
REVIEWER #1 

The manuscript addresses an interesting and challenging topic. Information on the re- lationships 
between Eurasian autumn snow cover and following winter North Atlantic Oscillation would be 
very useful for seasonal prediction. The manuscript has its mer- its: (a) it convincingly presents a 
statistical relationship between the November snow cover and winter NAO and the lack of 
relationship between October snow cover and winter NAO, (b) it addresses the stability of the 
relationships over a period of 150 years, and (c) it also pays attention to other relevant factors 
such as Barents – Kara sea ice cover, the Atlantic Multidecadal Oscillation, and El Nino. Further, 
the Introduction is very well written, demonstrating thorough knowledge on the study topic and 
its remain- ing challenges. However, the manuscript also has weaknesses, which I summarize 
below. Whether the revisions needed are minor or major, depends above all on how convincingly 
the novelty of the results can be demonstrated (my first comment below).  

Major comments  

1. It should be made clearer which of the results found are novel. In the Discussion section, it is 
mentioned in several places that the findings support the results shown by previous studies 
(Gastineau et al., 2017; Han and Sun, 2018; Douville et al., 2017; Cohen et al., 2014; Wegmann 
et al., 2015; Yeo et al., 2016), but the novelty of the results presented remains unclear for a 
reader.  

REPLY: Thank you for your comment. We agree that the focus of this study needed to be 
clarified. We therefore edited the introduction and discussion part substantially to allow the 
reader to focus on the key messages we want to deliver. 

2. The manuscript includes parts that are carelessly written, and generate a lot of confusion.  

a) In Figure 5, the projection between BKS ice concentration and November SLP anomalies 
shows positive values over a large region just east of Urals, but in general from the manuscript 
(and previous studies) I have got an impression that the decline of sea ice in BKS should favour 
Ural Blocking. Shouldn’t this be reflected as negative projection in Figure 5b (similarly to Figure 
5a)?  

REPLY: Thank you for your comment. We realize that we forgot to mention that for Figure 5 sea 
ice concentration is multiplied by -1, thus Figure 5b and 5c show strong blocking together with a 
decline of BKS sea ice. We added that information in the figure caption of Figure 5.  

b) I guess that on line 350 you should refer to Figure 7e instead of Figure 7c, and make it very 
clear that in Figure 7e the sea ice concentration is multiplied by -1 (I guess). Also, the positive 
correlation seems to last until late 1960s instead of late 1970s. The improved description of 
Figure 7 can now be found from Line 361-374 

REPLY: Thanks for pointing out that mistake. We fixed the error with the Figure description and 
edited the whole paragraph accordingly.  



c) It is not clear for me how Figure 8 supports the text on reduced variance of the snow index 
time series on lines 442-446. The standard deviation seems lowest in early 1900s and in 1960s.  

REPLY: We reshuffled and rewrote large parts of the discussion to make the link between Arctic 
warm periods, increased cryospheric variability and the link to the prediction skill more 
apparent.  

3. The Discussion includes vague parts, such as what could be done ("doubble could" on lines 
389-392), references to preliminary results not shown on lines 453-455, and lines 476-479 (this 
paragraph should be removed). Also, how do centennial trends impact the results, if these trends 
were subtracted (lines 464-466)?  

REPLY: Thanks for the comment. We agree that the discussion part was both incoherent and 
repetitive. We edited large part of the old discussion section and hopefully improved the train of 
thought throughout the section. We reworded the notion about the centennial trends, which are in 
fact not significant for the snow cover indices we use in this study (nevertheless we detrended 
the data just to be in line with comparable studies). What we wanted to mention are decadal 
trends found by Wegmann et al. 2017 for snow in long-term reanalyses. We changed the 
wording accordingly in lines 552-558. 

Minor comments:  

Line 82: remove comma 

REPLY: removed 

Line 112: months 

REPLY: corrected 

Line 243: which snow indices? 

REPLY: clarified 

Line 244: separate “and” words 

REPLY: corrected 

Line 271: The impact does not look weak. 

REPLY: Clarified this point 

 Line 329: Remove “slightly” 

REPLY: removed 

Line 421: Supplementary Figure 6 



REPLY: not sure what is the issue with this statement. We keep it like this for the time being. 

Line 428: Remove “that”  

REPLY: removed 

Please note that the new line references are valid for the new Manuscript and not for the marked 
version, where the comments are counted as lines. 

—————————— 

REVIEWER #2 

This study presents and discusses statistical relations (diagnostics based on correla- tions and 
linear regressions) between Eurasian snow cover in autumn and wintertime atmospheric 
circulation anomalies, claiming a causal link (forcing and response rela- tionship) the strength of 
which varies in different historical epochs. The authors make valid references to recent and past 
literature on this broad topic and show original and valuable results. The Reviewer would 
recommend this study for publication after some minor points are addressed (minor revision). In 
particular : (i) the authors should account for serial correlation in the timeseries when assessing 
statistical significance, this is an important point since it can potentially affect (quite strongly) 
the discussed statistics and the associated conclusions. (ii) the authors should make an effort to 
be more explicit when referring to dynamical pathways, even if they do not directly assess any of 
the mentioned dynamical relationships (a weakness of this study). (iii) the authors should explain 
(otherwise remove) their line of argument on the likely driving role of ENSO in respect to low-
frequency (decadal to multi-decadal) variability.  

REPLY: Thank you very much for your comments. We address the topics for the specific 
comments below. We removed most of the discussion concerning the low frequency impact of 
ENSO and make sure to highlight the dynamical pathway more.  

Specific Comments  

1. Line 17 Perhaps the mathematical term “non-stationarity” does not convey the right message 
here. Obviously, predictability due to ESC varies from year to year for two basic reasons: (i) 
ESC anomaly may be small, thus not providing a strong forcing leading to a predictable signal, 
(ii) other processes affecting predictability may be more dominant.  

REPLY: Nonstationarity appears to be a common phrasing in climate science for the time 
dependance of the predictor to the predictand (see e.g. Kolstad & Screen 2019) and as such we 
keep this phrase for now but are open to specific suggestions.  

2. Line 20 “tendency” also means time derivative. For this reason, avoid this expression, or 
clarify.  

REPLY: We changed the wording to “NAO-like impact” throughout the document 

3. Line 23 Delete “slowed”  



REPLY: deleted 

4. Line 24 “correlation power” is not approved terminology.  

REPLY: We changed the wording to “strength” 

5. Line 29 Three times using “power” in the abstract alone.  

REPLY: We changed the wording to “value” 

6. Line 34 “climate mode... over” → climate variability pattern affecting winter climate over  

REPLY: We changed the wording 

7. Lines 36–37 Here and elsewhere, please put a comma between “et al.” and the publication 
year and use semicolons to separate different references.  

REPLY: Changed accordingly 

8. Line 38 The NAO is not defined as the strength of the gradient, it rather refers to the 
variability of this gradient (seesaw). Please rephrase.  

REPLY: Rephrased accordingly  

9. Line 40 “its configuration” → its variability  

REPLY: Changed accordingly  

10. Line 42 high-priority (with hyphen)  

REPLY: Changed accordingly  

11. Line 59 manifests itself / occurs / is manifested  

REPLY: Rephrased accordingly 

12. Line 79 a mechanism described by...  

REPLY: Rephrased accordingly 

13. Line 89 What exactly is meant here? “forming...” how?  

REPLY: Specified the dynamic linkage 

14. Line 93 summarized → discussed  

REPLY: Rephrased accordingly  

15. Line 110 consequences → conclusions  



REPLY: Changed accordingly  

16. Line 111 who point to the prediction power of  

REPLY: Changed accordingly 

17. Line 114 link → chain (?)  

REPLY: rephrased accordingly 

18. Line 129 For a detailed description  

REPLY: Rephrased accordingly 

19. Line 143 “found” → defined (?)  

REPLY: Rephrased accordingly  

20. Line 148 The NAO centers of action are known to migrate zonally, but not so much 
meridionally [e.g. Barnston and Livezey (1987)].  

REPLY: Deleted the mentioning of NAO and instead replaced with “jet” 

21. Line 159 “normalized” → standardized  

REPLY: Rephrased accordingly 

22. Line 165 “is above” → is higher than  

REPLY: Rephrased accordingly 

23. Line 182 “the second dimension” → two dimensions (meridional and zonal direc- tion)  

REPLY: Rephrased accordingly 

24. Line 188 Blocks do not always divert the westerlies (they can also block).  

REPLY: Rephrased accordingly  

25. Line 190 fulfill the two above-mentioned conditions  

REPLY: Rephrased accordingly 

26. Lines 213–214 “window” → period (?) 

REPLY: Rephrased accordingly 27. Line 217 “any” → each 

REPLY: Rephrased accordingly28. Line 233 This hints toward  



REPLY: Rephrased accordingly 

29. Line 244 Please check typos (missing spaces)  

REPLY: Corrected 

30. Line 269 increase polar (“heights” is plural).  

REPLY: Corrected 

31. Line 287 “increase” → aid 

REPLY: Rephrased accordingly 32. Line 306 anomalies are regressed  

REPLY: Corrected 

33. Line 309 Remove “a” (two occurrences) 

REPLY: Corrected34. Line 310 “is able to support” : please rephrase 

REPLY: Rephrased accordingly 35. Line 325 “it” : please be more explicit for lucidity, what 
does “it” refer to?  

REPLY: Clarified and extended the sentence 

36. Lines 327–328 “which in turn favors...” : how and why?  

REPLY: Added additional information for the reader 

37. Line 329 “slightly” : this undervalues the significant differences (4 half periods vs 3 half 
periods, not just “slightly out of phase”). In this paragraph the authors jump from an NAO 
reasoning to a direct connection of continental anomalies to the BKS, yet the respective 
dynamics are not compatible: the NAO links to more/less zonal advection, while Ural blocking 
links to meridional advection.  

REPLY: We removed the slightly notion and clarified the train of thought for the connection 
between the BKS and the continental anomalies (lines 340-352).  

38. Lines 338–341 This approach requires a proper evaluation of the effective number of degrees 
of freedom, which most likely are seriously reduced due to serial correlation (related to the low-
frequency nature of the discussed variability but also to the applied filter).  

REPLY: We addressed the question of serial correlation by performing Durbin-Watson tests for 
every pair shown in Figure 7 and did not find compelling evidence for the existence of serial 
correlation in these relationships. We added that information to the text (lines 384-389) and show 
the Durbin-Watson test statistics in the Supplement. 



39. Lines 342–353 So the previously-discussed dynamics work in one decade but fail to work in 
another?  

REPLY: Thank you for your comment. We are not able to exclude the possibility that the 
dynamics (as in physical mechanism) are still working during times with weak correlation. 
However, the mechanism might be weaker due to reduced variability in the predictor. Therefore 
we focus here on the statistical strength of this relationship rather than excluding the possibility 
of the mechanism still being the same mechanism, even in times of low correlation.  

40. Lines 371–373 Please help the reader see whether there is anything new here in respect to the 
cited studies.  

REPLY: We edited the introduction and discussion part substantially to allow the reader to focus 
on the key messages we want to deliver and to highlight new findings. 

41. Lines 375 “popular” (is this the right word?) 

REPLY: deleted 

42. Lines 397 low-frequency (with hyphen) 

 REPLY: Changed accordingly 

43. Line 412 . . ..pattern via a stratospheric pathway.  

REPLY: We add information about this in the discussion (lines 464-474) 

44. Line 428 Remove “that” before “seem”. Referring to this paragraph, the reviewer finds the 
reasoning related to ENSO to be poorly based given that ENSO itself cannot be claimed to be a 
primary driver of (multi)decadal variability. This is an important point that should be addressed 
in a revised version of the manuscript.  

REPLY: We agree with the reviewer that the ENSO discussion is weak and not helping the focus 
of this manuscript. We therefore deleted this paragraph. 

45. Line 435 strength (not in plural)  

REPLY: Deleted this sentenced and moved the necessary information to the beginning of the 
discussions section 

46. Lines 433–443 Even two noisy processes after 21-year smoothing will exhibit periods of 
correlation and anticorrelation (purely an artifact related to limited samples and sub-samples). 
For robust statistics, the time window / period considered should contain at least a few periods... 
otherwise any result can be expected.  

REPLY: Thank you for your comment.  It is not entirely clear for the authors what is meant by 
considering different time windows for which analysis. However we show now in the 
Supplement a new Figure 8, which is basically Figure 7b for different running correlation 



windows ranging from 5 years to 31 years. We find that the main outcome of the analysis is not 
dependent on the time window changing from 11 to 21 to 25 to 31 years. The 5year window is 
noisy due to the nature of the high frequency variability in the system. These findings are 
consistent between ERA20C and 20CRv2c. We also added that information to the text (lines 
384-389).  

47. Lines 513 “counterintuitive” → contrasting (?)  

REPLY: We stay with counterintuitive but now it refers to “anthropogenic global warming” 

FIGURE 2: How is statistical significance assessed? A suitable and rigorous test is required 
accounting for serial correlation (which tends to decrease the effective number of degrees of 
freedom). The colorbar (in this and other plots) is not a good choice as it does not allow 
distinguishing high from moderate values (e.g. 50 and 100 have very similar tones). Please 
choose a colormap with more colors. Also, add more ticks and labels in the colorbar, including 
the max and min values covered.  

REPLY: Thank you for your comment. We now assess auto-correlation of the ERA20C snow 
index time series, the 20CRv2c snow index time series, the ERA20C 10hPa GPH time series and 
the BKS time series with auto-correlation function plots in Supplement Figure 5. We found no 
clear auto-correlation signal in the snow and stratosphere, however we found auto-correlation in 
the BKS sea ice index. We now highlight that fact in the text concerning Figure 2 to make the 
reader aware of that issue. Moreover, we found auto-correlation for the AMO index (as expected 
for) and no auto-correlation for the ENSO index. We do not show that information in the 
Supplement but we mention it in the manuscript text. Furthermore we updated the colormaps for 
Figures 2&3 and 5b with a higher range of values as well as higher color step change resolution.  

FIGURE 4: The figure caption was found in a different page (unacceptable).  

REPLY: Moved up the figure caption 

FIGURE 5: The pressure unit is “Pa”, not PA. Also, please define what is meant by “time unit”.  

REPLY: Clarified and corrected 

REFERENCES: Why some appear gray and other in black font?  

REPLY: That seems to be an artifact of the conversion process to pdf. We double checked and 
hope to have fixed that issue.  

Please note that the new line references are valid for the new Manuscript and not for the marked 
version, where the comments are counted as lines. 

—————————— 

REVIEWER #3 



Eurasian autumn snow impact on winter North Atlantic Oscillation depends on cryospheric 
variability  

This study investigates the changes in the relationship between the November snow- dipole and 
the following winter NAO using century-long reanalyses and modern reanal- ysis data. The 
relationship between snow variability and the NAO is an important topic. The study 
demonstrates the correlations between the November snow-dipole, BKS sea-ice, stratospheric 
variability and the NAO. Using long-term reanalyses to study these correlations is a good point, 
although they were produced with the assimilation of limited observations. I think this is 
important given that most of the existing studies are based on short temporal-range data. 
However, I have a few questions with the current version of the manuscript, which may be 
addressed by the authors.  

Major comments:  

1) Conclusions in this study are drawn mostly from correlations/regressions, which would affect 
the robustness of them. Causality is also thus hard to determine. The November Snow-dipole 
does have some correlations with the following wintertime NAO variability (Fig. 2). This is also 
true for the November BKS sea-ice (Fig. 3a). However, the physical mechanisms remain unclear 
since studies often contradict each other and modeling results often don’t support observational 
relationships. I think more analyses may be considered in order to generate more convincing 
evidence. In addition, as argued by Peings (2019), both anomalies in the snow/sea-ice and the 
winter stratospheric warmings can be driven by a common driver – Ural blocking. This raises the 
possibility that the correlations between snow/sea-ice and the wintertime NAO are statistical 
ones.  

REPLY: Thank you very much for your comment. The focus on this study is not to determine 
causality between sea ice and snow cover. In fact other studies showed that link much better than 
we could here. Our study focuses on the fact that a) snow is a better predictor than sea ice and b) 
on the skill of the snow dipole for more than 150 years which is a novelty in the current scientific 
literature. We are well aware of the ongoing debate in the scientific literature about the dispute 
between observational studies and modeling studies. Here we argue that extending the 
investigation period from commonly 30 years to 150 years is important for the scientific 
discussion. Identifying strong relationships for 150 years is clearly a stronger argument for the 
existence of a physical mechanism than investigating 30 years. Our study helps to put modeling 
studies as well as the ongoing cryosphere changes in context. Concerning the very idealized 
study of Peings (2019) we mention in the discussion part the differences with our study and 
Peings (2019) as well as investigations we performed with blockings calculated from reanalyses. 
Nevertheless our study, even showing a linkage that is in line with the physical theory of snow to 
stratosphere to surface climate for 150 years, can not exclude the possibility of non-causality, 
that is correct. We made sure to underline that aspect in the discussion part.  

2) The authors argue that the variability of the November snow-dipole largely determines the 
strength of the correlations between it and the wintertime NAO. But this conclusion is inferred 
from the 21-year running correlations and the 21-year standard deviations of the snow-dipole. 
The authors actually assume that the November snow- dipole is a driver of the wintertime NAO. 
As also mentioned in 1), causality may not be determined only from correlations/regressions.  



REPLY: Thank you for your comments. It is unclear to the authors were exactly the issue is with 
the idea that increased variability in the predictor can strengthen the statistical relationship to the 
predictand. We still assume that the November snow-dipole is the physical driver behind the link 
to the wintertime NAO, we just highlight that the change in strength of this relationship is 
determined by the year-to-year variability of snow cover. We agree that our wording in the 
discussion of Figure 8 implied causality and we changed the wording accordingly. We also 
restructured the Discussion section to make highlight the implications of Figure 8 (now Figure 9) 

3) The authors attribute increased correlation of the November snow-dipole (BKS sea- ice) with 
the wintertime NAO in recent years to the increased variability of the November snow-dipole 
(BKS sea-ice). Was the standard deviation of the BKS sea-ice displayed in the figures? From the 
analysis presented, it is hard to see how the three are correlated in a physical sense and which 
component of the cryosphere is more important in contributing to the recent NAO variability. 
There are a few studies exploring the impacts of the Arctic sea-ice on Eurasian snow. For 
example, Xu et al. (2019) studied the correlation between Autumn Arctic sea-ice and the winter 
snow cover in Northern Eurasia.  

REPLY: Thank you for your comments. You raised an important point. Indeed the overlay of 
correlation and standard deviation was not visible. We now incorporated a new figure (Figure11) 
in the supplement that shows both the running standard deviation of BKS sea ice and the running 
correlation of BKS sea ice with the wintertime NAO.  We mention it now in the discussion part. 
We used partial correlation to highlight the fact that snow cover is a stronger predictor for the 
winter NAO over long time periods that than the BKS, especially since Figure 7 shows that the 
BKS has a very weak relationship with the NAO for most of the 20th century. We mention the 
Xu et al. (2019) study and highlight that the authors looked at DJF only where as we focus on the 
autumn period.  

4) I think the focus of this study needs to be clarified. The stratospheric pathway for either sea-
ice or snow to impact the wintertime NAO variability is not new which can be found in many 
studies already cited in the introduction. Does the study emphasize the predictive nature of the 
correlation between the November snow-dipole and the wintertime NAO? If this is the case, why 
not consider some techniques such as cross-validation procedure to assess the predictive skills of 
the November snow- dipole? Empirical models such as those used in Chen et al. (2019; Section 
6) may also be considered.  

REPLY: Thank you very much for your comments. We agree that the focus of this study needed 
to be clarified. We therefore edited the introduction and discussion part substantially to allow the 
reader to focus on the key messages we want to deliver. As you rightly pointed out neither the 
stratospheric connection nor the impact on the wintertime NAO are new findings. Showing 
however, that these linkages are substantial and detectable for more than 100 years is a new 
scientific finding and an important puzzle piece for the ongoing debate that you mentioned 
above. Moreover highlighting the strengths of this relationship for Arctic warm periods is a new 
puts the current warm period in context and helps the scientific community to assess current 
cryopshere–atmosphere links in the framework of past climatic variations. We also newly added 
a very basic comparison of multiple regression prediction models based on cryosphere predictors 



for the 20th century and beyond at the end of the results section (lines 396-439), which we then 
also discuss in the discussion section.  

 

Minor comments:  

1) In addition to Han and Sun (2018) and Gastineau et al. (2017), the November snow- dipole 
was identified in an EOF analysis by Ye and Wu (2017).  

REPLY: Thank you for pointing out this study. We added Ye and Wu (2017) to the references. 

2) L28-29: Does the increased sea-ice variability enhanced that of the snow?  

REPLY: There is a correlation of variability on decadal timescales especially with October snow 
cover, yes. It is however more non-linear than the correlation between standard deviation of 
snow cover and standard deviation of stratospheric polar cap height as shown in Figure 8 (now 
Figure 9). We added that information to the supplement.  

3) The section of Data and Methods may need some modification. In particular, more details of 
the reanalysis data may be given. In particular, recent satellite observations of the snow cover 
can be included in the analysis.  

REPLY: Rather than describing the snow representation of the reanalyses in this process oriented 
paper we refer to the studies by Wegmann et al. (2017) and Orsolini et al. (2019). If that is not 
enough information for the reader, we would ask the reviewer to provide specific points of 
information that are missing. 

REPLY: From this comment it is unclear as to what information can be gained by incorporating 
satellite information since reliable snow cover information during by satellites is limited to the 
beginning of the 1980s and this study focuses on long term relationships. Nevertheless we 
incorporated a comparison of the Rutgers snow cover product with the reanalyses products in 
recent decades in Figure 2 of the new Supplementary Information and mention them in the Data 
& Method section. 

4) L153-154: In the analysis, were all the atmospheric fields detrended as well?  

REPLY: yes, we added that detail to the description of the data, 

5) L244: Change ‘aandd’, ‘bande’ and ‘candf’ to ‘a and d’, ‘b and e’ and ‘c and f’.  

REPLY: Changed accordingly  

6) Labeling those multi-panel figures such as Figure 2 with additional text to indicate which 
variable is correlated with or regressed on to which variable may be considered to help the 
readers.  
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Abstract: 12 

In recent years, many components of the connection between Eurasian autumn snow cover 13 

and wintertime North Atlantic Oscillation (NAO) were investigated, suggesting that 14 

November snow cover distribution has strong prediction power for the upcoming Northern 15 

Hemisphere winter climate. However, nonstationarity of this relationship could impact its 16 

use for prediction routines. Here we use snow products from long-term reanalyses to 17 

investigate interannual and interdecadal links between autumnal snow cover and 18 

atmospheric conditions in winter. We find evidence for a negative NAO-like impact after 19 

November with a strong west-to-east snow cover gradient, which is valid throughout the 20 

last 150 years. This correlation is linked with a consistent impact of November snow on the 21 

stratospheric polar vortex. Nevertheless, interdecadal variability for this link shows 22 

episodes of decreased correlation strength, which co-occur with episodes of low variability 23 

in the November snow index. On the contrary, periods with high prediction skill for winter 24 

NAO are found in periods of high November snow variability, which co-occur with the 25 

Arctic warming periods of the 20th century, namely the early 20th century Arctic warming 26 

between 1920-1940 and the ongoing anthropogenic global warming at the end of the 20th 27 

century. A strong snow dipole itself is consistently associated with reduced Barents-Kara 28 

sea ice concentration, increased Ural blocking frequency and negative temperature 29 

anomalies in eastern Eurasia.  30 
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 2 

As the leading climate variability pattern affecting winter climate over Europe (Thompson and 47 

Wallace 1998), the North Atlantic Oscillation (NAO) has been extensively studied over the last 48 

decades (Wanner et al., 2001; Hurrell and Deser 2010; Moore and Renfrew 2012; Pedersen 49 

et al., 2016; Deser et al., 2017). The NAO has been defined as the variability of the pressure 50 

gradient between Iceland (representing the edge of the polar front) and the Azores (representing 51 

the subtropical high ridge). The sign of the NAO is related to weather and climate patterns 52 

stretching from local to continental scales. Since its variability has severe socioeconomic, 53 

ecological and hydrological impacts for adjacent continents, seasonal to decadal predictions of 54 

the state of the winter NAO are high–priority research for many climate science centers (Jung 55 

et al., 2011; Kang et al., 2014; Scaife et al., 2014; Scaife et al., 2016; Smith et al., 2016; 56 

Dunstone et al., 2016; Wang et al., 2017; Athanasiadis et al., 2017). 57 

Together with the rapid warming of the Arctic and the increased frequency of severe winters 58 

over Eurasia and North America (Yao et al., 2017; Cohen et al., 2018; Kretschmer et al., 59 

2018; Overland and Wang 2018), recent studies highlighted the state of the Northern 60 

Hemispheric cryosphere as a useful predictor for the boreal wintertime (DJF) NAO (Cohen et 61 

al., 2007; Cohen et al., 2014; Vihma 2014; Garcia-Serrano et al., 2015; Cohen 2016, 62 

Orsolini et al., 2016; Crasemann et al., 2017; Warner 2018). Although both systems seem 63 

to be connected (Cohen et al., 2014; Furtado et al., 2016; Gastineau et al., 2017), the 64 

emerging main hypothesis connects reduced autumn Barents-Kara sea ice concentration and 65 

increased Siberian snow cover with a negative NAO state in the following winter months 66 

(Cohen et al., 2014).  67 

The proposed mechanism behind this hypothesis is a multi-step process, starting with autumn 68 

sea ice loss for the European Arctic, followed by altered tropospheric circulation due to elevated 69 

Rossby wave numbers, vertical propagation of said Rossby waves upward into the stratosphere 70 

and consequently a weakening of the polar vortex (see Cohen et al., 2014 for an in depth 71 

discussion). With the weakening (or the reversal) of the polar vortex, a stratospheric warming 72 

signal manifests. This signal propagates slowly back into the troposphere, where it manifests 73 

itself as a negative NAO, connected to the concurrent cold winters for Eurasia (Kretschmer et 74 

al., 2018). 75 

In recent years, many components of this pathway were investigated, especially concerning the 76 

increased frequency of cold winters over Europe and the emergence of the counter-intuitive 77 

“Warm Arctic – cold continent” (WACC) pattern over Eurasia (Petoukhov and Semenov 78 
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2010; Vihma 2014). However, there remains substantial uncertainty about the impact of Arctic 172 

sea ice in terms of location (Zhang et al., 2016; Luo et al., 2017; Screen 2017; Kelleher and 173 

Screen 2018), timing (Honda et al., 2009; Overland et al., 2011; Inoue et al., 2012; Suo et 174 

al., 2016; Sorokina et al., 2016; King et al., 2016; Screen 2017; Wegmann et al., 2018a; 175 

Blackport and Screen 2019) or if sea ice can be used as a predictor/forcing at all based on the 176 

contrasting result of model studies (McCusker et al., 2016; Collow et al., 2016; Pedersen et 177 

al., 2016; Boland et al., 2017; Crasemann et al., 2017; Ruggieri et al., 2017; Garcia-178 

Serrano et al., 2017; Francis 2017; Screen et al., 2018; Mori et al., 2019; Hoshi et al., 2019; 179 

Blackport et al., 2019; Romanowksy et al., 2019).  180 

The interplay between Arctic sea ice and Siberian snow is much less explored. Ghatak et al. 181 

(2010) showed that reduced autumn polar sea ice leads to the emergence of increased Siberian 182 

winter snow cover, especially so in the eastern part of Eurasia. This dipole signal was amplified 183 

in coupled climate model runs for the 21st century, where sea ice is substantially diminished. In 184 

an observational study, Yeo et al. (2016) point out that the moisture influx from the open Arctic 185 

ocean into the Eurasian continent contributes to the increase of snow cover, a mechanism 186 

described by Wegmann et al. (2015). Gastineau et al. (2017) found that reduced sea ice is 187 

connected to a distinct November snow dipole over Eurasia, both in reanalysis and model data. 188 

They further state that the snow component is a statistically more powerful predictor for the 189 

atmosphere in the following winter. This relationship was also found in a range of climate 190 

models, albeit with weaker links. Xu et al. (2019) found the same correlation in observational 191 

and model data, however looking at winter climate only. Based on their analysis, the authors 192 

state that the enhanced snow cover in winter is a product of the negative NAO rather than a 193 

precursor. Sun et al. (2019) highlight the importance of elevated North Atlantic sea surface 194 

temperatures for the development of a Eurasian snow dipole in autumn. This warming of the 195 

North Atlantic favors reduced sea ice cover for the European part of  the Arctic, which triggers 196 

a high pressure anomaly over the Northern Ural Mountains via increased ocean to atmosphere 197 

heat fluxes, transporting cold air masses towards the south of its eastern flank. 198 

The possible impact of the Siberian snow on the stratosphere and eventually on the NAO is 199 

well discussed in Henderson et al. (2018). Although observational NAO prediction studies 200 

with Siberian snow showed great success in the past (Cohen and Entekhabi 1999; Saito et 201 

al., 2001; Cohen et al., 2007; Cohen et al., 2014; Han and Sun 2018), links between snow 202 

and the stratosphere still seems to be missing or too weak in model studies (Furtado et al., 203 

2015; Handorf et al., 2015; Tyrrell et al., 2018; Gastineau et al., 2017; Peings et al., 2017), 204 
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whereas nudging realistic snow changes to high resolution models seems to improve the 317 

prediction skill (Orsolini and Kvamsto 2009; Orsolini et al., 2016; Tyrrell et al., 2019). 318 

Moreover, even though the stratosphere–surface connection is now reasonably well established 319 

(Kretschmer et al., 2018), the timing and location of the snow cover used for the prediction is, 320 

as with sea ice, still debated (Yeo et al., 2016; Gastineau et al., 2017). As an additional caveat, 321 

Peings et al. (2013) and more recently Douville et al. (2017), showed that the proposed autumn 322 

snow-to-winter NAO relationship is non-stationary for the 20th century. A possible modulator 323 

for that relationship might be the phase of the Quasi Biennial Oscillation (QBO) (Tyrrell et al., 324 

2018; Peings et al., 2017; Douville et al., 2017). Peings (2019) argues that neither snow nor 325 

sea ice anomalies trigger the stratospheric conditions needed to produce winter extremes and 326 

that instead high tropospheric blocking frequency over Northern Europe leads to the cryosphere 327 

anomalies.  328 

Here, we follow up on the definition of a November Eurasian snow cover dipole (Ye and Wu 329 

2017; Gastineau et al., 2017; Han and Sun 2018) which was identified to provide predictive 330 

power for the following winter months at the end of the 20th century. It is however unclear if 331 

this prediction skill is stable for time periods further back than 30 years and how it evolves in 332 

periods of high Arctic sea ice cover. In this study we address the question of a) nonstationarity 333 

of the Eurasian now cover to winter European surface climate relationship in the 20th century, 334 

b) importance of snow versus sea ice as predictor and c) possible precursors/modulators of the 335 

sea ice–snow–stratosphere chain. With this we aim to contribute to the understanding of 336 

impacts of cryosphere variability on midlatitude circulation (Francis 2017; Henderson et al., 337 

2018; Cohen et al; 2019). To this end, we utilize centennial reanalyses and reconstruction data, 338 

where we focus on the transition from October to November to DJF to facilitate the idea of 339 

seasonal prediction.  340 

This paper is organized as follows: Section 2 describes the data and methods used. In section 341 

3, we introduce the snow cover indices and their interannual prediction value. Section 4 342 

investigates interdecadal shifts in the correlation between snow cover and NAO as well as 343 

possible determining factors. The results are discussed in section 5 and finally summarized in 344 

section 6. 345 

2. Data and Methods 346 

a. Atmospheric reanalyses 347 
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To evaluate long-term reanalyses, we use snow cover, snow depth and atmospheric properties 378 

from the MERRA2 reanalysis (Gelaro et al., 2017). MERRA2 has a dedicated land surface 379 

module and was found to reproduce local in-situ snow conditions over Russia very well 380 

(Wegmann et al., 2018b). For a detailed description of how MERRA2 computes snow 381 

properties see e.g. Orsolini et al., (2019). 382 

To cover the 20th century and beyond, we include two long-term reanalyses in this study, 383 

namely the NOAA-CIRES 20th century reanalysis Version 2c (20CRv2c) (Cram et al., 2015) 384 

as well as the Centre for Medium-Range Weather Forecasts (ECMWF) product ERA-20C (Poli 385 

et al., 2016). From the ERA-20C product we use snow depth, whereas from 20CRv2c we 386 

investigate snow depth and snow cover. Both reanalyses were found to represent interannual 387 

snow variations over Eurasia remarkably well. For an in-depth discussion of their performance 388 

and their technical details concerning snow computation see Wegmann et al., (2017). We also 389 

performed the same analysis using the coupled ECMWF reanalysis CERA-20C (Laloyaux et 390 

al., 2018), but found no added knowledge gain over ERA-20C. Thus, we do not include CERA-391 

20C in any further analysis. 392 

We use detrended anomalies of these three reanalysis products to extend the October and 393 

November index proposed by Han and Sun (2018) into the past, where the November index is 394 

in essence the snow dipole described by Gastineau et al. (2017) using maximum covariance 395 

analysis (Figure 1). Where the October index is just calculated as field average snow cover, the 396 

November index is computed as difference between the eastern and the western field average. 397 

It should be noted, that Han and Sun (2018) found the November index to be linked to a 398 

negative NAO and colder Eurasian near-surface temperatures, whereas the October index was 399 

correlated with warmer-than-usual temperatures over Eurasia and a southward-shifted jet. 400 

However, since many studies focus on Northern Eurasian October snow cover as the predictor 401 

for winter climate, we will include it nonetheless. MERRA2 and 20CRv2c offer snow cover as 402 

well as snow depth as a post-process output, however ERA-20C only offers snow depth. We 403 

refrain from converting it to snow cover ourselves, but found the index based on snow depth to 404 

be extremely similar (also see Supplementary Figure 1) to the same index using snow cover. 405 

Moreover, comparing snow indices from reanalyses with snow indices using the NOAA 406 

Climate Data record of Northern Hemisphere Snow Cover extent (Robinson et al. 2012), which 407 

incorporates satellite data, does not highlight any meaningful differences (Supplementary 408 

Figure 2). All snow indices are normalized and linearly detrended with respect to their overall 409 
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time period. Generally, we found the long term reanalyses to be of comparable quality of 419 

MERRA2 during the overlapping periods. 420 

 421 

Figure 1: a) Regions for October and November snow index used in this study. b) Linearly 422 

detrended and standardized October snow index comparison for the 20th century for snow cover 423 

(SC) and snow depth (SD) variables. c) same as b) but for the November snow dipole.  424 

Besides snow properties we use detrended atmospheric and near-surface anomaly fields from 425 

all three reanalyses. Moreover, as Douville et al. (2017), we use the field averaged (60°–90° 426 

N) 10 hectopascal (hPa) geopotential height (GPH) anomalies in ERA-20C as a surrogate for 427 

polar vortex (PV) strength. Although ERA-20C only assimilates surface pressure, correlation 428 

between this stratospheric index in ERA-20C and MERRA2 during the overlapping time 429 

periods is higher than 0.9.  430 

The ERA20C 10 hPa November–December mean GPH shows remarkable interannual 431 

agreement with state-of-the-art reanalyses that assimilate upper air data for the period 1958–432 

2010 (see Supplementary Figure 3). Moreover, MERRA2 and ERA20C 10 hPa GPH anomalies 433 

agree best over the northern polar regions with correlation coefficients of >0.9 for the period 434 

1981–2010 (see Supplementary Figure 3). This fact supports the extended value of the ERA20C 435 

polar stratosphere. Before 1958, the quality of the ERA20C stratosphere is difficult to assess, 436 

but the comparison with reconstructions of 100 hPa GPH zonal means shows very good 437 

agreement for late autumn and winter months (see Supplementary Figure 4). As the 20CRv2c 438 

ensemble mean dilutes the interannual variability signal back in time with increased variability 439 

within the ensemble members, we use the deterministic run of ERA20C for the following 440 

stratosphere analyses. 441 
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We use 6-hourly 500 hPa GPH fields (GPH500) to calculate monthly blocking frequencies 447 

according to Rohrer et al. (2018). Blockings are computed according to the approach 448 

introduced by Tibaldi and Molteni (1990) and are defined as reversals of the meridional 449 

GPH500 gradient. In accordance to Scherrer et al. (2006) the one-dimensional Tibaldi and 450 

Molteni (1990) algorithm is extended to the two dimensions by varying the latitude between 451 

35° and 75° instead of a fixed latitude:  452 

i) GPH500 gradient towards pole: 𝐺𝑃𝐻500𝐺! =
"!#$%%!"#!&"!#$%%!

'(
< −10	 )

°+,-
 (1) 453 

 454 
ii) GPH500 gradient towards equator: 𝐺𝑃𝐻500𝐺. =

"!#$%%!&"!#$%%!$#!
'(

> 0	 )
°+,-

 (2) 455 
 456 

Blocks by definition are persistent and quasi-stationary high-pressure systems that divert or 457 

severely slow down the usually prevailing westerly winds in the mid-latitudes. They influence 458 

regional temperature and precipitation patterns for an extended period. Therefore, not all blocks 459 

that fulfill the two above–mentioned two conditions are retained. We only include blocks that 460 

have a minimum required lifetime of 5 days and a minimum overlap of the blocked area of 70% 461 

(𝐴-/0 ∩ 𝐴- > 0.7 ∗ 	𝐴-) in our blocking catalog. This largely follows the criteria defined by 462 

Schwierz et al. (2004). 463 

  b) Climate reconstructions 464 

To be as independent as possible with regards to the reanalyses we use a wide array of climate 465 

index reconstructions for the 20th century: 466 

• Atlantic Multidecadal Oscillation (AMO): For the AMO index we take October values 467 

based on the Enfield et al. (2003) study. We choose October to allow for a certain 468 

feedback lag with the atmosphere and to have decent prediction value for the upcoming 469 

snow and NAO indices. 470 

• El Niño – Southern Oscillation (ENSO): We chose the ENSO3.4 reconstruction based 471 

on the HadISSTv1 Rayner et al. (2003) SSTs. As with the AMO, we select October 472 

values to allow for a reaction time in the teleconnections. 473 

• North Atlantic Oscillation (NAO): We use the extended Jones et al. (1997) NAO index 474 

for DJF from the Climate Research Unit (CRU). 475 

• Sea Ice: We use the monthly sea ice reconstruction by Walsh et al. (2017) which covers 476 

the period 1850–2013 to create a Barents-Kara (65–85°N, 30–90°E) sea ice index for 477 

November. 478 
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We checked for autocorrelation in the time series of the snow indices, stratospheric index, BKS 481 

sea ice index (Supplementary Figure 5), AMO index and ENSO index and only found 482 

significant autocorrelation in the BKS sea ice and AMO time series. We assess the significance 483 

of a regression coefficient in a regression model by dividing the estimated coefficient over the 484 

standard deviation of this estimate. For statistical significance we expect the absolute value of 485 

the t-ratio to be greater than 2 or the P-value to be less than the significance level (α=0.05). The 486 

df are determined as (n-k) where as k we have the parameters of the estimated model and as n 487 

the number of observations. 488 

 489 

 490 

3. Results 491 

a. Interannual links 492 

In the following paragraphs we investigate the year-to-year relationship between the snow 493 

indices and the following winter SLP fields. For this we use MERRA2 for a 35-year-long period 494 

ranging from 1981–2015, ERA20C for a 110-year-long window ranging from 1901–2010 and 495 

20CRv2c for a 160-year-long window ranging from 1851–2010.  496 

Figure 2 shows the linear regression fields of DJF SLP anomalies projected onto the respective 497 

snow indices in October and November. For October, we find no NAO-like pressure anomaly 498 

appears to be significantly correlated with the snow index in eacb of the three reanalysis 499 

products and respective time windows (Figure 2a,b,c). Instead, negative SLP anomalies 500 

dominate Northern Eurasia in MERRA2, with high pressure anomalies towards the Himalayan 501 

Plateau. The 110-year-long regression in ERA20C shows significant negative anomalies over 502 

the Asian part of Russia, reaching as far south as Beijing. A second significant negative SLP 503 

pattern appears along the Pacific coast of Canada. Finally, SLP anomalies in 20CRv2c support 504 

the main SLP patterns shown by ERA20C, but reduce the extent of negative anomalies over 505 

Eurasia and increase the extent of the negative anomalies over the North Pacific.  506 

The DJF SLP anomaly patterns change substantially when projected onto the November snow 507 

index (Figure 2d,e,f). All three reanalysis products show negative NAO-like pressure anomalies 508 

with significantly positive anomalies over Iceland and the northern North Atlantic and 509 

significantly negative anomalies south of ca. 45° N, including Portugal and the Azores. As 510 
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expected, MERRA2 shows the strongest anomalies due to the shorter regression period, 513 

however interestingly ERA20C, with the 110-year long analysis period, shows less large-scale 514 

significance for positive anomalies in high latitudes compared to the 150-year-long 515 

investigation period in 20CRv2c (even though non-significant anomalies cover roughly the 516 

same area as in 20CRv2c (not shown)). This hints towards decadal variations in the strength of 517 

the regression, but could also be due to biases in the reanalyses.  518 

To check for such biases we compared all reanalyses with the SLP reconstruction dataset 519 

HadSLP2r (Allen and Ansell 2006), and found that for the regression analysis using the time 520 

period 1901–2010, 20CRv2c overestimates the polar sea level pressure response, whereas 521 

ERA20C is much closer to HadSLP2r (See Supplement Figure 6). This would indeed support 522 

the notion of decadal variations in the strength of the relationship between predictor and 523 

predictand. However, it is worth highlighting that this overestimation for 20CRv2c is not visible 524 

for the 1851–2010 period, where the regression anomalies resemble HadSLP2r much closer. 525 
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 528 

Figure 2: DJF sea level pressure [Pa/std dev] anomalies projected onto snow indices (see Figure 1) for October (left) and 529 
November (right) for a and d) MERRA2 covering 1981–2015, b and e) ERA20C covering 1901–2010 and c and f) 20CRv2c 530 
covering 1851–2010. Only anomalies >95% significance level are shown. 531 
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We investigate other possible predictors for wintertime NAO via regressed anomalies onto the 535 

November Barents-Kara-Sea (BKS) ice concentration, November–December mean polar GPH 536 

at 10 hPa, October AMO and October ENSO indices (Figure 3). The periods for MERRA2 and 537 

ERA20C are identical as for Figure 2, whereas the anomaly plots for 20CRv2c are using the 538 

maximum period covered in the reconstructions, namely 1851–2010 in the sea ice 539 

reconstruction, 1856–2010 in the AMO reconstruction, 1901–2010 for the polar 10 hPa GPH 540 

index taken from ERA20C, and 1870–2010 for the ENSO reconstruction. 541 

As can be seen from Figure 3, the 35-year-long analysis in MERRA2 shows November sea ice 542 

concentration and early winter stratospheric heights to regress a similar SLP pattern than the 543 

November snow index. Positive SLP anomalies over Iceland and Greenland combined with 544 

negative anomalies over Southern Europe and the adjacent North Atlantic shape a negative 545 

NAO-like pattern in DJF (Figure 3a). On the other hand, the interannual signals in the October 546 

AMO and ENSO indices do not point towards such a pressure distribution. The small 547 

interannual changes and low frequency of the AMO combined with the short sample period 548 

prohibit most of the significance, only Southern Eurasia shows regions with elevated SLP. 549 

Anomalies regressed on the ENSO index show, as expected, significance mostly for the North 550 

Pacific and North American region. 551 

Looking at the regression patterns in the centennial reanalyses, the NAO-like pattern in the SLP 552 

anomalies regressed onto sea ice and stratospheric GPH can still be seen, however the extent 553 

and strength is substantially reduced compared to MERRA2 as well as compared to the 554 

regression using November snow as predictor. Again, ERA20C shows a decrease in the 555 

significant anomalies regressed onto sea ice compared to 20CRv2c, with possible reasons 556 

already discussed above. Elevated geopotential heights at 10 hPa consistently increase polar 557 

sea level pressure in the following winter months, however the impact over the European and 558 

North Atlantic domain severely decreases in the centennial reanalyses. 559 

SLP anomalies regressed onto the AMO index show significant positive SLP regions for large 560 

parts of Eurasia as well as positive anomalies over the North Atlantic west of Great Britain. 561 

Interesting to note in 20CRv2c is the very strong high-pressure anomaly reaching from the BKS 562 

to the southern part of the Ural mountains, a prominent feature often found for years with 563 

positive AMO and negative sea ice concentration, frequently linked to a high frequency of Ural 564 

blockings (UBs). SLP distribution after El Niño events does not change considerably 565 

irrespective of the dataset and time period used. A strong Pacific signal shows the northern part 566 

of the Pacific-North American pattern (PNA) with negative SLP anomalies over the eastern 567 
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North Pacific. Given the autocorrelation in the AMO and BKS sea ice index, the significance 571 

in Figure 2abc as well as Figure 2ghi might be severely lower due to the reduced amount of 572 

degrees of freedom.  573 

 574 

 575 

 576 

Figure 3: DJF sea level pressure [Pa/std dev] anomalies projected onto BKS ice concentration in November (far left), polar 577 
10 hPa GPH November December mean (left), October AMO (right) and October ENSO indices (far right) for adgj) MERRA2 578 
covering 1981–2015, behk) ERA20C covering 1901–2010 and cfil) 20CRv2c covering 1851–2010. Regression values for BKS 579 
ice concentrations were multiplied by minus one to aid comparability. Only anomalies >95% significance level are shown. 580 

To investigate the vertical development of climate anomalies connected with the November 581 

snow dipole, Figure 4 shows the zonal mean anomalies of zonal wind and temperature in 582 

ERA20C projected onto the ERA20C November snow index (for an evaluation with an upper-583 

air climate reconstruction see Supplementary Figure 7). The temporal evolution of the 584 

anomalies ranging from October to February shows that stratospheric warming occurs 585 
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simultaneously within the same month as a positive snow cover dipole, with no stratospheric 590 

warming leading that development. Instead, significant lower troposphere warming is shown 591 

between 60°–90°N for October. The warming signal then dominates the stratosphere and upper 592 

troposphere in December, after which the strongest anomalies subside into the lower 593 

stratosphere and tropopause in January and February. This development of atmospheric 594 

temperatures is mirrored in the evolution of the polar vortex, where a reduction of the polar 595 

vortex and strengthening of the subtropical jet is seen together with the emergence of the 596 

November snow dipole, after which the region of strongest anomalies migrates from the upper 597 

stratosphere to the upper troposphere.  598 
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 600 

Figure 4: Zonal mean (180°E–180°W, 15°N–90°N) left) temperature anomalies and right) zonal mean zonal wind anomalies 601 
projected onto snow indices in November for ERA20C covering 1901–2010. Shading indicates 95% significance level. 602 
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To address the physical reasons as to how the low sea ice and high snow indices are connected, 603 

climate anomalies are regressed onto BKS ice concentrations for November (Figure 5). 604 

Compared to factors such as AMO and ENSO, BKS sea ice shows a distinct snow cover dipole 605 

coinciding with a high-pressure anomaly over the BKS and the northern Ural mountains, which 606 

supports a regional atmospheric blocking and cold air advection on its eastern flank. This cold 607 

air anomaly supports increased snow cover over eastern Eurasia, while relatively warm 608 

temperatures reduce the snow cover over eastern Europe. It should be noted that October BKS 609 

ice concentration shows qualitatively the same pattern for November snow cover anomalies 610 

(not shown), however not statistically significant.  611 
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 615 

Figure 5: 20CRv2c November anomalies projected onto BKS ice concentration in November covering 1851–2010. Regression 616 
values for BKS ice concentrations were multiplied by minus one to aid comparability. a) November snow cover [%/std dev] 617 
anomalies projected onto BKS ice concentration in November, b) November SLP [Pa/std dev] anomalies projected onto BKS 618 
ice concentration in November, c) November atmospheric blocking [blocking per season/std dev] anomalies projected onto 619 
BKS ice concentration in November and d) November 2m temperature [K/std dev] anomalies projected onto BKS ice 620 
concentration in November. Only anomalies >95% significance level are shown. 621 

b. Interdecadal links  622 
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The interdecadal evolution of the November snow index is shown in Figure 6. 21-year running 627 

means of the normalized time series of ENSO, AMO, BKS ice and snow hint towards a 628 

multidecadal frequency, similar in wave length to the AMO and BKS ice anomalies. Even 629 

though we refrain from correlating these time series due to the the 21-year filter (Trenary and 630 

DelSole, 2016), we find the possible mechanism behind the decadal co-occurrence of warm 631 

North Atlantic SSTs, reduced sea-ice and increased snow cover gradient to be physically 632 

plausible (Luo et al. 2017). As Luo et al. (2017) point out, warm North Atlantic water reduces 633 

the BKS ice concentration, which decreases the meridional temperature gradient and strong 634 

westerly winds, which in turn supports high pressure over the Ural mountains and with that, 635 

cold air advection towards eastern Eurasia. It should be noted however, that the AMO and the 636 

November snow index are out-of-phase between 1880 and 1920, where uncertainties in both 637 

products are largest. 638 
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 651 

Figure 6: 21-year running means of a) November snow index from 20CRv2c, b) November BKS ice concentration, c) October 652 
AMO and d) October ENSO reconstruction. 653 

The more critical question is the interdecadal evolution of the relationship between the predictor 654 

and the predictand. Similar to Peings et al. (2013) and Douville et al. (2017), we apply a 21-655 

year running correlation covering the period 1901–2010 to examine the stationarity of the 656 

relationship and differences between 20CRv2c and ERA20C.  657 

Figure 7 summarizes the correlation over time for multiple pairs of climate variables. As Figure 658 

7b points out, the sign of the November snow to winter NAO relationship in 20CRv2c is 659 

negative throughout the whole 20th century. Periods with negative correlations can be found at 660 

the beginning and the end of the century, with relatively weak correlation during the 1930s and 661 

1970s. The periods of strong negative correlations overlap with commonly known Arctic 662 

warming periods, the early 20th-century Arctic warming (ETCAW) and the ongoing recent 663 

Arctic warming in context of anthropogenic global warming. In ERA20C, these periods are 664 
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actually marked by positive correlations, indicating a non-stationary relationship between these 665 

two variables. Even stronger decadal variability can be seen for the running correlations 666 

between the October snow index and winter NAO-like impact (Figure 7a), with periods of 667 

pronounced negative correlations during the early 20th century Arctic warming and the 1980s. 668 

Emerging since the 1970s is a negative relationship shown in Figure 7e between BKS ice 669 

reduction (multiplied by minus one to aid comparability) and the formation of a negative NAO 670 

signal in the following winter, with very weak negative correlations for the ETCAW. 671 

Together with the emergence of the sea ice to NAO relationship, negative correlations between 672 

BKS sea ice and November snow index (Figure 7d) as well as between stratospheric warming 673 

and winter NAO strengthen towards the end of the 20th century (Figure 7f). This strengthening 674 

is also found in ERA20C for the correlation between November snow and a following 675 

stratospheric warming, where 20CRv2c shows consistently positive correlation values 676 

throughout the 20th century (Figure 7c).  677 

Overall, the 20CRv2c November snow index shows a more stationary relationship with 678 

tropospheric and stratospheric winter circulation than ERA20C. Possible explanations for this 679 

behavior will be discussed in the following section. 680 

For all of the linear relationships shown in Figure 7 we performed a Durbin-Watson test to 681 

check for serial correlation between two variables and did not find any compelling indication 682 

for co-dependence in any case (see Supplementary Table 1). Moreover, we investigated 683 

different running correlation windows (11 years, 21 years, 25 years, and 31 years) and find that 684 

the main outcome of the analysis is not dependent on the choice of the correlation window (see 685 

Supplementary Figure 8). 686 
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 697 

Figure 7: 21-year centered running correlation time series between a) October snow index and DJF NAO, b) November snow 698 
index and DJF NAO, c) November snow index and mean November December polar 10 hPa GPH index, d) November snow 699 
index and November BKS ice concentration, e) November BKS ice concentration multiplied by minus one to aid comparability 700 
and DJF NAO and f) mean November December polar 10 hPa GPH and DJF NAO index. Black dashed line indicating the 701 
95% confidence level for a two-sided students T-test assuming independence and normal distribution. 702 

Based on the results from Figure 7 (and the overall significance of linear relationships, see 703 

Supplementary Figure 9) we investigate very basic linear multiple and simple regression 704 
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models to predict the upcoming DJF NAO index sign and assess the contributions to the 706 

prediction skill by November sea ice, November snow cover and November December mean 707 

stratospheric conditions. For the period 1901–2010 we investigate three different multiple 708 

regression models with  709 

a) DJF NAO(t) = a1 × Nov. snow cover(t) + b1 × Nov. BKS sea ice(t) + c1 × ND 10hPa 710 

GPH(t) 711 

b) DJF NAO (t) = a1 × Nov. snow cover(t) + b1 × Nov. BKS sea ice(t)  712 

c) DJF NAO (t) = a1 × Nov. snow cover(t) + b1 × ND 10hPa GPH(t) 713 

and one simple linear regression model 714 

d) DJF NAO (t) = a1 × Nov. snow cover(t)  715 

where DJF NAO is the standardized NAO index calculated by EOF analysis of 20CRv2c SLP 716 

data, Nov. snow cover is the November 20CRv2c snow cover index, Nov. BKS sea ice is the 717 

Walsh et al. November BKS sea ice index and ND 10hPa GPH is the ERA20C November 718 

December mean 10hPa GPH index with a1,b1,c1 being the constants determined by the least-719 

squares calculations. Moreover, we perform b) and d) also for the period 1851–2010. 720 

Figure 8 shows original and predicted normalized DJF NAO values together with the 21-year 721 

running correlation of both indices. Overall correlation values are low but significant for the 722 

110-year time period (ranging from 0.41 to 0.38) but specific periods of high correlation emerge 723 

for both Arctic warm periods, the first one being centered around 1925 and the second one 724 

being centered around the year 2000 with both periods reaching correlation coefficients above 725 

0.6. The multiple regression prediction model with three different predictors performs best, 726 

with a significant correlation to the original NAO variability of 0.41 for 110 years (Figure 8a). 727 

Nevertheless, November snow cover seems to add most of the prediction skill, since the 728 

decrease in correlation coefficient between the multiple regression model with three predictors 729 

and the simple linear regression model with just November snow cover as a predictor is 0.03. 730 

Moreover, periods of high correlation coefficients align with periods of strong negative 731 

relationships in Figure 7b. 732 

For the same empirical prediction model using 160 years, the overall correlation coefficients 733 

decrease to around 0.3. As expected, the same periods of increased prediction skill emerge 734 
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(Figure 8e&f) and the added prediction skill of sea ice is low. It should be noted however, that 735 

sea ice increases prediction skill during the current Arctic warming period, as well as the end 736 

of the 19th century with 2nd highest correlation coefficients centered around 1890 (not shown).  737 

 738 

Figure 8: Comparison of 1901–2010 20CRv2c DJF standardized NAO values based on EOF analysis with predicted values 739 
from multiple and simple linear regression models showing a) multiple linear regression model with November snow cover 740 
index, November BKS sea ice index and ND 10hPa geopotential height index with an overall correlation of 0.41, b) multiple 741 
linear  regression model with November snow cover index and ND 10hPa geopotential height index with an overall correlation 742 
of 0.4, c) multiple linear regression model with November snow cover index and November BKS sea ice index with an overall 743 
correlation of 0.39, d) simple linear regression model with November snow cover index and November BKS sea ice index with 744 
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an overall correlation of 0.38. e) and f) same as c) and d) but for the period 1851–2010 respectively. Left Y-axis indicates 745 
standard deviation, right Y-axis indicates correlation coefficient. Red dashed line indicates 95% significance level for a 21-746 
year period.  747 

 748 

4. Discussion 749 

We use a variety of reanalyses and reconstructions to address some of the open questions 750 

regarding the relationship between Eurasian snow cover and the state of the NAO in the 751 

following winter.  752 

Given the highly discussed research topic of Northern Hemisphere sea ice cover and snow cover 753 

impact on mid-latitude circulation (Cohen et al., 2019), as well as the highlighted need to 754 

investigate relationships over several decades (Kolstad and Screen 2019), we investigate a 755 

promising November west-east snow cover dipole over Eurasia (Gastineau et al., (2017); Han 756 

and Sun (2018)) and its relationship to the DJF NAO state up to the middle of the 19th century 757 

to cover 150 years of internal and external climate forcings. Given the importance for seasonal 758 

prediction, we address the question of stationarity of said relationship as well as its context 759 

within other common Northern Hemispheric predictors. 760 

Compared to Gastineau et al. (2017) and Han and Sun (2018), we can extend the reanalysis 761 

study period from 35 to 150 years and highlighted the consistently negative sign of the snow-762 

NAO relationship in the 20CRv2c dataset. Partial correlations for 110 years show that reduced 763 

BKS sea ice shows a similar response in DJF SLP anomalies, however its statistical importance, 764 

and therefore quality as being the prime predictor, is less than the November snow index (see 765 

Supplementary Table 2 for partial correlations). This is also found in simple multiple regression 766 

prediction models, where the November snow cover index was incorporating the major share 767 

of the prediction power. Extending the analysis of Gastineau et al. (2017) to 150 years further 768 

underlines the lack of snow–atmosphere feedback in most of the CMIP5 models and reduces 769 

the probability that the snow-NAO link is due to random internal variability at the end of the 770 

20th century.  771 

Moreover, given the monthly development of vertical temperature anomalies related to a high 772 

snow cover index supports the theoretical framework (Cohen et al., 2014; Henderson et al. 773 

2018) for a Eurasian snow cover to stratosphere link in reanalyses for at least the 20th century 774 

and probably beyond. We find a cooling and snow cover expansion east of the sea ice anomaly, 775 
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where cold air is advected on the eastern side of a Ural blocking anomaly (Figure 5). The 791 

increased geopotential heights and the related Rossby-Wave energy reach the stratosphere 792 

(Supplementary Figure 7), where a stratospheric warming and a slow down of the Polar Vortex 793 

manifests (Figure 4). These anomalies reach the troposphere in January and February where 794 

they express themselves as a negative NAO signal (Figure 2). It is noteworthy, that all of these 795 

features are significantly correlated with the November snow cover index for more than 100 796 

years.  797 

Peings et al. (2013) and the follow up study by Douville et al. (2017) found that the October 798 

and October–November mean snow cover over a broader region of Northern Eurasia, and its 799 

relationship to the wintertime NAO is indeed not stationary over time. We find a strong 800 

relationship between the reduced variance of the snow index time series with the reduction in 801 

correlation strength of snow cover and the wintertime NAO (Figure 9). The reduction of 802 

variance is even stronger in ERA20C than in 20CRv2c, which would explain the less stationary 803 

correlations in ERA20C. Furthermore, such periods of low snow variability coincide with a 804 

reduction of polar vortex variability, hinting even more so towards possible links between 805 

November snow and stratospheric temperatures in the following month. Together with the snow 806 

cover index, the November BKS sea ice index shows increased variability with strengthened 807 

negative correlation to DJF NAO during at the end of the 20th century (see Supplementary 808 

Figure 11). 809 

These periods of increased variability in the November snow cover index co-occur arguably 810 

with the common Arctic warming periods of the 20th century, the ETCAW (Wegmann et al., 811 

2016; Hegerl et al., 2018) and the recent ongoing Arctic warming with peak variance and 812 

correlation values centered around the years 1920 and 2000. Interestingly, October snow cover 813 

index and BKS sea ice index variability peaks slightly after the ETCAW around the year 1945. 814 

Analysing temperature anomalies (not shown) for all three periods reveals more continental 815 

warming over Russia for the period 1911-1930 whereas warming between 1936-1955 is located 816 

very much at the Kara Sea coast of Russia, where both the October snow index and the BKS 817 

sea ice index are impacted by. Generally, Arctic warming periods appear to increase variability 818 

of cryospheric predictors considerably and thus strengthen their impact in seasonal prediction 819 

frameworks. Given the importance of stratospheric variability for seasonal prediction and the 820 

apparent relationship between snow cover variability and stratospheric variability (Figure 9),  821 

it can be expected that the cryosphere-stratosphere pathway is also considerably stronger in 822 
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Arctic warm periods than for cold periods. Moreover, in our statistical analysis, we found no 833 

indication for a stratospheric precursor of November snow cover anomalies. 834 

In accordance to the shorter time frame analysis of Sun et al. (2019), decadal variability of the 835 

November snow cover index seems mostly dominated by low-frequency variability in the AMO 836 

and subsequently reduced or increased polar sea ice concentration. This mechanism is also 837 

supported by the results of Luo et al. (2017), who highlighted the decadal relationship between 838 

a positive AMO, reduced sea ice and increased Ural blocking for the second half of the 20th 839 

century. Looking at this mechanism on an interannual basis, we show a robust strengthening of 840 

the November snow dipole with decreasing BKS ice concentration, circulation changes over 841 

the BKS region and consequently cold air advection towards the eastern part of the snow dipole 842 

region for a period of 150 years. With this, our results support recent studies, which point out 843 

the counterintuitive mechanism of Arctic warming and increased continental snow cover via 844 

sea ice reduction and circulation changes (Cohen et al., 2014; Wegmann et al., 2015; Yeo et 845 

al., 2016; Gastineau et al., 2017).  846 

Peings (2019) performed model experiments with nudged November Ural blocking fields, BKS 847 

ice and snow anomalies. The author found that UB events are not triggered by reduced sea ice, 848 

but in fact lead sea ice decrease. Moreover, more November snow alone did not lead to an 849 

increase in blocking frequency, nor to a stratospheric warming. The study highlights the UB 850 

events as primary predictor for a negative NAO and the Warm Arctic-cold Continents (WACC) 851 

pattern. On the other hand, Luo et al. (2019) established a causal chain via a stratospheric 852 

pathway from reduced sea ice to reduced potential vorticity gradient and increased blocking 853 

events leading to cold extremes over Eurasia. We computed the field average of blocking 854 

frequency within the domain of Peings (2019) (10°W-80°E, 45-80°N) and could find a strong 855 

correlation with the WACC pattern over time, however only for DJF blocking events (not 856 

shown).  857 

We found a correlation of November UB events with wintertime NAO, which is however still 858 

weaker than the relationship with the November snow dipole, as well as our BKS ice index (see 859 

Supplementary Figure 10). Moreover, blockings within the domain of Peings (2019) (10°W-860 

80°E, 45-80°N) are not related to a snow dipole whatsoever, neither in October nor in 861 

November (see Supplementary Figure 10). That said, we want to highlight the fact that the 862 

blocking pattern emerging in Figure 5 is mostly outside of the boundaries of this UB index 863 

(10°W-80°E, 45-80°N), and thus might not be caught by this recent study. Furthermore, Peings 864 

(2019) applies a very general snow cover increase in his nudging experiment, rather than a 865 
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snow dipole with a west to east gradient. Finally, although we focus here on the connection to 889 

the NAO, we did not find strong significant correlations between autumn snow and winter 890 

WACC. As pointed out by Peings (2019), the most important driver for the WACC signal is 891 

the Ural blocking, for which we find strong correlations throughout the 20th century (not 892 

shown).  893 

Overall, we advocate the importance of the signal-to-noise ratio rather than mean states for the 894 

evolution of the November snow to winter NAO relationship. In our statistical analysis, we did 895 

not find any indication for a centennial relationship between the autumn ENSO or autumn QBO 896 

sign with the variability of the relationship between November snow cover and DJF NAO (not 897 

shown). As mentioned above, we found the strongest influence to be the increased variability 898 

of the system due to energy uptake.  899 

That said, a source of uncertainty is the disagreement between ERA20C and 20CRv2c when it 900 

comes to the stationarity of the relationship. 20CRv2c shows negative correlation throughout 901 

the whole 20th century, whereas ERA20C flips the sign of the correlation in the late 1930s and 902 

late 1970s. The same relationship but using October snow shows high agreement between the 903 

two datasets, which is the same case for the correlations between snow and stratospheric GPH. 904 

We therefore conclude, that the information stored in the November snow cover in 20CRv2c is 905 

slightly different to the information stored in the ERA20C snow depth. Wegmann et al. (2017) 906 

found that Eurasian November snow depth shows much larger disagreement between 20CRv2c 907 

and ERA20C than the same snow depth in October. In the same study, the authors found 908 

decadal trends (although linear trend subtraction for all predictor time series was done for this 909 

study) in ERA20C snow depth which migh impact the running correlations. Finally, since snow 910 

depths are relatively low in October, differences between using snow cover and snow depth 911 

might be less important from an energy transfer point of view. 912 

The disagreement between ERA20C and 20CRv2c may also be related to uncertainties and 913 

inhomogeneities in both reanalyses. Many studies showed that both ERA20C and 20CRv2c are 914 

not suitable for studies looking at trends (e.g. Brönnimann et al., 2012; Krüger et al., 2013) 915 

and may include radical shifts in atmospheric circulation, particularly over the Arctic (e.g. 916 

Dell’Aquila et al., 2016; Rohrer et al., 2019). However, Rohrer et al. (2019) showed that 917 

although trends in centennial reanalyses may be spurious, at least in the Northern Hemisphere 918 

year-to-year variability of mid-tropospheric circulation is in agreement even in the early 20th 919 

century. 920 
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Figure 9: 21-year running standard deviation time series of a) October snow index and b) November snow index in ERA20C 995 
and 20CRv2c (snow cover and snow depth). Dashed black line shows running standard deviation of 10 hPa November 996 
December mean GPH over the polar regions.  997 

5. Conclusion 998 

Several reconstruction and reanalysis datasets were used to examine the link between autumn 999 

snow cover, ocean surface conditions and the NAO pattern in winter for the whole 20th century 1000 

and into the 19th century. We found evidence for a manifestation of a negative NAO signal 1001 

after November with a strong west-to-east snow cover gradient, with this relationship being 1002 

significant for the last 150 years. Interdecadal variability for this relationship seems to be linked 1003 
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seasonal prediction estimation.  1006 
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variability and decreases the probability of random co-variability between the Arctic 1027 

cryosphere changes and mid-latitude climate.  1028 

For future studies regarding seasonal prediction, we emphasize the use of the November snow 1029 

dipole concerning a forecasting of the winter NAO state. Nevertheless, periods of weak 1030 

correlation might occur again, especially since it is uncertain how the sea ice to snow 1031 

relationship will change with stronger anthropogenic global warming, once the Arctic is ice 1032 

free in summer or the local warming is strong enough to override the counterintuitive snow 1033 

cover increase. Thus, further studies are needed to investigate the interplay between Arctic sea 1034 

ice and continental snow distribution. Future experiments should take into account year-to-year 1035 

variability and realistic distribution of snow cover if links to the stratosphere are to be 1036 

examined.  1037 
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