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Abstract.  7 

Despite the great success of machine learning, its applications in climate dynamics have not 8 

been well developed. One concern might be how well the trained neural networks could learn a 9 

dynamical system and what can be the potential applications of this kind of learning. In this paper, 10 

three machine learning methods are used: reservoir computer (RC), back propagation based artificial 11 

neural network (BP), and long short-term memory neural network (LSTM). It is shown that the 12 

coupling relations or dynamics among variables in linear or nonlinear systems can be well learnt by 13 

RC and LSTM, which can be further applied to reconstruct one time series from the other dominated 14 

by the common coupling dynamic. Specifically, we analyze the climatic toy models to address two 15 

questions: (i) what factors significantly influence machine learning reconstruction; and (ii) how to 16 

select suitable explanatory variables for machine learning reconstruction. The results reveal that both 17 

linear and nonlinear coupling relations between variables do influence the reconstruction quality of 18 

machine learning. If there is a strong linear coupling between two variables, the reconstruction can 19 

be bi-directional, where any one of these two variables is able to be an explanatory variable for 20 

reconstructing the other variable. When the linear coupling among variables is absent, but with the 21 



2 
 

significant nonlinear coupling, the machine learning reconstruction between two variables is 22 

direction-dependent and it may be only uni-directional. Then we propose using the convergent cross 23 

mapping (CCM) causality index to determine which variable can be taken as the reconstructed one 24 

and which can be taken as the explanatory variable. In a real-world example, the Pearson correlation 25 

between the average Tropical Surface Air Temperature (TSAT) and the average Northern 26 

Hemispheric SAT (NHSAT) is as weak as 0.08, but the CCM index of NHSAT cross maps TSAT is 27 

0.70, it means that NHSAT could be taken as the explanatory variable. Then we find that TSAT can 28 

be well reconstructed from NHSAT by the machine learning method. However, the reconstruction 29 

quality in the opposite direction is poor, where the CCM index of TSAT cross maps NHSAT is only 30 

0.24. These results also provide insights on machine learning approaches for paleoclimate 31 

reconstruction, parameterization scheme, and prediction in related climate research. 32 

Key words: Reconstruction, Climate time series, Machine learning, Causality, Surface air 33 

temperature    34 
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Highlights: 35 

i) Learnt coupling dynamics between series by machine learning can be used to reconstruct series. 36 

ii) Reconstruction quality is direction- and variable-dependent for nonlinear systems. 37 

iii) The CCM index is a potential indicator to choose reconstructed and explanatory variables. 38 

iv) The tropical average SAT can be well reconstructed from the average Northern Hemispheric 39 

SAT. 40 

41 
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1  Introduction 42 

 Neural network-based machine learning provides effective tools for studying climatic data 43 

(Reichstein et al., 2019), which attracts great attention recently. The machine learning approach is 44 

widely applied to downscaling and data mining analyses (Mattingly et al., 2016; Racah et al., 2017), 45 

and it can be also used to predict the time series of climate variables, such as temperature, humidity, 46 

runoff and air pollution (Zaytar and Amrani, 2016; Biancofiore et al., 2017; Kratzert et al., 2019; 47 

Feng et al., 2019). Recently, it is demonstrated that a large potential application of machine learning 48 

is to reconstruct the temporal dynamics of complex systems (Pathak et al., 2017; Du et al., 2017; 49 

Watson, 2019). Studies (Pathak et al., 2017; Lu et al., 2018; Carroll, 2018) have shown that the 50 

chaotic attractors in Lorenz system and Rossler system can be described by machine learning. Since 51 

chaos is the key property of the underlying climate system giving rise to climatic time series (Lorenz, 52 

1963; Patil et al., 2001), these studies provide a theoretical explanation why the machine learning 53 

can be well applied in reconstructing climate temporal dynamics.  54 

Though applying machine learning to climatic series attracts much attention, it is still open 55 

questions what can be learnt by machine learning during the training process, and what is the key 56 

factor determining the performance of machine learning approach to climatic time series. This is 57 

crucial for investigating why machine learning cannot perform well with some datasets, and how to 58 

improve the performance for them. One possible key factor is the coupling between different 59 

variables. Because different climate variables are coupled with one another (Donner and Large, 60 

2008), and the coupled variables will share their information content with one another through the 61 

information transfer (Takens, 1981; Schreiber, 2000; Sugihara et al., 2012). Furthermore, a coupling 62 

often results in that the observational time series are statistically correlated (Brown, 1994). 63 
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Correlation is a crucial property for the climate system, and often influences the climatic time series 64 

analysis. “Pearson Coefficient” is often used to detect the correlation, which only detects the linear 65 

correlation. It is known that when the Pearson correlation coefficient is weak, most of traditional 66 

regression methods will fail in dealing with the climatic data, such as fitting, reconstruction and 67 

prediction (Brown, 1994; Sugihara et al., 2012; Emile-Geay and Tingley, 2016). However, a weak 68 

linear correlation does not mean that there is no coupling relation between the variables. Previous 69 

studies (Sugihara et al., 2012; Emile-Geay and Tingley, 2016) have suggested that, although the 70 

linear correlation of two variables is potentially absent, they might be nonlinearly coupled and can 71 

be exploited by analysis. For instance, the linear cross-correlations of sea surface temperature series 72 

observed in different tropical areas are unstable and vary with time, which leads to an overall weak 73 

linear correlation, but this non-linear correlation is conductive to the better El Niño predictions 74 

(Ludescher et al., 2014; Conti et al., 2017). The linear correlations between ENSO/PDO index and 75 

some proxy variables are weak but their nonlinear coupling relations can be detected, which 76 

contributes greatly to reconstructing longer paleoclimate time series (Mukhin et al., 2018). These 77 

studies indicate that nonlinear coupling relations would contribute to the better analysis, 78 

reconstruction, and prediction (Hsieh et al., 2006; Donner, 2012; Schurer et al., 2013; Badin et al., 79 

2014; Drótos et al., 2015; Van Nes et al., 2015; Comeau et al., 2017; Vannitsem and Ekelmans, 80 

2018). Accordingly, when applying machine learning to climatic series, is it necessary to give 81 

attention to the linear or nonlinear relationships induced by the physical couplings? This is worth to 82 

be addressed.  83 

In a recent study (Lu et al., 2017), a machine learning method called reservoir computer was 84 

used to reconstruct the unmeasured time series in the Lorenz 63 model (Lorenz, 1963). It is found 85 
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that the Z variable can be well reconstructed from the X variable by reservoir computer, but it failed 86 

to reconstruct X with Z. Lu et al. (Lu et al., 2017) demonstrated that the nonlinear coupling dynamic 87 

between X and Z was responsible for this asymmetry in the reconstruction. This was explained by 88 

the nonlinear observability in control theory (Hermann and Krener, 1977; Lu et al., 2017): for the 89 

Lorenz 63 equation, both (X(t), Y(t), Z(t)) and (-X(t), -Y(t), Z(t)) could be its solutions. Therefore, 90 

when Z(t) was acting as an observer, it cannot distinguish X(t) from -X(t), and the information 91 

content of X was incomplete for Z(t), which determined that X cannot be reconstructed by machine 92 

learning. The nonlinear observability for a nonlinear system with known equation can be easily 93 

analyzed (Hermann and Krener, 1977; Schumann-Bischoff et al., 2016; Lu et al., 2017). But for the 94 

observational data from a complex system without explicit equation, the nonlinear observability is 95 

hard to analyze and few studies ever investigated that. Furthermore, does such asymmetric nonlinear 96 

observability in the reconstruction also exist in other climatic time series which are nonlinearly 97 

coupled? This is still an open question.  98 

In this paper, we apply machine learning approaches to learn the coupling relation, and then 99 

reconstruct the coupled climatic time series. Specifically we aim to make progress on how machine 100 

learning approach is influenced by the physical couplings of climatic series, and the abovementioned 101 

questions can be addressed. There are several variants of machine learning methods (Reichstein et 102 

al., 2019), and recent studies (Lu et al., 2017; Reichstein et al., 2019; Chattopadhyay et al., 2019) 103 

suggest that three of them are more applicable to sequential data like time series: reservoir computer 104 

(RC), back propagation based artificial neural network (BP), and long short-term memory (LSTM) 105 

neural network. Here we adopt these three methods to carry out our study, and provide a 106 

performance comparison among them. We first investigate their performance dependence on 107 
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different coupling dynamics by analyzing a hierarchy of climatic conceptual models. Then we use a 108 

novel method to select explanatory variables for machine learning, which can further detect the 109 

nonlinear observability (Hermann and Krener, 1977; Lu et al., 2017) for a complex system without 110 

any known explicit equations.  111 

Finally, we will discuss a real-world example from climate system. It is known that there exist 112 

atmospheric energy transportations between the tropics and the Northern Hemisphere, which results 113 

in the coupling between the climate systems in these two regions (Farneti and Vallis, 2013). Due to 114 

the underlying complicated processes, it is difficult to use a formula to cover this coupling between 115 

the tropical average surface air temperature (TSAT) series and the Northern Hemispheric surface air 116 

temperature (NHSAT) series. We employ machine learning methods to investigate whether the 117 

NHSAT time series can be reconstructed from the TSAT time series, and whether the TSAT time 118 

series can be also reconstructed from the NHSAT time series. Accordingly, the conclusions from our 119 

model simulations can be further tested and generalized.  120 

Our paper is organized as follows. In section 2, the methods for reconstructing time series and 121 

detecting coupling relation are introduced. The used data and climatic conceptual models are 122 

introduced in section 3. In section 4, the association between the coupling relation and 123 

reconstruction quality by machine learning is investigated, and an application to real-world climate 124 

series is presented. Summary is made in section 5.  125 

2  Methods  126 

2.1  Learning coupling relations and reconstructing coupled time series 127 

Firstly, we introduce our workflow for learning couplings of dynamical systems by machine 128 
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learning, and reconstructing the coupled time series. The total time series can be divided into two 129 

parts: the training series (time lasting denoted as t) and the testing series (time lasting denoted as t'). 130 

For the systems of toy models, the coupling relation or dynamics is stable and unchanged with time, 131 

i.e., there is the stable coupling or dynamic relation )](),...,(),([)( 21 tatataFtb n among inputs132 

)(),...,(),( 21 tatata n  and output )(tb . If this inherent coupling relation can be reconstructed by 133 

machine learning in the training series, the reconstructed coupling relation should be reflected by 134 

machine learning in the testing series. Therefore, the workflow of our study can be summarized as 135 

follows (see Fig. 1):  136 

(i) During the training period, )(),...,(),( 21 tatata n and )(tb are input into the machine learning 137 

frameworks to learn the coupling or dynamic relation )](),...,(),([)( 21 tatataFtb n . The inferred 138 

coupling relation is denoted as )](),...,(),([ˆ)( 21 tatataFtb n . Then it is tested whether this coupling 139 

relation can be reconstructed by machine learning.  140 

(ii) The second step is accomplished with the testing series to apply the reconstructed coupling 141 

relation 𝐹̂  together with only )'(),...,'(),'( 21 tatata n to derive )(tb  , denoted as )(ˆ tb  . )(ˆ tb   is 142 

called “the reconstructed )(tb  ” since only )'(),...,'(),'( 21 tatata n and the reconstructed coupling 143 

relation F̂ have been taken into account.  144 

(iii) The first objective of this study is to answer whether the coupling relation 145 

)](),...,(),([)( 21 tatataFtb n can be reconstructed by machine learning, i.e., whether the 146 

reconstructed coupling relation F̂ can well approximate the real coupling relation F . Since we do 147 

not intend to reach an explicit formula of the reconstructed coupling relation F̂ , we will answer 148 

this question indirectly by comparing the reconstructed series )(ˆ tb  with the original series )(tb  . If 149 

)()(ˆ tbtb  , then it can be regarded as FF ˆ , and the machine learning can indeed learn the 150 



9 
 

intrinsic coupling relation among )(),...,(),( 21 tatata n and )(tb .  151 

(iv) If the machine learning can infer the intrinsic coupling relation between )(),...,(),( 21 tatata n and 152 

)(tb , the inferred coupling relation F̂ can be applied to reconstruct output )(tb   even if only 153 

)'(),...,'(),'( 21 tatata n  are available.  154 

 155 

Figure 1 Diagram illustration for reconstructing time series by machine learning. (1) The available part of the 156 

dataset {a1(t), …, an(t), b(t)} is used to train the neural network (a1(t), …, an(t) and b(t) are the time series of 157 

the variables a1, …, an, b ). So that the inherent coupling relation F among these variables can be learnt by the 158 

neural network, and the learnt coupling relation is noted as F̂ . (2) b(t') is unknown, but the dataset {a1(t'), 159 

a2(t'), …, an(t')} is available which is input into the trained neural network, and the unknown series b(t') can be 160 

reconstructed, denoted as )(ˆ tb  . (3) If )()(ˆ tbtb  , then FF ˆ can be derived, and it indicates that the 161 

machine learning framework have learnt the intrinsic coupling relation.  162 

2.2  Machine learning methods 163 
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2.2.1 Reservoir computer 164 

A newly developed neural network called RC (Du et al., 2017; Lu et al., 2017; Pathak et al., 165 

2018) has three layers: the input layer, the reservoir layer and the output layer (see Fig. 2). If 166 

   ) and b    denote two time series from a system, and then the following steps can estimate b    167 

from    ):  168 

 169 

Figure 2 Schematic of the RC neural network: the three layers are the input layer, the reservoir layer, and the 170 

output layer.  The input layer consists of a matrix "Win" (whose elements are randomly chosen from the interval 171 

[-1, 1]). The reservoir layer consists of N reservoir neurons whose connectivity is through the adjacent matrix "M", 172 

and r(t) represents the activations of the N neurons. The output layer consists of a matrix "Wou ", whose elements 173 

are trainable in the training process. A time series a(t) is input into the RC neural network. After the training 174 

process, the time series of b variable can be reconstructed by machine learning, denoted as b̂   . 175 

 (i)    ) (a vector with length L) is input into the input layer and reservoir layer. There are four 176 

components in this process: the initial reservoir state    ) (a vector with dimension N, representing 177 

the N neurons), the adjacent matrix "M" (size N×N) representing connectivity of the N neurons, the 178 

input-to-reservoir weight matrix "Win" (size N×L), and the unit matrix " " (size N×N) which is 179 

crucial for modulating the bias in the training process (Lu et al., 2018). The elements of "M" and 180 

"Win" are randomly chosen from a uniform distribution in [–1, 1], and we set N = 1000 here (we 181 
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have tested that this yields the good performance). These components are employed by Eq. (1), and 182 

then an updated reservoir state     ) is output.  183 

     ) tanh  M      )   Win      )                                                                  (1) 184 

(ii)      ) then gets into the output layer that consists of the reservoir-to-output matrix "Wou ". As 185 

Eq. (2) shows,      ) will be trained as the estimated value  ̂   . The mathematical form of "Wou "  186 

is shown by Eq. (3), which is a trainable matrix that fits the relation between      ) and b  ) in the 187 

training process. "‖  ‖" denotes the L2-norm of a vector (L2 represents the least square method) and 188 

α is the ridge regression coefficient, whose values are determined after the training.  189 

 ̂    Wou     
   )                                                                              (2) 190 

Wou  ar  i Wou 
‖Wou   

    -       )‖ α‖Wou ‖                                                    (3) 191 

After this reservoir neural network has been trained, we can use it to estimate b   , where the 192 

estimated value is noted as  ̂   .  193 

2.2.2 Back propagation based artificial neural network 194 

Here, the used BP artificial neural network is a traditional neural computing framework which 195 

has been widely used in climate research (Chattopadhyay et al., 2019; Watson, 2019; Reichstein et 196 

al., 2019). There are six layers in the BP neural network: the input layer with 8 neurons; 4 hidden 197 

layers with 100 neurons each; the output layer with 8 neurons. In each layer, the connectivity 198 

weights of the neurons need to be computed during training process, where the back propagation 199 

optimization with the complicated gradient decent algorithm is used (Dueben and Bauer, 2018). A 200 

crucial difference between the BP and the RC neural networks is as follows: unlike RC, all neuron 201 



12 
 

states of the BP neural network are independent on the temporal variation of time series 202 

(Chattopadhyay et al., 2019; Reichstein et al., 2019), while the neurons of RC can track temporal 203 

evolution (such as the neuron state    ) in Fig. 2) (Chattopadhyay et al., 2019). If a(t) and b    are 204 

two time series of a system, through the BP neural network, we can also reconstruct b    from a(t). 205 

2.2.3 Long short-term memory neural network 206 

The LSTM neural network is an improved recurrent neural network to deal with time series 207 

(Reichstein et al., 2019; Chattopadhyay et al., 2019). As Fig. 3 shows, LSTM has a series of 208 

components: a memory cell, input gate, output gate, and a forget gate in addition to the hidden state 209 

in traditional recurrent neural network. When a time series a(t) is input to train this neural network, 210 

the information of a(t) will flow through all these components, and then the parameters at different 211 

components will be computed for fitting the relation between a(t) and b(t). The govern equations for 212 

the LSTM architecture are shown in the Appendix. After the training is accomplished, a(t) can be 213 

used to reconstruct b(t) by this neural network.  214 

 215 

Figure 3 Schematic of the LSTM architecture. LSTM has a memory cell, input gate, output gate, and a forget gate 216 

to control the information of the previous time to flow into the neural network.  217 

The crucial improvement of LSTM on the traditional recurrent neural network (Reichstein et al., 218 

2019) is, that LSTM has the forget gate which controls the information of the previous time to flow 219 
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into the neural network. This will make the neuron states of LSTM have ability to track the temporal 220 

evolution of time series (Chattopadhyay et al., 2019; Kratzert et al., 2019; Reichstein et al., 2019), 221 

which is also the crucial difference between the LSTM and the BP neural networks.  222 

Here, we also test the LSTM neural network without the forget gate, and call it LSTM
*
. This 223 

means that the information of the previous time cannot flow into the LSTM
*
 neural network, which 224 

does not have the memory for the past information. We will compare the performance of LSTM 225 

with that of LSTM
*
, so that the role of the neural network memory for the previous information can 226 

be presented. 227 

2.3  Evaluation of reconstruction quality 228 

To evaluate the quality of reconstruction by machine learning, the root mean squared error 229 

(RMSE) of residual series (Hyndman and Koehler, 2006) is adopted (Eq. (4)), which represents the 230 

difference between the real series ( ')b t  and the reconstructed series ˆ( ')b t . In order to fairly 231 

compare the errors of reconstructing different processes with different variability and units 232 

(Hyndman and Koehler, 2006; Pennekamp et al., 2018; Huang and Fu, 2019), we normalize the 233 

RMSE as Eq. (5) shows.  234 

 

2ˆ[ ( ') ( ')]
t

RMSE b t b t
k

 
1

，
                                                     

   (4)

 
235 

max[ ( ')] min[ ( ')]

RMSE
nRMSE

b t b t



.                (5) 236 

2.4  Coupling detection 237 

2.4.1 Linear correlation 238 
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As the introduction mentioned, the linear Pearson correlation is a commonly-used method to 239 

quantify the linear relationship between two observational variables. The Pearson correlation 240 

between two series a(t) and b(t), is defined as  241 

      (6) 242 

The symbols “mean” and “std” denote the average and standard deviation for series a(t) and b(t), 243 

respectively.  244 

2.4.2 Convergent cross mapping  245 

To measure the nonlinear coupling relation between two observational variables, we choose the 246 

convergent cross mapping method that has been demonstrated to be useful for many complex 247 

nonlinear systems (i.e. Sugihara et al., 2012; Tsonis et al., 2018; Zhang et al. 2019). Considering  (t) 248 

and b(t) as two observational time series, we begin with the cross mapping (Sugihara et al., 2012) 249 

from a(t) to b(t) through the following steps:   250 

i) Embedding a(t) (with length L) into the phase space with a vector 251 

M   i) ={  i
,    i -  0

, …,   i -  m-1) } (" i" represents a historical moment in the observations), where 252 

embedding dimension (m) and time delay ( ) can be determined through the false nearest neighbor 253 

algorithm (Hegger and Kantz, 1999).  254 

ii) Estimating the weight parameter wi which denotes the associated weight between two vectors 255 

"M   )" and "M   i)" ("t" denotes the excepted time in this cross mapping), defined as: 256 

wi =
ui

∑ ui
m 1
i 1

,                                                                      (7) 257 

ui = exp{-
d  M   ), M   i) 

d  M   ), M   1) 
},                                                           (8) 258 

where d  M   ), M   i)] denotes the Euler distance between vectors "M   )" and "M   i)". The 259 

.
)()(

)]()[(
.

bstdastd

bbaamean
corr





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nearest neighbor to "M   )" generally corresponds to the largest weight.  260 

iii) Cross mapping the value of b(t) by  261 

b̂    = ∑ wib  i .
m 1
i 1                                                                (9) 262 

b̂    denotes the estimated value of b(t) with this phase-space cross mapping. Then, we will evaluate 263 

the cross mapping skill (Sugihara et al., 2012; Tsonis et al., 2018) as the follows: 264 

ρ
 →b

 = co  .  b   ,  b̂   ]                                                         (10) 265 

The cross mapping skill from b to a is also measured according to the above steps, marked as ρ
b→ 

. 266 

Sugihara et al. and Tsonis et al. ever defined the causal inference according to ρ
 →b

 and ρ
b→ 

 like 267 

that: (i) if ρ
 →b

 is convergent when L is increased, and ρ
 →b

 is of high magnitude, then b is 268 

suggested to be a causation of a. (ii) Besides, if ρ
b→ 

 is also convergent when L is increased, and is 269 

of high magnitude, then the causal relationship between a and b is bidirectional (a and b cause each 270 

other). In our study, all values of the CCM indices are measured when they are convergent with the 271 

data length (Tsonis et al. 2018).  272 

According to literature (Sugihara et al., 2012; Ye et al., 2015), the CCM index is related to the 273 

ability of using one variable to reconstruct another variable: if b influence a but a does not influence 274 

b, the information content of b can be encoded in a (through the information transfer from b to a), 275 

but the information content of a is not encoded in b (there exists no information transfer from a to b). 276 

Therefore, the time series of b can be reconstructed from the records of a. For the CCM index 277 

( a bρ  ), its magnitude represents how much information content of b is encoded in the records of a. 278 

Therefore, the high magnitude of a bρ   means that b causes a, and we can get good results of 279 

reconstruction from a to b. In this paper, we will test the association between the CCM index and the 280 
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reconstruction performance of machine learning.  281 

3  Data  282 

3.1  Time series from conceptual climate models 283 

A linearly coupled model: The autoregressive fractionally integrated moving average 284 

(ARFIMA) model (Granger and Joyeux, 1980) maps a Gaussian white noise ε(t) into a correlated 285 

sequence x(t) (Eq. (11)), which could simulate the linear dynamics of oceanic-atmospheric coupled 286 

system (Hasselmann, 1976; Franzke, 2012; Massah and Kantz, 2016; Cox et al., 2018).  287 

( , , )( ) ( )ARFIMA p d qt x t 
     (11) 288 

In this model, d is a fractional differencing parameter, and p and q are the orders of the 289 

autoregressive and moving average components. Here, the parameters are set as: p = 3, d = 0.2 and q 290 

= 3. Hence x(t) is a time series composited with three components: the third-order autoregressive 291 

process whose coefficients are 0.6, 0.2 and 0.1, the fractional differencing process whose Hurst 292 

exponent is 0.7, and the third-order moving average process whose coefficients are 0.3, 0.2 and 0.1 293 

(Granger and Joyeux, 1980). These two time series ε(t) and x(t) are used for the reconstruction 294 

analysis. 295 

A nonlinearly coupled model: The Lorenz 63 chaotic system (Lorenz, 1963) depicts the 296 

nonlinear coupling relation in a low-dimensional chaotic system. The system reads 297 

( )
dx

x y
dt

dy
x xz y

dt

dz
xy Bz

dt





  

  

 

     (12) 298 

When the parameters are fixed at (σ, μ, B) = (10, 28, 8/3), the state in the system is chaotic. We 299 
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employed the fourth-order Runge-Kutta integrator to acquire the series output from this Lorenz 63 300 

system. The time steps were 0.01. The time series X(t) and Z(t) are used for the reconstruction 301 

analysis. 302 

A high-dimensional model: The two-layer Lorenz 96 model (Lorenz, 1996) is a 303 

high-dimensional chaotic system, which is commonly used to mimic mid-latitude atmospheric 304 

dynamics (Chorin and Lu, 2015; Hu and Franzke, 2017; Vissio and Lucarini, 2018; Chen and 305 

Kalnay, 2019; Watson, 2019). It reads 306 

1
1 1 2 ,

1

,

, 1 , 1 , 2 , 2

( )
J

1
[ ( ) ].

J
k

k k k k j k

j

k j

k j k j k j k j k

dX h
X X X X F Y

dt

dY
Y Y Y Y h X

dt 

  



  

    

   



     (13) 307 

In the first layer of the Lorenz 96 system there are 18 variables marked as Xk (k is a integer ranging 308 

from 1 to 18), and each Xk is coupled with Yk, j (Yk, j is from the second layer). The parameters are set 309 

as fellows: J = 20, h1 = 1, h2 = 1, and F=10. The parameter   can alter the coupling strength: when 310 

  is decreased, the coupling strength between Xk and Yk, j will be enhanced. The fourth-order 311 

Runge-Kutta integrator and periodic boundary condition are adopted (that is: X0 = XK and XK+1 = X1 ; 312 

Yk, 0 = Yk-1, J and Yk, J+1 = Yk+1, 1), and the integral time unit was taken as 0.05. The time series X1(t) 313 

and Y1, 1(t) are used for the reconstruction analysis. 314 

3.2  Real-world climatic time series 315 

TSAT, NHSAT and the Nino3.4 index are chosen to represent real-world climatic time series, 316 

which are used for reconstruction analysis. The original data is obtained from National Centers for 317 

Environmental Prediction (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html) 318 

and KNMI Climate Explorer (http://climexp.knmi.nl). The series of TSAT and NHSAT are obtained 319 
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from the regional average of gridded daily data in NCEP Reanalysis 2. The selected spatial range is 320 

20
0
N–20

0
S for the tropics and 20

0
N–90

0
N for the Northern Hemisphere. The selected temporal 321 

range is from 1981/09/01 to 2018/12/31.  322 

Training and testing datasets: Before analysis, all the used time series are standardized to 323 

take zero mean and unit variance so that any possible impact of mean and variance on the statistical 324 

analysis is avoided (Brown, 1994; Hyndman and Koehler, 2006; Chattopadhyay et al., 2019). We 325 

divide the total series into two parts: 60% of the time series training the neural network and 40% 326 

being the testing series. Specific data lengths of the training series and testing series will be also 327 

listed in the results section.  328 

4  Results 329 

4.1  Coupling relation learning 330 

4.1.1  Linear coupling relation and machine learning 331 

We first consider the simplest case: the linear coupling relation between two variables. Here, 332 

two time series x(t) and ε(t) in ARFIMA (3, 0.2, 3) model, are analyzed. Obviously, there are 333 

different temporal structures in x(t) and ε(t), especially for their large-scale trends (Fig. 4a) and 334 

power spectra (Fig. 4b). The marked difference between x(t) and ε(t) is in their low-frequency 335 

variations, and there are more low-frequency and larger-scale structures in x(t) than in ε(t). We 336 

employ neural networks (RC, LSTM, LSTM*, and BP) to learn the dynamics of this model (Eq. (11)) 337 

by the procedure shown in Fig. 1. The training parts of ε(t) are selected from the gray shadow in Fig. 338 

4a. RC, LSTM, LSTM*, and BP are trained to learn the coupling relation between x(t) and ε(t). Then, 339 
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the trained neural networks together with ε(t') is used to reconstruct x(t'). The reconstruction results 340 

and the performance of different neural networks are presented in Table 1. It shows that there is a 341 

strong linear correlation (0.88) between x(t') and ε(t'). This reconstruction result suggests that the 342 

strong linear coupling can be well captured by these three neural networks since all values of 343 

nRMSE are low.  344 
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Figure 4 (a) The x(t) time series (blue) and the ε(t) time series (black) of the ARFIMA(3,0.2,3) model. White lines 347 

depict the large-scale trends of these time series acquired by 50-step smoothing average. (b) Comparison of the 348 

power spectrum of x(t) (blue) with the power spectrum of ε(t) (black). (c) Comparison of the reconstructed time 349 

series of x(t) by RC, LSTM, LSTM
*
 and BP respectively (red dots), and the original x(t) time series are presented 350 

by the blue lines. (d) Comparison of the reconstructed time series of ε(t) by RC, LSTM, LSTM
* 

and BP 351 

respectively (red dots), and the original ε(t) time series are presented by the black lines. Only partial segments of 352 
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the reconstructed series are shown.  353 

Detailed comparisons between the real and reconstructed series are shown in Fig. 4c. When 354 

inputting ε(t'), the trained RC and LSTM neural networks can be applied to accurately reconstruct 355 

the original x(t'). When x(t') is reconstructed from ε(t') by LSTM, the minimum of nRMSE (0.01) is 356 

reached; all reconstructed data are nearly overlapped with the real ones and cannot be visually 357 

differentiated (see Fig. 4c). When reconstructing x(t') from ε(t') by the RC, the reconstruction quality 358 

is also well. The best performance of LSTM among the three neural networks benefits from its 359 

memory function for the past information (Reichstein et al., 2019; Chattopadhyay et al., 2019). 360 

When the memory function of LSTM is stopped, then the reconstruction of LSTM* is no longer 361 

better than that of the RC (see Table 1). The reconstruction by BP is successful in this linear system 362 

(Fig. 4), but its performance is not as good as LSTM and RC (Table 1). This performance difference 363 

might be due to that, unlike LSTM and RC, the neuron states of BP cannot track the temporal 364 

evolution of a time series (Chattopadhyay et al., 2019). 365 

Table 1 Details of reconstructing ARFIMA (3, 0.2, 3) 366 

Input (a) Output (b) corr. 
Data length 

(training/testing) 

Neural 

network 
RMSE nRMSE 

ε(t') x(t') 0.88 2400/1600 

RC 0.31 0.04 

LSTM 0.07 0.01 

LSTM* 0.46 0.06 

BP 0.52 0.07 

x(t') ε(t') 0.88 2400/1600 

RC 0.09 0.01 

LSTM 0.08 0.01 

LSTM* 0.45 0.06 

BP 0.50 0.07 

4.1.2  Nonlinear coupling relation and machine learning 367 
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It is known that a strong linear correlation is useful for training neural networks and 368 

reconstructing time series. When the linear correlation between variables is very weak, could these 369 

machine learning methods still be applied to learn the underlying coupling dynamics? To address 370 

this question, two nonlinearly coupled time series X and Z in a Lorenz 63 system (Lorenz, 1963) are 371 

analyzed.  372 
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Figure 5 (a) The X time series (black) and the Z time series (blue) of the Lorenz 63 model. (b) Comparison of the 375 

reconstructed time series of Z by RC, LSTM and BP respectively (red lines), and the original Z time series are 376 

presented by the blue lines. (c) Comparison of the reconstructed time series of X by RC, LSTM and BP 377 

respectively (red lines), and the original X time series are presented by the black lines.  378 

There is a very weak linear correlation between variables X and Z (with a Pearson correlation of 379 
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0.002) in the Lorenz63 model (Table 2), and such a weak linear correlation is resulted from the 380 

time-varying local correlation between variables X and Z (see Fig. 5a): For example, X and Z are 381 

negatively correlated in the time interval of 0-200, but positively correlated in 200-400. This 382 

alternation of negative and positive correlation appears over the whole temporal evolutions of X and 383 

Z, which leads to an overall weak linear correlation. In this case, we cannot use a feasible linear 384 

regression model between X and Z to reconstruct one from the other, since there is no such good 385 

linear dependency as found in the ARFIMA (p, d, q) system (see Figs. 6a and 6b).  386 
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Figure 6 (a) Scatter plot of x(t) versus ε(t) from ARFIMA(3,0.2,3) model (black dots). (b) Scatter plot of X time 388 

series and Z time series of the Lorenz 63 model (blue dots). 389 

Table 2 Details of Lorenz63 system reconstruction 390 

Input (a) Output (b) corr. 
baρ 

 
Data length 

(training/testing) 

Neural 

network 
RMSE nRMSE 

Lorenz -X Lorenz-Z 0.002 0.91 2400/1600 

RC 0.04 0.008 

LSTM 0.02 0.004 

LSTM* 1.02 0.24 

BP 0.77 0.17 

Lorenz -Z Lorenz-X 0.002 0.03 2400/1600 

RC 1.13 0.34 

LSTM 1.03 0.31 

LSTM* 1.08 0.33 

BP 1.01 0.31 
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In a nonlinear coupled system, it is known that the coupling strength between two variables 391 

cannot be estimated by the linear Pearson correlation (Brown, 1994; Sugihara et al., 2012). Here, we 392 

use CCM to estimate the coupling strength between X and Z, and then it shows a high magnitude of 393 

the CCM index: 0.91X Z   . According to the CCM theory (see Method), such a high magnitude 394 

of the CCM index indicates that the information content of Z is encoded in the time series of X. 395 

Therefore, we conjecture that: when inputting X to the neural network, not only the information 396 

content of X, but also the information content of Z can be learned by the neural network. And then it 397 

is possible to reconstruct Z from the trained neural network. We will test it in the following.  398 

Figure 5b shows the results of RC, LSTM and BP applied to reconstructing Z from X. Different 399 

from the case of linear system, the successful reconstruction for the time series of the Lorenz63 400 

system depends on the used machine learning methods. The series reconstructed by LSTM nearly 401 

overlaps with the real series (Fig. 5b), and has the minimum nRMSE (0.004, see Table 2); moreover, 402 

the RC performs quite well, with only a little difference found at some peaks and dips (Fig. 5b). 403 

These reconstruction results suggest that, even though the linear correlation is very weak, a strong 404 

nonlinear correlation will allow RC and LSTM to fully capture the underlying coupling dynamics. 405 

However, BP and LSTM* perform poorly, and their reconstruction results have large errors 406 

(nRMSE = 0.17 for BP, and nRMSE = 0.24 for LSTM*). The reconstructed series heavily depart 407 

from the real series, especially for all peaks and dips, and the reconstructed values for each extreme 408 

point are underestimated (Fig. 5b). This means that both of BP and LSTM* cannot learn the 409 

nonlinear coupling.  410 

As mentioned in section 2.2, a BP neural network does not track the temporal evolution, since 411 

its neuron states are independent to the temporal variation of time series. For LSTM*, it does not 412 
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include the information of previous time. Previous studies have revealed that the temporal evolution 413 

and memory are very important properties for a nonlinear time series (Kantz and Schreiber, 2003; 414 

Franzke et al. 2015), which could not be neglected when modeling nonlinear dynamics. These might 415 

be responsible for that BP and LSTM* fail in dealing with this nonlinear Lorenz 63 system. 416 

Investigations for the application of BP in other different nonlinear relationships needs to be further 417 

addressed in the future.  418 

4.2  Reconstruction quality and impact factors 419 

From the above results, it is revealed that RC and LSTM are able to learn both linear and 420 

nonlinear coupling relations, and then the coupled time series can be well reconstructed. In this 421 

section, we further investigate what factors could influence the reconstruction quality. 422 

4.2.1  Direction dependence and variable dependence 423 

When reconstructing time series of the linear model of Eq. (11), it can be found that the 424 

reconstruction is invertible (see Fig. 4d and Table 1): one variable can be taken as explanatory 425 

variable to reconstruct another variable well; oppositely, it can be also well reconstructed by another 426 

variable. In fact, when there is a strong linear correlation between variables, the invertible (or 427 

bi-directional) reconstruction can also be accomplished by using a traditional regression approach 428 

(Brown, 1994). Further, when the linear correlation is weak but the nonlinear coupling is strong, will 429 

the bi-directional reconstruction still be allowed? The answer is usually no. For example, when 430 

comparing the reconstruction quality of reconstructing Z from X (Fig. 5b) with that of reconstructing 431 

X from Z (Fig. 5c), it is obvious that all the used machine learning methods fail (large values of 432 
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nRMSE are all close to 0.3) in reconstructing X from Z. This result is consistent with the nonlinear 433 

observability mentioned by Lu et al. (Lu et al., 2017). The reconstruction direction is no longer 434 

invertible in this nonlinear system, where the reconstruction quality is direction-dependent and 435 

variable-dependent.  436 

Therefore, we further discuss how to select the suitable explanatory variable or reconstruction 437 

direction. Tables 1 and 2 show that the reconstruction quality in a linear coupled system highly 438 

depends on the Pearson correlation, however it is different for a nonlinear system. For the Lorenz 63 439 

system, the two-direction CCM coefficients between the variables X and Z are asymmetric (with a 440 

stronger 0.91X Zρ   and weaker 0.03Z Xρ   ), and then Z can be well reconstructed from X by 441 

machine learning but variable X cannot be reconstructed from variable Z (Fig. 5b and 5c). The CCM 442 

index can be taken as a potential indicator to determine the explanatory variable and reconstructed 443 

variable for this nonlinear system. Here the asymmetric reconstruction quality is resulted from the 444 

asymmetric information transfer between the two nonlinearly coupled variables (Hermann and 445 

Krener, 1977; Sugihara et al., 2012; Lu et al., 2017). In this coupling between X and Z, much more 446 

information content of Z is encoded in X, so that it performs well for reconstructing Z from X (Lu et 447 

al., 2017), which can be detected by the CCM index (Sugihara et al., 2012; Tsonis et al., 2018).  448 

4.2.2  Generalization to a high-dimensional chaotic system 449 

The selection for direction and variable is important for the application of neural networks to 450 

reconstructing nonlinear time series, but this is derived from the low-dimensional Lorenz 63 system. 451 

In this subsection, we present the results from a high-dimensional chaotic system of Lorenz 96 452 

model. Furthermore, we will investigate the association between the CCM index and reconstruction 453 
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quality in the machine learning frameworks.  454 
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Figure 7 (a) The Y1,1 time series(black), X2 time series (black) and X1 time series(blue)of the Lorenz 96 model. (b) 457 

By means of the RC machine learning, when using Y1,1, X2 and multivariate to be the explanatory variable 458 

respectively, the corresponding reconstructed X1 time series are showed respectively from the top panel to the 459 

bottom panel (red lines), and the original X time series are presented by the blue lines. (c) By means of the LSTM 460 

machine learning, when using Y1,1, X2 and multivariate to be the explanatory variable respectively, the 461 

corresponding reconstructed X1 time series are showed respectively from the top panel to the bottom panel (red 462 

lines), and the original X time series are presented by the blue lines.  463 

Firstly, we use variables X1 and Y1,1 in Eq. (13) to illustrate the direction dependence in the 464 

high-dimensional system. Details of X1 and Y1,1 are shown in Fig. 7a, and the Pearson correlation 465 

between X1 and Y1,1 is weak (only -0.11, see Table 3). In Eq. (13), the forcing from X1 to Y1,1, is 466 
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much stronger than the forcing from Y1,1 to X1. The CCM index shows: 
1,1 1

0.98Y Xρ  
 
and467 

61.0
1,11
YXρ . It indicates that reconstructing X1 from Y1,1 may obtain a better quality than the 468 

opposite direction. As expected, by means of RC, the error of reconstructing X1 from Y1,1 is nRMSE 469 

= 0.01, and in the opposite direction it is nRMSE = 0.06 (Table 3). The result of LSTM is similar to 470 

that of RC in this case. Thus, direction dependence does exist in reconstructing this 471 

high-dimensional system, and the result is consistent with the indication of the CCM index. In this 472 

case, the reconstruction results of BP and LSTM* are not good (not shown here), and we will 473 

analyze them in the latter.  474 

Table 3 Details of reconstructing the Lorenz 96 model 475 

Input (a) Target (b) corr. 
baρ 

 
Data length 

(training/testing) 

Neural 

network 
RMSE nRMSE 

Y1,1 X1 -0.11 0.98 1200/800 
RC 0.03 0.01 

LSTM 0.34 0.05 

X1 Y1,1 -0.11 0.61 1200/800 
RC 0.35 0.06 

LSTM 0.42 0.08 

X2 X1 -0.06 0.37 1200/800 
RC 0.69 0.13 

LSTM 1.09 0.20 

X1 X2 -0.06 0.25 1200/800 
RC 0.95 0.17 

LSTM 0.84 0.16 

X2, X17, X18 X1 
-0.06, -0.24, 

0.06 

0.37, 0.29, 

0.41 
1200/800 

RC 0.41 0.08 

LSTM 0.32 0.06 

The reconstruction between X1 and X2 in the same layer of Lorenz 96 system is also shown. 476 

There is an asymmetric causal relation (
2 1

0.37X Xρ   and
1 2

0.25X Xρ   ) between X1 and X2, and 477 

their linear correlation is very weak (see Table 3). The RC gives better result of reconstructing X1 478 

from X2 (nRMSE=0.13) than reconstructing X2 from X1 (nRMSE=0.17). LSTM also has different 479 

results for X1 and X2 (Table 3), where the quality of reconstructing from X1 to X2 (nRMSE=0.16) is 480 

better than reconstructing from X2 to X1 (nRMSE=0.20). In this case, the reconstruction quality of 481 

LSTM is worse than the RC, and the reconstruction results by LSTM are not consistent with the 482 
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indication of the CCM index. A previous study (Chattopadhyay et al., 2019) also suggests that 483 

LSTM performs worse than RC in some cases, and this might be related to that only a simple variant 484 

of the LSTM architecture used. So in this high-dimensional system, the reconstruction quality is also 485 

influenced by the chosen explanatory variables: The quality of reconstructing X1 from Y1,1 is better 486 

than the quality of reconstructing X1 from X2 by RC and LSTM (see Fig. 7b and 7c). 487 

Besides, the number of the chosen explanatory variables can also influence the reconstruction 488 

quality. If more than one explanatory variable in the same layer is considered, the reconstruction of 489 

X1 from X2 can be greatly improved (see Figs. 7b and 7c). For example, when all of X2, X17 and X18 490 

are acting as the explanatory variables, the nRMSE of reconstructed X1 is reduced from 0.13 to 0.08 491 

(Table 3). For both of RC and LSTM, the multivariable reconstruction reaches lower error than 492 

those from unit-variable reconstruction.  493 
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Figure 8 Scatter plot of nRMSE values and CCM index values. The blue boxes are results of the RC machine 495 

learning, and the black cycles are results of the LSTM machine learning. The blue and grey dashed lines are the 496 

fitted linear trends of the blue boxes and black cycles respectively, and these two dependency trends are both 497 

significant because their p-values are both smaller than 0.05.  498 
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In the above results, the CCM index is used to select explanatory variable for RC and LSTM. 499 

Now we employ more variables to test the association between the CCM index of the data and the 500 

performances of RC and LSTM. The values of CCM index are calculated between X1 and X2, X3 …, 501 

X18; meanwhile, X1 is reconstructed from X2, X3 …, X18, respectively. We find a significant 502 

correspondence exists between the nRMSE and the CCM index (Fig. 8), for both results of RC and 503 

LSTM. Here we only use a simple LSTM architecture, and there are many other variants of this 504 

architecture where the abnormal point of LSTM in Fig. 8 might be reduced. The result of Fig. 8 505 

reveals the robust association between the CCM index and reconstruction quality in the machine 506 

learning frameworks of RC and LSTM. For other machine learning methods, such association 507 

deserves further investigation.  508 

4.2.3  Performance of BP and LSTM* in Lorenz 96 system 509 

Since that BP and LSTM* cannot track the temporal evolutions of a nonlinear time series, in 510 

the above cases of nonlinear system, we did not obtain similar result to RC and LSTM (not shown 511 

here). Here we present a simple experiment, to illustrate what might influence the performances of 512 

BP and LSTM* in a nonlinear system.  513 

The experiment is set as follows: in Eq. (13), the value of h1 is set as 0, and the value of   is 514 

decreased from 0.7 to 0.3. When   is equal to 0.7, the forcing from X1 to Y1,1 is weak. At that time, 515 

the Pearson correlation between X1 and Y1,1 is only 0.48, and the performances of BP and LSTM* 516 

are not good. When   is equal to 0.3, the forcing is dramatically magnified. As the second panel of 517 

Fig. 9a shows, this strong forcing makes Yj,i synchronized to Xi, and the Pearson correlation between 518 

X1 and Y1,1 is greatly increased to 0.8. When the forcing strength is magnified, the performance of 519 
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machine learning is also enhanced (Fig. 9b): the reconstructed series by BP and the reconstructed 520 

series by LSTM* are much closer to the real target series. This means that the reconstruction quality 521 

of BP and LSTM* is greatly improved when the linear correlation is increased. This experiment 522 

reveals that, the coupling strength in a nonlinear system can alter the Pearson correlation of two time 523 

series, which further influences the performance of BP and LSTM* in a nonlinear system.  524 
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Figure 9 Influence of strong nonlinear coupling on linear Pearson correlation and machine learning performances. 527 

(a) Comparison of the linear correlation when the coupling strength is different. The top panel corresponds to the 528 

weak coupling strength, and the bottom panel corresponds to the strong coupling. The red lines present the input 529 

explanatory variable and the black lines present the target series of machine learning. (b) Comparison of the 530 

machine learning performances when the coupling strength is different. The top panel corresponds to the weak 531 

coupling strength, and the bottom panel corresponds to the strong coupling. The black lines are the original series; 532 
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the reconstructed series by RC (green lines), LSTM*(blue lines) and BP (red dots) are shown respectively. In this 533 

case, the results of LSTM are overlapped with that of RC.  534 

4.3  Application to real-world climate series: reconstructing SAT 535 

The natural climate series are usually nonstationary, and are encoded with the information of 536 

many physical processes in the earth system. In the following, we illustrate the utility of the above 537 

methods and conclusions by investigating a real-world example mentioned in the introduction.  538 

The daily NHSAT and TSAT time series are shown in Fig. 10a. It is quite different for the 539 

oscillation shapes of the NHSAT and TSAT series, and there is a weak linear correlation (0.08, see 540 

Table 4) between them. In the scatter plot for the NHSAT and TSAT (Fig. 10b), the marked 541 

nonlinear structure is observed between NHSAT and TSAT. Such a weak linear correlation will 542 

make the linear regression model fail to reconstruct one series from the other. Likewise, there is no 543 

explicit physical expression that can transform TSAT and NHSAT to each other. Now we try to use 544 

machine learning to reconstruct these climate series. The CCM index of that NHSAT cross maps 545 

TSAT is 0.70, and the CCM index of that TSAT cross maps NHSAT is 0.24 (Table 4). The CCM 546 

index means that the information content of TSAT is well encoded in the records of NHSAT, and 547 

the information transfer might be mainly from TSAT to NHSAT, which is consistent with previous 548 

studies (Farneti and Vallis, 2013). Further, the CCM analysis indicates that the reconstruction from 549 

NHSAT to TSAT might obtain a better quality than the opposite direction.  550 
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Figure 10 (a) Daily time series of TSAT, NHSAT and Nino 3.4 index. (b) Scatter plot of normalized NHSAT and 554 

normalized TSAT. (c) Three-dimensional scatter plot of normalized NHSAT, normalized TSAT and normalized 555 

Nino 3.4 SST.  556 

The results are consistent with our conjecture that the nRMSE of reconstruction from NHSAT 557 

to TSAT is lower than that from TSAT to NHSAT (Table 4). By using RC, the TSAT time series 558 

can be relatively well described by the reconstructed ones (Fig. 11a), with nRMSE equal to 0.13. It 559 

is a bit high because some extremes of the TSAT time series have not been well described (Fig. 11b). 560 
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When using TSAT to reconstruct the time series of NHSAT, the reconstructed time series cannot 561 

describe the original time series of NHSAT (Fig. 11c), and the corresponding nRMSE is equal to 562 

0.21. Besides, we also use LSTM and BP to reconstruct these natural climate series, the 563 

performances of these two neural networks are worse than RC (Table 4). For BP, this might be due 564 

to its inability to deal with nonlinear coupling (As mentioned in method, the BP neurons cannot 565 

track the temporal evolution of a time series). LSTM performs worse than RC in this real-world case 566 

might be induced by the used simple variant of LSTM architecture. 567 
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Figure 11 (a) Reconstructed TSAT time series (red) when NHSAT is the explanatory variable; (b) Residual series 571 

given by the original TSAT series and the reconstructed TSAT series of (a). (c) Reconstructed NHSAT time series 572 

(red) when TSAT is the explanatory variable. (d) Residual series given by the original NHAST series and the 573 

reconstructed NHSAT series of (c). (e) Reconstructed TSTA time series (red) when NHSAT and Nino3.4 index are 574 

the explanatory variables. (f) Residual series given by the original TSAT series and the reconstructed TSAT series 575 

of (e).  576 
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Table 4 Details of te perature records’ reconstruction 577 

Input (a) Output (b) corr. 
baρ 

 
Data length 

(training/testing) 

Neural 

network 
RMSE nRMSE 

NHSAT TSAT 0.08 0.70 8182/5454 

RC 0.73 0.13 

LSTM 1.14 0.20 

BP 1.45 0.26 

TSAT NHTSAT 0.08 0.24 8182/5454 

RC 0.97 0.21 

LSTM 1.04 0.23 

BP 1.23 0.37 

We can further improve the reconstruction quality of TSAT. Considering that the tropics 578 

climate system do not only interact with the Northern Hemisphere climate system, we can use the 579 

information of other subsystems to improve the reconstruction. Looking at the time series of Nino 580 

3.4 index (Fig. 10), some of its extremes occur at the same time regions as the extremes of TSAT. 581 

Moreover, when Nino 3.4 index is included into the scatter plot (Fig. 11c), a nonlinear attractor 582 

structure is revealed. We combine NHSAT with Nino 3.4 index to reconstruct the time series of 583 

TSAT by means of RC. The reconstructed TSAT (Fig. 11e) is much closer to the original TSAT 584 

series, and the corresponding nRMSE has been improved to 0.08.  585 

Finally, we make a further comparison between the real TSAT and the reconstructed TSAT: (i) 586 

the annual variations of TSAT and the reconstructed TSAT are close to each other (Fig. 12a). (ii) 587 

The power spectrum of TSAT and the reconstructed TSAT are compared in Fig. 12b, and it can be 588 

seen that the main deviation is in the frequency bands corresponding to around 0-15 days. The 589 

reason might be that the local weather processes are not input into this RC reconstruction. This 590 

conjecture can be further confirmed by red-noise test with response time 15 days for the residual 591 

series (red-noise test is the same as the method used in Roe, 2009). All data points of the residual 592 
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series lie within the confidence intervals (Fig. 12c), and this means, the residual is possibly induced 593 

by local weather processes that is not input into RC.  594 
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Figure 12 (a) Comparison between the annual mean values of reconstructed TSAT (red) and the annual mean 597 

values of original TSAT (blue). (b) Comparison between the power spectrum of reconstructed TSAT (red) and the 598 

power spectrum of original TSAT (blue). (c) Red-noise test for residual series, the gray shaded area is the 99% CI 599 

of red-noise process.  600 

5  Conclusions and discussions 601 

In this study, three kinds of machine learning methods are used to reconstruct the time series of 602 

toy models and real-world climate systems. One series can be reconstructed from the other series by 603 
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machine learning when they are governed by the common coupling relation. For the linear system, 604 

variables are coupled by the linear mechanism, and a strong Pearson coefficient benefits to machine 605 

learning with bi-directional reconstruction. For a nonlinear system, the time series often have a weak 606 

Pearson coefficient, but the machine learning can still well reconstruct the time series when the 607 

CCM index is strong; moreover, the reconstruction quality is direction-dependent and 608 

variable-dependent, which is determined by the coupling strength and causality between the 609 

dynamical variables.  610 

Considering the reconstruction quality dependency, selecting the suitable explanatory variables 611 

is crucial for obtaining a good reconstruction quality. But the results show that machine learning 612 

performance cannot be only explained by linear correlation. Hence, we propose using the CCM 613 

index to select explanatory variables. Especially for the time series of nonlinear systems, when the 614 

CCM index is strong enough, the corresponding variable can be selected as an explanatory variable. 615 

When the CCM index is higher than 0.5 in this study, the nRMSE is often smaller 0.1, where the 616 

reconstructed series is very close to the real series in the presented results. Therefore, the CCM 617 

index that is higher than 0.5 may be considered for selecting explanatory variables. It is well known 618 

that atmospheric or oceanic motions are nonlinearly coupled over most of time scales, and therefore, 619 

in the natural climate series, there would be similar nonlinear coupling relation to the Lorenz 63 and 620 

the Lorenz 96 systems (the Pearson correlation is weak but the CCM indices are of high magnitudes). 621 

If only Pearson coefficient is used to select the explanatory variable, then some useful nonlinearly 622 

correlated variables might be left out.  623 

Finally, it is worth noting the potential applications for machine learning in the climate studies. 624 

For instance, a series b(t) is unmeasured during some periods for the measuring instrument failure, 625 
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but there are other kinds of variables without missing observations. Moreover, CCM can be applied 626 

to select the suitable variables coupled with b(t), and then RC or LSTM can be employed to 627 

reconstruct the unmeasured part of b(t) (following Fig. 1). This is useful for some climate studies, 628 

such as paleoclimate reconstruction (Brown, 1994; Donner 2012; Emile-Geay and Tingley, 2016), 629 

interpolation for the missing points in measurements (Hofstra et al., 2008), and the parameterization 630 

schemes (Wilks, 2005; Vissio and Lucarini, 2018). Our study in this article is only a beginning for 631 

reconstructing climate series by machine learning, and more detailed investigations will be reported 632 

soon.  633 

Appendix  634 

Govern equations for the LSTM neural network 635 

The If    ) and b    denote two time series from a system, and    ) is input into LSTM to 636 

estimate b   , then the govern equations for the LSTM architecture (Fig. 3) are as follows:  637 

f    = σf (Wf [ (  -  ),     ]    f),                                                          (14) 638 

i    = σf (Wi [ (   -  ),     ]    i),                                                         (15) 639 

c̃    = tanh(Wc[ (  -  ),     ]     ),                                                        (16) 640 

c    = f   c(  -  )   i  )c̃   ,                                                               (17) 641 

o    = σ  W [ (  -  ),     ]     ),                                                          (18) 642 

h    = o  )tanh   c  ) ),                                                                  (19) 643 

b  ) = Wo     ),                                                                        (20) 644 

f   , i   , o    are the forget gate, input gate, and output gate respectively. h    and c    represent 645 

the hidden state and the cell state, the dimension of the hidden layers are set as 200 which could 646 
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yield the good performance in our experiment. All these components can be found in Fig. 3, and the 647 

information flow among these components are realized by the Eqs. (14)-(20). There are many 648 

parameters in the LSTM architecture: σf is the softmax activation function;  f,  i, and    are the 649 

biases in the forget gate, the input gate, and the hidden layers; the weight matrixes "Wf", "Wi", "Wc" 650 

and" Wo " denote the neuron connectivity in each layers. These parameters need to be computed 651 

during training (Chattopadhyay et al., 2019). a(t) and b(t) represent the input and output time series.  652 

  653 
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