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Abstract.  
 

Analyzing a dynamical system describing the global climate variations requires, in principle, exploring 

a large space spanned by the numerous parameters involved in this model. Dimensional analysis is 10 
traditionally employed to deal with equations governing physical phenomena to reduce the number of 

parameters to be explored, but it does not work well with dynamical ice-age models, because, as a rule, the 

number of parameters in such systems is much larger than the number of independent dimensions. Physical 

reasoning may however allow us to reduce the number of effective parameters and apply dimensional 

analysis in a way that is insightful. We show this with a specific ice-age model (Verbitsky et al, 2018) 15 
which is a low-order dynamical system based on ice-flow physics coupled with a linear climate feedback. 

In this model, the ratio of positive-to-negative feedback is effectively captured by an adimensional number 

called the "V-number", which aggregates several parameters and, hence, reduces the number of governing 

parameters. This allows us to apply the central theorem of the dimensional analysis, the π-theorem, 

efficiently. Specifically, we show that the relationship between the amplitude and duration of glacial cycles 20 
is governed by a property of scale-invariance that does not depend on the physical nature of the underlying 

positive and negative feedbacks incorporated by the system. This specific example suggests a broader idea, 

that is, the scale invariance can be deduced as a general property of ice age dynamics, if the latter are 

effectively governed by a single ratio between positive and negative feedbacks. 
 25 

1. Introduction.  

 

Mathematical modeling of Pleistocene ice ages using astronomically forced spatially-resolving models 

of continental ice sheets, the ocean, and the atmosphere has always been, and remains a computational 

challenge. Therefore, though higher resolution models (e.g., Abe-Ouchi et al, 2013) and models of 30 
intermediate complexity (e.g., Verbitsky and Chalikov, 1986, Chalikov and Verbitsky, 1990, Gallée et al., 

1991, Ganopolski et al, 2010) are gaining popularity, it has been argued for a long time that significantly 

less computationally demanding dynamical models may provide just as much insight as the models with 

more degrees of freedom (Saltzman, 1990). However, even though the computational load for solving 

dynamical equations is minimal, the work and number of experiments needed for spanning the full 35 
parameter space is easily overwhelming. Analyzing a dynamical system of ice ages is thus, in principle, a 

difficult task. In mathematical physics, the method of dimensional analysis (e.g., Barenblatt, 2003) has 

been traditionally employed to take advantage of symmetry or invariance principles and, as a result, to 

reduce the number of effective parameters.  It has not been applied to low-order models of the global 

climate dynamics, because in such models the number of governing parameters is much larger than the 40 
number of independent dimensions. Indeed, the number of independent dimensions in a dynamical system 

does not exceed the number of variables (it may be smaller if some variables have the same or dependent 

dimensions), to which one adds time, which is always present in a dynamical system. For example, the 

dynamical system of Saltzman and Verbitsky (1993) described the evolution of 4 variables: ice volume 

(m
3
), CO2 concentration (ppm), ocean temperature (

o
C), and bedrock depression (m). The number of 45 

independent dimensions, including time, was thus 4. This system had 18 parameters, including the 

amplitude and the period of the external forcing. In such case, the π-theorem (Buckingham, 1914) — the 

tenet of dimensional analysis — is of little help to simplify the analysis and effectively provide physical 

insight.  
In Verbitsky et al (2018), we derived a dynamical model of the Pleistocene climate from the scaled 50 

conservation equations of viscous non-Newtonian ice, and combined them with an equation describing the 

evolution of the climate temperature. The work was motivated by the prospect of delivering a low-order, 

parsimonious approach to the problem of understanding glacial-interglacial cycles. The state of the ice-

climate system is summarized by a 3-dimensional vector: glaciation area S (m
2
), ice sheet basal temperature 
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θ (
o
C), and climate temperature ω (

o
C). The number of independent dimensions, including time, is thus 3. 

However, despite our effort to be parsimonious in the physical description, the model includes 12 

parameters, which is still much larger than the number of independent dimensions. This was an obvious 

progress relative to the Saltzman and Verbitsky (1993) model, but not enough for an effective use of the π-

theorem. The situation changed dramatically when we discovered that the dynamical properties of the 5 
system are largely defined by the dimensionless V-number incorporating 8 model parameters and 

measuring the ratio of climate positive feedback over the ice sheet’s own negative feedback. At once, 7 

parameters are effectively eliminated, and using the π-theorem became an attractive prospect. We first 

applied the π-theorem reasoning to investigate the propagation of millennial forcing into ice-age dynamics 

(Verbitsky et al, 2019a) and found that the millennial forcing introduces a disruption, i.e., shifts the system 10 
equilibrium point, and this disruption is proportional to the second degree of the forcing period. 

In this paper we will apply this approach systematically to all model variables. This will allow us to 

demonstrate that, in the model, glacial area and climate temperature are scale invariant in the orbital 

frequencies domain (in the case of the climate temperature – even beyond this domain), and observe that 

this property does not depend on the specific physical nature of the climate system feedbacks. 15 
Accordingly, our paper is structured as follows. First, we will briefly recapture equations, parameters, 

and dimensions of the Verbitsky et al (2018) model. Then we will remind the essence of the π-theorem, 

apply it to all model variables, and discuss its implications. 
 

2. A dynamical model of Pleistocene glacial rhythmicity.  20 
 

The non-linear dynamical model of the global climate system (Verbitsky et al, 2018) is derived from 

the scaled equations of ice sheet thermodynamics, combined with a linear feedback equation involving an 

effective “temperature”, which describes the climate state outside the ice region.  
 25 
𝑑𝑆

𝑑𝑡
=

4

5
𝜁−1𝑆3 4⁄ (𝑎 − 𝜀𝐹𝑆 − 𝜅𝜔 − 𝑐𝜃)                                                                                                      (1) 

𝑑𝜃

𝑑𝑡
= 𝜁−1𝑆−1 4⁄ (𝑎 − 𝜀𝐹𝑆 − 𝜅𝜔){𝛼𝜔 + 𝛽[𝑆 − 𝑆0] − 𝜃}                                                                        (2) 

𝑑𝜔

𝑑𝑡
= 𝛾1 − 𝛾2[𝑆 − 𝑆0] − 𝛾3𝜔                                                                                                                    (3) 

 

The model variables and their dimensions are defined as follows: S (m
2
) is the glaciation area, θ (

o
C) is 30 

the basal ice sheet temperature, and ω (
o
C) is the effective global climate temperature. The third equation 

implicitly accounts for the effect of the response of CO2-concentration, along with other radiative 

feedbacks.   
Model parameters along with their dimensions are: ζ (m

1/2
) is the “shape” factor of the ice sheet; a 

(m/s) is the characteristic rate of snow precipitation; FS is normalized mid-July insolation at 65N (Berger 35 
and Loutre, 1991); ε (m/s) is the amplitude of the external forcing; κ (m s

-1
 
o
C

-1
)  and c (m s

-1
 
o
C

-1
)  are 

sensitivity parameters, describing, correspondingly, climate temperature and basal sliding impacts into ice-

sheet mass balance; the dimensionless coefficient α describes basal temperature sensitivity to global 

climate temperature changes, coefficient β (
o
C /m

2
) defines basal temperature dependence on ice sheet 

dimensions, S0 (m
2
) is a reference glaciation area; γ1 (

o
C/s), γ2 (

o
C m

-2
 s

-1
) and γ3 (s

-1
) define climate 40 

temperature evolution, 1/γ3, being a time constant. If the forcing is periodic, then we may consider that the 

system dynamics is described by an additional parameter: the forcing period T (s). Thus we have a system 

of 3 variables, 3 (including time) independent dimensions, and 12 parameters. The system (1) – (3) is not 

sensitive to initial conditions and, therefore, we do not include the latter into the list of parameters. 
Physical reasoning and numerical experiments (Verbitsky et al., 2018) led to the suggestion that the 45 

system response is essentially determined by the V-number measuring a balance between positive and 

negative model feedbacks: 

𝑉 =
1

𝛽
(𝛼 +

𝜅

𝑐
) (

𝛾2

𝛾3
−

𝛾1

𝑆0𝛾3
)                                                                                                                    (4) 

 

Here parameter β is a measure of ice-sheet negative feedback. The term (α+κ/c)(γ2/γ3- γ1/γ3/S0) 50 
measures the climate system positive feedback (Verbitsky et al, 2018). 
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If we assume that the V-number effectively captures the behavior of the model with respect to the 8 

parameters included in its definition, then the number of parameters is effectively reduced to 5: V, ζ, a, ε, 

and T. We assume further that parameter ζ in equations (1) - (2) is a constant, thus assuming an invariant 

relationship between ice thickness H and glaciation area S  (𝐻 = 𝜁𝑆1 4⁄ , Verbitsky et al, 2018). We also 

note that the V-number has been assembled using components of the steady-state solution of the system (1) 5 
– (3) (Verbitsky et al, 2018). Obviously, parameter ζ, as a multiplier, is not part of this steady-state 

solution. Therefore our hypothesis that the V-number defines the model’s behavior, in fact also includes the 

assumption that the impact of the parameter ζ on the system behavior, at the reference value, is weak. As a 

result, we end up with the assumption that the system's response to external forcing is essentially 

determined by no more than four parameters: V, a, ε, and T. We will now learn how to take profit of this 10 
advantage. 

 

3. Dimensional analysis of model variables. 

 

3.1 Period of the system response to the external forcing, P.  15 
 

We  previously noticed (Verbitsky et al, 2018), that with weak climate positive feedback (V~0), the system, 

exhibits fluctuations in response to the astronomical forcing with a dominating period of about 40 kyr, 

which may arise either as direct response to obliquity, or as a doubled-period response to the forcing 

associated with climatic precession (2 x  20 kyr). When the climate positive feedback intensifies such that 20 
V~ 0.75 and external forcing is strong, the system evolves with a doubled obliquity period. We can  

therefore assume that the period of the system response to the external forcing, P, is a function of the V-

number,  the amplitude of the external forcing, ε, and of the period of the external forcing, T. We thus begin 

with the most general hypothesis:  

𝑃 = 𝜓(𝑉, 𝑎, 𝜀, 𝑇)                                                                                                                                      (5) 25 
 

This is at this stage that the π-theorem intervenes. Specifically, it stipulates that a physical relationship 

should not depend on a system of units and therefore, in the dimensionless form, the number of 

dimensionless arguments is equal to the total number of the governing parameters minus the number of 

governing parameters with independent dimensions (Buckingham, 1914). If we select dimensions of ε and 30 
T as independent dimensions, then application of the π-theorem to the equation (5) gives us: 
 

𝑃 𝑇⁄ = 𝛹(𝑉, 𝜀 𝑎⁄ )                                                                                                                                                   (6) 

 

𝑃 = 𝑇𝛹(𝛱1, 𝛱2), 𝛱1, = 𝑉, 𝛱2 = 𝜀 𝑎⁄                                                                                                                 (7) 35 
 

 
 

Fig. 1. A typical illustrative 𝛹(𝑉, 𝜀 𝑎⁄ ) function. Red arrow represents hypothetical trajectory of the 

system’s Pleistocene history: from doubled precession periods of the early Pleistocene to doubled obliquity 40 
periods of the late Pleistocene. 
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Fig. 1 presents a sketch of how the function 𝛹(𝑉, 𝜀 𝑎⁄ ) may look like, qualitatively. The underlying idea is 

that the Pleistocene history of the climate system may be understood as a trajectory in the [𝑉, 𝜀 𝑎⁄ ]  space 

(Crucifix and Verbitsky, 2019). The shape and location of the period doubling domain 𝛹 = 2 is expected to 

depend on the forcing period.   

 5 

3.2 Amplitude of the glacial area variations, 𝑆́.  

 

We begin again with the most general hypothesis. We suggest that the amplitude of glacial area variations 

𝑆́ is a function of the V-number, of the characteristic rate of snow precipitation, a, of the amplitude of the 

external forcing ε, and of the period of the system response P as it is described by equation (7). The 10 
relationship between the period of the response and that of the forcing may therefore be non-trivial. It 

means that the system response may exhibit original forcing periods or multiples of them. 

 

𝑆́ = 𝜑(𝑉, 𝑎, 𝜀, 𝑃)                                                                                                                                         (8) 

 15 
If the hypothesis (8) is true, then, taking dimensions of ε and P as independent dimensions, and using the π-

theorem, we obtain: 

 

𝑆́ (𝜀2𝑃2)⁄ = 𝛷(𝑉, 𝜀 𝑎⁄ ) , and finally: 

 20 

𝑆́ = 𝜀2𝑃2𝛷(𝛱1, 𝛱2)                                                                                                                                    (9) 

 

Neither 𝛱1nor 𝛱2 contain P. Equation (9) therefore implies that, at constant amplitude of the external 

forcing ε, the amplitude of glacial area variations is scale invariant with a frequency slope equal 2. Fig. 2 

(𝑆́, reference parameters values) presents a numerical test of the hypothesis (8) and of its implication (9). 25 

 
Fig. 2 The system response to a single-sinusoid external forcing of constant amplitude and different periods 

 

Here, we measure the system response to single-sinusoid forcings of constant amplitude and periods T 

varying from 5 kyr to 50 kyr. The system responds to this forcing with periods P ranging from 5 kyr to 100 30 
kyr, because forcing periods T of 40 kyr and 50 kyr produce response periods P of 80 kyr and 100 kyr, 

correspondingly. It can be seen that the 𝑆́-amplitude frequency slope, βa, is close to 2 (i.e., βa = 1.8) for 
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periods between 30 ky and 100 ky. It means that the amplitude of glacial area variations is scale invariant 

in the orbital domain. 

 

3.3 Amplitude of the basal temperature, 𝜃́.  
 5 

The amplitude spectrum of the θ-variable cannot be derived unambiguously from the same simple 

considerations as we have employed for P and 𝑆́  because: (a) we cannot constrain ourselves with only 

parameters V, a, ε, and P, since the basal temperature θ is measured in 
o
C, but neither ε, nor a, nor P 

contain 
o
C, but (b) as soon as we disassemble the V-number, i.e., use all individual model parameters 

instead of V, the advantage of using the π-theorem is lost. Nevertheless, if we disassemble the V-number 10 

wisely, we can minimize the number of dimensional parameters and, as a result, we may be rewarded by 

discovering the identities of critical groups that define the scaling properties of θ. Accordingly, we will 

disassemble the V-number using not individual parameters involved but, instead, using dimensionless 

groups that are present in the V:  𝛼,
𝜅

𝑐
,

𝛾1

𝛽𝛾3𝑆0
,

𝛾2

𝛽𝛾3
. If we consider that the group 

𝛾1

𝛽𝛾3𝑆0
 is a dimensionless 

representation of the parameter 𝛾1, and the group 
𝛾2

𝛽𝛾3
 is a dimensionless representation of the parameter 𝛽, 15 

then the remaining parameters 𝛾2, 𝛾3, 𝑆0 need to be represented individually in the dimensional form. 

Taking this together, this yields the following hypothesis: 

 

𝜃́ = 𝜒 (𝛼,
𝜅

𝑐
,

𝛾1

𝛽𝛾3𝑆0
,

𝛾2

𝛽𝛾3
, 𝛾2, 𝛾3, 𝑆0, 𝑎, 𝜀, 𝑃)                                                                                             (10) 

Taking 𝛾2, 𝑆0 and P as independent dimensions, the π-theorem implies: 20 

𝜃́ = 𝛾2𝑆0𝑃𝛸 (𝛼,
𝜅

𝑐
,

𝛾1

𝛽𝛾3𝑆0
,

𝛾2

𝛽𝛾3
, 𝛾3𝑃, 𝑎𝑃𝑆0

−1 2⁄
, 𝜀𝑃𝑆0

−1 2⁄
)                                                                     (11) 

or, combining  groups 𝛼,
𝜅

𝑐
,

𝛾1

𝛽𝛾3𝑆0
,

𝛾2

𝛽𝛾3
 back into V-number: 

𝜃́ = 𝛾2𝑆0𝑃𝛸 (𝑉, 𝛾3𝑃, 𝑎𝑃𝑆0
−1 2⁄

, 𝜀𝑃𝑆0
−1 2⁄

)                                                                                            (12) 

Since 𝛱2 = 𝜀 𝑎⁄ ,  

𝜃́ = 𝛾2𝑆0𝑃𝛸(𝛱1, 𝛱2, 𝛱3, 𝛱4)                                                                                                                   (13) 25 

where 𝛱3 = 𝛾3𝑃, 𝛱4 = 𝜀𝑃𝑆0
−1 2⁄

. 

As 𝛱3 and 𝛱4 include P, then the amplitude of basal temperature variations is not expected to be scale 

invariant. 

3.4 Amplitude of the climate temperature, 𝜔́.  

 30 
Since equation (3) for ω is linear, it may provide us with a hint about the response scaling characteristics of 

this variable. In the orbital domain, 𝛱3 = 𝛾3𝑃 ≫ 1, so that equation (3) may be approximated to: 𝛾3𝜔 ≈

𝛾1 − 𝛾2(𝑆 − 𝑆0). Hence, 𝜔́ =
𝛾2

𝛾3
𝑆́. We may hypothesize therefore that in the orbital domain and possibly 

even beyond: 
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𝜔́ = 𝜈 (𝑉,
𝛾2

𝛾3
, 𝑎, 𝜀, 𝑃)                                                                                                                                (14) 

Taking the dimensions of  
𝛾2

𝛾3
, 𝜀, and P as independent and applying again π-theorem reasoning, we should 

expect that: 

𝜔́ =
𝛾2

𝛾3
𝜀2𝑃2𝛮(𝛱1, 𝛱2)                                                                                                                             (15) 

At constant amplitude of the external forcing ε, equation (15) implies that the amplitude of climate 5 
temperature variations 𝜔́ grows with the square of the response period. The results presented in Fig.2 (𝜔́, 

reference parameters values) support the hypothesis (14) and its implication (15): The ω-variable amplitude 

frequency slope is close to 2 (i.e., βa = 1.8) for periods between 5 kyr and 100 kyr. It means that in the 

orbital and millennial domains, the amplitude of the climate temperature is scale invariant. 

4. Discussion. 10 
 

4.1 Scale invariance and a physical nature of the climate system feedbacks. 

 

So far, we based our implications of scaling relationships on the significance of an adimensional 

number (in our case, the V-number) quantifying a mean ratio between positive and negative feedbacks. 15 
That is, the scaling relationships found should be robust across changes in the composition of V, provided 

that the value of V is unchanged. To illustrate this implication, we conducted four numerical experiments. 

In the first experiment, we increase coefficients α and κ two-fold and reduce γ2 by a half relative to their 

reference values. This does not change the reference value of the V-number (see the equation (4) and note 

that the reference value of γ1 = 0), that is V=0.75, but transforms system (1) – (3) to a system where the 20 
positive feedback is dominated by the climate temperature affecting ice-sheet mass balance and its 

temperature regime.  We then measure the system response to the single-sinusoid forcing of the same 

amplitude and periods T = 5 - 50 kyr. (Note, that periods T = 40 kyr and 50 kyr produce system response of 

periods P = 80 kyr and 100 kyr, correspondingly). In the second experiment, we decrease coefficients α and 

κ by 50% and increase γ2 two-fold relative to their reference values. Again, this does not change the 25 
reference value of the V-number, V=0.75, but transforms system (1) – (3) to a system where the positive 

feedback is dominated by the albedo feedback. In the third experiment, we increase coefficients α and κ by 

50% as well as the coefficient β, thus creating the system with intensive climate-temperature positive 

feedback and intensive ice-sheet basal temperature negative feedback, the V-number still being equal to 

0.75. And finally, we decrease coefficients α, κ, and β by 50%, making a system with weak climate-30 
temperature positive and ice-sheet basal temperature negative feedbacks. The response of all four systems 

to the external forcing is shown in Fig.2. Despite different underlying physics, all four systems demonstrate 

the same: in the orbital domain, their amplitudes of glacial area variations are scale invariant with “1.8” 

frequency slope, and the amplitudes of the climate temperature are scale invariant in the orbital and 

millennial domains with the same slope. 35 
This robustness is comforting. As we know, the physical interpretation of a low-order dynamical 

model can be partly ambiguous. For example, the mechanisms responsible for the changes in the “effective 

climate temperature”, and how it impacts the ice mass balance are not fully described in this model. It is 

therefore reassuring to have been able to identify what seems to be the key ingredient for the scaling 

relationship, in this case, that a single quantity (the V-number) grossly determines the dynamics of the 40 
system response. In other words, it relies on the fact that the number of effective parameters is smaller than 

is apparent from a more detailed description of the system.  

This, incidentally, shows how difficult it is to disambiguate the physical mechanisms responsible for a 

given behavior. Different assemblages yielding the same V-number will, indeed, produce slightly different 

solutions, but less different than one could have perhaps expected. The dimensionless functions like, for 45 
example, function 𝛷(𝑉, 𝜀 𝑎⁄ ) in the equation (9),  

 

𝑆́ = 𝜀2𝑃2𝛷(𝑉, 𝜀 𝑎⁄ ) 
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and function 𝛷′(𝑉, 𝜀 𝑎⁄ ) corresponding to the same value of the V-number but formed by the different physics 

(different set of parameters),  

𝑆́ = 𝜀2𝑃2𝛷′(𝑉, 𝜀 𝑎⁄ ) 

though are not identical, yield the same scaling behavior.  If the amplitude of the external forcing ε is 

constant, the period P shows up only as a power-law monomial ~P
n
 and its power n makes the same scale-

invariant amplitude-spectrum slope regardless of the specific physics defining the V-number. In other 5 

words, though the functions 𝜓(𝑉, 𝑎, 𝜀, 𝑇), 𝜑(𝑉, 𝑎, 𝜀, 𝑃), 𝜒(𝑉, 𝑎, 𝜀, 𝑃), and 𝜈 (𝑉,
𝛾2

𝛾3
, 𝑎, 𝜀, 𝑃) may change 

depending on the specific physics forming the V-number, their governing parameters always remain the 

same because they are determined by the structure of the system (1) – (3). Accordingly, the functions 

𝛹(𝛱1, 𝛱2),𝛷(𝛱1, 𝛱2), 𝛸(𝛱1, 𝛱2, 𝛱3, 𝛱4), and 𝛮(𝛱1, 𝛱2) may also change, but their dimensionless 

arguments (Π-groups) remain unaffected. As long as their groups, like, for example,  𝛱1 and 𝛱2, do not 10 
contain P,  we have a possibility of  scale-invariance. This observation makes the scale invariance a very 

general and expected property of the climate system.  

 

4.2 Multi-sinusoid forcing. 
 15 

Thus far we assumed a single-sinusoid external forcing with an amplitude ε and a period T. When we force 

our system with normalized mid-July insolation at 65N (Berger and Loutre, 1991), this assumption is not 

valid any longer because both the amplitudes and the periods of precession and obliquity are different. 

Therefore, the hypothesis (5) must be re-written as: 

𝑃 = 𝜓[𝑉, 𝑎, 𝜀1, 𝑇1, 𝜀2, 𝑇2]                                                                                                                         (16) 20 
 

Here P is a period of the system response to a specific forcing component (a peak of the response 

spectrum), index “1” corresponds to obliquity, and index “2” corresponds to precession. Taking dimensions 

of ε1 and T1 as independent dimensions, and using the π-theorem, we obtain: 

 25 
𝑃1 = 𝑇1𝛹1[𝑉, 𝜀1/𝑎, 𝜀1/𝜀2, 𝑇1/𝑇2]                                                                                                           (17) 

 

Here P1 is a period of the system response to the obliquity forcing. Similarly, taking dimensions of ε2 and 

T2 as independent dimensions, and using the π-theorem, we have: 

 30 
𝑃2 = 𝑇2𝛹2[𝑉, 𝜀2/𝑎, 𝜀1/𝜀2, 𝑇1/𝑇2]                                                                                                          (18) 

 

Here P2 is a period of the system response to the precession forcing. Since in the case of the orbital forcing 

ε1/ε2 and T1/T2 are invariant, we can apply generalized π-theorem (Sonin, 2004) and to re-write (17) and 

(18) as: 35 
 

𝑃1 = 𝑇1𝛹1[𝑉, 𝜀1/𝑎]                                                                                                                                  (19) 

𝑃2 = 𝑇2𝛹2[𝑉, 𝜀2/𝑎]                                                                                                                                  (20) 

 

It can be seen that equations (19) and (20) are identical to the equation (7) and the response periods to 40 
obliquity and to precession do not depend on each other. This result is not by any means intuitive.  

 

We now repeat the same reasoning for the corresponding amplitudes of the system response:  

 

𝑆1́ = 𝜑1(𝑉, 𝑎, 𝜀1, 𝑃1, 𝜀2, 𝑃2)                                                                                                          (21) 45 
 

𝑆2́ = 𝜑2(𝑉, 𝑎, 𝜀1, 𝑃1, 𝜀2, 𝑃2)                                                                                                          (22) 

 

𝑆1́ = 𝜀1
2𝑃1

2𝛷1(𝑉, 𝜀1/𝑎, 𝜀1/𝜀2, 𝑃1/𝑃2)                                                                                           (23) 
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𝑆2́ = 𝜀2
2𝑃2

2𝛷2(𝑉, 𝜀2/𝑎, 𝜀1/𝜀2, 𝑃1/𝑃2)                                                                                           (24) 

 
Though in the case of the orbital forcing ε1/ε2 and T1/T2 are invariant, P1/P2 is not an invariant (see Fig. 1), 

therefore: 5 
 

𝑆1́ = 𝜀1
2𝑃1

2𝛷1(𝑉, 𝜀1/𝑎, 𝑃1/𝑃2)                                                                                                      (25) 

 

𝑆2́ = 𝜀2
2𝑃2

2𝛷2(𝑉, 𝜀2/𝑎, 𝑃1/𝑃2)                                                                                                     (26) 
 10 
We can see that although periods of the system response to the precession and obliquity forcings are 

independent, the amplitudes of the corresponding variations are interdependent and thus may deviate from 

a pure square-period law. This observation may have an important implication for our understanding of the 

paleo data. As we demonstrated before (Verbitsky et al, 2018), P1/P2 evolves over time, specifically P1/P2 = 

1 for the early Pleistocene due to precession period doubling and P1/P2 = 4 for the late Pleistocene due to 15 
obliquity period doubling. It means that the slope of the spectrum of the system response may also evolve. 

Introduction of more sinusoids (for example, accounting for the millennial forcing) makes the situation 

even more complex. In such a case, a period of the system response to a specific forcing component 

depends on the amplitudes and the periods of all sinusoids: 

 20 

𝑃 = 𝜓[𝑉, 𝑎, 𝜀1, 𝑇1, 𝜀2, 𝑇2, … 𝜀𝑖 , 𝑇𝑖 … ]                                                                                                      (27) 

 

Then, for example, P1, the period of the system response to obliquity forcing, can be presented as: 

 

𝑃1 = 𝑇1𝛹1 [𝑉,
𝜀1

𝑎
, … ,

𝜀1

𝜀𝑖
,

𝑇1

𝑇𝑖
, … ]                                                                                                                (28) 25 

 

and corresponding amplitude of the glaciation area response 

 

𝑆́1 = 𝜑1[𝑉, 𝑎, 𝜀1, 𝑃1, 𝜀2, 𝑃2, … 𝜀𝑖, 𝑃𝑖 … ]                                                                                                   (29) 

 30 

𝑆́1 = 𝜀1
2𝑃1

2𝛷1 [𝑉,
𝜀1

𝑎
, … ,

𝜀1

𝜀𝑖
,

𝑃1

𝑃𝑖
, … ]                                                                                                 (30) 

Equations (29) and (30) show that, generally speaking, every peak P and corresponding amplitude 𝑆́ of the 

system response depend on each forcing sinusoid. Such dependence may break the scale invariance we 

discussed earlier. For example, we have demonstrated in our previous study (Verbitsky et al, 2019a) that 

introduction of the millennial variability of significant amplitude (i.e., ε1/εi → 0) may disrupt the system’s 35 
response to the orbital forcing and essentially reduce the slope βa.  The empirical energy density spectrum 

of Huybers and Curry (2006) has the slope of Β ≈ 2 in the orbital domain. Since the energy density slope Β 

relates to the fluctuation amplitude slope βa as B = 2βa +1, Β ≈ 2 corresponds to βa = 0.5 < 2. We may 

therefore speculate that the observed spectrum of the climate variability could be significantly influenced 

by the millennial forcing propagated into the orbital domain. 40 
 

5. Conclusions. 

 

Dimensional analysis of the dynamical system described by Verbitsky et al (2018) reveals that only 

two factors define most of the ice-age dynamics: (a) a balance between intensities of climate positive and 45 
ice sheet negative feedbacks, 𝛱1 = 𝑉; and (b) the period, T, and the amplitude of the external forcing, ε, 

(specifically, a particular proportion between the external, e.g., orbital, and terrestrial ice sheet mass 

balance components, 𝛱2 = 𝜀 𝑎⁄ ).  

The analysis indicates that the amplitudes of glacial area variations and of climate temperature are 

scale invariant with a frequency slope of 2. The property of scale invariance does not depend on the 50 
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physical nature of the underlying positive and negative feedbacks incorporated by the system. It thus turns 

out to be one of the most fundamental properties of the Pleistocene climate. 

Retrospectively, we could have inferred scale invariance from the mere assumption that the behavior 

of the continental glacial area (measured in m
2
) depends on the mass influx to its surface (m/s) and the 

periodicity of the mass influx variations (s), but perhaps these assumptions are too simple to be convincing. 5 
In our study, we have chosen a bit more sophisticated but more credible approach. We derived a dynamical 

model from the scaled conservation equations of viscous non-Newtonian ice combined with an equation 

describing the evolution of the climate temperature. We observed that most of the dynamical system 

behavior can be explained by a balance between positive and negative feedbacks. This observation, finally, 

illuminated the crucial role of the mass influx and its periodicity, making application of the π-theorem 10 
effective and definitive. 

 

Code and data availability. The MatLab R2015b code and data to calculate model response to periodical 

forcing as it is presented in Fig.2 (Verbitsky et al, 2019b) are available at 

http://doi.org/10.5281/zenodo.3473957, (last access: October 20, 2019) 15 
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