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Abstract 

For sectors like agriculture, hydrology and ecology, increasing IAV can have larger impacts than changes in the mean state, whereas 10 

decreasing IAV in winter implies that the coldest seasons warm more than the mean. IAV is often difficult to reliably quantify in 

single realizations of climate (observations and single model realizations) as they are too short, and affected by external forcings 

leading to trends or forced variations through anthropogenic or volcanic aerosols. Single model initial-condition large ensembles 

(SMILEs) are a powerful tool to overcome this problem, as they provide multiple realizations of past and future climate and thus a 

larger sample size to robustly evaluate and quantify changes in IAV. We use three SMILEs based regional climate models (CanESM-15 

CRCM, ECEARTH-RACMO and CESM-CCLM), to investigate downscaled changes in IAV of summer/winter temperature and 

precipitation, the number of heatwaves and the maximum length of dry periods over Europe. An evaluation against the observational 

data set E-OBS reveals that all models reproduce observational IAV reasonably well with some biases in winter and the two extreme 

indicators. We further demonstrate that SMILEs are essential to robustly quantify changes in IAV since individual realizations show 

significant IAV changes whereas others do not. Thus, a large sample size is needed, i.e. information from all members of the SMILEs 20 

is needed to robustly quantify significance of IAV changes. Projected IAV changes in temperature over Europe are in line with 

existing literature: increasing variability in summer and stable to decreasing variability in winter. Here, we further show that also 

summer and winter precipitation, as well as the two summer extreme-indicators mostly follow these seasonal changes. 
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1 Introduction 

Next to the changes in mean climatological states, the variability of the climate system is another important feature of climate 

change. This variability of the climate system is subject to various drivers. Variability can be caused by natural forcings at different 

time scales, like changes in solar radiation or volcanic eruptions. Variability of single components of the climate system can also be 30 

caused by the redistribution of heat and momentum between and within different components (e.g. ocean and atmosphere) of the 

coupled climate system, referred to as unforced internal variability. Next to these variations, anthropogenic changes in greenhouse 

gas concentrations contribute to a changing climate. Climate variability can be sampled on different time scales from hours and days 

up to multi-decadal oscillations. 

For impact-analysis of climate change, the future development of inter-annual variability (IAV) is of outmost importance in addition 35 

to changes in the mean climate state. Especially increases in the IAV can be crucial for many impact sectors, as it makes it much 

harder for stakeholders to plan from year to year. In this study, daily data are used to calculate seasonal mean surface air temperature 

(tas) and accumulated seasonal precipitation (pr), as well as two indicators for climatological extremes with high societal impact: 

the number of heatwaves per year (tas-HW-Nr) and the maximum length of dry periods per year (pr-DP-MAX), see Table 1 for 

definitions. Heat waves can cause an increase of health problems and even fatalities among the population, as well as damages in 40 

infrastructure (e.g. highways) and ecological problems, as seen during the most recent heatwaves in Europe (e.g. 2003, 2018, 2019). 

Long dry periods can have major impacts on ecology, forestry, agriculture, drinking water supply, power plant cooling outages, 

transport on rivers and many more. All these sectors should implement adaptation strategies to face changing climatic conditions, 

including IAV. 

Early studies with regional climate models from PRUDENCE showed a distinct increase in IAV for the 21st century in summer 45 

temperatures (Fischer and Schär, 2009; Fischer and Schär, 2010; Vidale et al., 2007) as well as decreasing winter temperature 

variability (Vidale et al., 2007). Later work with ENSEMBLES models revealed a less pronounced increase in summer temperature 

variability (Fischer et al., 2012). Analysis of SMILEs also showed future increases in variability of European summer temperatures 

with increasing global warming (Suarez-Gutierrez et al., 2018; Yettella et al., 2018). Holmes et al. (2016) and Tamarin-Brodsky et 

al. (2020) also find increasing temperature variability in summer and decreasing variability in winter for the future. European winter 50 

temperature variability already today decreased since the pre-industrial era in another large climate model ensemble (Bengtsson and 

Hodges, 2019). 

For large areas of the globe, including Europe, an increase in precipitation variability from daily to multi-decadal time scales is 

expected due to higher temperatures (Pendergrass et al., 2017). However, Ferguson et al. (2018) find significant changes in the IAV 

of monthly precipitation only in a small fraction of CMIP5 models for a western European domain until the end of the 21st century. 55 

Earlier analysis with regional climate models revealed future increases in summer and decreases in winter for IAV of precipitation 

over similar domains as used in this study (Giorgi et al., 2004). 

Uncertainty of future climate projections can stem from at least three sources (Hawkins and Sutton, 2009): emission scenario, model 

response to a selected forcing and internal variability of the climate system. Internal variability is often referred to as “irreducible 
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uncertainty” at time scales beyond seasons to decades. While scenario and model response uncertainty have been referred to in 60 

many climate simulation experiments (CMIP and CORDEX), the internal variability component had received less attention for 

many years. In recent years, a new tool for the assessment of internal variability has become quite popular: single model initial-

condition large ensembles (SMILEs), where the same model is forced with the same emission scenario several times – with the runs 

(members) just differing in their initial conditions. This setup is able to isolate the internal variability component from the scenario 

and model response uncertainty for the respective model. Based on SMILEs, it has been shown that the contribution of internal 65 

variability to total uncertainty of multi-model ensembles (CMIP, CORDEX) can be large, especially for mid-term projections and 

precipitation (Kumar and Ganguly, 2018; von Trentini et al., 2019) on the regional level. 

The terms large ensemble (LE) and SMILE are usually describing the same, but we prefer SMILE as it incorporates the type of 

large ensemble, which is built upon different initial conditions. Up to now, a number of large ensembles have been produced. Deser 

et al. (2020) give the latest overview of the different SMILEs available. However, most studies only use one SMILE for their 70 

analysis and the rare comparisons are usually just between two ensembles: similar patterns of internal variability of temperature and 

precipitation trends for the middle of the 21st century were found for a CCSM3 and an ECHAM5 ensemble over North America by 

Deser et al. (2014). Martel et al. (2018) showed a consensus of the IAV of annual mean and extreme precipitation in a CanESM2 

large ensemble (which is also used for boundary conditions of the CRCM5 in this study, see Data section) and CESM-LE with two 

global observational data sets. 75 

All these simulations were performed with global climate models (GCM), and only a few were dynamically downscaled with 

regional climate models (RCM). Here, we compare three dynamically downscaled large ensembles (all RCP8.5) for Europe. It is 

the first time that regional large ensembles are compared with respect to forced changes and their internal variability. The added 

value of RCM simulations is well documented for EURO-CORDEX (Giorgi et al., 2009; Torma et al., 2015; Sørland et al., 2018; 

Giorgi, 2019). Downscaled climate data is also a necessity for impact modelling at regional to local scales (e.g. for hydrology, 80 

agriculture, biodiversity research) due its more accurate representation of topography, complex coastlines and heteorogeneity of 

land surface properties. 

Terminology in the context of climate variability is not always clear in the literature, as the terms natural variability, internal 

variability, inter-annual variability (IAV) and inter-member variability (IMV) are often used synonymously or mixed up. Here, the 

term internal variability describes the variability at timescales from seconds up to multiple decades caused by unforced internal 85 

effects of a model or the real world due to the chaotic nature of the climate system only, without incorporating naturally forced 

variability due to volcanic eruptions and solar forcing. On the one hand, anthropogenic changes in greenhouse gas and aerosol 

concentrations as well as natural solar and volcanic forcing can cause changes in the mean climate state that are superimposed by 

internal variability. Moreover, higher greenhouse gas concentrations can cause changes in the internal variability itself in the future 

as well – adding another component to climate change effects. 90 

In this study, IAV is calculated as anomalies of each member from the ensemble mean (EM), which represents an estimate of the 

forced response of the respective model. SMILEs have the advantage that the EM is a much better estimate of the forced response 

than detrending single members. After removing the forced response, the residual IAV equals the total unforced internal variability 
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– including low frequency variations. We will show that IAV can be well estimated by the IMV of a SMILE in many cases, as both 

metrics sample the unforced internal variability of a SMILE, just on different dimensions: IAV is sampled on the time-dimension 95 

of a single member, while IMV is sampled on the member-dimension for each year (see section 3.4). Both IAV and IMV are terms 

used to describe the more general term ‘internal variability’ throughout this manuscript. Also, note that the EM of each SMILE can 

be considered as the change signal with the highest probability, but which specific member would become realized depends on 

internal variability. 

The usage of three RCM-SMILEs has some advantages compared to multi-model ensembles consisting of single realizations that 100 

enable us to go beyond the current literature on IAV changes. First, we can better evaluate the models against observations as a) the 

forced response of the model is better estimated by the EM and b) we thus reduce the problem of having only one realization of 

climate to the observational data side of the evaluation. Second, we can more reliably quantify changes in the IAV, and rule out that 

potential changes only occur as a result of internal variability. Additionally, we can better demonstrate when changes are 

significantly different from historical conditions. In recent literature, often no significance test of detected changes in inter-annual 105 

variability is performed (e.g. Bengtsson and Hodges, 2019). Many studies just inform about the robustness of change (e.g. by 

stippling in maps), measured by the accordance in the sign of change of (usually) 67% of the models of multi-model ensembles (e.g. 

Holmes et al., 2016). This does however not allow information about the significance compared to a reference climate. Third, 

SMILEs allow a better separation of models as they are not only described by one member each. Additionally, we combine these 

general SMILE advantages with the higher resolution of RCMs. 110 

The remaining manuscript is structured as follows: First, the model ensembles and the observational data set E-OBS are briefly 

presented. Then, the change in mean temperature and precipitation together with the inter-member spread of projected changes is 

analysed for each ensemble, as the mean changes are important baseline information for variability changes. Next, the IAV of the 

three regional large ensembles is evaluated against E-OBS to assess the abilities of the models to represent observed variability for 

the selected indicators. Finally, IAV in historical climate and future changes in IAV are compared between the SMILEs. This 115 

includes a discussion on different methods to estimate IAV and detect significant changes of IAV. In the main text, most results 

will only be presented for Mid-Europe (ME), with references to the other regions and their figures in the Supplementary Material. 

2 Data 

The climate model ensembles each consist of a GCM single model initial-condition large ensemble, which has been dynamically 

downscaled over Europe with a single regional climate model: a 50-member CanESM2-CRCM5 ensemble (Kirchmeier-Young et 120 

al., 2017; Leduc et al., 2019), a 21-member CESM-CCLM ensemble (Fischer et al., 2013; Addor and Fischer, 2015; Brönnimann 

et al., 2018) and a 16-member EC-EARTH-RACMO ensemble (Aalbers et al., 2018), all forced with the RCP8.5 scenario, resolved 

on different spatial resolutions (Table 2). Hereafter we indicate the GCM-RCM combinations with the RCM names only (CRCM, 

RACMO, and CCLM). This setup with a shared scenario, but different models, enables us to analyze differences in internal 

variability in the three ensembles. Differences in variability may stem from the differences in the resolution of both GCMs and 125 
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RCMs, the different domain sizes, the different models, differences in aerosol forcing in the RCM simulations (constant in CCLM 

and CRCM, transient in RACMO) and in the application of an ocean slab model in the EC-EARTH-RACMO ensemble. RACMO 

also uses slightly different grid specifications. The domain size of CCLM equals the EURO-CORDEX domain, while CRCM uses 

a slightly smaller domain, and RACMO only captures central and northeastern Europe (Figure 1). The initialization is carried out 

differently in the three driving GCM-SMILEs: CanESM2 builds on a hybrid approach, where five members of different ocean 130 

conditions starting in 1850 were divided into ten members each by atmospheric perturbations in 1950 (see Leduc et al., 2019 for 

details). The CESM members stem from small atmospheric perturbations of the order of 10-13 on January 1st 1950 (Fischer et al., 

2013). EC-EARTH uses the first 16 days in the year 1850 of an initial run to start the 16 members (Aalbers et al., 2018). These 

climate model data sets will be inter-compared, but will also be compared to observations: the gridded observational data set E-

OBS has daily precipitation and temperature available for Europe (version v12.0, spatial resolution of 0.22° on a rotated pole grid). 135 

We use the E-OBS data set for its availability on a European scale and a similar spatial resolution to the regional climate models 

under consideration. We accept the known weaknesses of the data set (mostly caused by inhomogeneities in the sparse station 

network; E-OBS is also known for rather low precipitation fields; see Hofstra et al., 2009), and assume that it is suitable for the 

purpose of this study. 

3 Methods and results 140 

3.1 Spatial aggregation 

The indicators are calculated on a grid basis for each ensemble. For comparison, the indicators are spatially aggregated to four 

regions in Europe, for which all three RCM domains overlap (Figure 1): British Isles (BI), France (FR), Mid-Europe (ME) and the 

Alps (AL). These regions are well known from other European climate model studies (Lenderink, 2010; Lorenz and Jacob, 2010; 

Kotlarski et al., 2014; von Trentini et al., 2019), and were introduced by Christensen and Christensen (2007). The procedure of 145 

calculating the indicators on the grid level and spatially aggregating them afterwards has the advantage that no regridding of data is 

needed. However, the different spatial resolutions of the models alone can potentially lead to higher variability in the 0.11° data 

(CRCM and RACMO), compared to the 0.22° (E-OBS) and 0.44° (CCLM) data. This is especially the case for spatially 

heterogeneous variables and indicators (Giorgi, 2002; Kendon et al., 2008). The indicators in this study however have relatively low 

spatial heterogeneity (seasonal temperature and precipitation, heatwaves and dry periods are rather large-scale phenomena), where 150 

the range of spatial resolutions of the data used here (0.11° and 0.44°) is not expected to be significantly sensitive. The effect of 

regridding before the calculation of indicators is shown by a short experimental analysis, where one year of five members of the 

0.11° CRCM data is regridded to 0.44° (simply averaging 4x4 grid cells each), before the indicators are calculated. The results show 

that the effect of regridding on the IMV is indeed minor for the indicators considered (Supplementary Material, Figure S1). The 

approach of direct regional aggregation of the indicators calculated on the grid level is therefore applied for the further analysis of 155 

this study. 
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3.2 Ensemble spread of projected mean climate change  

Before analysis of IAV, simple scatter plots of the changes in the mean climatological states of each member for temperature and 

precipitation for summer and winter between 1980-2009 and 2070-2099 are shown (Figure 2 and Figure 3). They give a first 

impression on the spread of projected changes between the members of the SMILEs and on the differences in the mean changes 160 

between models. The spread of signals between members of one SMILE can be solely attributed to the internal variability of the 

respective model. When models generally agree on the spread of members, the confidence in the models’ ability to represent internal 

variability gets higher. 

In summer in Mid-Europe (ME), all models show decreasing precipitation; between -3 and -16 % for RACMO, and -14 to -35 % 

for CRCM and CCLM (Figure 2). Increases in summer temperature between 3 and 5 °C are projected by RACMO and CCLM, 165 

while CRCM shows much higher changes between 5 and more than 6 °C. Thus, RACMO and CCLM show similar changes in 

temperature, while CCLM and CRCM show similar changes in precipitation. The spread of changes for both temperature and 

precipitation of RACMO and CRCM are similar, both in terms of standard deviation and total range, while CCLM shows higher 

standard deviation and total range (Table 3). Similar results as discussed here for Mid-Europe (mean changes and spread) are found 

for France and the Alps (not shown), with the largest decrease in summer precipitation over France and the strongest warming over 170 

the Alps. The British Isles region shows less pronounced changes for both temperature and precipitation (although consistent in 

sign). CRCM shows closer similarity of precipitation decreases to RACMO in BI rather than to CCLM, as it is the case for the other 

three regions ME, FR and AL. 

In winter, all models show increasing precipitation (1-32 %) and temperature increases between 1.4 and 5 °C by the end of the 21st 

century (Figure 3). RACMO and CRCM show similar standard deviation and range again, together with similar mean changes as 175 

well. CCLM shows distinctly smaller changes in combination with a smaller spread of changes (Table 3). Similar results also appear 

for FR, AL, and BI, although some members of CCLM and CRCM also project a slight decrease in precipitation in these regions. 

3.3 Evaluation against E-OBS 

For the comparison of IAV against E-OBS, we apply an approach proposed by Suarez-Gutierrez et al. (2018) and Maher et al. 

(2019). For the observations and for each model and member separately, the anomalies relative to the reference period 1961-1990 180 

are calculated for the years 1957-2099 and 1957-2015 in E-OBS, respectively (Figure 4). Model mean state biases of the indicators, 

which can be quite large (see Figure S2) are thereby removed. For each year, we then plot the ensemble median, minimum and 

maximum member, the area between the 12.5th and 87.5th percentile, within which 75 % of the members are situated, and the E-

OBS data. For a perfect model, the E-OBS data is expected to occur normally distributed within the range spanned by the ensemble, 

concentrated in the inner 75%, several years in between the minimum and maximum of members, but also outside this range from 185 

time to time. If the E-OBS data concentrates too much inside the total range or even the 75% area, the variability of the ensemble 

overestimates the observational variability. Contrary, if too many E-OBS data points exceed the ensemble spread, the SMILE 

underestimates observational variability. To quantify this further, the probability density function of the anomalies in the period 
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1957-2015 are plotted for each member and E-OBS separately. The functions are estimated probability densities based on a normal 

kernel function, similar to an approach by Lehner et al. (2018). 190 

The forced response (ensemble median) increases for all indicators analysed, except for summer precipitation, which decreases in 

all models, and stable conditions of pr-DP-MAX in RACMO. Note that the approach does not only compare the IAV of the models 

and E-OBS, but also the forced response in the historical period. Differences in the distributions can thus also arise from a false 

representation of the forced response in a model, compared to the trend of E-OBS. On the other hand, if the modelled and observed 

distributions largely coincide, both the forced response and the IAV are well represented by a model. All three models generally 195 

seem to reproduce the forced response in the historical part quite well, as the models are consistent with the trends of the E-OBS 

points (e.g. increase of tas-JJA). Only for summer precipitation (pr-JJA), all models show a decrease of the forced response whereas 

E-OBS shows no significant negative trend. However, in all ensembles, not all members show decreasing trends. The observations 

may thus still be consistent with the simulated forced response. 

The comparison of E-OBS and the three SMILEs during the historical period from 1957-2015 in Mid-Europe (ME) shows largely 200 

good representations of IAV in the ensembles, as seen by well distributed E-OBS points within the 75 % range (12.5-87.5% quantile) 

and minimum and maximum range of the ensembles (Figure 4). However, a too strong clustering of the E-OBS points in the 75 % 

area occurs for winter precipitation in CRCM (97 % fall inside) and number of heatwaves in CCLM (90 %), meaning the simulated 

IAV is too high. On the other hand, too many outliers beyond the minimum and maximum members appear in winter temperature 

in CCLM (22 % outside of total range), winter precipitation in RACMO (17 %) or maximum duration of dry periods in CRCM (10 205 

%), i.e. for these models and indicators the simulated IAV is too low. These effects can be seen even better when comparing the 

probability density functions of the annual anomalies for each member and E-OBS (Figure 5). Note that probability density functions 

could also be somewhat inflated by the underlying mean trend but we expect this effect to be small because trends in the 

observational period are small and largely consistent between models and observations. To evaluate the ability of the SMILEs in 

representing IAV, we test whether the E-OBS distribution looks like a possible member of the respective ensemble. The observations 210 

should not be expected to fall near the ensemble median, but rather should be ideally indistinguishable from a random additional 

member of the ensemble, since E-OBS only represents one possible realization of historical climate. Significant differences can be 

seen for the already mentioned examples: the distribution of CRCM in winter precipitation is much broader than the E-OBS 

distribution, whereas the winter temperature distribution for CCLM concentrates too much in the middle compared to E-OBS. 

Similar results as in ME can be found in the other three regions as well (Figures S3-S5), with only several cases where the E-OBS 215 

distributions show a distinctly different shape than all members of the ensembles (Figure 6 in the main text for AL and figures S6 

and S7 and BI and FR), especially maximum duration of dry periods of CCLM in France. This is not too surprising, as the maximum 

duration of dry periods is an extremely sensitive indicator, because of its potentially extreme differences in magnitude between 

(model) years/members (one wet day can make a huge difference). The other two SMILEs are able to represent the E-OBS variability 

for this indicator in France though. Other remarkable features are the underestimation of variability in RACMO for all six indicators 220 

in the British Isles region (Figure S6), as well as the relatively good performance of the models for the Alps (Figure 6), the probably 

most difficult region for a model to represent correctly due to the strong spatial heterogeneity. However, the Alps show some distinct 
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“outlier-members” in the ensembles (e.g. winter precipitation in CRCM), which cannot be found in the other regions – at least not 

this pronounced. These outliers demonstrate how large the influence of internal variability can be in a single realization of climate, 

as these outlier members just deviate from all other members by their initial conditions. Estimating the IAV of a model thus needs 225 

a large number of members, as even after 49 members that give a uniform range of distributions (pr-DJF in CRCM5 in the Alps, 

Figure 6), one single additional member can change the picture and add more information on the range of IAV for the respective 

model. The evaluation of E-OBS gets rather difficult in these cases, as the methodology is based on the assumption that the E-OBS 

distribution should somehow “fit” to the uniform range of distributions of the model. If the E-OBS data would show such an outlier 

behaviour, it means that the one realization of climate variability as seen by the E-OBS data might still be part of a SMILE’s range 230 

of possible variability manifestations. However, from a probability perspective, the conclusion of similar variabilities gets rather 

unlikely. It just makes it harder to prove that E-OBS has a different distribution than all members of a SMILE. 

3.4 Projected changes in variability and the connection between IAV and IMV 

The temporal development of the variability is important information along with the underlying forced response (change in the EM) 

for a better understanding of changing climatic conditions. We discuss three possible ways to describe changes in the variability on 235 

annual timescales within a SMILE. All three methods are based on the application of a Brown Forsyth test (BF test) on equal 

variances. In the cases of IAV (methods 1 and 3), moving time periods of 30-year length, shifted by one year each (1961-1990, 

1962-1991, …, 2070-2099) are used. For the second method, IMV is sampled over the dimension of the ensemble size per year. 

Thereby we test if the variance changes significantly over time. Differences in the methods arise from the different data samples 

used for the testing. 240 

The first method is based on the methodology that one would choose for single members and observations. By looking at the IAV 

for different periods within one member, changes in IAV can be detected. Usually the forced response is taken out of the data by 

fitting a polynomial to the data and only using the residuals. However, the estimate of the forced response of a model based on only 

one member may deviate from the true forced response (Lehner et al., 2020). Therefore, we choose the EM as an estimate of the 

forced response and use the residuals from each member with respect to the EM for the BF test. The BF test results is a Boolean 245 

information for each member and each moving period on whether the variance has significantly changed with respect to a reference 

period (here: 1961-1990) or not. This information can be used to show the percentage of members with a significant change 

(separated for positive and negative changes) in each period. The advantage of SMILEs within this approach is the better estimate 

of the forced response and a more robust detection of changes, as they are built on multiple members. One member alone could be 

an outlier in its representation of (changes in) IAV just as it could be for the trend. The method is sensitive to the chosen reference 250 

period of course, as the variance of this period determines the baseline variance. Since we use moving periods, the results do not 

change significantly when using different periods starting in the 1960s. 

For the second method, we make use of the assumption that the IMV for a given year is a good approximation for the IAV in a 

period around that year. The sampling of variability is thus not based on consecutive time series within each member, but one a 

compound of annual data for one year from all members of a SMILE. The IMV is also based on residuals from the EM as for IAV. 255 
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Under the assumption of small influence of low frequency variability, IMV should be a good estimate of total unforced IAV, as 

both sample the annual variability during a similar state of climate for a given time horizon. This concept is particularly relevant in 

the presence of non-linear forcing. For instance, the response to a volcanic eruption cannot be separated easily from unforced IAV. 

In addition, the anthropogenic forcing since 1950 has not been linear in time. Using IMV is an elegant way to get around this 

challenge. Some recent publications support the concept of using IMV as an approximation of IAV, although the two have different 260 

background meanings: while IAV has a physical meaning and represents the variability of a consecutive sequence of weather 

phenomena, IMV is a measure of variability without a direct physical meaning (Nikiéma et al., 2018). 

In Leduc et al. (2019) the authors state that “In the case of a climate system under transient forcing, the use of [IMV equation] to 

assess temporal variability using the inter-member spread involves weaker assumptions than calculating the residual temporal 

variability from detrended time series.” (Leduc et al., 2019, p. 681), based on the study by Nikiéma et al. (2018). A recent publication 265 

by Wang et al. (2019) even concludes that the IMV of winter sea level pressure over Eurasia in a SMILE is driven by the same 

mechanisms as observed IAV via an EOF analysis. Another example is the analysis of seasonal mean and heavy precipitation in 

Europe where long-term variations are small compared to the IAV in the RACMO ensemble (Aalbers et al., 2018). A comparison 

of IAV and IMV in each ensemble is carried out by comparing the means and standard deviations of these two variability metrics – 

calculated over different dimensions of the ensemble data. The IAV is calculated for each member during a 30-year reference period 270 

(1980-2009) and three future periods. The mean and standard deviation of these 50/21/16 values is calculated for IAV. The IMV is 

calculated for each of the 30 years of the respective period between the 50/21/16 members, leading to a mean and standard deviation, 

calculated from these 30 values. The mean and standard deviation of IAV and IMV are indeed very similar for all indicators, periods 

and regions (exemplary shown for winter temperature in Figure 7). Especially the similarity in future changes suggests a similar 

response to external forcing for the two variability metrics IAV and IMV. The IMV has the advantage that it is insensitive to inflation 275 

effects of the variability due to an existing trend and forced effects like cooling after volcanic eruptions for example. However, 

although IAV and IMV seem to be similar in many cases (see also literature above), they can potentially also differ under special 

circumstances in the external forcing like volcanic eruptions. Note that according to our results IMV is always slightly larger than 

IAV. This may be caused by two factors. First, detrending the time series is more likely to remove than to add some of the variability, 

and affects only IAV. Second, also without detrending the data, in the presence of low-frequency variability, IAV is likely smaller 280 

than IMV, which has no auto-correlation in the underlying data. For the variables considered here, differences are small though, 

implying that the low-frequency variability is indeed small compared to the high-frequency variability. 

Given the similarity of IAV and IMV, the third approach pools together the annual anomalies from the EM from all members for a 

given 30-year period (30 times the ensemble size, e.g. 30x21 values for CCLM). It is therefore a mixture of IAV and IMV, enabling 

a more robust BF test result for changes in variance by a larger sample size. 285 

While the interpretation of temperature based indicators is always based on absolute anomalies from the EM, it can be useful to 

look at both absolute and relative anomalies from the EM for precipitation based indicators (in contrast to the previous evaluation 

against E-OBS, where they were only absolute anomalies). Relative anomalies thus give information on how much the standard 

deviation changes with respect to changes in the EM. For example, a stable IMV in absolute terms will result in a decrease of the 
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relative IMV when the EM increases. Increasing relative IMV, together with an increasing EM on the other hand means that the 290 

variability is increasing even more than the mean. 

The percentage of members with significant changes in IAV as function of time is shown in Figure 8 for all indicators, for Mid-

Europe. Significantly decreasing IAV for winter temperature and increases for summer temperature and heatwaves are found, but 

only for a minority (< 50%) of the members for all models, even at the end of the 21st century. While all three models point to the 

same direction of change, percentages differ substantially. For winter and summer precipitation, an even smaller percentage of 295 

members shows significant changes in IAV, and there is no clear direction of change in any model. Only CRCM for pr-JJA shows 

an increasing number of members with significant positive changes throughout the second half of the 21st century. For dry periods, 

RACMO has a very small number of members showing significant changes in both directions, while CRCM and CCLM show 

marked increases in the number of members with significant positive changes in IAV throughout the 21st century. For the last period 

2070-2099, even all members of CCLM show significant increases. 300 

The temporal evolution of IMV (relative to the EM for precipitation-based indicators, Figure 9) generally supports the direction of 

changes as seen by the method using the percentage of members with significant changes in IAV. However, when testing for 

significant changes in the variance between members, hardly any of the changes are significant. CRCM shows significant changes 

in the majority of years for tas-DJF from 2040 on, for tas-JJA from 2080 on and for pr-JJA from 2060 on. As the IMV is calculated 

for each year, the plot shows the noise in the IMV per year, which can be large. 305 

Figure 10 shows the change in variability determined from the pooled annual anomalies from the EM for moving 30-year periods 

from all members. Given the much larger sample size per 30-year period, in contrast to the two former methods, we can now see 

significant changes in many combinations of indicator and model (Figure 10). As expected from the previous two methods, internal 

variability decreases for winter temperature and increases for summer temperature and the number of heatwaves. In contrast to the 

former methods however, significant changes can be detected earlier. In these cases, the internal variability has already changed 310 

significantly in the historical simulations of the SMILEs or it changes in the present/near future around 2020. The variability in the 

number of heatwaves increases until about 2010-2030, reaches a plateau for about 30-40 years and then decreases again. This 

behaviour can be explained by the forced response of the indicator, which shows strong increases until around 2060, when the 

number of heatwaves stabilizes around 6 (and even decreases afterwards in CRCM, Figure S2), because the heatwaves get so long 

that their number per year cannot increase anymore. This is especially true for CRCM, where the mean duration of heatwaves at the 315 

end of the 21st century is much longer than for CCLM and RACMO and about 16 days (not shown), leading to a rough estimate of 

6*16=96 heatwave-days per year, equal to about three months. Since heatwaves are defined by the 95th percentile of temperature in 

the reference period (thus describing extreme conditions), the former extreme heat becomes a regular condition during the summer 

months at the end of the 21st century in CRCM. For the pooled IAV, both absolute and relative changes of IAV are shown for 

precipitation-based indicators to demonstrate the effect of the two different approaches. For pr-DJF, CRCM does not show any 320 

change in absolute IAV, while this stable behaviour in combination with the increase of pr-DJF in the EM leads to a decreasing 

relative IAV, which is significant from the early 21st century onwards. CCLM and RACMO show increasing variability in absolute 

terms, but changes are significant for RACMO only, from ~2060 onwards. For both CCLM and RACMO there is no clear change 
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in IAV relative to the change in EM for pr-DJF. Note that while RACMO shows the lowest absolute IAV it shows the highest 

relative IAV. This originates from the lower EM for winter precipitation in RACMO compared to CRCM and CCLM, which both 325 

have quite distinct wet biases (Figure S2). For summer precipitation, absolute IAV increases according to all models, while EM 

decreases. Changes in absolute IAV are largest and significant for CRCM and RACMO from ~2000, respectively ~2045 onwards. 

For CCLM changes are not significant. Owing to the decreasing EM, increases in relative IAV are significant for all models and 

significant changes occur earlier in time (~1970 for CCLM, ~1990 for CRCM and ~2040 for RACMO). The changes in EM and 

IAV in both summer and winter have also been detected by Pendergrass et al. (2017) for CMIP5 and CESM-LE precipitation data 330 

in extratropical regions. IAV of pr-DP-MAX does not change according to RACMO, while CRCM and CCLM show distinct 

increases that go hand in hand with increases in the EM that is also much stronger in these two models than in RACMO (Figure 4). 

The changes are significant for relative IAV later in time than for absolute IAV. 

The above mentioned results are mostly valid for the other regions as well. Differences on the magnitudes of variability and its 

changes are shortly discussed in the following (see Figures S8-S10): ME shows higher winter temperature variability than the other 335 

three regions, especially than BI. Lower levels of variability compared to the other regions occur over the British Isles for winter 

temperature and winter precipitation (relative to EM). The Alps show a smaller variability for the number of heatwaves than the 

other regions. The variability of pr-DP-MAX for all three ensembles is similar to ME in AL, while BI and FR hardly show any 

significant changes. If all regions are considered, RACMO generally has the highest internal variability in winter and the lowest 

variability in summer for temperature and precipitation (relative to EM), while CCLM has the highest internal variability for summer 340 

temperature and precipitation (relative to EM) as well as for heatwaves and dry periods (both absolute and relative to EM). 

Significant changes generally occur similar to ME for winter and summer temperature and precipitation (both absolute and relative 

to EM). Changes in the number of heatwaves are not significant in CCLM in all three regions and in RACMO in AL. 

The first method, testing the percentage of members with significant changes in IAV, gives a good overview on the behaviour of 

the members in general. It can however just inform about the direction of change in IAV. Additional information on the magnitude 345 

of the changes in IAV are needed to get a whole picture. The second method using IMV to estimate IAV is in general agreement 

with the first method when looking at the direction of change. It incorporates the magnitude of internal variability and can show 

significant changes in the IMV in the same figure. The variations of IMV from year to year are relatively large. Therefore, also the 

BF test results largely depend on the choice of a reference year to test all other years against. Changes from one year to the next can 

give very different results. Instable significance testing is the result. Method 1 is less sensitive to the reference given the overlapping 350 

periods. Considering the sample sizes in this study, the best results can be obtained with method 3, where sensitivity can be tested 

with a much larger sample size. For method 1 it is 30 values per period, for method 2 it is 16/21/50 values per year, and for method 

3 it is the product of both 30 years and the member size of the respective ensemble. However, if the sample size would be larger for 

the first methods, they will probably also result in the detection of significant changes, e.g. when using more members. 

To see how the ensemble size impacts the results for the pooled IAV, we reduce the largest ensemble (CRCM with 50 members) to 355 

the size of the other ensembles (16 and 21) and repeat the analysis. Even for only 16 members, the changes in CRCM are still 

significant, where they are for 50 members. However, the detection of significant changes is possible at a later time horizon (Figure 
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S11). Tests with a number of ensemble sizes, suggest that around 10 members are sufficient to detect the significance of changes, 

and around 20 to detect the timing of these significant changes additionally. 

5 Discussion 360 

The number of SMILEs for the quantification of internal variability is still relatively small – we only used three GCM-RCM 

combinations – because of the availability of these data sets (to the knowledge of the authors these three ensembles are the only 

regionally downscaled SMILEs over Europe). More simulations with RCM-SMILEs could help to make results even more robust 

– especially for winter precipitation and dry periods, where the three ensembles do not agree on the change in variability. 

The effect of regional aggregation after the calculation of indicators on the grid level, and the potential effects of the original 365 

resolution of different data sets on the internal variability seem to be minor for the selected indicators, as seen in the experimental 

analysis conducted on a subset of the data (Figure S1). This estimate of sensitivity to differing spatial resolutions might be 

conservative, however. Nevertheless, the methodology seems to be suitable for the selected indicators of this study. 

Methods based on anomalies from the EM are chosen to be able to compare results despite different biases in historical and future 

climate states. It can however not be ruled out that differences in the variability may originate from mean state biases of the models. 370 

CRCM for example shows much higher precipitation sums than the other two ensembles, leading to higher variability in absolute 

terms. The normalization with the ensemble mean is covering these differences in absolute amounts. In the end it largely depends 

on the definition of variability: is one interested in absolute deviations [mm] or in the fluctuations in relative terms [%]? Results are 

sensitive to a relative versus an absolute definition or vice versa. The relative approach has the advantage that it allows for a fair 

comparison of models with different mean precipitation amounts. This is also why a recent publication by Giorgi et al. (2019) gave 375 

preference to the relative definition, for example. 

 

The scatter plots of projected changes for seasonal temperature and precipitation (Figure 2 and Figure 3) show both agreement and 

dissent, but usually at least two of the three models show similar ranges for one variable. A better agreement might be possible when 

comparing the data sets not for a fixed period, but for periods with the same global warming level in each driving GCM. 380 

We find that the large ensembles analysed here generally represent observed IAV correctly, but care needs to be taken during the 

analysis for specific regions and indicators. Both cases of many individual members showing higher and lower variability compared 

to observational IAV can be found for all ensembles for specific indicators and regions. However, the single observed realization 

of historical climate makes it difficult to evaluate systematic errors of the ensembles, as the E-OBS distribution is not necessarily 

representative for the perfectly-sampled IAV. It would be interesting to compare large ensembles against an observational large 385 

ensemble as proposed by McKinnon and Deser (2018) to better see systematic deficiencies of large ensembles compared to 

observations. 

The results found for changes in IAV are generally in line with existing literature over Europe. We likewise find increasing 

variability for the summer indicators tas-JJA, pr-JJA (Fischer and Schär, 2009; Fischer and Schär, 2010; Vidale et al., 2007; Yettella 
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et al., 2018; Suarez-Gutierrez et al., 2018) and decreasing variability for the winter indicators tas-DJF and pr-DJF  (Bengtsson and 390 

Hodges, 2019; Holmes et al., 2016). The summer extreme indicators tas-HW-Nr and pr-DP-MAX also show increased variability 

in two of the three models, in accordance to increases in their mean states. Several mechanisms contribute to the changes in all 

indicators. For changes in the summer temperature IAV, land-atmosphere coupling is becoming more important in central/northern 

Europe in the future, because the transitional zone between dry and wet climates moves northwards from the Mediterranean region, 

leading to enhanced alternation of dry and wet summer soil moisture (Seneviratne et al., 2006; Fischer et al., 2011). Moreover, 395 

stronger warming over land than over the oceans causes the land-ocean temperature gradient in summer to increase. This results in 

increased variability in thermal advection, which is suggested to play a role in the increase in temperature variability in Europe as 

well (Holmes et al., 2016). Analysis of observations shows that in the Mediterranean more than half of summer temperature 

variability can be explained by large-scale atmospheric circulations and sea surface temperatures (Xoplaki et al., 2003). The decrease 

in winter temperature IAV is suggested to be influenced by changing circulation patterns (Vautard and Yiou, 2009), and a decrease 400 

in variability of advected heat due to the decrease in the winter land-ocean temperature gradient (Holmes et al., 2016) and arctic 

amplification and sea ice loss (Screen, 2014; Sun et al., 2015; Tamarin-Brodsky et al., 2020), even under unchanged circulation 

variability. (Holmes et al., 2016; Tamarin-Brodsky et al., 2020). 

The increase in summer precipitation variability, under decreasing mean summer precipitation, might be caused by a reduction in 

the number of wet days (>1mm) that exists in all three ensembles (not shown), as discussed by Räisänen (2002). 405 

Land-atmosphere feedback mechanisms are not yet fully understood, and there are still improvements needed in their 

implementation in earth system models and regional climate models (Vogel et al., 2018). Uncertainties in the future regional 

development of heatwaves and dry periods are thus rather large (Miralles et al., 2019). Nevertheless, increasing frequency, intensity 

and variability in the number of heat waves as projected by the SMILEs using RCP8.5 in this study seem plausible, although the 

magnitudes might be uncertain. The strong increase in the maximum length of dry periods in two of the models is not necessarily 410 

what could be expected. While the length of severe dry periods increases in the future for southern Europe, central and northern 

Europe do not show any change in the EURO-CORDEX data for dry period length (Jacob et al., 2014). Analysis of precipitation 

changes shows that both CRCM and CCLM (the RCM itself, not the SMILE) are on the dry end of projections for summer 

precipitation (von Trentini et al., 2019). This might be related to sensitive implementations of land surface modules in these two 

RCMs. RACMO does not show an increase in the maximum length of dry periods. 415 

Although beyond the scope of this paper, which only analysed the manifestations of internal model variability in surface variables, 

there is a need for a better understanding of the mechanisms leading to the model-inherent characteristics of internal variability, and 

why differences between the models appear. 

Using SMILEs for studying changes in inter-annual variability allows for much more confident statements on the direction, 

magnitude and emergence of changes given a certain model and RCP scenario, as again shown in this paper. Analysing the individual 420 

members, significant changes in IAV are found in less than half of the members for almost all indicators and ensembles, even at the 

end of the 21st century (Figure 8). However, pooling the data of all ensemble members, all three ensembles show significant changes 

in internal variability of most indicators, and often from early in the 21st century onwards (Figure 10). 
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Thompson et al. (2015) showed that a statistical model based on a historical period could be as good as a SMILE for predicting 

future variability of seasonal temperature and precipitation trends up to 2060. The detection of significant increases of internal 425 

variability in summer and winter temperature much earlier than 2060 (Figure 10) is challenging these assumptions. For precipitation 

however (especially absolute changes), the changes are often not significant before 2060, confirming the results of Thompson et al. 

(2015). 

6 Conclusions 

There is an increasing interest of the scientific community to use single model initial-condition large ensembles in a wide variety of 430 

applications, ranging from deeper levels of understanding of natural climate variability to impact assessments in different fields. 

The rich data basis which these ensembles provide for the analysis of internal variability is very valuable and enables new insights 

into this critical part of the climate system. Especially future changes can be better set into context. Only a few comparisons of 

different SMILEs have been undertaken so far (Deser et al., 2014; Martel et al., 2018; Rondeau-Genesse and Braun, 2019; Deser et 

al., 2020), all of them on the GCM level. The effects of dynamical downscaling of GCM large ensembles with regional climate 435 

models are not yet sufficiently explored. Further research is needed in this direction to see whether and by how much the internal 

variability is altered in the RCM simulations of a respective GCM large ensemble. However, downscaling is an important step to 

make climate simulation information attractive for local adaptation research and impact modellers. The results from this study can 

be helpful for these research communities to better understand and quantify the role of IAV in the climate system. Especially 

increases in variability as seen for summer temperature, relative summer precipitation, heatwaves and dry periods in most regions 440 

and models, can be a huge burden for sectors like agriculture, ecology and hydrology. 

The evaluation and comparison of the three RCM-SMILEs in this study gives a first overview on the (dis)agreement of the SMILEs 

with observations and among each other. The moderate agreements in both cases suggest that the internal variabilities of RCM-

SMILEs at the regional scale are good approximations of the IAV of the climate system in Europe. The direction of changes in 

internal variability is also mostly the same between the ensembles, suggesting a relatively robust signal. While the “summer 445 

indicators” mostly show increasing variability in the future, winter temperature and precipitation show decreasing variability or no 

change. The change in variability is potentially impact-relevant as it suggests that the most extreme summers and winters may warm 

stronger than the corresponding mean. 

One limitation of many of the recent publications using SMILEs is the use of only one model, and thereby one estimate of internal 

variability, leaving it unclear how representative the results are. Although the respective SMILE is usually evaluated against 450 

observations in these studies, the uncertainty in future changes of IAV cannot be quantified in the same way as in this study. A 

further challenge is also the fact that low frequency variability at decadal and multi-decadal time scales remains uncertain and cannot 

be rigorously evaluated against observations due to the relatively short observational record and the difficulty of separating forced 

changes from unforced internal variability in observations. 
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So, do we need to go the way CMIP and CORDEX went and apply a multi-model-multi-member ensemble in all studies? First 455 

approaches in this direction are currently ongoing for the GCM SMILEs (e.g. Lehner et al., 2020). This would certainly be an ideal 

way to better understand and quantify sources of uncertainties, but is challenging for two reasons: (a) the computational resources 

to perform these experiments on regional scale are limited and the CORDEX matrix of scenario, GCM and RCM could already not 

be filled for this same reason, and b) the use of hundreds of simulations would also be very challenging for analysis and impact 

modellers. 460 

Overall our results underline the great potential of SMILEs in quantifying the changes in IAV and when they become significant, 

also at the regional scale. 
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Table 1: Indicators and their definitions 465 

Indicator Used variable Definition 

tas-JJA tas Summer mean temperature (June-August) 

tas-DJF tas Winter mean temperature (December-February) 

tas-HW-Nr tas Number of heatwaves per year; a heatwave is defined as a minimum of three 

days above the 95th percentile of daily mean temperature of the reference 

period; no filtering on summer months is applied at any stage, however by 

definition the heatwaves will occur during summer in the reference period. 

They might however extent to spring and fall under RCP8.5 

pr-JJA pr Summer precipitation sum (June-August) 

pr-DJF pr Winter precipitation sum (December-February) 

pr-DP-MAX pr Maximum length of a dry period per year; dry periods are a minimum of 11 

consecutive days with every day showing less than 1 mm of precipitation; no 

filtering on summer months is applied at any stage, the periods can thus also 

occur in winter (but this is rather unlikely in Europe) 

 

Table 2: Specifications of the three ensembles used in this study 

 ‘CRCM’ ‘CCLM’ ‘RACMO’ 

Scenario RCP8.5 RCP8.5 RCP8.5 

GCM CanESM2 CESM 1.0.4 EC-EARTH 2.3 

GCM Resolution 2.8° 2.0° 1.0° 

RCM CRCM5 CCLM4-18-7 RACMO22E 

RCM Resolution 0.11° 0.44° 0.11° 

No. of members 50 21 16 
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 470 

Figure 1: Domains of the three RCMs and the boundaries of the four analysis regions; BI=British Isles, FR=France, ME=Mid-Europe, 

AL=Alps; the CCLM domain matches the EURO-CORDEX domain 
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Figure 2: Change in mean summer temperature and precipitation for every member of the three ensembles in Mid-Europe (2070-2099 475 
against 1980-2009). Changes are relative to each members’ value in 1980-2009 for precipitation, while temperature changes are absolute 
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Figure 3: Change in winter temperature and precipitation for every member of the three ensembles in Mid-Europe (2070-2099 against 

1980-2009). Changes are relative to each members’ value in 1980-2009 for precipitation, while temperature changes are absolute 

 480 

Table 3: Standard deviation and total range for changes in Figure 2 and Figure 3 

 tas [°C] pr [%] 

 CRCM RACMO CCLM CRCM RACMO CCLM 

summer std 0.27 0.28 0.39 4.2 3.8 5.1 

summer range 1.16 0.96 1.59 16.2 13.2 21.1 

winter std 0.37 0.38 0.30 5.5 5.3 4.2 

winter range 1.87 1.47 1.33 26.1 21.2 12.9 
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Figure 4: Anomalies from 1961-1990 of the 6 indicators in Mid-Europe (ME) for E-OBS (circles 1957-2015) and the three ensembles (1957-485 
2099), represented by the median, minimum and maximum (solid lines) of the ensemble and an area from the 12.5th and 87.5th percentile, 
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spanning the range of the inner 75 % of the members (shadings). Black lines show the linear trend for the E-OBS points. The indicator 

names are in bold when the trend is significant via a Mann-Kendall test (alpha=0.05). 

 

 490 

Figure 5: Probability density functions of the annual anomalies in the period 1957-2015 in E-OBS and each ensemble member for all 6 

indicators in Mid-Europe (ME) 
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Figure 6: Probability density functions of the annual anomalies for all 6 indicators in the Alps (AL). For details see Figure 5 
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 495 

Figure 7: IAV and IMV of winter temperature in the three ensembles for the reference period and three future periods. Bars: mean over 

the variability of each member (IAV) or year (IMV), Error bars: ± standard deviation (members or years); IMV: 16/21/50 members; 

IAV: 30 years of the respective period 
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Figure 8: Percentage of members with significantly different variance than the reference period 1961-1990 in Mid-Europe. The analysis 500 
is based on residuals after removing the EM from each member. The years on the x-axis denote to the starting year of moving 30-year 

periods. 
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Figure 9: IMV per year sampled on the dimension of the respective ensemble size (50,21,16) for Mid-Europe. The analysis is based on 

residuals after removing the EM from each member. The markers highlight years with a significantly different variance than the reference 505 
year 1961. Precipitation-based indicators are shown with their relative anomalies from the ensemble mean [percentage]. 
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Figure 10: “Pooled IAV” for Mid-Europe. The analysis is based on residuals after removing the EM from each member. Temperature-

based indicators are shown in absolute terms (left column). Precipitation-based indicators are shown both in absolute terms (central 

column) and relative to the ensemble mean (right column).  510 
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