Reconstructing coupled time series in climate systems using three kinds of machine learning methods 2

- Yu Huang¹, Lichao Yang¹, Zuntao Fu^{1*} 3
- ¹Lab for Climate and Ocean-Atmosphere Studies, Dept. of Atmospheric and Oceanic Sciences, Δ
- School of Physics, Peking University, Beijing, 100871, China 5
- Correspondence to: Zuntao Fu (fuzt@pku.edu.cn) 6
- Abstract. 7

Despite the great success of machine learning, its applications in climate dynamics have not 8 been well developed. One concern might be how well the trained neural networks could learn a 9 dynamical system and what can be the potential applications of this kind of learning. In this paper, 10 three machine learning methods are used: reservoir computer (RC), back propagation based artificial 11 neural network (BP), and long short-term memory neural network (LSTM). It is shown that the 12 coupling relations or dynamics among variables in linear or nonlinear systems can be well learnt by 13 RC and LSTM, which can be further applied to reconstruct one time series from the other dominated 14 by the common coupling dynamic. Specifically, we analyze the climatic toy models to address two 15 questions: (i) what factors significantly influence machine learning reconstruction; and (ii) how to 16 select suitable explanatory variables for machine learning reconstruction. The results reveal that both 17 linear and nonlinear coupling relations between variables do influence the reconstruction quality of 18 machine learning. If there is a strong linear coupling between two variables, the reconstruction can 19 be bi-directional, where any one of these two variables is able to be an explanatory variable for 20 reconstructing the other variable. When the linear coupling among variables is absent, but with the 21

significant nonlinear coupling, the machine learning reconstruction between two variables is 22 direction-dependent and it may be only uni-directional. Then we propose using the convergent cross 23 mapping (CCM) causality index to determine which variable can be taken as the reconstructed one 24 and which can be taken as the explanatory variable. In a real-world example, the Pearson correlation 25 between the average Tropical Surface Air Temperature (TSAT) and the average Northern 26 Hemispheric SAT (NHSAT) is as weak as 0.08, but the CCM index of NHSAT cross maps TSAT is 27 0.70, it means that NHSAT could be taken as the explanatory variable. Then we find that TSAT can 28 be well reconstructed from NHSAT by the machine learning method. However, the reconstruction 29 quality in the opposite direction is poor, where the CCM index of TSAT cross maps NHSAT is only 30 0.24. These results also provide insights on machine learning approaches for paleoclimate 31 reconstruction, parameterization scheme, and prediction in related climate research. 32

Key words: Reconstruction, Climate time series, Machine learning, Causality, Surface air
 temperature

35 Highlights:

- i) Learnt coupling dynamics between series by machine learning can be used to reconstruct series.
- ii) Reconstruction quality is direction- and variable-dependent for nonlinear systems.
- 38 iii) The CCM index is a potential indicator to choose reconstructed and explanatory variables.
- iv) The tropical average SAT can be well reconstructed from the average Northern Hemispheric
- 40 SAT.

41

1 Introduction

43	Neural network-based machine learning provides effective tools for studying climatic data
44	(Reichstein et al., 2019), which attracts great attention recently. The machine learning approach is
45	widely applied to downscaling and data mining analyses (Mattingly et al., 2016; Racah et al., 2017),
46	and it can be also used to predict the time series of climate variables, such as temperature, humidity,
47	runoff and air pollution (Zaytar and Amrani, 2016; Biancofiore et al., 2017; Kratzert et al., 2019;
48	Feng et al., 2019). Recently, it is demonstrated that a large potential application of machine learning
49	is to reconstruct the temporal dynamics of complex systems (Pathak et al., 2017; Du et al., 2017;
50	Watson, 2019). Studies (Pathak et al., 2017; Lu et al., 2018; Carroll, 2018) have shown that the
51	chaotic attractors in Lorenz system and Rossler system can be described by machine learning. Since
52	chaos is the key property of the underlying climate system giving rise to climatic time series (Lorenz,
53	1963; Patil et al., 2001), these studies provide a theoretical explanation why the machine learning
54	can be well applied in reconstructing climate temporal dynamics.

Though applying machine learning to climatic series attracts much attention, it is still open 55 questions what can be learnt by machine learning during the training process, and what is the key 56 factor determining the performance of machine learning approach to climatic time series. This is 57 crucial for investigating why machine learning cannot perform well with some datasets, and how to 58 improve the performance for them. One possible key factor is the coupling between different 59 variables. Because different climate variables are coupled with one another (Donner and Large, 60 2008), and the coupled variables will share their information content with one another through the 61 information transfer (Takens, 1981; Schreiber, 2000; Sugihara et al., 2012). Furthermore, a coupling 62 often results in that the observational time series are statistically correlated (Brown, 1994). 63

64	Correlation is a crucial property for the climate system, and often influences the climatic time series
65	analysis. "Pearson Coefficient" is often used to detect the correlation, which only detects the linear
66	correlation. It is known that when the Pearson correlation coefficient is weak, most of traditional
67	regression methods will fail in dealing with the climatic data, such as fitting, reconstruction and
68	prediction (Brown, 1994; Sugihara et al., 2012; Emile-Geay and Tingley, 2016). However, a weak
69	linear correlation does not mean that there is no coupling relation between the variables. Previous
70	studies (Sugihara et al., 2012; Emile-Geay and Tingley, 2016) have suggested that, although the
71	linear correlation of two variables is potentially absent, they might be nonlinearly coupled and can
72	be exploited by analysis. For instance, the linear cross-correlations of sea surface temperature series
73	observed in different tropical areas are unstable and vary with time, which leads to an overall weak
74	linear correlation, but this non-linear correlation is conductive to the better El Niño predictions
75	(Ludescher et al., 2014; Conti et al., 2017). The linear correlations between ENSO/PDO index and
76	some proxy variables are weak but their nonlinear coupling relations can be detected, which
77	contributes greatly to reconstructing longer paleoclimate time series (Mukhin et al., 2018). These
78	studies indicate that nonlinear coupling relations would contribute to the better analysis,
79	reconstruction, and prediction (Hsieh et al., 2006; Donner, 2012; Schurer et al., 2013; Badin et al.,
80	2014; Drátos et al., 2015; Van Nes et al., 2015; Comeau et al., 2017; Vannitsem and Ekelmans,
81	2018). Accordingly, when applying machine learning to climatic series, is it necessary to give
82	attention to the linear or nonlinear relationships induced by the physical couplings? This is worth to
83	be addressed.

86	that the Z variable can be well reconstructed from the X variable by reservoir computer, but it failed
87	to reconstruct X with Z. Lu et al. (Lu et al., 2017) demonstrated that the nonlinear coupling dynamic
88	between X and Z was responsible for this asymmetry in the reconstruction. This was explained by
89	the nonlinear observability in control theory (Hermann and Krener, 1977; Lu et al., 2017): for the
90	Lorenz 63 equation, both $(X(t), Y(t), Z(t))$ and $(-X(t), -Y(t), Z(t))$ could be its solutions. Therefore,
91	when $Z(t)$ was acting as an observer, it cannot distinguish $X(t)$ from $-X(t)$, and the information
92	content of X was incomplete for $Z(t)$, which determined that X cannot be reconstructed by machine
93	learning. The nonlinear observability for a nonlinear system with known equation can be easily
94	analyzed (Hermann and Krener, 1977; Schumann-Bischoff et al., 2016; Lu et al., 2017). But for the
95	observational data from a complex system without explicit equation, the nonlinear observability is
96	hard to analyze and few studies ever investigated that. Furthermore, does such asymmetric nonlinear
97	observability in the reconstruction also exist in other climatic time series which are nonlinearly
98	coupled? This is still an open question.
99	In this paper, we apply machine learning approaches to learn the coupling relation, and then
100	reconstruct the coupled climatic time series. Specifically we aim to make progress on how machine
101	learning approach is influenced by the physical couplings of climatic series, and the abovementioned
102	questions can be addressed. There are several variants of machine learning methods (Reichstein et
103	al., 2019), and recent studies (Lu et al., 2017; Reichstein et al., 2019; Chattopadhyay et al., 2019)
104	suggest that three of them are more applicable to sequential data like time series: reservoir computer
105	(RC), back propagation based artificial neural network (BP), and long short-term memory (LSTM)
106	neural network. Here we adopt these three methods to carry out our study, and provide a
107	performance comparison among them. We first investigate their performance dependence on

108	different coupling dynamics by analyzing a hierarchy of climatic conceptual models. Then we use a
109	novel method to select explanatory variables for machine learning, which can further detect the
110	nonlinear observability (Hermann and Krener, 1977; Lu et al., 2017) for a complex system without
111	any known explicit equations.
112	Finally, we will discuss a real-world example from climate system. It is known that there exist
113	atmospheric energy transportations between the tropics and the Northern Hemisphere, which results
114	in the coupling between the climate systems in these two regions (Farneti and Vallis, 2013). Due to
115	the underlying complicated processes, it is difficult to use a formula to cover this coupling between
116	the tropical average surface air temperature (TSAT) series and the Northern Hemispheric surface air
117	temperature (NHSAT) series. We employ machine learning methods to investigate whether the
118	NHSAT time series can be reconstructed from the TSAT time series, and whether the TSAT time
119	series can be also reconstructed from the NHSAT time series. Accordingly, the conclusions from our
120	model simulations can be further tested and generalized.
121	Our paper is organized as follows. In section 2, the methods for reconstructing time series and
122	detecting coupling relation are introduced. The used data and climatic conceptual models are
123	introduced in section 3. In section 4, the association between the coupling relation and

series is presented. Summary is made in section 5.

2 Methods

2.1 Learning coupling relations and reconstructing coupled time series

Firstly, we introduce our workflow for learning couplings of dynamical systems by machine

reconstruction quality by machine learning is investigated, and an application to real-world climate

learning, and reconstructing the coupled time series. The total time series can be divided into two 129 parts: the training series (time lasting denoted as t) and the testing series (time lasting denoted as t'). 130 For the systems of toy models, the coupling relation or dynamics is stable and unchanged with time, 131 i.e., there is the stable coupling or dynamic relation $b(t) = F[a_1(t), a_2(t), ..., a_n(t)]$ among inputs 132 $a_1(t), a_2(t), \dots, a_n(t)$ and output b(t). If this inherent coupling relation can be reconstructed by 133 machine learning in the training series, the reconstructed coupling relation should be reflected by 134 machine learning in the testing series. Therefore, the workflow of our study can be summarized as 135 follows (see Fig. 1): 136

(i) During the training period, $a_1(t), a_2(t), ..., a_n(t)$ and b(t) are input into the machine learning frameworks to learn the coupling or dynamic relation $b(t) = F[a_1(t), a_2(t), ..., a_n(t)]$. The inferred coupling relation is denoted as $b(t) = \hat{F}[a_1(t), a_2(t), ..., a_n(t)]$. Then it is tested whether this coupling relation can be reconstructed by machine learning.

141 (ii) The second step is accomplished with the testing series to apply the reconstructed coupling 142 relation \hat{F} together with only $a_1(t'), a_2(t'), ..., a_n(t')$ to derive b(t'), denoted as $\hat{b}(t')$. $\hat{b}(t')$ is 143 called "the reconstructed b(t')" since only $a_1(t'), a_2(t'), ..., a_n(t')$ and the reconstructed coupling 144 relation \hat{F} have been taken into account.

(iii) The first objective of this study is to answer whether the coupling relation $b(t) = F[a_1(t), a_2(t), ..., a_n(t)]$ can be reconstructed by machine learning, i.e., whether the reconstructed coupling relation \hat{F} can well approximate the real coupling relation F. Since we do not intend to reach an explicit formula of the reconstructed coupling relation \hat{F} , we will answer this question indirectly by comparing the reconstructed series $\hat{b}(t')$ with the original series b(t'). If $\hat{b}(t') \approx b(t')$, then it can be regarded as $\hat{F} \approx F$, and the machine learning can indeed learn the 151 intrinsic coupling relation among $a_1(t), a_2(t), \dots, a_n(t)$ and b(t).

(iv) If the machine learning can infer the intrinsic coupling relation between $a_1(t), a_2(t), ..., a_n(t)$ and b(t), the inferred coupling relation \hat{F} can be applied to reconstruct output b(t') even if only $a_1(t'), a_2(t'), ..., a_n(t')$ are available.

155

Figure 1 Diagram illustration for reconstructing time series by machine learning. (1) The available part of the dataset { $a_1(t), ..., a_n(t), b(t)$ } is used to train the neural network ($a_1(t), ..., a_n(t)$ and b(t) are the time series of the variables $a_1, ..., a_n, b$). So that the inherent coupling relation F among these variables can be learnt by the neural network, and the learnt coupling relation is noted as $\hat{F} \cdot (2) b(t')$ is unknown, but the dataset { $a_1(t')$, $a_2(t'), ..., a_n(t')$ } is available which is input into the trained neural network, and the unknown series b(t') can be reconstructed, denoted as $\hat{b}(t') \cdot (3)$ If $\hat{b}(t') \approx b(t')$, then $\hat{F} \approx F$ can be derived, and it indicates that the machine learning framework have learnt the intrinsic coupling relation.

163 **2.2 Machine learning methods**

2.2.1 Reservoir computer

A newly developed neural network called RC (Du et al., 2017; Lu et al., 2017; Pathak et al., 2018) has three layers: the input layer, the reservoir layer and the output layer (see Fig. 2). If a(t) and b(t) denote two time series from a system, and then the following steps can estimate b(t)from a(t):

Figure 2 Schematic of the RC neural network: the three layers are the input layer, the reservoir layer, and the output layer. The input layer consists of a matrix " W_{in} " (whose elements are randomly chosen from the interval [-1, 1]). The reservoir layer consists of *N* reservoir neurons whose connectivity is through the adjacent matrix "*M*", and r(t) represents the activations of the *N* neurons. The output layer consists of a matrix " W_{out} ", whose elements are trainable in the training process. A time series a(t) is input into the RC neural network. After the training process, the time series of *b* variable can be reconstructed by machine learning, denoted as $\hat{b}(t)$.

182	have tested that this yields the good performance). These components are employed by Eq. (1), and
183	then an updated reservoir state $r^*(t)$ is output.
184	$r^{*}(t) = \tanh[M \cdot r(t) + W_{in} \cdot a(t) + E],$ (1)
185	(ii) $r^*(t)$ then gets into the output layer that consists of the reservoir-to-output matrix " W_{out} ". As
186	Eq. (2) shows, $r^*(t)$ will be trained as the estimated value $\hat{b}(t)$. The mathematical form of " W_{out} "
187	is shown by Eq. (3), which is a trainable matrix that fits the relation between $r^*(t)$ and $b(t)$ in the
188	training process. " $\ \cdot\ $ " denotes the L_2 -norm of a vector (L_2 represents the least square method) and
189	α is the ridge regression coefficient, whose values are determined after the training.
190	$\hat{b}(t) = W_{out} \cdot r^*(t) , \qquad (2)$
191	$W_{out} = \arg\min_{W_{out}} \left\ W_{out} \cdot r^*(t) \cdot Y(t+\tau) \right\ + \alpha \ W_{out}\ , $ (3)
192	After this reservoir neural network has been trained, we can use it to estimate $b(t)$, where the
193	estimated value is noted as $\hat{b}(t)$.
194	2.2.2 Back propagation based artificial neural network
195	Here, the used BP artificial neural network is a traditional neural computing framework which
196	has been widely used in climate research (Chattopadhyay et al., 2019; Watson, 2019; Reichstein et
197	al., 2019). There are six layers in the BP neural network: the input layer with 8 neurons; 4 hidden
198	layers with 100 neurons each; the output layer with 8 neurons. In each layer, the connectivity
199	weights of the neurons need to be computed during training process, where the back propagation

- 200 optimization with the complicated gradient decent algorithm is used (Dueben and Bauer, 2018). A
- 201 crucial difference between the BP and the RC neural networks is as follows: unlike RC, all neuron

states of the BP neural network are independent on the temporal variation of time series (Chattopadhyay et al., 2019; Reichstein et al., 2019), while the neurons of RC can track temporal evolution (such as the neuron state r(t) in Fig. 2) (Chattopadhyay et al., 2019). If a(t) and b(t) are two time series of a system, through the BP neural network, we can also reconstruct b(t) from a(t).

206 **2.2.3 Long short-term memory neural network**

- The LSTM neural network is an improved recurrent neural network to deal with time series (Reichstein et al., 2019; Chattopadhyay et al., 2019). As Fig. 3 shows, LSTM has a series of components: a memory cell, input gate, output gate, and a forget gate in addition to the hidden state in traditional recurrent neural network. When a time series a(t) is input to train this neural network, the information of a(t) will flow through all these components, and then the parameters at different components will be computed for fitting the relation between a(t) and b(t). The govern equations for the LSTM architecture are shown in the Appendix. After the training is accomplished, a(t) can be
- 214 used to reconstruct b(t) by this neural network.

The crucial improvement of LSTM on the traditional recurrent neural network (Reichstein et al., 219 2019) is, that LSTM has the forget gate which controls the information of the previous time to flow

220	into the neural network. This will make the neuron states of LSTM have ability to track the temporal
221	evolution of time series (Chattopadhyay et al., 2019; Kratzert et al., 2019; Reichstein et al., 2019),
222	which is also the crucial difference between the LSTM and the BP neural networks.
223	Here, we also test the LSTM neural network without the forget gate, and call it LSTM [*] . This
224	means that the information of the previous time cannot flow into the LSTM [*] neural network, which
225	does not have the memory for the past information. We will compare the performance of LSTM
226	with that of LSTM [*] , so that the role of the neural network memory for the previous information can
227	be presented.

2.3 Evaluation of reconstruction quality

229	To evaluate the quality of reconstruction by machine learning, the root mean squared error
230	(RMSE) of residual series (Hyndman and Koehler, 2006) is adopted (Eq. (4)), which represents the
231	difference between the real series $b(t')$ and the reconstructed series $\hat{b}(t')$. In order to fairly
232	compare the errors of reconstructing different processes with different variability and units
233	(Hyndman and Koehler, 2006; Pennekamp et al., 2018; Huang and Fu, 2019), we normalize the
234	RMSE as Eq. (5) shows.

235
$$RMSE = \sqrt{\frac{1}{k} \sum_{t} [b(t') - \hat{b}(t')]^2},$$
 (4)

236
$$nRMSE = \frac{RMSE}{\max[b(t')] - \min[b(t')]}.$$
 (5)

2.4 Coupling detection

2.4.1 Linear correlation

As the introduction mentioned, the linear Pearson correlation is a commonly-used method to quantify the linear relationship between two observational variables. The Pearson correlation between two series a(t) and b(t), is defined as

242
$$corr. = \frac{mean[(a-\overline{a}) \cdot (b-\overline{b})]}{std(a) \cdot std(b)}.$$
 (6)

The symbols "*mean*" and "*std*" denote the average and standard deviation for series a(t) and b(t), respectively.

245 **2.4.2 Convergent cross mapping**

246	To measure the nonlinear coupling relation between two observational variables, we choose the
247	convergent cross mapping method that has been demonstrated to be useful for many complex
248	nonlinear systems (i.e. Sugihara et al., 2012; Tsonis et al., 2018; Zhang et al. 2019). Considering $a(t)$
249	and $b(t)$ as two observational time series, we begin with the cross mapping (Sugihara et al., 2012)
250	from $a(t)$ to $b(t)$ through the following steps:
251	i) Embedding a(t) (with length L) into the phase space with a vector
252	$M_a(t_i) = \{a_{t_i}, a_{t_i - \tau_0}, \dots, a_{t_i - (m-1)\tau}\}$ ("t _i " represents a historical moment in the observations), where
253	embedding dimension (m) and time delay (τ) can be determined through the false nearest neighbor
254	algorithm (Hegger and Kantz, 1999).
255	i) Estimating the weight parameter w_i which denotes the associated weight between two vectors
256	" $M_a(t)$ " and " $M_a(t_i)$ " ("t" denotes the excepted time in this cross mapping), defined as:
257	$w_i = \frac{u_i}{\sum_{i=1}^{m+1} u_i},\tag{7}$
258	$u_{i} = \exp\{-\frac{d\left[M_{a}(t), M_{a}(t_{i})\right]}{d\left[M_{a}(t), M_{a}(t_{i})\right]}\},\tag{8}$

where $d[M_a(t), M_a(t_i)]$ denotes the Euler distance between vectors " $M_a(t)$ " and " $M_a(t_i)$ ". The

260	nearest neighbor to " $M_a(t)$ " generally corresponds to the largest weight.
261	iii) Cross mapping the value of $b(t)$ by
262	$\hat{b}(t) = \sum_{i=1}^{m+1} w_i b(t_i). $ (9)
263	$\hat{b}(t)$ denotes the estimated value of $b(t)$ with this phase-space cross mapping. Then, we will evaluate
264	the cross mapping skill (Sugihara et al., 2012; Tsonis et al., 2018) as the follows:
265	$\rho_{a \to b} = corr. \ [b(t), \ \hat{b}(t)] \tag{10}$
266	The cross mapping skill from <i>b</i> to <i>a</i> is also measured according to the above steps, marked as $\rho_{b \to a}$.
267	Sugihara et al. and Tsonis et al. ever defined the causal inference according to $\rho_{a \to b}$ and $\rho_{b \to a}$ like
268	that: (i) if $\rho_{a \to b}$ is convergent when L is increased, and $\rho_{a \to b}$ is of high magnitude, then b is
269	suggested to be a causation of a. (ii) Besides, if $\rho_{b \to a}$ is also convergent when L is increased, and is
270	of high magnitude, then the causal relationship between a and b is bidirectional (a and b cause each
271	other). In our study, all values of the CCM indices are measured when they are convergent with the
272	data length (Tsonis et al. 2018).
273	According to literature (Sugihara et al., 2012; Ye et al., 2015), the CCM index is related to the
274	ability of using one variable to reconstruct another variable: if b influence a but a does not influence
275	b, the information content of b can be encoded in a (through the information transfer from b to a),
276	but the information content of a is not encoded in b (there exists no information transfer from a to b).
277	Therefore, the time series of b can be reconstructed from the records of a . For the CCM index
278	$(\rho_{a \to b})$, its magnitude represents how much information content of b is encoded in the records of a.
279	Therefore, the high magnitude of $\rho_{a\to b}$ means that b causes a, and we can get good results of
280	reconstruction from a to b. In this paper, we will test the association between the CCM index and the

282 **3 Data**

3.1 Time series from conceptual climate models

A linearly coupled model: The autoregressive fractionally integrated moving average (ARFIMA) model (Granger and Joyeux, 1980) maps a Gaussian white noise $\varepsilon(t)$ into a correlated sequence x(t) (Eq. (11)), which could simulate the linear dynamics of oceanic-atmospheric coupled system (Hasselmann, 1976; Franzke, 2012; Massah and Kantz, 2016; Cox et al., 2018).

288	$\mathcal{E}(t) \xrightarrow{ARFIMA(p,d,q)} x(t)$	(11)
289	In this model, d is a fractional differencing parameter, and p and q are the orders of	the
290	autoregressive and moving average components. Here, the parameters are set as: $p = 3$, $d = 0.2$ a	nd q
291	= 3. Hence $x(t)$ is a time series composited with three components: the third-order autoregres	ssive
292	process whose coefficients are 0.6, 0.2 and 0.1, the fractional differencing process whose H	Iurst
293	exponent is 0.7, and the third-order moving average process whose coefficients are 0.3, 0.2 and	<mark>1 0.1</mark>
294	(Granger and Joyeux, 1980). These two time series $\varepsilon(t)$ and $x(t)$ are used for the reconstruct	ction
295	analysis	

A nonlinearly coupled model: The Lorenz 63 chaotic system (Lorenz, 1963) depicts the nonlinear coupling relation in a low-dimensional chaotic system. The system reads

$$\frac{dx}{dt} = -\sigma(x - y)$$
298
$$\frac{dy}{dt} = \mu x - xz - y$$

$$\frac{dz}{dt} = xy - Bz$$
(12)

299 When the parameters are fixed at $(\sigma, \mu, B) = (10, 28, 8/3)$, the state in the system is chaotic. We

employed the fourth-order Runge-Kutta integrator to acquire the series output from this Lorenz 63 system. The time steps were 0.01. The time series X(t) and Z(t) are used for the reconstruction analysis.

A high-dimensional model: The two-layer Lorenz 96 model (Lorenz, 1996) is a high-dimensional chaotic system, which is commonly used to mimic mid-latitude atmospheric dynamics (Chorin and Lu, 2015; Hu and Franzke, 2017; Vissio and Lucarini, 2018; Chen and Kalnay, 2019; Watson, 2019). It reads

307

$$\frac{dX_{k}}{dt} = X_{k-1}(X_{k+1} - X_{k-2}) - X_{k} + F - \frac{h_{1}}{J} \sum_{j=1}^{J} Y_{j,k}$$

$$\frac{dY_{k,j}}{dt} = \frac{1}{\theta} [Y_{k,j+1}(Y_{k,j-1} - Y_{k,j+2}) - Y_{k,j} + h_{2}X_{k}].$$
(13)

In the first layer of the Lorenz 96 system there are 18 variables marked as X_k (k is a integer ranging from 1 to 18), and each X_k is coupled with $Y_{k,j}$ ($Y_{k,j}$ is from the second layer). The parameters are set as fellows: J = 20, $h_1 = 1$, $h_2 = 1$, and F=10. The parameter θ can alter the coupling strength: when θ is decreased, the coupling strength between X_k and $Y_{k,j}$ will be enhanced. The fourth-order Runge-Kutta integrator and periodic boundary condition are adopted (that is: $X_0 = X_K$ and $X_{K+1} = X_1$; $Y_{k,0} = Y_{k,1,J}$ and $Y_{k,J+1} = Y_{k+1,J}$), and the integral time unit was taken as 0.05. The time series $X_1(t)$ and $Y_{1,1}(t)$ are used for the reconstruction analysis.

315

3.2 Real-world climatic time series

TSAT, NHSAT and the Nino3.4 index are chosen to represent real-world climatic time series, which are used for reconstruction analysis. The original data is obtained from National Centers for Environmental Prediction (https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html) and KNMI Climate Explorer (http://climexp.knmi.nl). The series of TSAT and NHSAT are obtained from the regional average of gridded daily data in NCEP Reanalysis 2. The selected spatial range is $20^{0}N-20^{0}S$ for the tropics and $20^{0}N-90^{0}N$ for the Northern Hemisphere. The selected temporal range is from 1981/09/01 to 2018/12/31.

Training and testing datasets: Before analysis, all the used time series are standardized to take zero mean and unit variance so that any possible impact of mean and variance on the statistical analysis is avoided (Brown, 1994; Hyndman and Koehler, 2006; Chattopadhyay et al., 2019). We divide the total series into two parts: 60% of the time series training the neural network and 40% being the testing series. Specific data lengths of the training series and testing series will be also listed in the results section.

329 **4 Results**

4.1 Coupling relation learning

4.1.1 Linear coupling relation and machine learning

We first consider the simplest case: the linear coupling relation between two variables. Here, 332 two time series x(t) and $\varepsilon(t)$ in ARFIMA (3, 0.2, 3) model, are analyzed. Obviously, there are 333 different temporal structures in x(t) and $\varepsilon(t)$, especially for their large-scale trends (Fig. 4a) and 334 power spectra (Fig. 4b). The marked difference between x(t) and $\varepsilon(t)$ is in their low-frequency 335 variations, and there are more low-frequency and larger-scale structures in x(t) than in $\varepsilon(t)$. We 336 employ neural networks (RC, LSTM, LSTM*, and BP) to learn the dynamics of this model (Eq. (11)) 337 by the procedure shown in Fig. 1. The training parts of $\varepsilon(t)$ are selected from the gray shadow in Fig. 338 4a. RC, LSTM, LSTM*, and BP are trained to learn the coupling relation between x(t) and $\varepsilon(t)$. Then, 339

the trained neural networks together with $\varepsilon(t')$ is used to reconstruct x(t'). The reconstruction results and the performance of different neural networks are presented in Table 1. It shows that there is a strong linear correlation (0.88) between x(t') and $\varepsilon(t')$. This reconstruction result suggests that the strong linear coupling can be well captured by these three neural networks since all values of nRMSE are low.

345

346

Figure 4 (a) The x(t) time series (blue) and the $\varepsilon(t)$ time series (black) of the ARFIMA(3,0.2,3) model. White lines depict the large-scale trends of these time series acquired by 50-step smoothing average. (b) Comparison of the power spectrum of x(t) (blue) with the power spectrum of $\varepsilon(t)$ (black). (c) Comparison of the reconstructed time series of x(t) by RC, LSTM, LSTM^{*} and BP respectively (red dots), and the original x(t) time series are presented by the blue lines. (d) Comparison of the reconstructed time series of $\varepsilon(t)$ by RC, LSTM, LSTM^{*} and BP respectively (red dots), and the original $\varepsilon(t)$ time series are presented by the black lines. Only partial segments of

19

354	Detailed comparisons between the real and reconstructed series are shown in Fig. 4c. When
355	inputting $\varepsilon(t')$, the trained RC and LSTM neural networks can be applied to accurately reconstruct
356	the original $x(t')$. When $x(t')$ is reconstructed from $\varepsilon(t')$ by LSTM, the minimum of nRMSE (0.01) is
357	reached; all reconstructed data are nearly overlapped with the real ones and cannot be visually
358	differentiated (see Fig. 4c). When reconstructing $x(t')$ from $\varepsilon(t')$ by the RC, the reconstruction quality
359	is also well. The best performance of LSTM among the three neural networks benefits from its
360	memory function for the past information (Reichstein et al., 2019; Chattopadhyay et al., 2019).
361	When the memory function of LSTM is stopped, then the reconstruction of LSTM* is no longer
362	better than that of the RC (see Table 1). The reconstruction by BP is successful in this linear system
363	(Fig. 4), but its performance is not as good as LSTM and RC (Table 1). This performance difference
364	might be due to that, unlike LSTM and RC, the neuron states of BP cannot track the temporal
365	evolution of a time series (Chattopadhyay et al., 2019).

366

Table 1 Details o	f reconstructing	ARFIMA	(3,	0.2,	3))
-------------------	------------------	--------	-----	------	----	---

Input (<i>a</i>)	Output (<i>b</i>)	corr.	Data length (training/testing)	Neural network	RMSE	nRMSE
	<i>x</i> (<i>t</i> ')	0.88		RC	0.31	0.04
o(t)			2400/1600	LSTM	0.07	0.01
8(1)				LSTM*	0.46	0.06
				BP	0.52	0.07
	$\varepsilon(t')$		2400/1600	RC	0.09	0.01
ar(41)		0.88		LSTM	0.08	0.01
$\mathbf{x}(\mathbf{l})$				LSTM*	0.45	0.06
				BP	0.50	0.07

367 4.1.2 Nonlinear coupling relation and machine learning

It is known that a strong linear correlation is useful for training neural networks and reconstructing time series. When the linear correlation between variables is very weak, could these machine learning methods still be applied to learn the underlying coupling dynamics? To address this question, two nonlinearly coupled time series *X* and *Z* in a Lorenz 63 system (Lorenz, 1963) are analyzed.

Figure 5 (a) The *X* time series (black) and the *Z* time series (blue) of the Lorenz 63 model. (b) Comparison of the reconstructed time series of *Z* by RC, LSTM and BP respectively (red lines), and the original *Z* time series are presented by the blue lines. (c) Comparison of the reconstructed time series of *X* by RC, LSTM and BP respectively (red lines), and the original *X* time series are presented by the black lines.

379

There is a very weak linear correlation between variables X and Z (with a Pearson correlation of

380	0.002) in the Lorenz63 model (Table 2), and such a weak linear correlation is resulted from the
381	time-varying local correlation between variables X and Z (see Fig. 5a): For example, X and Z are
382	negatively correlated in the time interval of 0-200, but positively correlated in 200-400. This
383	alternation of negative and positive correlation appears over the whole temporal evolutions of X and
384	Z, which leads to an overall weak linear correlation. In this case, we cannot use a feasible linear
385	regression model between X and Z to reconstruct one from the other, since there is no such good
386	linear dependency as found in the ARFIMA (p, d, q) system (see Figs. 6a and 6b).

387

Figure 6 (a) Scatter plot of x(t) versus $\varepsilon(t)$ from ARFIMA(3,0.2,3) model (black dots). (b) Scatter plot of X time series and Z time series of the Lorenz 63 model (blue dots).

Table 2 Details of Lorenz63 system reconstruction

Input (a)	Output (b)	corr.	$\rho_{a \rightarrow b}$	Data length (training/testing)	Neural network	RMSE	nRMSE
	Lorenz-Z			2400/1600	RC	0.04	0.008
Lorenz -X		0.002	0.01		LSTM	0.02	0.004
		0.002	0.91		LSTM*	1.02	0.24
					BP	0.77	0.17
	Lorenz-X		0.03	2400/1600	RC	1.13	0.34
Lorenz -Z		0.003			LSTM	1.03	0.31
		0.002	0.05		LSTM*	1.08	0.33
					BP	1.01	0.31

391	In a nonlinear coupled system, it is known that the coupling strength between two variables
392	cannot be estimated by the linear Pearson correlation (Brown, 1994; Sugihara et al., 2012). Here, we
393	use CCM to estimate the coupling strength between X and Z , and then it shows a high magnitude of
394	the CCM index: $\rho_{X \to Z} = 0.91$. According to the CCM theory (see Method), such a high magnitude
395	of the CCM index indicates that the information content of Z is encoded in the time series of X .
396	Therefore, we conjecture that: when inputting X to the neural network, not only the information
397	content of X , but also the information content of Z can be learned by the neural network. And then it
398	is possible to reconstruct Z from the trained neural network. We will test it in the following.
399	Figure 5b shows the results of RC, LSTM and BP applied to reconstructing Z from X. Different
400	from the case of linear system, the successful reconstruction for the time series of the Lorenz63
401	system depends on the used machine learning methods. The series reconstructed by LSTM nearly
402	overlaps with the real series (Fig. 5b), and has the minimum nRMSE (0.004, see Table 2); moreover,
403	the RC performs quite well, with only a little difference found at some peaks and dips (Fig. 5b).
404	These reconstruction results suggest that, even though the linear correlation is very weak, a strong
405	nonlinear correlation will allow RC and LSTM to fully capture the underlying coupling dynamics.
406	However, BP and LSTM* perform poorly, and their reconstruction results have large errors
407	$(nRMSE = 0.17 \text{ for BP, and } nRMSE = 0.24 \text{ for } LSTM^*)$. The reconstructed series heavily depart
408	from the real series, especially for all peaks and dips, and the reconstructed values for each extreme
409	point are underestimated (Fig. 5b). This means that both of BP and LSTM* cannot learn the
410	nonlinear coupling.

413	include the information of previous time. Previous studies have revealed that the temporal evolution
414	and memory are very important properties for a nonlinear time series (Kantz and Schreiber, 2003;
415	Franzke et al. 2015), which could not be neglected when modeling nonlinear dynamics. These might
416	be responsible for that BP and LSTM* fail in dealing with this nonlinear Lorenz 63 system.
417	Investigations for the application of BP in other different nonlinear relationships needs to be further
418	addressed in the future.

419 **4.2 Reconstruction quality and impact factors**

From the above results, it is revealed that RC and LSTM are able to learn both linear and nonlinear coupling relations, and then the coupled time series can be well reconstructed. In this section, we further investigate what factors could influence the reconstruction quality.

423 **4.2.1 Direction dependence and variable dependence**

When reconstructing time series of the linear model of Eq. (11), it can be found that the 424 reconstruction is invertible (see Fig. 4d and Table 1): one variable can be taken as explanatory 425 variable to reconstruct another variable well; oppositely, it can be also well reconstructed by another 426 variable. In fact, when there is a strong linear correlation between variables, the invertible (or 427 bi-directional) reconstruction can also be accomplished by using a traditional regression approach 428 (Brown, 1994). Further, when the linear correlation is weak but the nonlinear coupling is strong, will 429 the bi-directional reconstruction still be allowed? The answer is usually no. For example, when 430 comparing the reconstruction quality of reconstructing Z from X (Fig. 5b) with that of reconstructing 431 X from Z (Fig. 5c), it is obvious that all the used machine learning methods fail (large values of 432

nRMSE are all close to 0.3) in reconstructing *X* from *Z*. This result is consistent with the nonlinear
observability mentioned by Lu et al. (Lu et al., 2017). The reconstruction direction is no longer
invertible in this nonlinear system, where the reconstruction quality is direction-dependent and
variable-dependent.

437	Therefore, we further discuss how to select the suitable explanatory variable or reconstruction
438	direction. Tables 1 and 2 show that the reconstruction quality in a linear coupled system highly
439	depends on the Pearson correlation, however it is different for a nonlinear system. For the Lorenz 63
440	system, the two-direction CCM coefficients between the variables X and Z are asymmetric (with a
441	stronger $\rho_{X \to Z} = 0.91$ and weaker $\rho_{Z \to X} = 0.03$), and then Z can be well reconstructed from X by
442	machine learning but variable X cannot be reconstructed from variable Z (Fig. 5b and 5c). The CCM
443	index can be taken as a potential indicator to determine the explanatory variable and reconstructed
444	variable for this nonlinear system. Here the asymmetric reconstruction quality is resulted from the
445	asymmetric information transfer between the two nonlinearly coupled variables (Hermann and
446	Krener, 1977; Sugihara et al., 2012; Lu et al., 2017). In this coupling between X and Z, much more
447	information content of Z is encoded in X, so that it performs well for reconstructing Z from X (Lu et
448	al., 2017), which can be detected by the CCM index (Sugihara et al., 2012; Tsonis et al., 2018).

449 **4.2.2 Generalization to a high-dimensional chaotic system**

The selection for direction and variable is important for the application of neural networks to
reconstructing nonlinear time series, but this is derived from the low-dimensional Lorenz 63 system.
In this subsection, we present the results from a high-dimensional chaotic system of Lorenz 96
model. Furthermore, we will investigate the association between the CCM index and reconstruction

Figure 7 (a) The $Y_{I,I}$ time series(black), X_2 time series (black) and X_I time series(blue) of the Lorenz 96 model. (b) By means of the RC machine learning, when using $Y_{I,I}$, X_2 and multivariate to be the explanatory variable respectively, the corresponding reconstructed X_I time series are showed respectively from the top panel to the bottom panel (red lines), and the original X time series are presented by the blue lines. (c) By means of the LSTM machine learning, when using $Y_{I,I}$, X_2 and multivariate to be the explanatory variable respectively, the corresponding reconstructed X_I time series are showed respectively from the top panel (red lines), and the original X time series are showed respectively from the top panel to the bottom panel (red lines), and the original X time series are showed respectively from the top panel to the bottom panel (red lines), and the original X time series are presented by the blue lines.

Firstly, we use variables X_1 and $Y_{I,I}$ in Eq. (13) to illustrate the direction dependence in the high-dimensional system. Details of X_1 and $Y_{I,I}$ are shown in Fig. 7a, and the Pearson correlation between X_1 and $Y_{I,I}$ is weak (only -0.11, see Table 3). In Eq. (13), the forcing from X_I to $Y_{I,I}$, is

467	much stronger than the forcing from $Y_{l,l}$ to X_l . The CCM index shows: $\rho_{Y_{l,l} \to X_l} = 0.98$ and
468	$\rho_{X_1 \to Y_{1,1}} = 0.61$. It indicates that reconstructing X_1 from $Y_{I,I}$ may obtain a better quality than the
469	opposite direction. As expected, by means of RC, the error of reconstructing X_I from $Y_{I,I}$ is nRMSE
470	= 0.01, and in the opposite direction it is $nRMSE = 0.06$ (Table 3). The result of LSTM is similar to
471	that of RC in this case. Thus, direction dependence does exist in reconstructing this
472	high-dimensional system, and the result is consistent with the indication of the CCM index. In this
473	case, the reconstruction results of BP and LSTM* are not good (not shown here), and we will
474	analyze them in the latter.

Table 3 Details of reconstructing the Lorenz 96 model

Input (<i>a</i>)	Target (b)	corr.	$ ho_{a ightarrow b}$	Data length (training/testing)	Neural network	RMSE	nRMSE
V	V	0.11	0.08	1200/800	RC	0.03	0.01
1 _{1,1}	Λ_l	-0.11	0.98	1200/800	LSTM	0.34	0.05
V	V	0.11	0.61	1200/800	RC	0.35	0.06
\mathbf{A}_{1}	1 1,1	-0.11	0.01	1200/000	LSTM	0.42	0.08
V	v	0.06	0.37	1200/800	RC	0.69	0.13
Λ_2	\mathbf{A}_{I}	-0.00	0.37	1200/000	LSTM	1.09	0.20
V	v	0.06	0.25	1200/800	RC	0.95	0.17
A 1	Λ_2	-0.00	0.23	1200/800	LSTM	0.84	0.16
V. V. V.	V.	-0.06, -0.24,	0.37, 0.29,	1200/800	RC	0.41	0.08
A 2, A 17, A 18	Λ_l	0.06	0.41	1200/800	LSTM	0.32	0.06

The reconstruction between X_1 and X_2 in the same layer of Lorenz 96 system is also shown. There is an asymmetric causal relation ($\rho_{X_2 \to X_1} = 0.37$ and $\rho_{X_1 \to X_2} = 0.25$) between X_1 and X_2 , and their linear correlation is very weak (see Table 3). The RC gives better result of reconstructing X_1 from X_2 (nRMSE=0.13) than reconstructing X_2 from X_1 (nRMSE=0.17). LSTM also has different results for X_1 and X_2 (Table 3), where the quality of reconstructing from X_1 to X_2 (nRMSE=0.16) is better than reconstructing from X_2 to X_1 (nRMSE=0.20). In this case, the reconstruction quality of LSTM is worse than the RC, and the reconstruction results by LSTM are not consistent with the

483	indication of the CCM index. A previous study (Chattopadhyay et al., 2019) also suggests that
484	LSTM performs worse than RC in some cases, and this might be related to that only a simple variant
485	of the LSTM architecture used. So in this high-dimensional system, the reconstruction quality is also
486	influenced by the chosen explanatory variables: The quality of reconstructing X_1 from $Y_{I,I}$ is better
487	than the quality of reconstructing X_1 from X_2 by RC and LSTM (see Fig. 7b and 7c).
488	Besides, the number of the chosen explanatory variables can also influence the reconstruction
489	quality. If more than one explanatory variable in the same layer is considered, the reconstruction of
490	X_1 from X_2 can be greatly improved (see Figs. 7b and 7c). For example, when all of X_2 , X_{17} and X_{18}
491	are acting as the explanatory variables, the nRMSE of reconstructed X_I is reduced from 0.13 to 0.08
492	(Table 3). For both of RC and LSTM, the multivariable reconstruction reaches lower error than
493	those from unit-variable reconstruction.

495 Figure 8 Scatter plot of nRMSE values and CCM index values. The blue boxes are results of the RC machine
496 learning, and the black cycles are results of the LSTM machine learning. The blue and grey dashed lines are the
497 fitted linear trends of the blue boxes and black cycles respectively, and these two dependency trends are both

499	In the above results, the CCM index is used to select explanatory variable for RC and LSTM.
500	Now we employ more variables to test the association between the CCM index of the data and the
501	performances of RC and LSTM. The values of CCM index are calculated between X_1 and $X_2, X_3 \dots$,
502	X_{18} ; meanwhile, X_1 is reconstructed from X_2 , X_3 , X_{18} , respectively. We find a significant
503	correspondence exists between the nRMSE and the CCM index (Fig. 8), for both results of RC and
504	LSTM. Here we only use a simple LSTM architecture, and there are many other variants of this
505	architecture where the abnormal point of LSTM in Fig. 8 might be reduced. The result of Fig. 8
506	reveals the robust association between the CCM index and reconstruction quality in the machine
507	learning frameworks of RC and LSTM. For other machine learning methods, such association
508	deserves further investigation.

509 4.2.3 Performance of BP and LSTM* in Lorenz 96 system

510	Since that BP and LSTM* cannot track the temporal evolutions of a nonlinear time series, in
511	the above cases of nonlinear system, we did not obtain similar result to RC and LSTM (not shown
512	here). Here we present a simple experiment, to illustrate what might influence the performances of
513	BP and LSTM* in a nonlinear system.
514	The experiment is set as follows: in Eq. (13), the value of h_I is set as 0, and the value of θ is
515	decreased from 0.7 to 0.3. When θ is equal to 0.7, the forcing from X_I to $Y_{I,I}$ is weak. At that time,
516	the Pearson correlation between X_1 and $Y_{1,1}$ is only 0.48, and the performances of BP and LSTM*
517	are not good. When θ is equal to 0.3, the forcing is dramatically magnified. As the second panel of
518	Fig. 9a shows, this strong forcing makes $Y_{j,i}$ synchronized to X_i , and the Pearson correlation between
519	X_1 and $Y_{1,1}$ is greatly increased to 0.8. When the forcing strength is magnified, the performance of

520	machine learning is also enhanced (Fig. 9b): the reconstructed series by BP and the reconstructed
521	series by LSTM* are much closer to the real target series. This means that the reconstruction quality
522	of BP and LSTM* is greatly improved when the linear correlation is increased. This experiment
523	reveals that, the coupling strength in a nonlinear system can alter the Pearson correlation of two time
524	series, which further influences the performance of BP and LSTM* in a nonlinear system.

Figure 9 Influence of strong nonlinear coupling on linear Pearson correlation and machine learning performances.
(a) Comparison of the linear correlation when the coupling strength is different. The top panel corresponds to the
weak coupling strength, and the bottom panel corresponds to the strong coupling. The red lines present the input
explanatory variable and the black lines present the target series of machine learning. (b) Comparison of the
machine learning performances when the coupling strength is different. The top panel corresponds to the weak
coupling strength, and the bottom panel corresponds to the strong coupling. The black lines are the original series;

the reconstructed series by RC (green lines), LSTM*(blue lines) and BP (red dots) are shown respectively. In this
case, the results of LSTM are overlapped with that of RC.

535 **4.3** Application to real-world climate series: reconstructing SAT

The natural climate series are usually nonstationary, and are encoded with the information of many physical processes in the earth system. In the following, we illustrate the utility of the above methods and conclusions by investigating a real-world example mentioned in the introduction.

The daily NHSAT and TSAT time series are shown in Fig. 10a. It is quite different for the 539 oscillation shapes of the NHSAT and TSAT series, and there is a weak linear correlation (0.08, see 540 Table 4) between them. In the scatter plot for the NHSAT and TSAT (Fig. 10b), the marked 541 nonlinear structure is observed between NHSAT and TSAT. Such a weak linear correlation will 542 make the linear regression model fail to reconstruct one series from the other. Likewise, there is no 543 explicit physical expression that can transform TSAT and NHSAT to each other. Now we try to use 544 machine learning to reconstruct these climate series. The CCM index of that NHSAT cross maps 545 TSAT is 0.70, and the CCM index of that TSAT cross maps NHSAT is 0.24 (Table 4). The CCM 546 index means that the information content of TSAT is well encoded in the records of NHSAT, and 547 the information transfer might be mainly from TSAT to NHSAT, which is consistent with previous 548 studies (Farneti and Vallis, 2013). Further, the CCM analysis indicates that the reconstruction from 549 NHSAT to TSAT might obtain a better quality than the opposite direction. 550

Figure 10 (a) Daily time series of TSAT, NHSAT and Nino 3.4 index. (b) Scatter plot of normalized NHSAT and
 normalized TSAT. (c) Three-dimensional scatter plot of normalized NHSAT, normalized TSAT and normalized
 Nino 3.4 SST.

557	The results are consistent with our conjecture that the nRMSE of reconstruction from NHSAT
558	to TSAT is lower than that from TSAT to NHSAT (Table 4). By using RC, the TSAT time series
559	can be relatively well described by the reconstructed ones (Fig. 11a), with nRMSE equal to 0.13. It
560	is a bit high because some extremes of the TSAT time series have not been well described (Fig. 11b).

When using TSAT to reconstruct the time series of NHSAT, the reconstructed time series cannot describe the original time series of NHSAT (Fig. 11c), and the corresponding nRMSE is equal to 0.21. Besides, we also use LSTM and BP to reconstruct these natural climate series, the performances of these two neural networks are worse than RC (Table 4). For BP, this might be due to its inability to deal with nonlinear coupling (As mentioned in method, the BP neurons cannot track the temporal evolution of a time series). LSTM performs worse than RC in this real-world case might be induced by the used simple variant of LSTM architecture.

Figure 11 (a) Reconstructed TSAT time series (red) when NHSAT is the explanatory variable; (b) Residual series given by the original TSAT series and the reconstructed TSAT series of (a). (c) Reconstructed NHSAT time series (red) when TSAT is the explanatory variable. (d) Residual series given by the original NHAST series and the reconstructed NHSAT series of (c). (e) Reconstructed TSTA time series (red) when NHSAT and Nino3.4 index are the explanatory variables. (f) Residual series given by the original TSAT series and the reconstructed TSAT series of (e).

Data length Neural RMSE nRMSE Input (a) Output (b) corr. $\rho_{a \to b}$ (training/testing) network 0.73 0.13 RC NHSAT TSAT 0.08 0.70 8182/5454 LSTM 1.14 0.20 BP 1.45 0.26 RC 0.97 0.21 TSAT NHTSAT 0.08 0.24 8182/5454 LSTM 1.04 0.23

BP

1.23

0.37

Table 4 Details of temperature records' reconstruction

578	We can further improve the reconstruction quality of TSAT. Considering that the tropics
579	climate system do not only interact with the Northern Hemisphere climate system, we can use the
580	information of other subsystems to improve the reconstruction. Looking at the time series of Nino
581	3.4 index (Fig. 10), some of its extremes occur at the same time regions as the extremes of TSAT.
582	Moreover, when Nino 3.4 index is included into the scatter plot (Fig. 11c), a nonlinear attractor
583	structure is revealed. We combine NHSAT with Nino 3.4 index to reconstruct the time series of
584	TSAT by means of RC. The reconstructed TSAT (Fig. 11e) is much closer to the original TSAT
585	series, and the corresponding nRMSE has been improved to 0.08.

Finally, we make a further comparison between the real TSAT and the reconstructed TSAT: (i) the annual variations of TSAT and the reconstructed TSAT are close to each other (Fig. 12a). (ii) The power spectrum of TSAT and the reconstructed TSAT are compared in Fig. 12b, and it can be seen that the main deviation is in the frequency bands corresponding to around 0-15 days. The reason might be that the local weather processes are not input into this RC reconstruction. This conjecture can be further confirmed by red-noise test with response time 15 days for the residual series (red-noise test is the same as the method used in Roe, 2009). All data points of the residual

series lie within the confidence intervals (Fig. 12c), and this means, the residual is possibly inducedby local weather processes that is not input into RC.

Figure 12 (a) Comparison between the annual mean values of reconstructed TSAT (red) and the annual mean
values of original TSAT (blue). (b) Comparison between the power spectrum of reconstructed TSAT (red) and the
power spectrum of original TSAT (blue). (c) Red-noise test for residual series, the gray shaded area is the 99% CI
of red-noise process.

601 **5** Conclusions and discussions

In this study, three kinds of machine learning methods are used to reconstruct the time series of toy models and real-world climate systems. One series can be reconstructed from the other series by machine learning when they are governed by the common coupling relation. For the linear system, variables are coupled by the linear mechanism, and a strong Pearson coefficient benefits to machine learning with bi-directional reconstruction. For a nonlinear system, the time series often have a weak Pearson coefficient, but the machine learning can still well reconstruct the time series when the CCM index is strong; moreover, the reconstruction quality is direction-dependent and variable-dependent, which is determined by the coupling strength and causality between the dynamical variables.

Considering the reconstruction quality dependency, selecting the suitable explanatory variables 611 is crucial for obtaining a good reconstruction quality. But the results show that machine learning 612 performance cannot be only explained by linear correlation. Hence, we propose using the CCM 613 index to select explanatory variables. Especially for the time series of nonlinear systems, when the 614 615 CCM index is strong enough, the corresponding variable can be selected as an explanatory variable. When the CCM index is higher than 0.5 in this study, the nRMSE is often smaller 0.1, where the 616 reconstructed series is very close to the real series in the presented results. Therefore, the CCM 617 index that is higher than 0.5 may be considered for selecting explanatory variables. It is well known 618 that atmospheric or oceanic motions are nonlinearly coupled over most of time scales, and therefore, 619 in the natural climate series, there would be similar nonlinear coupling relation to the Lorenz 63 and 620 the Lorenz 96 systems (the Pearson correlation is weak but the CCM indices are of high magnitudes). 621 If only Pearson coefficient is used to select the explanatory variable, then some useful nonlinearly 622 correlated variables might be left out. 623

Finally, it is worth noting the potential applications for machine learning in the climate studies.
For instance, a series *b*(*t*) is unmeasured during some periods for the measuring instrument failure,

626	but there are other kinds of variables without missing observations. Moreover, CCM can be applied
627	to select the suitable variables coupled with $b(t)$, and then RC or LSTM can be employed to
628	reconstruct the unmeasured part of $b(t)$ (following Fig. 1). This is useful for some climate studies,
629	such as paleoclimate reconstruction (Brown, 1994; Donner 2012; Emile-Geay and Tingley, 2016),
630	interpolation for the missing points in measurements (Hofstra et al., 2008), and the parameterization
631	schemes (Wilks, 2005; Vissio and Lucarini, 2018). Our study in this article is only a beginning for
632	reconstructing climate series by machine learning, and more detailed investigations will be reported
633	soon.

- 634 Appendix
- Govern equations for the LSTM neural network 635 The If a(t) and b(t) denote two time series from a system, and a(t) is input into LSTM to 636 estimate b(t), then the govern equations for the LSTM architecture (Fig. 3) are as follows: 637 $f(t) = \sigma_f \left(W_f \left[h(t-1), a(t) \right] + s_f \right),$ 638 (14) $i(t) = \sigma_f \left(W_i \left[h(t-1), a(t) \right] + s_i \right),$ 639 (15) $\tilde{c}(t) = \tanh(W_c[h(t-1), a(t)] + s_h),$ (16)640 $c(t) = f(t)c(t-1) + i(t)\tilde{c}(t),$ (17)641 $o(t) = \sigma_h(W_h[h(t-1), a(t)] + s_h),$ 642 (18) $h(t) = o(t) \tanh(c(t)),$ (19)643 $b(t) = W_{oh} h(t),$ (20)644 f(t), i(t), o(t) are the forget gate, input gate, and output gate respectively. h(t) and c(t) represent 645 the hidden state and the cell state, the dimension of the hidden layers are set as 200 which could 646

647	yield the good performance in our experiment. All these components can be found in Fig. 3, and the
648	information flow among these components are realized by the Eqs. (14)-(20). There are many
649	parameters in the LSTM architecture: σ_f is the softmax activation function; s_f , s_i , and s_h are the
650	biases in the forget gate, the input gate, and the hidden layers; the weight matrixes " W_f ", " W_i ", " W_c "
651	and " W_{oh} " denote the neuron connectivity in each layers. These parameters need to be computed
652	during training (Chattopadhyay et al., 2019). $a(t)$ and $b(t)$ represent the input and output time series.
653	

- *Code and data availability.* All code and data used in this paper are available on request from 655 authors once the manuscript is accepted.
- *Author contribution.* Yu Huang and Zuntao Fu designed this study. All of the authors contributed to
- the preparation and writing of the manuscript.
- *Competing interests.* The authors declare no competing interest.

659	Acknowledgement.	The auth	<mark>ors thank</mark>	the	constructive	suggestions	from	the	editor,	the	two
660	anonymous reviewer	s and Dr.	Zhixin Lu	. We	also thank the	e in-depth and	l helpfi	ul dis	scussion	with	ı Dr.
661	Christian L.E. Franz	ke and Dr	Naiming	Yuai	n. We acknow	ledge the sup	ports f	from	Nationa	ıl Na	tural
662	Science Foundation	of China t	nrough Gr	ants ((No. 4167504	9 and No. 41	475048	8).			

664 **References**

- Badin, G., Domeisen, D. I.: A search for chaotic behavior in stratospheric variability: comparison between the
 Northern and Southern Hemispheres. J. Atm. Sci., 71(12), 4611-4620, 2014.
- Biancofiore, F., Busilacchio, M., Verdecchia, M., Tomassetti, B., Aruffo, E., Bianco, S., ... Di Carlo, P.: Recursive
 neural network model for analysis and forecast of PM10 and PM2. 5. Atmos. Pollut. Res., 8(4), 652-659,
 2017.
- Brown, P. J.: Measurement, Regression, and Calibration, vol. 12 of Oxford Statistical Science Series, Oxford
 University Press, USA, 216 pp, 1994.
- 672 Carroll, T. L.: Using reservoir computers to distinguish chaotic series. Phys. Rev. E. 98(5), 052209, 2018.
- 673 Chattopadhyay A., Hassanzadeh P., Palem K., Subramanian D.: Data-driven prediction of a multi-scale Lorenz 96
 674 chaotic system using a hierarchy of deep learning methods: reservoir computing, ANN, and RNN-LSTM.
 675 arXiv preprint arXiv:1906.08829, 2019.
- 676 Chen, T. C., Kalnay, E.: Proactive quality control: observing system simulation experiments with the Lorenz'96
 677 Model. Mon. Wea. Rev., 147(1), 53-67, 2019.
- 678 Chorin, A. J., Lu, F.: Discrete approach to stochastic parameterization and dimension reduction in nonlinear
 679 dynamics. P. Natl. Acad. Sci., 112(32), 9804-9809, 2015.
- Comeau, D., Zhao, Z., Giannakis, D., Majda, A. J.: Data-driven prediction strategies for low-frequency patterns of
 North Pacific climate variability. Clim. Dyn., 48(5-6), 1855-1872, 2017.
- 682 Conti, C., Navarra, A., Tribbia, J.: The ENSO Transition Probabilities. J. Clim., 30 (13), 4951-4964, 2017.
- Cox, P. M., Huntingford, C., Williamson, M. S.: Emergent constraint on equilibrium climate sensitivity from
 global temperature variability. Nature, 553(7688), 319, 2018.
- Donner, L. J., Large, W. G.: Climate modeling. Annual Review of Environment and Resources, 33, 2008.
- Donner, R. V.: Complexity concepts and non-integer dimensions in climate and paleoclimate research. Fractal
 Analysis and Chaos in Geosciences, Nov 14:1, 2012.
- Dr átos, G., B ádai, T., T él, T.: Probabilistic concepts in a changing climate: A snapshot attractor picture. J. Clim.,
 28(8), 3275-3288, 2015.
- Du, C., Cai, F., Zidan, M. A., Ma, W., Lee, S. H., Lu, W. D.: Reservoir computing using dynamic memristors for
 temporal information processing. Nat. Commun., 8(1), 2204, 2017.
- Dueben, P.D., Bauer, P.. Challenges and design choices for global weather and climate models based on machine
 learning. Geoscientific Model Development, 11(10), 3999-4009, 2018.
- Emile-Geay, J., Tingley, M.: Inferring climate variability from nonlinear proxies: application to paleo-ENSO
 studies. Clim. Past., 12(1), 31-50, 2016.
- Farneti, R., Vallis, G. K.: Meridional energy transport in the coupled atmosphere–ocean system: Compensation
 and partitioning. J. Clim., 26(18), 7151-7166, 2013.

- Feng, X., Fu, T. M., Cao, H., Tian, H., Fan, Q., Chen, X.: Neural network predictions of pollutant emissions from
 open burning of crop residues: Application to air quality forecasts in southern China. Atmos. Environ., 204,
 22-31, 2019.
- Franzke, C. L.: Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J.
 Clim., 25(12), 4172-4183, 2012.
- Franzke C. L., Osprey, S. M., Davini, P., Watkins, N. W.: A dynamical systems explanation of the Hurst effect and
 atmospheric low-frequency variability. Sci. Rep., 5, 9068, 2015.
- Granger, C. W., Joyeux, R.: An introduction to long-memory time series models and fractional differencing. J.
 Time. Ser. Anal., 1(1), 15-29, 1980.
- Hasselmann, K.: Stochastic climate models part I. Theory. Tellus, 28(6), 473-485, 1976.
- Hegger, R, Kantz, H.: Improved false nearest neighbor method to detect determinism in time series data. Phys. Rev.
 E, 60(4), 4970, 1999.
- Hermann R, Krener A. Nonlinear controllability and observability. IEEE Transactions on automatic control, 22(5),
 728-740, 1977.
- Hofstra, N., Haylock, M., New, M., Jones, P., Frei, C.: Comparison of six methods for the interpolation of daily
 European climate data. J. Geophys. Res., 113(D21), 2008.
- Hsieh, W. W., Wu, A., Shabbar, A.: Nonlinear atmospheric teleconnections. Geophys. Res. Lett., 33(7): L07714,
 2006.
- Hu, G., Franzke, C. L.: Data assimilation in a multi-scale model. Mathematics of Climate and Weather Forecasting,
 3(1), 118-139, 2017.
- Huang, Y., Fu, Z.: Enhanced time series predictability with well-defined structures. Theor. Appl. Climatol., 138, 373–385, 2019.
- Hyndman, R. J., Koehler, A. B.: Another look at measures of forecast accuracy. Int. J. Forecasting., 22(4), 679-688,
 2006.
- Kantz, H., Schreiber, T.: Nonlinear time series analysis (Vol. 7). Cambridge university press, 2004.
- Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S., Klambauer, G. Neural Hydrology-Interpreting LSTMs in
 Hydrology. arXiv:1903.07903, 2019.
- Lorenz, E. N.: Deterministic nonperiodic flow. J. Atmos. Sci., 20(2), 130-141, 1963.
- Lorenz, E. N.: Predictability: a problem partly solved. Proc. ECMWF Seminar on Predictability, vol I, Reading,
 United Kingdom, ECMWF, pp 40–58, 1996.
- Lu, Z., Pathak. J., Hunt, B., Girvan, M., Brockett, R., Ott, E.: Reservoir observers: Model-free inference of
 unmeasured variables in chaotic systems. Chaos, 27(4), 041102, 2017.
- 730 Lu, Z., Hunt, B. R., Ott, E.: Attractor reconstruction by machine learning. Chaos, 28(6): 061104, 2018.
- Ludescher, J., Gozolchiani, A., Bogachev, M. I., Bunde, A., Havlin, S., Schellnhuber, H. J.: Very early warning of
 next El Niño. P. Natl. Acad. Sci., 111(6), 2064-2066, 2014.
- 733 Massah, M., Kantz, H.: Confidence intervals for time averages in the presence of long-range correlations, a case

- study on Earth surface temperature anomalies. Geophys. Res. Lett., 43(17), 9243-9249, 2016.
- Mattingly, K. S., Ramseyer, C. A., Rosen, J. J., Mote, T. L., Muthyala, R.: Increasing water vapor transport to the
 Greenland Ice Sheet revealed using self-organizing maps. Geophys. Res. Lett., 43(17), 9250-9258, 2016.
- Mukhin, D., Gavrilov, A., Loskutov, E., Feigin, A., Kurths, J.: Nonlinear reconstruction of global climate leading
 modes on decadal scales. Clim. Dyn., 51(5-6), 2301-2310, 2018.
- Pathak, J., Lu, Z., Hunt, B. R., Girvan, M., Ott, E.: Using machine learning to replicate chaotic attractors and
 calculate Lyapunov exponents from data. Chaos, 27(12), 121102, 2017.
- Patil, D. J., Hunt, B. R., Kalnay, E., Yorke, J. A., Ott, E.: Local low dimensionality of atmospheric dynamics. Phys
 Rev Lett 86(26): 5878, 2001.
- Pennekamp, F., Iles, A. C., Garland, J., Brennan, G., Brose, U., Gaedke, U., Novak, M.: The intrinsic predictability
 of ecological time series and its potential to guide forecasting. Ecol, Monogr., e01359, 2019.
- Racah, E., Beckham, C., Maharaj, T., Kahou, S. E., Prabhat, M., Pal, C.: ExtremeWeather: A large-scale climate
 dataset for semi-supervised detection, localization, and understanding of extreme weather events. In
 Advances in Neural Information Processing Systems (pp. 3402-3413), 2017.
- Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N.: Deep learning and process
 understanding for data-driven Earth system science. Nature, 566(7743), 195, 2019.
- Roe, G.: Feedbacks, timescales and seeing red. Ann. Rev. Earth. Plan. Sci., 37: 93-115, 2009.
- 751 Schreiber T.: Measuring information transfer. Phys. Rev. Lett., 85(2), 461, 2000.
- Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F., Phipps, S. J.: Separating forced from chaotic climate
 variability over the past millennium. J. Clim., 26(18), 6954-6973, 2013.
- Schumann-Bischoff J, Luther S, Parlitz U. Estimability and dependency analysis of model parameters based on
 delay coordinates. Phys. Rev. E, 94(3), 032221, 2016.
- Sugihara, G., May, R., Ye, H., Hsieh, C. H., Deyle, E., Fogarty, M., Munch, S.: Detecting causality in complex
 ecosystems. Science, 338(6106), 496-500, 2012.
- Takens, F.: Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, Lecture Notes in
 Mathematics, 898, 366–381 (Springer Berlin Heidelberg), 1981.
- Tsonis, A. A., Deyle, E. R., Ye, H., Sugihara, G.: Convergent cross mapping: theory and an example. In Advances
 in Nonlinear Geosciences (pp. 587-600), Springer, Cham., 2018.
- Vallis, G. K., Farneti, R.: Meridional energy transport in the coupled atmosphere–ocean system: Scaling and
 numerical experiments. Q. J. Roy. Meteor. Soc., 135(644), 1643-1660, 2009.
- Van, Nes, E. H., Scheffer, M., Brovkin, V., Lenton, T. M., Ye, H., Deyle, E., Sugihara, G.: Causal feedbacks in
 climate change. Nat. Clim. Change, 5(5): 445, 2015.
- Vannitsem, S., Ekelmans, P. Causal dependences between the coupled ocean-atmosphere dynamics over the
 tropical Pacific, the North Pacific and the North Atlantic. Earth Syst. Dyn., 9(3), 1063-1083, 2018.
- 768 Vissio, G., Lucarini, V.: A proof of concept for scale-adaptive parameterizations: the case of the Lorenz 96 model.

- 769 Q. J. Roy. Meteor. Soc., 144(710), 63-75, 2018.
- Watson, P. A.: Applying machine learning to improve simulations of a chaotic dynamical system using empirical
 error correction. J. Adv. Model Earth. Sys., doi.org/10.1029/2018MS001597, 2019.
- Wilks, D. S.: Effects of stochastic parametrizations in the Lorenz'96 system. Q. J. Roy. Meteor. Soc., 131(606),
 389-407, 2005.
- Ye H., Deyle E. R., Gilarranz L. J., Sugihara G.: Distinguishing time-delayed causal interactions using convergent cross
 mapping, Sci. Rep., 5, 14750, 2015.
- Zaytar, M. A., El, Amrani, C.: Sequence to sequence weather forecasting with long short-term memory recurrent
 neural networks. Int. J. Comput. Appl., 143(11), 7-11, 2016.
- Zhang, N. N., Wang, G. L., Tsonis, A. A.: Dynamical evidence for causality between Northern Hemisphere
 annular mode and winter surface air temperature over Northeast Asia. Clim. Dyn., 52, 3175-3182, 2019.