameters, with an additional prior on true equilibrium climate sensitivity using the likely140

value and upper bound on Equilibrium Climate Sensitivity from Goodman and Weare (2010) to specify the median and 90th

percentile of a gamma distribution for equilibrium sensitivity (i.e. warming as t→∞).

We demonstrate that this technique is able to capture the broad uncertainty associated with future projections of CMIP

models by using pre-2020 temperatures in RCP8.5 to calibrate the simple model outlined above (Figure ??
::
see

::::::::::::
Supplemental

:::::
Figure

:::
S3). In most cases, the future projection for each scenario falls within the distribution arising from the MCMC ensemble145

fit, with some specific exceptions - FIO-ESM, FGoals-G2, CCSM4 (which share some common heritage) and the GISS models.

As such, the observationally fitted MCMC ensemble explores broadly comparable uncertainty to that seen in the bulk of the

CMIP ensemble, with the caveat that the ensemble tends to under-sample cases where there is little or no long term warming

response to emissions.

Long name Symbol Min Max

Thermal equilibration of deep ocean Sensitivity (KWm−2) q1 0 10*

Thermal adjustment of upper ocean Sensitivity (KWm−2) q2 0 10

Thermal equilibration of deep ocean timescale (years) d1 100 4000

Thermal adjustment of upper ocean timescale (years) d2 10 100

Fraction of forcing in deep ocean response r1 0. 1

Non-CO2 Forcing ratio fr .7 1.3

Table 1. A table showing model parameter values and minimum and maximum values allowed in model optimization.

The physical parameters of this simple model are constrained by historical carbon dioxide concentrations together with150

observed global mean temperatures from 1870 to present day (together with aggregate forcing estimates representing other

anthropogenic emissions (Meinshausen et al., 2011), which are not the focus of this study). The posterior parameter distribution

for the model can then be used to project the corresponding range of response in probabilistic projections of the future scenarios

or in idealized experiments which simulate a range of self-consistent values for various climate sensitivity metrics.

1.1.2 Idealized Simulations155

Effective Climate Sensitivity is measured by implementing a step-change abrupt CO2 quadrupling, and following Gregory

et al. (2004) to assess the linear extrapolation of warming at the point of net top of atmosphere energetic balance. A140

is calculated as the average of year 131-150 of the abrupt4xCO2 simulation. TCR and T140 are calculated as the average

of years 61-80 and 131-150 respectively of the 1pctCO2 simulation (during which the CO2 concentrations are doubled and

quadrupled, respectively), where CO2 concentrations are increased annually by 1pct resulting in a linear increase in climate160

forcing. RCP scenario temperature trajectories are calculated for each parameter set using concentration and forcing timeseries

from Meinshausen et al. (2011) from 1850 until 2300.

6



Figure 1. An observationally constrained ensemble of simple models. (a) shows the global mean temperature both historically and under the

RCP2.6 and RCP8.5 scenarios. Black lines show the HadCRUT data used in calibration, whereas shaded regions show the 10-90% range

of scenario projections in the posterior simple model ensemble distribution. (b) shows the corresponding time-series posterior distributions

for the abrupt4xCO2 and 1pctCO2 simulated experiments, with grey errorbars showing range of EffCS for CO2 quadrupling (boxes and

whiskers show 25-75th and 1-99th percentiles respectively) . (c/d) show relationships between different sensitivity indicators and 2000-2100

temperature changes under RCP8.5/RCP2.6 respectively (e) shows the posterior cumulative probability density functions for the 4 sensitivity

variables considered and (f) shows the parameter regression coefficients relating the 5 normalized model input parameters to the 4 normalized

sensitivity metrics.

1900 1950 2000 2050 2100 2150
Year

0

2

4

6

8

G
lo

ba
l m

ea
n 

te
m

pe
ra

tu
re

ab
ov

e 
18

50
 (

T
g, K

)

(a)

RCP8.5
RCP2.6
HadCRUT

0 50 100 150
0

2

4

6

8

10

W
ar

m
in

g 
ab

ov
e 

co
nt

ro
l (

K
)

(b)

1pctCO2
abrupt4xCO2
EffCS

0 5 10 15 20 25 30
(K)

0

2

4

6

8

R
C

P
8.

5 
W

ar
m

in
g

20
00

-2
10

0 
(K

)

(c)

T140 (R2=0.99)

EffCS (R2=0.77)

TCR (R2=0.31)

A140 (R2=0.76)

0 5 10 15 20 25 30
(K)

0

0.5

1

1.5

2

2.5

3

R
C

P
2.

6 
W

ar
m

in
g

20
00

-2
10

0 
(K

)

(d)

T140 (R2=0.65)

EffCS (R2=0.62)

TCR (R2=0.00054)

A140 (R2=0.91)

(f)

q
slow

q
fast

d
slow

d
fast

f
a

Model Parameter

-1

-0.5

0

0.5

1

N
or

m
al

iz
ed

 r
eg

re
ss

io
n 

co
ef

fic
ie

nt

EffCS
A140
TCR
T140
RCP8.5 2100
RCP2.6 21000 5 10 15 20

(K)

0.1

0.25

0.5

0.75

0.9

iik
el

ih
oo

d

(e)

EffCS
A140
TCR
T140

7



Resulting EffCS values (to a doubling of CO2) range from 2.4 to 4.6K (5th and 95th percentiles), and values of TCR from

1.6 to 2.2K (Figure 1(b,e)). This results in a range of 21st century warming under two scenarios considered, RCP2.6(RCP8.5)

2100 warming ranges from 1.4 to 2.4 K (3.8 to 5.1K) respectively (5th and 95th percentiles, see Figure 1(a)).165

We then consider in the context of this observationally constrained ensemble of simple models, what idealized metrics of

system response are most informative for describing 21st century warming. We consider four
:
a
:::::::
number

::
of

:::::::::
sensitivity metrics:

the EffCS, TCR /
::
and

:
T140 (transient warming under an annual compounded 1 percent increase in CO2 concentrations at

time of CO2 doubling /
:::
and quadrupling, corresponding to years 70 and 140 of the simulation). We also introduce

::::::
Finally,

:::
we

:::::::
consider A140 as a possible metric for consideration, defined as the global mean warming above pre-emission levels in the170

abrupt4xCO2 simulation calculated 140 years after time of CO2 quadrupling (here and throughout estimated as the mean from

years 131-150). Figure 2 illustrates how ensemble spread would be impacted for a set of different scenarios if each of these

metrics were constrained to lie within a narrow range (nominally the 45-55th percentile range of values present in the entire

observationally constrained ensemble).

In the high emissions, RCP8.5 scenario (Riahi et al., 2011), 2000-2100 warming is nearly perfectly described (R2 = 0.99)175

by T140, the transient climate response after 140 years in a 1 percent CO2 simulation (Figure 1(c) and Figure 2(k)). The

corresponding response after only 70 years, TCR, is a much poorer predictor at R2 = 0.31).

These results are physically intuitive. The climate forcing and rate of change of forcing in RCP8.5 at the end of the 21st

century are of similar magnitude to those in year 140 of the 1 percent CO2 simulation, and so it is unsurprising that T140 is

an efficient predictor for RCP8.5. TCR is a poor predictor in the simple model ensemble largely because TCR itself is already180

highly constrained by historical warming (Figure 1(e)), and thus the ensemble is effectively conditioned on a value of TCR and

it has little additional explanatory value in explaining the ensemble variance in the RCP projections (Figure 2(f,g)).

EffCS and A140 are also well correlated with the RCP8.5 warming (R2 = 0.77 and 0.76 respectively), but less so than T140.

For the mitigation scenario RCP2.6, the most effective predictor of 2000-2100 warming is A140 (R2 = 0.91). Both EffCS and

T140 are weakly correlated (R2 = 0.62 and 0.65 respectively), and TCR shows no significant correlation.185

To help understand these relationships, we can perform a regression analysis of the metrics as a function of model ensemble

parameters (Figure 1(f)) which suggests A140 and RCP2.6 warming from 2000 to 2100, are controlled by the difference

between the slow and fast components of sensitivity. We can understand this in the context of the way the model is constrained

by historical temperatures.

There is a trade-off between fast and slow components of climate sensitivity in the posterior parameter distribution of the190

ensemble (see Figure 3), which broadly determines the fraction of equilibrium warming associated with current forcing levels

that has already been experienced. There is also a correlation between fast sensitivity and fast timescale. These relationships

should be broadly expected if we consider that the observed transient warming of the model has been constrained by the model.

If we consider the analytical expression for TCR (warming after 70 years of 1 percent annual increase in CO2) in a 2 timescale

model (from 7 following Smith et al. (2018)):195

TCR= F2xCO2

[(
q1

(
1− d1/70

(
1− e−70/d1

)))
+ q2

(
1− d2/70

(
1 + e−70/d2

))]
, (13)
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Figure 2. An illustration of how constraining different types of global sensitivity metric impact the idealized spread of global mean temper-

ature evolution under different scenarios. Each row illustrates one constraint, Effective Climate Sensitivity to CO2 doubling (EffCS), TCR

(70 year, CO2 doubling), T140 (140 year, CO2 quadrupling) and A140. Lines in grey show the entire posterior distribution of models from

Figure 1, while lines in black show the 45-55th percentiles of the distribution of the respective quantity. The first four columns show global

mean temperature time-series of a scenario or idealized experiment - RCP8.5, RCP2.6, 1 percent ramping CO2, abrupt CO2 quadrupling (the

5th column shows energetic imbalance as a function of surface temperature in the abrupt4xCO2 experiment). Histograms show the resulting

distribution of temperature in 2150 (RCP8.5/2.6) or year 140 (1pctCO2, abrupt4xCO2) for the complete distribution (grey) and 45-55th

percentile range (black). Red lines show the distribution of values of effective climate sensitivity (4th column) and the trend lines used to

compute it (5th column).
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Figure 3. A ‘corner-plot’ showing the posterior parameter distribution attained by MCMC calibration of the simple climate model. Diagonal

plots show posterior histograms for each of the parameter values optimized in the calibration, where the x-axis range reflects the bounding

values of the initial flat prior distribution. Off-diagonal plots show pairwise distributions of parameters in the posterior distribution.
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where F2xCO2 is the forcing from a doubling of atmospheric CO2, q1,d1 are the fast sensitivity and timescale and q2,d2 are

the slow sensitivity and timescale. In the limit that d1 << 70 and d2 >> 70, we obtain the following:

TCR≈ F2xCO2

(
q1

1 + d1

70

+
q2
2

(
70

d2

)2
)
, (14)

This expression explains the primary features apparent in the MCMC posterior distribution, if we consider that the observa-200

tions broadly fix the value of TCR: a inverse relationship is expected between q1 and q2, and we observe this in Figure 3. The

fast component (left hand term in equation 14) is constrained by the historical warming timeseries to be non-zero (see Figure

3) - and there is a tight proportionality in constrained values of q1 and d1. Only the lower bound of the slow timescale d2 is

constrained for a given value of q2, i.e. the transient warming alone provides no information on the upper bound of the slow

response timescale.205

Thus if a greater fraction of today’s observed warming is explained with the faster component of model response, we would

expect less unrealized warming in a mitigation scenario later in the century. This causes large uncertainties in RCP2.6 evolution

in the constrained ensemble, even if in the case that we had confidence in the values of EffCS, TCR or T140 (Figure 2b,g,l).

The constrained distribution for fast-timescale sensitivity is near-Gaussian, and non-zero in all ensemble members, whereas

slow-timescale sensitivity is more weakly constrained by the observations ranging from near-zero to large (20K/Wm−2) long210

term equilibrium responses. The slow feedback component strongly controls A140 and RCP2.6 warming (Figure 1(d,f), Figure

2q).

RCP8.5 warming and T140, however are associated with a near-linear increase in forcing throughout the simulation which

results in a near-linear temperature increase. The relative fraction of warming associated with fast- and slow-timescale feed-

backs remains constant over time, and thus warming to date (effectively fixing TCR, subject to aerosol forcing uncertainty)215

better constrains relative error in future response in a non-mitigation scenario (Figure 2f).

2 Considering the multi-model ensemble

But how do the findings in the simple model framework reconcile with findings in the CMIP5 and CMIP6 multi-model ensem-

bles? Firstly, it is plausible that there is some commonality in the lack of skill of TCR (the transient response after 70 years)

in our simple model ensemble and in the CMIP ensembles. In our simple model case, the ensemble members were explicitly220

calibrated to reproduce the 20th and early 21st century warming - which is a very strong constraint on the value of TCR in this

idealized setup.

Earth System Model calibration is conducted in a much larger parameter space by groups with a wide range of objectives

which complicate interpretation (Mauritsen et al., 2012; Sanderson and Knutti, 2012), but simulations are generally only

published using models which are able to adequately describe the 20th century and thus might be subject to a similar effective225

constraint on TCR which renders the metric ineffective for describing variance in the future evolution of the model. But there

remains a direct contradiction for T140, where the simple model suggests T140 should be a better predictor than EffCS for
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non-mitigation warming in the 21st century whereas the opposite was found in the CMIP correlations (see Supplementary

material, Figure ??
:::::::::::
Supplemental

:::::
Figure

:::
S2

:
and Grose et al. (2018)).

To understand this, we need to consider how the properties of the simple model ensemble differ from the CMIP archive.230

Although the thermal response of the simple model is broadly able to represent the climatological response of CMIP models

to step forcing and transient forcing in CO2 over a century timescale (Geoffroy et al., 2013; Proistosescu and Huybers, 2017),

it contains no internal climate variability and all experiments in Section 1 are conducted from an idealized, perfectly spun up

state.

Both of these assumptions are not true for CMIP5 or CMIP6. Measurement of EffCS and TCR are complicated by internal235

variability (Reto and Rugenstein Maria A., 2015), and many models still exhibit some temperature drift in the control simula-

tion from which the ‘1pctCO2’ simulations and ‘abrupt4xCO2’ simulations are branched (Figure 4). This creates uncertainty

from two sources - firstly, it is not always apparent at what point during the control simulations the 1pctCO2 simulation has

been branched, thus there is uncertainty in how the anomaly should be measured. Secondly, there is the potential for an un-

known contribution of control drift to be erroneously included in the temperature evolution of the 1pctCO2 and abrupt4xCO2240

simulations.

To assess the contribution of control drift bias in sensitivity metrics, we implement idealized representations of non-

equilibration into our simple model from Section 1. We then create an idealized distribution of drift similar to that seen in

the CMIP ensembles in the simple model ensemble by initializing the model 500 years before the experiment begins, defining

an effective ‘baseline’ period from which anomalies are measured to be the average temperature between years 400 and 500.245

Climate internal variability is represented by a 2nd order autoregressive model, which is fitted to each CMIP model in turn. The

ensemble-mean autoregressive parameters are used to create artificial ‘noisy’ simulations by linearly adding noise generated

from the autoregressive model to the output of the simple model.

We consider the range of control drifts observed in the CMIP5 and CMIP6 ensembles (illustrated in Figure 4(L)) which

range from -.3 to +.6K /century in the CMIP5 and CMIP6 models considered in this study. An idealized distribution of drift250

in the simple model ensemble is created by initializing the model 500 years before the abrupt4xCO2 or 1pctCO2 simulation

with a non-zero, constant forcing drawn from a flat distribution ranging from −1 to +1Wm−2, which results in a distribution

of control drift of -.4K to +.4K per century (i.e. broadly comparable to the CMIP case). For each simulation we consider a

baseline for temperature to be defined by the average global mean temperature in years 400-500.

To represent the first order effect of climate noise, we fit a 2nd order autoregressive model to the detrended global mean255

temperature timeseries in each available model in the CMIP5/6 ensemble. Taking CMIP mean parameters for the variance and

autoregressive parameters, we generate noise for each realization of the simple model (though we note, in practise that the

noise characteristics vary by CMIP model).

The results are illustrated in Figure 5(a), where the simple model ensemble is initialized in a non-equilibrium state with

additive Gaussian noise. With these additional sources of error, both EffCS and A140 are not strongly impacted when measured260

in the noisy/unequilibrated model variants (Figure 5(b,c)), but the T140 measurement is strongly degraded (Figure 5(d)).

Indeed, in this ensemble the biased measurements of EffCS or A140 are slightly better correlated with true T140 than the
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Figure 4. (a-K) Control simulation global mean temperatures from a selection of models in the CMIP5 and CMIP6 ensembles. Control

simulations (blue) and initial years of 1pctCO2 simulations (pink) are plotted. Dotted lines show linear fit to the available timeseries. Blue

and pink circles show the intersection of the linear temperature fit at the start of the simulation. (L) histogram showing the distribution of

control model trend in CMIP (black) and in idealized ensemble of non-equilibrated simple models considered in Figure 5 (grey).
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Figure 5. An idealized ensemble of simple models, where model parameters are identical to those considered in Figure 1(b), but models

are initialized in a non-equilibrium state such that the baseline period is subject to some control drift, and model output is also subject to

interannual variability of a similar magnitude to models in the CMIP archive. (a) shows global mean temperature evolution for the control

period (gray), abrupt4xCO2 simulation (blue) and 1pctCO2 simulation (green). (b,c) show the true value of (EffCS,A140) as calculated in

the noise-free, equilibrated simulations, plotted as a function of the measured value of (EffCS,A140) in a noisy, non-equilibrated simulations.

(d,f,g) shows the true value of (T140,RCP2.6,RCP8.5 2000-2100 warming) plotted as a function of the measured values of T140, EffCS and

A140 respectively.

biased measurement of T140 itself. This provides a possible explanation for why T140 may be a poor predictor of RCP8.5

warming in CMIP.
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Predictor T140 EffCS A140 RCP8.5 2000-2100 RCP2.6 2000-2100

T140 (true) 1.00 0.78 0.77 0.99 0.65

EffCS (true) 0.78 1.00 0.70 0.77 0.62

A140 (true) 0.77 0.70 1.00 0.76 0.91

T140 (drift) 0.74 0.58 0.59 0.73 0.50

EffCS (drift) 0.73 0.94 0.67 0.73 0.59

A140 (drift) 0.74 0.67 0.95 0.73 0.86

T140 (noise) 0.99 0.77 0.76 0.98 0.65

EffCS (noise) 0.78 1.00 0.69 0.77 0.61

A140 (noise) 0.78 0.70 1.00 0.77 0.91

T140 (drift+noise) 0.70 0.55 0.55 0.69 0.47

EffCS (drift+noise) 0.72 0.93 0.65 0.71 0.58

A140 (drift+noise) 0.73 0.66 0.94 0.72 0.85

Table 2. A table showing R2 regression statistics relating a set of predictors to a set of unbiased model properties. Predictors are Transient

Climate Sensitivity at quadrupling of CO2 (T140), Effective Climate Sensitivity (EffCS) and warming 140 years after a quadrupling of CO2

(A140), additional rows show these values measured experiments conducted with unequilibrated base climates (drift), additive autoregressive

noise (noise) and a combination of both factors (drift+noise). ’True’ output model properties (T140, EffCS, A140, RCP8.5 and RCP2.6

warming from 2000 to 2100) are derived from the equilibrated model without noise.

In our simple framework, the reasons for the more accurate measurement of EffCS are primarily associated with the lack265

of equilibration. Simply adding noise from the autoregressive model has little effect on the accuracy of EffCS, T140 or A140

(where both T140 and A140 are estimated using the average of years 131 to 150 in the simulation, see Table 2).

Both A140 and EffCS are less sensitive to non-equilibrated initial states than T140. The former experiences the same variance

due to the uncertain climate drift, but the absolute value of A140 tends to be larger than T140, thus there is less relative error in

its estimation. The effect on the drift on EffCS is muted because the near-linear climate drift primarily biases the estimation of270

slow rather than fast feedbacks (see Supplementary Figure ??
::
S1). Because EffCS is primarily a measure of fast-mode feedback

strength (see Figure 1(f)), its value is less impacted if experiments are started from a non-equilibrium state.

There is some evidence that the lack of equilibration has an outsized effect on the estimation of TCR in the CMIP models.

In Figure 6, we attempt to unbias the estimate of TCR in two ways. Firstly, we estimate the baseline temperature by regressing

the temperatures in the first 20 years of the 1 percent CO2 ramp experiment as a function of time (see Supplementary Figure275

??
::
S4). Anomalies in temperature (and TOA fluxes for ECS) are measured relative to the corrected baselines derived from the

1pctCO2 simulation, and estimated linear pre-industrial trends are subtracted from the 1pctCO2 and abrupt4xCO2 timeseries.

This pre-processing of the temperature timeseries improves the correlation between TCR and 21st century warming under

RCP8.5 from 0.86 to 0.89. It also improves the correlation between EffCS and 21st century warming slightly from 0.94 to 0.95

(and A140 from 0.89 to 0.91).280
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Model EffCS

(org)

EffCS

(corr)

A140

(org)

A140

(corr)

T140

(org)

T140

(corr)

RCP8.5

2000-

2100

RCP2.6

2000-

2100

ACCESS1_0 3.48 3.53 5.48 5.60 4.45 4.57 3.72 -

ACCESS1_3 3.30 3.38 4.84 5.02 3.93 4.11 3.59 -

BNU_ESM 3.86 3.80 6.17 6.05 4.98 4.86 3.88 0.63

CCSM4 2.84 2.87 4.80 4.86 4.02 4.08 3.20 0.44

CESM1_CAM5_1_FV2 3.31 2.89 5.29 4.44 - - - -

CNRM_CM5 3.22 3.28 5.17 5.30 4.42 4.54 3.06 0.68

CNRM_CM5_2 3.37 3.37 5.11 5.12 4.29 4.29 - -

CSIRO_Mk3_6_0 3.53 3.63 5.66 5.86 4.25 4.45 3.67 1.09

CanESM2 3.61 3.59 5.92 5.89 5.08 5.05 3.91 0.92

FGOALS_s2 3.85 3.78 5.90 5.76 4.76 4.62 - -

GFDL_CM3 3.69 3.87 5.66 6.02 4.55 4.90 4.08 1.25

GFDL_ESM2G 2.37 2.34 3.86 3.80 - - 2.49 -0.08

GFDL_ESM2M 2.52 2.60 3.78 3.93 - - 2.39 0.32

GISS_E2_H 2.20 2.42 3.79 4.23 3.35 3.79 2.53 0.36

GISS_E2_R 2.03 2.01 3.37 3.34 2.98 2.94 2.18 0.09

HadGEM2_ES 4.25 4.34 6.27 6.45 5.13 5.30 4.10 0.87

IPSL_CM5A_LR 3.90 3.92 5.78 5.78 4.81 4.81 4.03 0.80

IPSL_CM5A_MR 3.96 4.01 5.84 5.93 4.84 4.93 3.91 0.59

IPSL_CM5B_LR 2.43 2.54 4.20 4.43 3.45 3.67 3.07 -

MIROC_ESM 4.45 4.51 6.35 6.56 5.10 5.30 4.34 1.26

MIROC5 2.60 2.62 4.20 4.27 3.61 3.68 2.93 0.62

MPI_ESM_LR 3.50 3.45 5.91 5.82 4.82 4.74 3.20 0.43

MPI_ESM_MR 3.35 3.42 5.71 5.84 4.66 4.80 3.15 0.36

MPI_ESM_P 3.34 3.31 5.71 5.64 4.57 4.49 - -

NorESM1_M 2.63 2.68 4.19 4.29 3.39 3.49 2.89 0.55

bcc_csm1_1 2.77 2.77 4.85 4.87 4.00 4.02 3.01 0.52

bcc_csm1_1_m 2.76 2.68 5.00 4.84 4.27 4.11 2.78 0.30

inmcm4 1.96 2.00 3.03 3.13 2.80 2.89 2.41 -

BCC_CSM2_MR 2.87 2.91 4.75 4.89 3.88 4.02 - -

CESM2 4.70 4.80 7.20 7.40 5.01 5.20 - -

CESM2_WACCM 4.32 4.43 6.51 6.74 4.68 4.91 - -

GISS_E2_1_G 2.61 2.66 4.18 4.27 1.95 2.04 - -

GISS_E2_1_H 2.99 3.09 4.94 5.13 4.11 4.31 - -

MIROC6 2.40 2.40 3.96 3.98 3.47 3.49 - -

CNRM_CM6_1 4.69 4.67 6.75 6.71 5.49 5.46 - -

CNRM_ESM2_1 4.35 4.30 6.16 6.07 5.12 5.02 - -

UKESM1_0_LL 5.26 5.14 7.66 7.41 6.36 6.11 - -

E3SM_1_0 5.26 4.68 - - - - - -

Table 3. A table showing various sensitivity metrics estimated from the CMIP5 and CMIP6 ensembles (in K), using both pre-industrial

average baseline temperatures (org) and baseline temperatures estimated from a regression fit to the first 20 years of the 1cptCO2 simulation

(corr), where the linear fit is used to estimate temperatures and radiative fluxes at t=0. Warming is shown (where available) for corresponding

RCP2.6 and RCP8.5 simulations, where the difference between 2001-2020 and 2081-2100 in the first ensemble member for the corresponding

model is used to assess 21st century warming.
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Figure 6. Plots showing the correlation between TCR (a), EffCS (b) and A140 (c) with 21st century warming, here represented by the

difference between 2001-2020 and 2081-2100 global mean temperatures in the 1st ensemble member for each model in the CMIP5 archive

for the RCP8.5 scenario. Each plot shows the ’original’ calculation, where the baseline temperatures (and TOA fluxes for EffCS) are taken

as the PIControl mean. In the ’corrected’ calculation, a correction term for the baseline temperature and control drift is applied. Correlation

coefficients are shown for the original and corrected cases.
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These ‘corrected’ values (listed in Table 3) are estimates only, given that we would expect the regression estimate based on

a short 20 year period to be itself subject to internal variability noise, and we are assuming that the abrupt4xCO2 simulation

and 1pctCO2 simulation have the same baselines. However, the improvement in correlation with future warming seen over the

case with the pre-industrial average baseline supports the hypothesis that control drift adds uncertainty to the estimation of all

quantities (and particularly TCR). However, it is not a complete explanation - and even after this adjustment, EffCS remains285

better correlated to RCP8.5 transient warming than TCR in the multi-model ensemble.

3 Conclusions

The question of which metric of climate sensitivity is most useful for summarizing uncertainty in future projections is condi-

tional on a number of factors. Any single metric of sensitivity, even if known perfectly, cannot constrain Earth System response

on all timescales and scenarios. We have shown here that one can produce a number of model variants which can exhibit the290

same value of EffCS or TCR, but with a range of responses, especially in a mitigation scenario such as RCP2.6.

In an idealized environment where models can be brought to a complete equilibrium control state, and ensemble sizes for

‘1pctCO2’ simulations are large enough to avoid the effects of internal variability, the T140 metric would be the best idealized

warming measure for century-scale warming under a high emissions scenario. However, the presence of even moderate control

drift can act as a significant source of error in the measurement of T140, and so here we find that EffCS is likely to be a more295

accurate practical sensitivity metric in Earth System Model applications where full equilibration is difficult to achieve.
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EffCS itself has limitations, it is relatively insensitive to slow timescale feedbacks, which means that it poorly correlated with

century-scale warming under RCP2.6 (where a large fraction of warming occurs due to slow feedback response to historical

emissions), and for warming on multi-century timescales under a high emissions scenario (where concentrations stabilize

post-2100). We find that a simple, but useful alternative is to simply use the mean warming from years 131-150 of the abrupt-300

4xCO2 simulation - which is comparably skilled to EffCS in predicting RCP8.5 warming in 2100, but more sensitive to century

timescale feedbacks than EffCS - so therefore it is better correlated with RCP2.6 end of century warming.

It is notable that the most common metrics of sensitivity, EffCS, T140 and TCR, provide very little guidance on peak

warming expected under climate mitigation. The focus on these metrics has also given rise to the issue that slow feedbacks in

Earth System Models are not well constrained by the set of experiments currently conducted by default in CMIP. The standard305

150 year simulation used to calculate Effective Climate Sensitivity does not constrain true Equilibrium Climate Sensitivity,

and only a limited set of CMIP-class models have run models for long enough to be informative about equilibrium response

(Rugenstein et al., 2020).

It should be noted that these conclusions are derived from the consideration of a relatively simple two-timescale pulse re-

sponse model. In this model, we can show that certain sensitivity metrics are insufficient to constrain future projections, and that310

non-equilibration may confound measurement. However, the constrained distributions for the metrics are subject to the struc-

tural assumptions of the model. The real world may have more than two response timescales (Aengenheyster et al., 2018), or

may be better described as a continuous sum (Ragone et al., 2015; Lembo et al., 2019)
:::::::::::::::::::::::::::::::::
(Ragone et al., 2015; Lembo et al., 2020)

. Further work should identify how such complexity impacts uncertainty in relevant climate metrics.

The diversity of simulated global mean dynamical response to greenhouse gas forcing over the coming centuries can be315

represented in simple models with a relatively small number of parameters (Smith et al., 2018; Meinshausen et al., 2011),

but we cannot reduce uncertainty in climate projections on all timescales to a single degree of freedom. Summary metrics of

climate response have value if the context of those metrics (and their range of applicability in relation to projection uncertainty)

is well understood, but their limitations should be kept in mind.
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4 Supplementary Material

Plots illustrating how different types of sensitivity metric are influenced by climatological drift. Each line describes the

evolution of the model (with default parameters), where the control simulation is initialized 500 years in advance of the

sensitivity experiment with a non-zero forcing ranging from -1 to 1 Wm−2. (a) shows the global mean temperature time330

evolution of the abrupt4xCO2 simulations (blue) and the 1pctCO2 simulation (green), with box-whisker plots showing the

range of biased values which are measured due to climate drift for A140, T140 and EffCS. (b) shows the trend lines used to

compute the EffCS estimates from the simple model. Blue lines show an example model configuration response to an abrupt

4xCO2 perturbation in for the equilibrated case (dashed), and end members (+/- 1Wm−2 imbalance). The red shaded area

shows the range of fitted trend lines consistent with (a).335

Scatterplots of 21st century warming (difference between 20 year means in 2081-2100 and 1981-2000) and a range of

sensitivity metrics for CMIP5. TCR, T140 and EffCS are reported values from IPCC (2013), A140 is calculated as the year

131-150 average global mean temperature above the control level (taken as the last 100 years of the relevant control simulation).

Columns represent different RCPs, rows represent different sensitivity metrics considered in the text. Each point represents a

single model from the archive. Only results from the 1st initial condition ensemble member are considered for each model340

(thus the plots are subject to initial condition variability).

A demonstration of the simple model fitting strategy applied to historical simulations for a range of models in the CMIP5

archive. A pulse-response model is fitted treating each model’s global mean temperature output in turn as truth for the period

1870-2019 (black line). 10th-90th percentiles of fitted temperature response for historical (grey area) and future projections are

shown for RCP8.5 (pink area) and RCP2.6 (blue area) concentration pathways. Dotted lines show the median temperature in345

the ensemble projection, while solid colored lines show the evolution of the actual GCM for the corresponding scenario.

Figure illustrating the ’correction’ employed for TCR and ECS in Figure 6. Corrected baseline temperatures are estimated

by regression of the first 20 years of the control simulation, and branch-point from the control simulation is identifying by

finding the year in which a linear fit to the control model evolution intersects the corrected baseline temperature. Branching in

cases where there is no intersection are illustrated by the year in which the trendline is closest to the corrected baseline (either350

the first or last year).

A figure illustrating the log of the sum squared error in best-fitting of the first 140 years of the abrupt4xCO2 time series in

global mean temperature for each available model in the CMIP5 ensemble, as a function of the number of exponential modes

19



allowed in the pulse response model. Each point shows the error in fitting one model in the CMIP5 ensemble, with colored

lines tracking the error in the fitting as a function of number of allowed modes.355
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