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Abstract. Understanding Earth system dynamics in the light of ongoing human intervention and dependency remains a major

scientific challenge. The unprecedented availability of data streams describing different facets of the Earth now offers fun-

damentally new avenues to address this quest. However, several practical hurdles, especially the lack of data interoperability,

limit the joint potential of these data streams. Today many initiatives within and beyond the Earth system sciences are exploring

new approaches to overcome these hurdles and meet the growing inter-disciplinary need for data-intensive research; using data5

cubes is one promising avenue. Here, we introduce the concept of Earth system data cubes and how to operate on them in a for-

mal way. The idea is that treating multiple data dimensions, such as spatial, temporal, variable, frequency and other grids alike,

allows effective application of user-defined functions to co-interpret Earth observations and/or model-data. An implementation

of this concept combines analysis-ready data cubes with a suitable analytic interface. In three case studies we demonstrate

how the concept and its implementation facilitate the execution of complex workflows for research across multiple variables,10

spatial and temporal scales: 1) summary statistics for ecosystem and climate dynamics; 2) intrinsic dimensionality analysis on

multiple time-scales; and 3) data-model integration. We discuss the emerging perspectives for investigating global interacting

and coupled phenomena in observed or simulated data. In particular, we see many emerging perspectives of this approach for

interpreting large-scale model ensembles. Latest developments in machine learning, causal inference, and model data integra-
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tion can be seamlessly implemented in the proposed framework, supporting rapid progress in data-intensive research across15

disciplinary boundaries.

1 Introduction

Predicting the Earth system’s future trajectory given ongoing human intervention into the climate system and land surface

transformations requires a deep understanding of its functioning (Schellnhuber, 1999; Stocker et al., 2013). In particular, it re-

quires unravelling the complex interactions between the Earth’s subsystems, often termed as “spheres”: atmosphere, biosphere,20

hydrosphere (including oceans and cryosphere), pedosphere or lithosphere, and increasingly the “anthroposphere”. The grand

opportunity today is that many key processes in various subsystems of the Earth are constantly monitored. Networks of ecolog-

ical, hydro-meteorological and atmospheric in-situ measurements, for instance, provide continuous insights into the dynamics

of the terrestrial water and carbon fluxes (Dorigo et al., 2011; Baldocchi, 2014; Wingate et al., 2015; Mahecha et al., 2017).

Earth observations retrieved from satellite remote sensing enable a synoptic view of the planet and describe a wide range of25

phenomena in space and time (Pfeifer et al., 2012; Skidmore et al., 2015; Mathieu et al., 2017). The subsequent integration of

in-situ and space-derived data, e.g. via machine learning methods, leads to a range of unprecedented quasi-observational data

streams (e.g. Tramontana et al., 2016; Balsamo et al., 2018; Bodesheim et al., 2018; Jung et al., 2019). Likewise, diagnostic

models that encode basic process knowledge but which are essentially driven by observations, produce highly relevant data

products (see e.g. Duveiller and Cescatti, 2016; Jiang and Ryu, 2016a; Martens et al., 2017; Ryu et al., 2018). Many of these30

derived data streams are essential for monitoring the climate system including land surface dynamics (see for instance the

Essential Climate Variables, ECVs; Hollmann et al., 2013; Bojinski et al., 2014), oceans at different depths (Essential Ocean

Variables, EOVs; Miloslavich et al., 2018) or the various aspects of biodiversity (Essential Biodiversity Variables, EBVs;

Pereira et al., 2013). Together, these essential variables describe the state of the planet at a given moment in time and are

indispensable for evaluating Earth system models (Eyring et al., 2019).35

With regard to the acquisition of sensor measurements and the derivation of downstream data products, Earth system sciences

is well prepared. But can this multitude of data streams be used efficiently to diagnose the state of the Earth system? In

principle our answer would be affirmative, but in practical terms we perceive high barriers to interconnecting multiple data

streams and further linking these to data analytic frameworks (as discussed for the EBVs by Hardisty et al., 2019). Examples

of these issues are (i) insufficient data discoverability, (ii) access barriers, e.g. restrictive data use policies, (iii) lack of capacity40

building for interpretation, e.g., understanding the assumptions and suitable areas of application, (iv) quality and uncertainty

information, (v) persistency of data sets and evolution of maintained data sets, (vi) reproducibility for independent researchers,

(vii) inconsistencies in naming or unit conventions, and (viii) co-interpretability, e.g., either due to spatiotemporal alignment

issues, or physical inconsistencies, among others. Some of these issues are relevant to specific data streams and scientific

communities only. In most cases, however, these issues reflect the neglect of the FAIR principles (to be Findable, Accessible,45

Interoperable, and Re-usable; Wilkinson et al., 2016). If the lack of FAIR principles and limited (co-)interpretability come

together, they constitute a major obstacle in science and slow down the path to new discoveries. Or, to put it as a challenge,
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we need new solutions that minimize the obstacles that hinder scientists from capitalizing on the existing data streams and

accelerate scientific progress. More specifically, we need interfaces that allow for interacting with a wide range of data streams

and enable their joint analysis either locally or in the cloud.50

As long as we do not overcome data interoperability limitations, Earth system sciences cannot fully exploit the promises of

novel data-driven exploration and modelling approaches to answer key questions related to rapid changes in the Earth system

(Karpatne et al., 2018; Bergen et al., 2019; Camps-Valls et al., 2019; Reichstein et al., 2019). A variety of approaches has

been developed to interpret Earth observations and big data in the Earth system sciences in general (for an overview see e.g.

Sudmanns et al., 2019), and gridded spatiotemporal data as a special case (Nativi et al., 2017; Lu et al., 2018). For the latter, data55

cubes have become recently popular addressing an increasing demand for efficient access, analysis, and processing capabilities

for high-resolution remote sensing products. The existing data cube initiatives and concepts (e.g. Baumann et al., 2016; Lewis

et al., 2017; Nativi et al., 2017; Appel and Pebesma, 2019; Giuliani et al., 2019) vary in their motivations and functionalities.

Most of the data cube initiatives are, however, motivated by the need for accessing singular (very) high resolution data cubes,

e.g. from satellite remote sensing or climate reanalysis, and not by the need for global multivariate data exploitation.60

This paper has two objectives: first, we aim to formalize the idea of an Earth System Data Cube that is tailored to explore

a variety of Earth system data streams together and thus largely complements the existing approaches. The proposed mathe-

matical formalism intends to illustrate how one can efficiently operate such data cubes. Second, the paper aims at introducing

the Earth System Data Lab (ESDL, https://earthsystemdatalab.net). The ESDL is an integrated data and analytical hub that

curates a multitude of data streams representing key processes of the different subsystems of the Earth in a common data65

model and coordinate reference system. This infrastructure enables researchers to apply their user defined functions (UDFs) to

these analysis-ready data (ARD). Together, these elements minimize the hurdle to co-explore a multitude of Earth system data

streams. Most known initiatives intend to preserve the resolutions of the underlying data and facilitate their direct exploitation,

like the Earth Server (Baumann et al., 2016) or the Google Earth Engine (Gorelick et al., 2017). The ESDL, instead, is built

around singular data cubes on common spatiotemporal grids, that include a high number of variables as a dimension in its70

own right. This design principle is thought to be advantageous compared to building data cubes from individual data streams

without considering their interactions from the very beginning. Due to its multivariate structure and the easy-to-use interface,

the ESDL is well-suited for being part of data-driven challenges, as regularly organized by the machine learning community,

for example.

The reminder of the paper is organized as follows: Sect. 2 introduces the concept based on a formal definition of Earth75

System Data Cubes and explains how user defined functions can interact with them. In Sect. 3, we describe the implementation

of the Earth System Data Lab in the programming language Julia and as a cloud based data hub. Sect. 4 then illustrates three

research use cases that highlight different ways to make use of the ESDL. We present an example from an univariate analysis,

characterizing seasonal dynamics of some selected variables; an example from high-dimensional data analysis; and an example

for the representation of a model-data-integration approach. In Sect. 5, we discuss the current advantages and limitations of80

our approach and put an emphasis on required future developments.
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2 Concept

Our vision is that multiple spatiotemporal data streams shall be treated as a singular, yet potentially very high-dimensional

data stream. We call this singular data stream an Earth System Data Cube. For the sake of clarity, we introduce a mathematical

representation of the Earth System Data Cube and define operations on it. Further details on an efficient implementation are85

provided in Sections 3.2 and 3.3.

Suppose we observe p variables Y 1, . . . ,Y p, each under a (possibly different) range of conditions. A first step towards data

integration is to (re)sample all data streams onto a common domain J (e.g., a spatiotemporal grid) to obtain the indexed set

{(Y 1
j , . . . ,Y

p
j )}j∈J of multivariate observations. Observations obtained from different variables are then identified as different

coordinates in the multivariate array Y . However, when calculating simple variable summaries, or performing spatiotemporal90

aggregations of the data, such a representation can be computationally obstructive. We therefore propose to consider the

“variable indicator” k ∈ {1, . . . ,p} as simply another dimension of the index set, and view the data as the collection {Xi}i∈I
of univariate observations, where I = J×{1, . . . ,p}1 and where X(j,k) := Y k

j . With this idea in mind, we now formally define

the Earth System Data Cube (short data cube).

A data cube C consists of a triplet (L,G,X) of components to be described below.95

– L is a set of labels, called dimensions, describing the axes of the data cube. For example, L = {lat, lon,time,var} de-

scribes a data cube containing spatiotemporal observations from a range of different variables. The number of dimensions

|L| is referred to as the order of the cube C, in the above example, |L|= 4.

– G is a collection {grid(`)}`∈L of grids along the axes in L. For every ` ∈ L, the set grid(`) is a discrete subset of the

domain of the axis `, specifying the resolution at which data is available along this axis. Every set grid(`) is required100

to contain at least two elements. Dimensions containing only one grid point are dropped. The collection G defines the

hyperrectangular index set I(G) :=
�

`∈L grid(`) , motivating the name “cube”. For example,

I(G) =
�
`∈L

grid(`)

= grid(lat)× grid(lon)× grid(time)× grid(var)

= {−89.75, . . . ,89.75}×{−179.75, . . . ,179.75}×{01.01.2010, . . . ,31.12.2010}×{GPP,SWC,Rg}105

= {(−89.75,−179.75,01.01.2010,GPP), . . . ,(89.75,179.75,31.12.2010,Rg)}.
Since G and I(G) are in one-to-one correspondence, we will use the two interchangeably.

– X is a collection of data {Xi}i∈I(G) ⊆ RNA := R∪{NA} observed at the grid points in I(G). Here, “NA” refers to “not

available”.

In this view, the data can be treated as a collection {Xi}i∈I(G) of univariate observations, even if they encode different110

variables. In the above example the variable axis is a nominal grid with the entries GPP (gross primary production), SWC (soil

1The symbol
�

indicates a cartesian product.
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water content), and Rg (global radiation). The set of all data cubes with dimensions L will be denoted by C(L). Data cubes

that contain one variable only can be considered as special case; other common choices of L are described in Table 1. The

list of example axes labels used in the table is, of course, not exhaustive. Other relevant dimensions could be, for example,

model versions, model parameters, quality flags, or uncertainty estimates. Note that by definition, a data cube only depends115

on its dimensions through the set of axes L, and is therefore indifferent to any order of these. In the remainder of this article,

the notion of data cubes refers to this concept. Note that dropping dimensions that only contain one grid point is not the only

possible way of working with data cubes. Another equally valid idea is to maintain grids of length one and integrate them to

the workflow.

Table 1. Typical sets of data cubes C(L) of varying orders |L| with characteristic dimensions L.

Order |L| Set of data cubes C(L) Description of C(L)

0 C({}) Scalar value where no dimension is defined.

1 C({lat}) Univariate latitudinal profile.

1 C({lon}) Univariate longitudinal profile.

1 C({time}) Univariate time series.

1 C({var}) Single multivariate observation.

2 C({lat, lon}) Univariate static geographical map.

2 C({lat, time}) Univariate Hovmöller diagram: zonal pattern over time.

2 C({lat,var}) Multivariate latitudinal profile.

2 C({lon,time}) Univariate Hovmöller diagram: meridional pattern over time.

2 C({lon,var}) Multivariate longitudinal profile.

2 C({time,var}) Multivariate time series.

2 C({time,freq}) Univariate time frequency plane.

3 C({lat, lon,time}) Univariate data cube.

3 C({lat, lon,var}) Multivariate map, e.g. a global map of different soil properties.

3 C({lat, time,var}) Multivariate latitudinal Hovmöller diagram.

3 C({lon,time,var}) Multivariate longitudinal Hovmöller diagram.

3 C({time,freq,var}) Multivariate spectrally decomposed time series.

4 C({lat, lon,time,var}) Multivariate spatiotemporal cube.

4 C({lat, lon,time,freq}) Univariate spectrally decomposed data cube.

5 C({lat, lon,time,var,ens}) Multivariate ensemble of model simulations.
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2.1 Operations on an Earth System Data Cube120

To exploit an Earth System Data Cube efficiently, scientific workflows need to be translated into operations executable on data

cubes as described above. More specifically, the output of each operation on a data cube should yield another data cube. The

entire workflow of a project, possibly a succession of analyses performed by different collaborators, can then be expressed as a

composition of several user defined functions (UDFs) performed on a single (input-) data cube. Besides unifying all statistical

data analyses into a common concept, the idea of expressing workflows as functional operations on data cubes comes with125

another important advantage: as soon as a workflow is implemented as a suitable set of UDFs, it can be reused on any other

sufficiently similar data cube to produce the same kind of output.

In its most general form, a user defined function C 7→ f(C) operates by (i) extracting relevant information from C, (ii)

performing calculations on the extracted information, and (iii) storing these calculations into a new data cube f(C). In order

to perform step (i), f expects a minimal set of dimensions E of the input cube. The returned set of axes for an input cube with130

dimensions E will be denoted by R. That is, f is a mapping such that

f : C(E)→C(R). (1)

Alongside the function f , one has to define the sets E and R which we will refer to as minimal input- and minimal output

dimensions, respectively.

A major advantage of thinking in data cube workflows is that low-dimensional functions can be applied to higher-dimensional135

cubes by simple functional extensions: a function can be acting along a particular set of dimensions while looping across all

unspecified dimensions. For example, the function that computes the temporal mean of a univariate time series should allow

for an input data cube, which, in addition to a temporal grid, contains spatial information. The output of such an operation

should then be a cube of spatially gridded temporal means. Similarly, the function should be applicable to cubes containing

multivariate observations. Here, we expect the output to contain one temporal mean per supplied variable. In general, a function140

f defined on C(E) should naturally extend to any set C(E ∪A) with A∩R = ∅ by executing the described “apply”-operation.

The code package accompanying this paper (described in Sect. 3) automatically equips every UDF with such a functionality.

A schematic description of this approach is illustrated in Fig. 1.

The approach outlined above is very convenient to describe workflows, i.e. recursive chains of UDFs. Let f1, . . .fn be a

sequence of UDFs with corresponding minimal input/output dimensions (E1,R1), . . . ,(En,Rn). If an output dimension Ri is145

a subset of subsequent input Ei+1 we can chain these functions. A recursive workflow emerges when Ri ⊆ Ei+1 for all i, by

iteratively chaining f1, . . . ,fn upon one another. The input/output dimensions of the resulting cube are (E1,Rn).

Overall, the definition of an Earth System Data Cube and associated operations on it do not only guide the implementation

strategy, but also help us summarize potentially complicated analytic procedures in a common language. For the sake of

readability, in the following, we will not distinguish between a function f (defined only for minimal input) and its extension f̄150

(equipped with the apply-functionality, see Fig. 1). The former will be referred to as an atomic function. We typically indicate

the minimal input/output dimensions (E,R) of a function f by writing fR
E . Since the pair (E,R) does not determine the

mapping f , this notation should not be understood as the parameterization of a function class, but rather provide an easy way
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Figure 1. Schematic illustration of the “apply”-functionality: A function f : C(E)→C(R) is extended to the set of cubes with dimensions

E∪A, where A is an arbitrary set of dimensions with A∩R = ∅. Given a cube C ∈ C(E∪A), the extension f̄(C) is constructed by iterating

over all grid points i along the dimensions in A to obtain the collection {Ci} ⊆ C(E) of sliced cubes, applying f to every cube Ci separately,

and binding the collection {f(Ci)} into the output cube f̄(C) ∈ C(R∪A). Here, the index i runs through all elements in
�

a∈A grid(a).

to perform input-control, and to anticipate the output dimensions of a cube returned by f . For instance, following the discussion

above, a function denoted by fR
E can be applied to any cube with dimension E ∪A satisfying that A∩R = ∅, and returns a155

cube with dimensions R∪A. To avoid ambiguities, additional notation is needed when distinguishing between two functions

with the same pair of minimal input/output dimensions.

2.2 Examples

In the following, we present some special operations that are routinely needed in explorations of Earth System Data Cubes:

Reducing describes a function that calculates some scalar measure (e.g. the sample mean). Consider, for instance, the need160

to estimate the mean of a univariate data cube, of course weighted by the area of the spatial grid cells. An operation of this kind

expects a cube with dimensions E = {lat, lon,time} and returns a cube with dimensions R = {}, and is therefore a mapping

f
{}
{lat,lon,time} : C({lat, lon,time})→C({}). (2)
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This mapping can now be applied to any data cube of potentially higher (but not lower) dimensionality. For instance, f is

automatically extended to a multivariate spatiotemporal data cube (Table 1) with the mapping165

f
{}
{lat,lon,time} : C({lat, lon,time,var})→C({var}), (3)

which computes one spatiotemporal mean for each variable.

Cropping is sub-setting a data cube while maintaining the order of a cube. A cropping operation typically reduces certain

axes of a data cube to only contain specified grid points (and therefore requires the input cube to contain these grid points). For

instance, a function that extracts a certain “cropped” fraction T0 along the temporal cover, expects an input cube containing a170

time-axis with a grid at least as highly resolved as T0. This function preserves the dimensionality of the cube, but reduces the

grid along the time axis, i.e.,

f
{time}
{time} : C({time}|grid(time)⊇ T0)→C({time}|grid(time) = T0), (4)

where we have used C(L |P ) to denote the set of cubes with dimensions L satisfying the condition P . Thanks to the apply

functionality, this atomic function can be used on any cube of higher order. For example, it is readily extended to a mapping175

f
{time}
{time} : C({lat, lon,time}|grid(time)⊇ T0)→C({lat, lon,time}|grid(time) = T0), (5)

which crops the time axis of cubes with dimensions {lat, lon,time}. Analogously, all dimensions can be subsetted as long as

the length of the dimension is larger than one. The latter would be called slicing.

Slicing refers to a subsetting operation in which a dimension of the cube is degenerated, and the order of the cube is reduced

and can be interpreted as a special form of cropping. For instance, if we only select a singular time-instance t0, the time180

dimension effectively vanishes as we do not longer need a vector spaced dimension to represent its values. When applied to a

spatiotemporal data cube, this amounts to a mapping

f
{}
{time} : C({lat, lon,time}|grid(time) 3 t0)→C({lat, lon}). (6)

Expansions are operations where the order of the output cube is higher than the order of the corresponding input cube. A

discrete spectral decomposition of time series, for example, generates a new dimension with characteristic frequency classes:185

f
{time,freq}
{time} : C({time})→C({time,freq}). (7)

Multiple Cube Handling is often needed, for instance when fitting a regression model where response and predictions are

stored in different cubes. Also, we may be interested in outputting the fitted values and the residuals in two separate cubes.

This amounts to an atomic operation

f
{para},{time}
{time,var},{time} : C({time,var})×C({time})→C({para})×C({time}), (8)190

which expects a multivariate data cube for the predictors C1 ∈ C({time,var}), and a univariate cube for the targets C2 ∈
C({time}). The output consists of a vector of fitted parameters C̃1 ∈ C({para}) and a residual time series C̃2 ∈ C({time}) to

compute the model performance. This concept also allows the integration of more than two input and/or output cubes.
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Figure 2. Workflow putting the ESDL concept into practice: selected data sets are preprocessed to common grids and saved in cloud ready

data formats (zarr). Based on these cubed data sets, a global Earth System Data Cube can be produced that is either stored locally or in the

cloud. Via appropriate application programming interfaces (APIs) users can efficiently access the ESDC in their native language. Users can

fully focus on designing user defined functions and workflows.

3 Data streams and implementation

The concept as described in Sect. 2 is generic, i.e. independent of the implemented Earth System Data Cube and of the technical195

solution of the implementation. Fig. 2 shows how the concept outlined above is realized from a practical point of view. The

flowchart shows that the starting point is the collection of relevant data streams which then need to be preprocessed in order to

be interpretable as a single data cube. The ESDC itself may be stored locally or in the cloud and can be accessed from various

users simultaneously based on different APIs. In the following, we firstly present the data used in our implementation of the

ESDL which is available online, and secondly describe the implementation strategy for the API we developed in this project.200

3.1 Data streams in the ESDL

The data streams included so far were chosen to enable research on the following topics (a complete list is provided in Ap-

pendix A):

(i) Ecosystem states at the global scale in terms of relevant biophysical variables. Examples are, for instance, leaf area index

(LAI), the fraction of photosynthetically active radiation (FAPAR), and albedo (Disney et al., 2016; Pinty et al., 2006;205

Blessing and Löw, 2017).
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(ii) Biosphere-atmosphere interactions as encoded in land fluxes of CO2 i.e. GPP, terrestrial ecosystem respiration (Reco),

and the net ecosystem exchange (NEE) as well as the latent heat (LE) and sensible heat (H) energy fluxes. Here, we rely

mostly on the FLUXCOM data suite (Tramontana et al., 2016; Jung et al., 2019).

(iii) Terrestrial hydrology requires a wide range of variables. We mainly ingest data from the Global Land Evaporation Amster-210

dam Model (GLEAM; Martens et al., 2017; Miralles et al., 2011) which provides a series of relevant surface hydrological

properties such as surface (SM) and root-zone soil moisture (SMroot), but also potential evaporation (Ep) and evaporative

stress (S) conditions, among others. Ingesting entire products such as GLEAM ensures internal consistency.

(iv) State of the atmosphere is described using data generated by the Climate Change Initiative by the ESA (CCI) in terms

of aerosol optical thickness at different wavelength (AOD550, AOD555, AOD659, and AOD1610; Holzer-Popp et al.,215

2013), total ozone column (Van Roozendael et al., 2012; Lerot et al., 2014), as well as surface ozone (which is more

relevant to plants), and total column water vapour (TCWV; Schröder et al., 2012; Schneider et al., 2013).

(v) Meteorological conditions are described via the reanalysis data i.e. the ERA5 product. Additionally, precipitation is

ingested from the Global Precipitation Climatology Project (GPCP; Adler et al., 2003; Huffman et al., 2009).

Together, these data streams form data cubes of intermediate spatial and temporal resolutions (0.25◦, 0.083◦; both 8-daily),220

visualized in Fig. 3. These variables described here are described in more detail in a list provided in Appendix A, which may,

however, already be incomplete at the time of publication, as the ESDL is a living data suite, constantly expanding according

to users’ requests. For the latest overview, we refer the reader to the website (https://www.earthsystemdatalab.net/). Note that

we have not considered the integration of uncertainty as another dimension in the current implementation. The rationale is that

each of the data products comes with a specific uncertainty flag or estimate that cannot be merged in an own dimension. This225

is an open aspect that needs to be addressed in future developments.

To show the portability of the approach, we have developed a regional data cube for Colombia. This work supports the

Colombian Biodiversity Observational Network activities within GEOBON. This regional data cube has a 1km (0.083◦) res-

olution and focuses on remote sensing derived data products (i.e. LAI, FAPAR, the normalized difference vegetation index

NDVI, the enhanced vegetation index EVI, LST, and burnt area). In addition to the global ESDL, monthly mean products such230

as cloud cover (Wilson and Jetz, 2016) have been ingested given their recurrent applicability in biodiversity studies at regional

scales. Data layers from governmental organizations providing detailed information about ecosystems are also available that

allow a national characterization and deeper understanding of ecosystem changes by natural or human drivers. These are the

national ecosystem map (IDEAM et al., 2017), biotic units map (Londoño et al., 2017), wetlands (Flórez et al., 2016) and

agriculture frontier maps (MADR-UPRA, 2017). Additionally, GPP, evapotranspriation, shortwave radiation, PAR and diffuse235

PAR from the Breathing Earth System Simulator (BESS; Ryu et al., 2011; Jiang and Ryu, 2016b; Ryu et al., 2018) and albedo

from QA4ECV (http://www.qa4ecv.eu/) are available, among others. This regional Earth System Data Cube should serve as

a platform for analysis in a region with variability of landscape, high biodiversity, ecosystem transitions gradients and facing

rapid land use change (Sierra et al., 2017).

10
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Figure 3. Visualization of the implemented Earth System Data Cube (an animation is provided online https://youtu.be/9L4-fq48Ev0). The

figure shows from the top left to bottom right the variables sensible heat (H), latent heat (LE), gross primary production (GPP), surface

moisture (SM), land surface temperature (LST), air temperature (Tair), cloudiness (C), precipitation (P), and water vapour (V). References

to the individual data sources are given in Appendix 1. Here, the resolution in space is 0.25◦, in time 8-days, and we are inspecting the time

from May 2008 to May 2010, the spatial range is from 15◦S to 60◦N, and 10◦E to 65◦W.

3.2 Implementation240

To put the concept of an Earth System Data Cube as outlined in Sect. 2 into practice, we need suitable access APIs (see Fig. 2).

A co-author of this paper (FG) developed one API in the relatively young scientific programming language Julia (julialang.org;

Bezanson et al., 2017) which is provided via the ESDL.jl package. Additionally, all functionalities are also available in

Python based on existing libraries and documented online. In both cases, the goal was that the user does not have to explicitly

deal with the complexities of sequential data input/output handling and can concentrate on implementing the atomic functions245

and workflows, while the system takes care of necessary out of core and out of memory computations. The following is a

sketched description of the principles of the Julia-based ESDL.jl implementation. We choose Julia to translate the concepts

outlined into efficient computer code because it has clear advantages for data cube applications besides its general elegance

in scientific computing in terms of speed, dynamic programming, multiple dispatch, and syntax (Perkel, 2019). Specifically,

Julia allows for generic processing of high-dimensional data without large code repetitions. At the core of the Julia ESDL.jl250

toolbox are the mapslices and mapCube functions, which execute user-defined functions on the data cube as follows:
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– Given some large data cube C = (L,G,X), the ESDL function subsetcube(C) will retrieve a handle to C that fully

describes L and G.

– Knowledge on the desired L and G allows us to develop a suitable user defined function fR
E .

– Depending on the exact needs, mapslices and mapCube will then be used to apply the fR
E on a cube as illustrated255

in Fig. 1. mapCube is a strict implementation of the cube mapping concept described here, where it is mandatory to

explicitly describe E and R such that the atomic function is fully operational. mapslices is a convenient wrapper

around the mapCube function that tries to impute the output dimensions given the user function definition to ease the

application of the functions where the output dimensions are trivial. Internally, mapslices and mapCube verify that

E ⊆ L and other conditions.260

The case studies developed in Sect. 4 are accompanied with code that illustrates this approach in practice.

Of course there are also alternatives to Julia. Lu et al. (2018) recently reviewed different ways of applying functions on array

data sets in R, Octave, Python, Rasdaman and SciDB. One requirement of such a mapping function is that it should be scalable,

which means that it should process data larger than the computer memory and, if needed, in parallel. While existing solutions

are sufficient for certain applications, most are not consistent with the cube mapping concept as described in Sect. 2. For265

instance, the required handling of complex workflows of multiple cubes (Eq. 8) is typically not possible in the existing solutions

that have been reviewed. In some cases, issues in the computational efficiency of the underlying programming languages render

certain solutions not suitable. This is particular the case when user-defined functions become complex. Likewise, certain

properties such as the desired indifference to the ordering in axes dimensions are often not foreseen. One suitable alternative

to Julia is available in Python. The xarray (http://xarray.pydata.org) and dask packages have been successfully utilised in270

the Open Data Cube, Pangeo, and xcube initiatives. An Extensive descriptions on how to work in the ESDL with both Python

and Julia can be accessed from the website: earthsystemdatalab.net.

The open source implementation of the ESDL also implies that one can easily extend the stored data sets. The online

documentation shows in detail how additional data can be added to the ESDL. In particular, if the data share common axes and

are stored in a compatible format (as described below in Sect. 3.3) this does not require major efforts.275

3.3 Storage and processing of the data cube

The ESDL has been built as a generic tool. It is prepared to handle very large volumes of data. Storage techniques for large

raster geo-data are generally split into two categories: Database-like solutions like Rasdaman (Baumann et al., 1998) or SciDB

(Stonebraker et al., 2013) access data directly through file formats that follow metadata conventions like HDF5 (https://www.

hdfgroup.org/) or NetCDF (https://www.unidata.ucar.edu/software/netcdf/). Database solutions shine in settings where multiple280

users repeatedly request (typically small) subsets of data cube, which might not be rectangular, because the database can

accelerate access by adjusting to common access patterns. However, for batch-processing large portions of a data cube, every

data entry is ideally accessed only once during the whole computation. Hence, when large fractions of some data cube have

to be accessed, users will usually avoid the overhead of building and maintaining a database and rather aim for accessing the
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data directly from its files. This experience is often perceived as more “natural” for Earth system scientists who are used to285

“touching” their data, knowing where files are located, and so forth. Databases instead offer, by construction, an entry point to

an otherwise unknown data set.

One disadvantage of the traditional file formats used for storing gridded data is that their data chunks are contained in single

files that may become impossible to handle efficiently. This is not problematic when the data is stored on a regular file system

where the file format library can read only parts of the file. In cloud-based storage systems it is not common to have an API290

for accessing only parts of an object, so these file formats are not well suited for being stored in the cloud. Recently, novel

solutions for this issue were proposed, including modifications to existing storage formats, e.g. HDF5 cloud, or cloud-optimized

GeoTiff, among others, as well as completely new storage formats, in particular Zarr (https://zarr.readthedocs.io/) and TileDB

(https://tiledb.io/). While working with these formats is very similar to traditional solutions (like HDF5 and NetCDF), these

new formats are optimized for cloud storage as well as for parallel read and write operations. Here we chose to use the new295

Zarr format. The reason is that it enables us to share the data cube through an object storage service, where the data is public

and can be analyzed directly. Python packages for accessing and analyzing large N -dimensional data sets like xarray and

dask, which make a wide range of existing tools readily usable on the cube, and a Julia-approach to read Zarr data have been

implemented as well.

At present, the ESDL provides the same data cube in different spatial resolutions and different chunkings to speed up data300

access for different applications. In chunked data formats, a large dataset is split into smaller chunks, that can be seen as

separate entities where each chunk is represented by an object in an object store. There are several ways to chunk a data cube.

Consider the case of a multivariate spatiotemporal cube C({lat, lon,time,var}). One common strategy would be to treat every

spatial map of each variable and time point as one chunk, which would result in a chunk size of |grid(lat)|×|grid(lon)|×1×1.

However, because an object can only be accessed as a whole, the time for reading a slice of a univariate data cube does not305

directly scale with the number of data points accessed, but rather with the number of accessed chunks. Reading out a univariate

time series of length 100 from this cube would require accessing 100 chunks. If one stored the same data cube with complete

time series contained in one chunk, read operations could perform much faster. Table 2 shows an overview of the implemented

chunkings for different cubes in the current ESDL environment.
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Table 2. Resolutions and chunkings of the currently implemented global Earth System Data Cube per variable. Here, the cubes with chunk

size 1 in the time coordinate are optimized for accessing global maps at a time while the other cubes are more suited for processing time-

series or regional subsets of the data cube. The cubes are currently hosted on the Object Storage Service by the Open Telecom Cloud under

https://obs.eu-de.otc.t-systems.com/obs-esdc-v2.0.0/ (state: Sept. 2019).

Chunk size along axis

Resolution grid(time) grid(lat) grid(lon)

0.083◦ 184 270 270

0.083◦ 1 2160 4320

0.25◦ 184 90 90

0.25◦ 1 720 1440

4 Experimental case studies310

The overarching motivation for building an Earth System Data Cube is to support the multifaceted needs of Earth sys-

tem sciences. Here, we briefly describe three case studies of varying complexity (estimating seasonal means per latitude,

dimensionality reduction, and model-data integration) to illustrate how the concept of the Earth System Data Cube can

be put into practice. Clearly, these examples emerge from our own research interest, but the concepts should be portable

across different branches of science (the code for producing the results on display are provided as Jupyter notebooks at315

https://github.com/esa-esdl/ESDLPaperCode.jl).

4.1 Inspecting summary statistics of biosphere/atmosphere interactions

Data exploration in the Earth system sciences typically starts with inspecting summary statistics. Global mean patterns across

variables can give an impression on the long-term system behaviour across space. In this first use case, we aim to describe

mean seasonal dynamics of multiple variables across latitudes.320

Consider an input data cube of the form C({lat, lon,time,var}). The first step consists in estimating the median seasonal

cycles per grid cell. This operation creates a new dimension encoding the “day of year” (doy) as described in the atomic

function of Eq. (9):

f
{doy}
{time} : C({lat, lon,time,var})→C({lat, lon,doy,var}). (9)

In a second step, we apply an averaging function that summarizes the dynamics observed at all longitudes:325

f
{}
{lon} : C({lat, lon,doy,var})→C({lat,doy,var}). (10)

The result is a a cube of the form C({lat,doy,var}) describing the seasonal pattern of each variable per latitude. Fig. 4

visualizes this analysis for data on gross primary production (GPP), air temperature (Tair), and surface moisture (SM; all
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Figure 4. Polar diagrams of median seasonal patterns per latitude (land only). The values of the variables are displayed as grey gradient

and scale with the distance to the centroid. For each latitude we have a median seasonal cycle specified with the central color code. The left

columns shows the patterns for the northern hemisphere; the right columns are the analogous figures for the southern hemisphere. Here we

show the patterns for gross primary production (GPP), air temperature at 2m (Tair), and surface moisture (SM).
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references for data streams used are provided in Appendix A). The first row visualizes GPP, on the left side we see the northern

hemisphere where darker colors describe higher latitudes and the background is the actual value of the variable. Together, the330

left and right plots describe the global dynamics of phenology, often referred to as “green wave” (Schwartz, 1998). We clearly

see the almost non-existent GPP in high latitude winters and also find the imprint of constantly low to intermediate productivity

values at latitudes that are characterized by dry ecosystems. Pronounced differences between northern and southern hemisphere

reflect the very different distribution of productive land surface.

For temperature, the observed seasonal dynamics are less complex. We essentially find the constantly high temperature con-335

ditions near the equator and visualize the pronounced seasonality at high latitudes. However, Fig. 4 also shows that temperature

peaks lag behind the June/December solstices in the northern hemisphere, while at the southern hemispheres the asymmetry of

the seasonal cycle in temperature is less pronounced. While the seasonal temperature gradient is a continuum, surface moisture

shows a much more complex pattern across latitudes as reflected in summer/winter depressions in certain mid latitudes. For

instance, a clear drop at e.g. latitudes of approx. 60◦N and even stronger depressions in latitudinal bands dominated by dry340

ecosystems.

This example analysis is intended to illustrate how the sequential application of two basic functions on this Earth System

Data Cube can unravel global dynamics across multiple variables. We suspect that applications of this kind can lead to new

insights into apparently known phenomena, as they allow to investigate a large number of data streams simultaneously and

with consistent methodology.345

4.2 Intrinsic dimensions of ecosystem dynamics

The main added value of the ESDL approach is its capacity to jointly analyze large numbers of data streams in integrated

workflows. A long standing question arising when a system is observed based on multiple variables is whether these are all

necessary to represent the underlying dynamics. The question is whether the data observed in Y ∈ RM could be described with

a vector space of much smaller dimensionality Z ∈ Rm (where m�M ), without loss of information, and what value this350

“intrinsic dimensionality” m would have (Lee and Verleysen, 2007; Camastra and Staiano, 2016). Note that in this context the

term “dimension” has a very different connotation compared to the “cube dimensions” introduced above.

When thinking about an Earth System Data Cube, the question about its intrinsic dimensionality could be interrogated along

the different axes. In this study we ask if the multitude of data streams, grid(var), contained in our Earth System Data Cube is

needed to grasp the complexity of the terrestrial surface dynamics. If the compiled data streams were highly redundant, it could355

be sufficient to concentrate on only a few orthogonal variables and design the development of the study accordingly. Starting

from a cube C({lat, lon,time,var}), we ask at each geographical coordinate if the local vector space spanned by the variables

can be compressed such that mvar� |grid(var)|.
Estimating the intrinsic dimension of high-dimensional datasets has been a matter of research for multiple decades, and we

refer the reader to the existing reviews on the subject (e.g. Camastra and Staiano, 2016; Karbauskaite and Dzemyda, 2016).360

An intuitive approach is to measure the compressibility of a dataset via dimensionality reduction techniques (see e.g. van der

Maaten et al., 2009; Kraemer et al., 2018). In the simplest case, one can apply a principal component analysis (PCA, using
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different time points as different observations) and estimate the number of components that together explain a predefined

threshold of the data variance. In our application, we follow this approach and chose a threshold value of 95% of variance. The

atomic function needed for this study is described in Eq. (11):365

f
{}
{time,var} : C({lat, lon,time,var})→C({lat, lon}). (11)

The output is a map of spatially varying estimates of intrinsic dimensions mvar. We performed this study considering the

following 18 variables relevant to describing land surface dynamics: GPP, Reco, NEE, LE, H, LAI, fAPAR, black and white

sky albedo (each from two different sources), SMroot, S, transpiration, bare soil evaporation, evaporation, net radiation, and

LST.370

Figure 5 shows the results of this analysis for the original data, where the visualized range of intrinsic dimensions ranges

from 2 to 13 (the analysis very rarely returns values of 1). At first glance, we find that ecosystems near the equator are of

higher intrinsic dimension (up to values of 12) compared to the rest of the land surface. In regions where we expect pro-

nounced seasonal patterns the intrinsic dimensionality is apparently low. We can describe these patterns by 4–7 dimensions.

One explanation is that in cases where the seasonal cycle controls ecosystem dynamics, much of the surface variables tend to375

co-vary. This alignment implies that one can represent the dominant source of variance with few components of variability.

In regions where the seasonal cycle plays only a marginal role other sources of variability dominate that are, however, largely

uncorrelated.

To verify that seasonality is the main source of variability in our analysis, we extend the workflow by decomposing each

time series (by variable and spatial location) into a series of subsignals via a discrete Fast Fourier Transform (FFT). We then380

binned the subsignals into short-term, seasonal, and long-term modes of variability (as in Mahecha et al., 2010a; Linscheid

et al., 2019), which leads to an extended data cube as we shown in Eq. (12).

f
{time,freq}
{time} : C({lat, lon,time,var})→C({lat, lon,time,var,freq}). (12)

The resulting cube is then further processed in Eq. (13) (which is the analogue to Eq. (11)) to extract the intrinsic dimension

per time scale:385

f
{}
{time,var} : C({lat, lon,time,var,freq})→C({lat, lon,freq}). (13)

The timescale specific intrinsic dimension estimates only partly confirm the initial conjecture (Fig. 5). Short-term modes of

variability always show relatively high intrinsic dimensions, i.e. the high-frequency components in the variables are rather

uncorrelated. This finding can either be a hint that we are seeing a set of independent processes, or simply mean noise contam-

ination. Seasonal modes, indeed, are of low intrinsic dimensionality, but considering that these modes are driven essentially by390

solar forcing only, they are surprisingly high dimensional. Additionally, we find a clear gradient from the inner tropics to arid

and northernmost ecosystems. Warm and wet ecosystems seem to be characterized by a complex interplay of variables even

when analyzing their seasonal components only (see also Linscheid et al., 2019). One reason could be that seasonality in these

regions is only marginally relevant to the total signal, or that tropical seasonality is inherently complicated. In the northern
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Figure 5. Intrinsic dimension of 18 land ecosystem variables. The intrinsic dimension is estimated by counting how many principal compo-

nents would be needed to explain at least 95% of the variance in the Earth System Data Cube. The results for the original data is shown in a).

The analysis is then repeated based on subsignals of each variable, representing different timescales. In b) we show the intrinsic dimension

of long-term modes of variability, in c) for modes representing seasonal components, and d) for modes of short-term variability. Light gray

areas indicate zones where at least one data stream was incomplete and no intrinsic dimension could be estimated based on the same set of

variables.

regions of south America we find that arid regions seem to have low intrinsic seasonal dimensionality compared to more moist395

regions.

Long-term modes of land surface variability show a rather complex spatial pattern in terms of intrinsic dimensions: Overall,

we find values between 6 and 7 (see also the summary in Fig. 6). The values tend to be higher in high altitude and tropical

regions, whereas arid regions show low-complexity patterns. Long-term modes of variability in land surface variables are

probably more complex than one would suspect a priori and should be analyzed deeper in the near future.400

The analysis shows how a large number of variables can be seamlessly integrated into a rather complex workflow. However,

the results should be interpreted with caution: One criticism of the PCA approach is its tendency to overestimate the correct
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Figure 6. Histogram of the intrinsic dimension estimated from 18 land ecosystem variables the Earth System Data Cube. Highest intrinsic

dimension emerges in the short term variability, while the original data are enveloped by the complexity of seasonal and long-term subsignals.

intrinsic dimensions in the presence of nonlinear dependencies between variables. A second limitation is that the maximum

intrinsic dimensions depends on the number of Fourier coefficients used to construct the signals, leading to different theoretical

maximum intrinsic dimensions per time scale.405

The question on the underlying dimensionality could also be interrogated in a different way. While this study investigates

the intrinsic dimensionality locally, i.e., along the dimensions latitude and longitude, another recent study based on the ESDL

by Kraemer et al. (2019) used a global PCA. Each observation is a point with coordinates lat, long, time, and the aim is to

compress the var dimension. The form of the analysis is the following,

f
{princomp}
{var} : C({lat, lon,time,var})→C({lat, lon,time,princomp}), (14)410

and was applied to a subset of ESDL variables that describe dynamics in terrestrial ecosystems. This study corroborates the

idea that land surface dynamics can be well represented in a surprisingly low-dimensional space. The analysis presented by

Kraemer et al. (2019) suggests globally a much lower intrinsic dimensionality of three compared to what we find here based on

a grid-cell level analysis. This number corresponds to areas that are marked by a strong seasonality in our case. This is plausible,

because the areas that show high intrinsic dimensionality in Fig.5 are those where seasonal variability is low compared to the415

high-frequency variability (Linscheid et al., 2019). Local effects of this kind vanish when all spatial points are jointly analyzed.
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Figure 7. Global patterns of locally estimated temperature sensitivities of ecosystem respiration Q10, a) via a conventional parameter esti-

mation approach, and b) via a time-scale dependent parameter estimation method. The latter reduce the confounding influence of seasonality

and lead to a fairly homogeneous map of temperature sensitivity.

4.3 Model-parameter estimation in the ESDL

Another key element in supporting Earth system sciences with the ESDL (and related initiatives) is to enable model develop-

ment, parametrization, and evaluation. To explore this potential we present a parameter estimation study that considers two

variables only, but it helps to illustrate the approach. In fact, the approach could be extended to exploit multiple data streams in420

complex models. The example presented here quantifies the sensitivities of ecosystem respiration—the natural release of CO2

by ecosystems—to fluctuations in temperature. Estimating such sensitivities is key for understanding and modelling the global

climate-carbon cycle feedbacks (Kirschbaum, 1995). The following simple model (Davidson and Janssens, 2006) is widely

used as a diagnostic description of this process:

Reco,i = RbQ
Ti−Tref

10
10 , (15)425

where Reco,i is ecosystem respiration at time point i and the parameter Q10 is the temperature sensitivity of this process, i.e.

the factor by which Reco,i would change by increasing (or decreasing) the temperature Ti by 10◦. An indication of how much

respiration we would expect at some given reference temperature Tref is given by the pre-exponential factor Rb. Under this

model, one can directly estimate the temperature sensitivities from some observed respiration and temperature time series.

Technically this is possible and Eq. (16) describes a parameter estimation process as an atomic function,430

f
{par},{time}
{time,var} : C({lat, lon,time,var})→C({lat, lon,par})×C({lat, lon,time}), (16)

that expects a multivariate time series, and returns a parameter vector. Figure 7a visualizes these estimates, which are compa-

rable to many other examples in the literature (see e.g. Hashimoto et al., 2015) and depict pronounced spatial gradients. High

latitude ecosystems seem to be particularly sensitive to temperature variability according to such an analysis.
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However, it has been shown theoretically (Davidson and Janssens, 2006), experimentally (Sampson et al., 2007), and using435

model-data fusion (Migliavacca et al., 2015), that the underlying assumption of a constant base rate is not justified. The reason

is that the amount of respirable carbon in the ecosystem will certainly vary with the supply, and hence phenology, as well as

with respiration limiting factors such as water stress (Reichstein and Beer, 2008). In other words, ignoring the seasonal time

evolution of Rb leads to substantially confounded parameter estimates for Q10.

One generic solution to the problem is to exploit the variability of respiratory processes at short-term modes of variability.440

Specifically, one can apply a timescale dependent parameter estimation (SCAPE; Mahecha et al., 2010b), assuming that Rb

varies slowly e.g. on a seasonal and slower timescale. This approach requires some time series decomposition as described in

Sec. 4.2. The SCAPE idea requires to rewrite the model, after linearization, such that it allows for a time-varying base rate,

lnReco,i = lnRb,i +
Ti−Tref

10
lnQ10. (17)

The discrete spectral decomposition into frequency bands of the log-transformed respiration allows to estimate lnQ10 on445

specific timescales that are independent of phenological state changes (for an in-depth description see Mahecha et al., 2010b,

supporting materials). Conceptually, the model estimation process now involves two steps (Eqs. (18) and (19)), a spectral

decomposition where we produce a data cube of higher order,

f
{time,freq}
{time} : C({lat, lon,time,var})→C({lat, lon,time,var,freq}) (18)

followed by the parameter estimation, which differs from the approach described in Eq.16, as this approach only returns a450

singular parameter (Q10), whereas lnRb,i now becomes a time series:

f
{},{time}
{time,var,freq}, : C({lat, lon,time,var,freq})→C({lat, lon})×C({lat, lon,time}) (19)

The results of the analysis are shown in Fig. 7b where we find generally a much more homogeneous and better constrained

spatial pattern of Q10. As suggested in the site-level analysis by Mahecha et al. (2010b) and later by others (see e.g. Wang et al.,

2018) we find a global convergence of the temperature sensitivities. We also find that e.g. semi-arid and savanna-dominated455

regions clearly show lower apparent Q10 (Fig. 7a) compared to the SCAPE approach (Fig. 7b). Discussing these patterns in

detail is beyond the scope of this paper, but in general terms these finding are consistent with the expectation that in semi-arid

ecosystems confounding factors act in the opposing direction (Reichstein and Beer, 2008).

From a more methodological point of view this research application shows that it is well possible to implement a multistep

analytic workflow in the ESDL that combines time series analysis and parameter estimation. Once the analysis is implemented,460

it requires essentially two sequential atomic functions. The results obtained have the form of a data cube and could be inte-

grated into subsequent analyses. Examples include comparisons with in-situ data, eco-physiological parameter interpretations

or assessment of parameter uncertainty in more detail. As mentioned above, this case study only considers two variables and

thereby does not exploit the wider multivariate potential of the ESDL. The example of temperature sensitivity could easily be

combined with further estimations of water stress, linked to primary production, or even become part of a simple terrestrial465

surface scheme.
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Figure 8. Bivariate histograms summarizing the joint distribution of surface moisture and gross primary production. The estimates are

computed over the entire time series for the different IPCC regions. The density is square root transformed to emphasize areas of higher

density. In arid regions (e.g. CAM, NEB, WAF, SAFM, EAF) the tight relation between surface water and primary production is evident.

4.4 Bivariate relations in vector-cubes

The original idea of the data cube concept emerged from the need of working with large multivariate gridded data sets. However,

the idea of data cubes can be possibly extended to other types of geographical data. One example are vector data cubes, where

e.g. polygons form an axis in their own right and each polygon points to a complex spatial shape. Consider, for instance,470

the need for statistical inferences on the spatial polygons often used in IPCC reports. One relevant question is, for example,

understanding the relations of GPP and surface moisture. Fig 8 shows the bivariate histograms between both variables within
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a selected set of regions. This analysis clearly shows that in many regions of the world, GPP and surface moisture are strongly

coupled. Examples are e.g. Central America/Mexico (CAM), North-Earth Brazil (NEB), West Africa (WAF), Southern Africa

(SAF), East Africa (EAF), South Asia (SAS), or South Australia/New Zealand (SAU). All of these regions contain significant475

fractions of semi-arid climates, which can explain the constraints that water availability has on photosynthetic CO2-uptake.

In other regions, this relation is less obvious and often not pronounced, probably because the cases of water shortage are rare

compared to the normal dynamics that might be constrained by other factors such as temperature. From a computational point

of view, this example follows a very different logic, compared to the concept of applying an UDF on some of the cube axis.

Rather, this example was computed using an “online” approach which sequentially updates some statistics (here the bivariate480

histograms) over a given class (here IPCC regions). Such an approach allows calculations with large amounts of data and shows

that the ESDL framework can also be coupled with conceptually very different analytical frameworks that might be particularly

relevant when working with living data, i.e. with data streams that are constantly updated. In these cases, it is not desirable to

constantly re-estimate all relevant quantities across the entire data cube.

5 Discussion485

In the following, we describe the insights gained during the development of the concept and the implementation of the ESDL,

addressing issues arising and critiques expressed during our community consultation processes. We also briefly discuss the

ESDL in the light of other developments in the field. Finally, we highlight some challenges ahead and proposed future appli-

cations.

5.1 Insights and critical perspectives490

During a community consultation process across various workshops and summer schools, users expressed confusion about the

equitable treatment of data cube dimensions (Sect. 2). Considering that an unordered nominal dimension of “variables” is a

dimension as “time” or “latitude” seems counterintuitive at first glance. Also, concerns have been expressed about whether

“time” can be treated analogously to e.g. “latitude”. Our main argument during the development of the ESDL was that it

is possible, as long as the UDFs are not applied to dimensions where they would produce nonsense results. But the practical495

arguments for a common interface prevail. Also, and this is key, the concept and implementation are sufficiently flexible to allow

users to deploy more classical approach to deal with such data, e.g., analyzing variables separatly, or writing specific UDFs

that specifically require spatial or temporal dimensions. However, for research examples structured like the second use case

(Sect. 4.2), the proposed approach was key as it is allowed to efficiently navigate through the variable dimension. It is obviously

irrelevant to algorithms of dimensionality reduction, which dimension is compressed and we could have equally asked the500

question in time domain or across a spatial dimensions, which relates to the well-known empirical orthogonal functions (EOFs)

as used in climate sciences (Storch and Zwiers, 1999). In exploratory approaches of this kind, where there is no prior scientific

basis for presupposing where the “information-rich zones” are in the data cube, a dimension-agnostic approach clearly pays

off. We also favour this idea as it is in-line with other approaches discussed in the community. For instance, the “Data Cube
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Manifesto” (Baumann, 2017) states that “Datacubes shall treat all axes alike, irrespective of an axis having a spatial, temporal,505

or other semantics.”, a principle that we have radically implemented in the ESDL.jl Julia package (Sect. 3). The flexibility

we gain is that we are, in principle, prepared for comparable cases where one has to deal with e.g. multiple model versions,

model ensemble members, or model runs based on varying initial conditions.

One of the most commonly expressed practical concerns is the choice of a unique data grid. The curation of multiple data

streams within such a data cube grid requires that many data have to undergo reformatting and/or remapping. Of course, this510

can be problematic at times, in particular when data have been produced for a given spatial or temporal resolution and cannot

be remapped without violating basic assumptions. For instance keeping mass balances, integrals of flux densities, and global

moments of intensive properties as consistent as possible should always be a priority. However, for the data cube approach

implemented here we decided to accept certain simplifications. The availability of a multitude of relevant data to study Earth

system dynamics is a key incentive to use the ESDL and goes much beyond many disciplinary domains. But, as we have515

learned in this discussion, it comes at the price of some pragmatic trade-offs. A fundamental advancement of our approach

would be to natively deal with data streams from unequal grids.

The current notation of the concept has been criticized for being unsuitable for dealing with so-called vector data cubes

(Pebesma and Appel, 2019). Indeed other conceptual approaches are more suited than ours to treat such examples (see e.g.

Gebbert et al., 2019). But the research example briefly described in Sect. 4.4 and Fig. 8 does showcases such a possibility.520

In this case, the idea of mapping a single function across some dimensions cannot be trivially realized, but it opens novel

perspectives to compute statistics based on very big data. Further research needs to be done on developing the ESLD in such

directions because it would allow not only for dealing with big data issues, but also to update statistics without having to

recompute data processed in earlier steps. This can solve the challenges of dealing with “living data”.

One of the main concerns expressed by users, in particular by 30 young researchers who participated in the project during an525

Early Adopter phase, is the demand for latest data in the ESDL. This is why the concept presented here and its implementation

should be further developed into a persistent infrastructure. Such a step is challenging and there is a trade-off to be made

between wishing to include latest data streams (ideally even in near real time), versus constantly expanding the access API

and portfolio of example workflows. The ESDL thus depends on the enduring enthusiasm of the user community and funding

agencies to support the idea in this respect and grow steadily into new domains, help us adding data streams, and actively530

co-develop the approach.

5.2 Relation to other initiatives and platforms

Over the past few years, several initiatives, platforms, and software solutions (Lu et al., 2018; Sudmanns et al., 2019) have

emerged based on similar considerations as those motivating the Earth System Data Lab. Some of these platforms and software

solutions are explicitly constructed around the idea of data cubes (e.g. Baumann et al., 2016; Lewis et al., 2017; Appel and535

Pebesma, 2019). Nevertheless, the concept of “data cube” is still not fully consolidated in the Earth system science. It was only

in 2019 the Open Geospatial Consortium (OGC) opened a public discussion towards establishing standards for data cubes.
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Among the other existing initiatives, the Climate Data Store (CDS) of the Copernicus Climate Change Service (https:

//cds.climate.copernicus.eu/) is conceptually probably the closest one to the ESDL. The CDS was primarily designed as key

infrastructure to analyze climate reanalysis data and related variables. These data often require to be analyzed at very high tem-540

poral resolutions (e.g. using hourly time-steps). The CDS offers a similar python interface to analyze these data. Likewise, the

Google Earth Engine (GEE, https://earthengine.google.com Gorelick et al., 2017) is probably the most widely known platform

for implementing global scale analytics. GEE offers access to a wide range of satellite data archives and increasingly also to

climate data in their native resolutions. One strength of GEE is the massive computing power offered to the scientist, such that

some use cases nicely showcased the power of the infrastructure. The user has a wide range of predefined operators available545

that can be used and coupled to build workflows that are particularly suitable for time-series. Another recent development in

the field is the Open Data Cube (ODC; https://www.opendatacube.org/; formerly Australian Data Cube; Lewis et al., 2017).

This project was initially designed to offer access to the well processed remote sensing data over Australia with an emphasis on

the Landsat archive. In the past years, the ODC technology was used to implement regional data cubes for Colombia (CDCol;

Ariza-Porras et al., 2017; Bravo et al., 2017), Switzerland (SDC: http://www.swissdatacube.org/; Giuliani et al., 2017), and550

Armenia (Asmaryan et al., 2019), amongst many other countries. The aim of the open access ODC is also to effectively enable

access to time-series data from high-resolution data archives, targeting mainly changes in land surface properties. The ESDL

has developed into a conceptually different direction than most of the other initiatives that make it unique:

First, we note that most of the data cube initiatives were motivated by the need to accessing and/or analyze big, e.g. very

high resolution data (Lewis et al., 2017; Nativi et al., 2017; Giuliani et al., 2019). Initially, this problem was not in the focus555

of the ESDL which rather aimed at downstream data products. Our data cube approach primarily intends to support the joint

exploitation of multiple data streams efficiently. This multivariate focus is rarely found as a key design element in the other

approaches.

Second, most initiatives intend to preserve the resolutions of the underlying data. The ESDL, instead, is built around singular

data cubes that then include variables as an additional dimension. The inevitable trade-off, as discussed above, is the need for560

a data curation and remapping process prior to the analyses.

Third, there is a wide consensus that data cube technologies need to enable the application of UDFs. However, at this stage,

this aspect often appears not to be a priority of other data cube initiatives and, consequently, users are restricted in their analysis

by the available tools. In this context we see the strength of the ESDL as it allows for the development of complex workflows

and adding arbitrary functionalities efficiently. This is actually one reason why we decided to implement the ESDL in the quite565

young language of scientific computing Julia (side by side with the more commonly used Python tools).

Taken together, the ESDL has probably conceptually developed (and implemented) the most radical cubing principle fol-

lowing a strict dimension agnostic approach. We envisage that the ESDL front-end could be coupled to a data cube technology

as proposed by any of the other initiatives to combine its analytic strength with the efficiencies achieved by others in dealing

with high-resolution data streams.570
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5.3 Priorities for future developments

During the development of the ESDL, we identified several methodological challenges on the one hand and, on the other,

application domains that could be addressed. With regard to potentially relevant methodological paths, we can only briefly

mention, with no claim to completeness, some of the most ardently and widely discussed topics:

– Machine learning: Data-driven approaches have always been part of the DNA of Earth system sciences (cf. classical575

textbooks e.g. Storch and Zwiers, 1999) and classically complement process-driven modelling efforts (Luo et al., 2012).

However, with the rise of modern machine learning new perspectives have emerged (Mjolsness and DeCoste, 2001;

Hsieh, 2009). Depending on the purpose we find purely exploratory analysis based on e.g. nonlinear dimensionality re-

duction (Mahecha et al., 2010a) or predictive techniques (Jung et al., 2009) being transferred from computer sciences to

the Earth system sciences. Today, deep learning is on everybody’s lips and could mark one step forward in Earth system580

science (Karpatne et al., 2018; Shen et al., 2018; Bergen et al., 2019; Reichstein et al., 2019). Through providing an easy

access to relevant data streams, the Earth System Data Cube idea may attract further researchers from data sciences into

the field. It furthermore provides the perfect platform for studying complex tasks such as detecting multidimensional ex-

treme events (Flach et al., 2017), characterization of information content and dependencies in the data with information-

theoretic measures (Sippel et al., 2016), or causal inference (Runge et al., 2019; Pearl, 2009; Peters et al., 2017; Chris-585

tiansen and Peters, 2018). We believe that the clear and easy-to-use interface of the ESDL renders it well suited for

being part of machine learning challenges such as the ones organized by kaggle (https://www.kaggle.com/competitions)

or during premier conferences of the field.

– Spatial interactions: For interpreting the interactions and mechanisms of the land and ocean, or land and atmosphere

that involve lateral transport, the ESDL would require more developments. Statistical approaches like spatial network590

analyses (e.g. Donges et al., 2009; Boers et al., 2019), or process oriented ideas like explicit moisture transport (e.g.

Wang-Erlandsson et al., 2018) would be very valuable to be explored, but would require a substantial rethinking of the

actual implementation in order to achieve high performances.

– Model evaluation and benchmarking: Our third use-case (Sect. 4.3) illustrates the suitability of the ESDL for parameter

estimation and model-evaluation purposes. Today, typical model evaluation frameworks in the Earth system sciences595

prepare predefined benchmark metrics on some reference data sets (Luo et al., 2012). Prominent examples are the

benchmarking tools awaiting the CMIP6 model suites (Eyring et al., 2019). However, these model-evaluation frame-

works typically do not give the user the full flexibility to apply some user-defined metrics to the model ensemble under

scrutiny. We believe that mapping UDFs on such big Earth system model output could greatly benefit the development of

novel evaluation metrics in the near future. Building data cubes from multi-model ensembles would be straightforward,600

as different models or ensembles would simply lead to one additional dimension in our setup. In fact, the ESDL approach
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is perfectly suited to handle e.g. the output of the actual CMIP data as we have already exemplified2. Of course, any other

model ensembles can be treated analogously.

In terms of application domains we see high potential in the following areas:

– Human-environment interactions: Addressing the complexities of “human-environmental interactions” (Schimel et al.,605

2015) is a particular challenge. Making the ESDL fit for this purpose would require integrating a variety of (at least)

spatially explicit population estimates (Doxsey-Whitfield et al., 2015) and socioeconomic data Smits and Permanyer

(2019). The latter represent a fundamentally novel development that has great potential for understanding e.g. dynamics

of disasters impacts (Guha-Sapir and Checchi, 2018), among other issues. In fact this integration is a grand challenge

ahead (Mahecha et al., 2019), but not out of reach for the ESDL.610

– Biodiversity research: Another question of high societal relevance is to understand how patterns of biodiversity affect

ecosystem functioning (Emmett Duffy et al., 2017; García-Palacios et al., 2018). In the light of a global decline in species

richness (cf. latest global reports https://www.ipbes.net/), this question is of uttermost importance. The ESDL is only

partly fit for this purpose, as it would require the ingestion of a wide range of essential biodiversity variables (Pereira

et al., 2013; Skidmore et al., 2015), beyond the ones we have already available. But still, the ESDL is conceptually615

prepared to deal with these challenges (compare e.g. the demands described in Hardisty et al., 2019) and would be

particularly suitable for relating biodiversity patters to the so-called ecosystem function properties (Reichstein et al.,

2014; Musavi et al., 2015). In fact, in the regional application of the ESDL we have focused on Colombia and its wider

region to explore linkages of this kind relying on remote sensing derived variables that are relevant for this context.

– Oceanic sciences: Extending the ESDL for ocean data is desired and conceptually possible. Surface parameters, e.g. phy-620

toplankton phenology derived from remote sensing (Racault et al., 2012), can be treated analogously to terrestrial surface

parameters. Other dynamics, e.g. the analysis and exploration of ocean-land coupling mechanisms, ocean-atmosphere

interactions, and land-atmosphere interactions triggered by ocean circulation dynamics could in principle be facilitated

via the ESDL but require to either vertical or lateral dynamics.

– Solid Earth: The step towards global, fully data informed, model data is also made in geophysics. For instance, recently625

Afonso et al. (2019) used an inversion approach to develop a 3D model that fully describes multiple parameters in the

Earth interior, including e.g. crustal and lithospheric thickness, average crustal density, and a depth-dependent density of

the lithospheric mantle, among other variables. They proposed a tool allowing for inspecting the data interactively at a

spatial resolution of 2◦× 2◦ grid in different depth. Clearly, in this case other dimensions are relevant, but the principle

remains the same and, in fact, can be treated in a very similar manner. Future model-data assimilation approaches of this630

kind could be performed in the context of the ESDL, as well as the aforementioned machine learning for the solid Earth

(Bergen et al., 2019).

2https://gist.github.com/meggart/2d544be2c1368f8774d0a21ea4633985
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In summary, we have demonstrated that the ESDL is a flexible and generic framework that can allow various different

communities to explore and analyse large amounts of gridded data efficiently. Thinking about the potential paths ahead, the

ESDL could become a valuable tool in various fields of Earth system sciences, biodiversity research, computer sciences and635

other branches of science. The widespread social and political uptake of the concept of planetary boundaries (Rockström et al.,

2009; Steffen et al., 2015) underlines the global demand for better quantified process understanding of environmental risks

and resource bottlenecks based on empirical evidence. Along these lines, the ESDL concept could be used to address some

of the most pressing global challenges. For example, it could become an interface for direct interaction with ECVs, global

climate projections and EBVs. Such an interactive interface would allow a much broader community to better understand the640

data underlying the global assessment reports of the IPCC (Pachauri et al., 2014) and IPBES (Diaz et al., 2019). If coupled

to some visual interfaces, the ESDL could also be used by a broader community, enhancing education, communication and

decision making process, contributing to knowledge democratization about a deeper understanding of the complex and dynamic

interactions in the Earth system.

6 Conclusions645

Exploiting the synergistic potential of multiple data streams in the Earth sciences beyond disciplinary boundaries requires a

common framework to treat multiple data dimensions, such as for instance spatial, temporal, variable, frequency and other

grids, alike. This idea leads to a data cube concept that opens novel avenues to efficiently deal with data in the Earth system

sciences. In this paper, we have formalized the concept of data cubes and described a way to operate on them. The out-

lined dimension-agnostic approach is implemented in the Earth System Data Lab that enables users applying a wide range of650

functions to all thinkable combinations of dimension. We believe that this idea can dramatically reduce the barrier to exploit

Earth system data and serves multiple research purposes. The ESDL complements a range of emerging initiatives that differ

in architectures and specific purposes. However, the ESDL is probably the most radical data cubing approach, offering novel

opportunities for cross-community data-intensive exploration of contemporary global environmental changes. Future develop-

ments in related branches of science and latest methodological developments need to be considered and addressed soon. At its655

actual state of implementation, the ESDL can already contribute to the deeper understanding and more effective implementa-

tion of policy-relevant concepts such as the planetary boundaries, essential variables in different subsystems of the Earth, and

global assessment reports. We see a particularly high future potential for data cube concepts as presented for, firstly, interpret-

ing large-scale model ensembles, and secondly, analyzing new multispectral satellite remote sensing data with their constantly

increasing spatial, temporal, and spectral resolutions.660
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Appendix A: Data streams in the Earth system data lab

In the following we give an overview of the actually available variables in the Earth system data lab. The list is constantly being

updated.

Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Atmosphere 2 metre temper-

ature

t2m 2001–

2011

The air temperature at 2 m data ([T2m] =

K) are part of the ERA-Interim reanalysis

product, and therefore produced by data as-

similation techniques in combination with

a forecast model. The original spatial sam-

pling (T255 spectral resolution) approxi-

mates to 80 km and the original temporal

sampling is 6 hours for analyses and at 3

hours for forecasts.

Dee et al.

(2011)

Atmosphere Aerosol Opti-

cal Thickness

at 550 nm

AOD550 2002–

2012

The ESA CCI Aerosol Optical Thickness

(Depth) data sets were created by using

algorithms, which were developed in the

ESA aerosol_cci project. The data used

here were created from AATSR measure-

ments (ENVISAT mission) using the ......

algorithm and represent total column AOD

at the specified wavelength. Horizontal res-

olution of the daily data is 1 degree x 1 de-

gree on a global grid.

Holzer-Popp

et al. (2013)
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Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Atmosphere Aerosol Opti-

cal Thickness

at 555 nm

AOD555 2002–

2012

The ESA CCI Aerosol Optical Thickness

(Depth) data sets were created by using

algorithms, which were developed in the

ESA aerosol_CCI project. The data used

here were created from AATSR measure-

ments (ENVISAT mission) using the ......

algorithm and represent total column AOD

at the specified wavelength. Horizontal res-

olution of the daily data is 1 degree x 1 de-

gree on a global grid.

Holzer-Popp

et al. (2013)

Atmosphere Aerosol Opti-

cal Thickness

at 659 nm

AOD659 2002–

2012

The ESA CCI Aerosol Optical Thickness

(Depth) data sets were created by using

algorithms, which were developed in the

ESA aerosol_cci project. The data used

here were created from AATSR measure-

ments (ENVISAT mission) using the ......

algorithm and represent total column AOD

at the specified wavelength. Horizontal res-

olution of the daily data is 1 degree x 1 de-

gree on a global grid.

Holzer-Popp

et al. (2013)

Atmosphere Aerosol Opti-

cal Thickness

at 865 nm

AOD865 2002–

2012

The ESA CCI Aerosol Optical Thickness

(Depth) data sets were created by using

algorithms, which were developed in the

ESA aerosol_cci project. The data used

here were created from AATSR measure-

ments (ENVISAT mission) using the ......

algorithm and represent total column AOD

at the specified wavelength. Horizontal res-

olution of the daily data is 1 degree x 1 de-

gree on a global grid.

Holzer-Popp

et al. (2013)
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Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Atmosphere Aerosol Opti-

cal Thickness

at 1610 nm

AOD1610 2002–

2012

The ESA CCI Aerosol Optical Thickness

(Depth) data sets were created by using

algorithms, which were developed in the

ESA aerosol_cci project. The data used

here were created from AATSR measure-

ments (ENVISAT mission) using the ......

algorithm and represent total column AOD

at the specified wavelength. Horizontal res-

olution of the daily data is 1 degree x 1 de-

gree on a global grid.

Holzer-Popp

et al. (2013)

Biosphere Gross Primary

Productivity

GPP 2001–

2012

By training an ensemble of machine learn-

ing algorithms with eddy covariance data

from FLUXNET and satellite observations

in a cross-validation approach, regressions

from these observations to different kinds

of carbon and energy fluxes were estab-

lished and used to generate datasets with

a spatial resolution of 5 arc-minutes and

a temporal resolution of 8 days. The GPP

resembles the total carbon release of the

ecosystem through respiration and is ex-

pressed in the unit gC m−2 day−1.

Tramontana

et al. (2016)
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Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Biosphere Net Ecosystem

Exchange

NEE 2001–

2012

By training an ensemble of machine learn-

ing algorithms with eddy covariance data

from FLUXNET and satellite observations

in a cross-validation approach, regressions

from these observations to different kinds

of carbon and energy fluxes were estab-

lished and used to generate datasets with

a spatial resolution of 5 arc-minutes and a

temporal resolution of 8 days. The NEE re-

sembles the net carbon exchange between

the ecosystem and the atmosphere and is

expressed in the unit gC m−2 day−1.

Tramontana

et al. (2016)

Land Latent Energy LE 2001–

2012

By training an ensemble of machine learn-

ing algorithms with eddy covariance data

from FLUXNET and satellite observations

in a cross-validation approach, regressions

from these observations to different kinds

of carbon and energy fluxes were estab-

lished and used to generate datasets with

a spatial resolution of 5 arc-minutes and a

temporal resolution of 8 days. The LE re-

sembles the latent heat flux from the sur-

face and is expressed in the unit W m−2.

Tramontana

et al. (2016)
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Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Land Sensible Heat H 2001–

2012

By training an ensemble of machine learn-

ing algorithms with eddy covariance data

from FLUXNET and satellite observations

in a cross-validation approach, regressions

from these observations to different kinds

of carbon and energy fluxes were estab-

lished and used to generate data sets with

a spatial resolution of 5 arc-minutes and a

temporal resolution of 8 days. The H re-

sembles the sensible heat flux from the sur-

face and is expressed in the unit W m−2.

Tramontana

et al. (2016)

Land Monthly Burnt

Area

BurntArea 1995–

2014

This data set was taken from the fourth

generation of the Global Fire Emissions

Database (GFED4). It was created as a

combination of data from infrared sensor

satellite observations and resembles the es-

timated monthly burnt area in hectares.

The spatial resolution of this data set is

0.25◦. Small fires were exempt in the pro-

duction of the data.

Giglio et al.

(2013)

Land Carbon dioxide

emissions due

to natural fires

expressed as

carbon flux

Emission 2001–

2010

This data set was taken from the fourth

generation of the Global Fire Emissions

Database (GFED4). It was created by ap-

plying a model based on the Carnegie-

Ames-Stanford Approach (CASA) to the

burnt area estimates and has the same tem-

poral (monthly) and spatial (0.25◦) resolu-

tion as the monthly burnt area data set and

expresses the carbon dioxide emissions of

natural fires as a carbon flux (gC m−2

day−1). Small fires were included in this

approach.

Giglio et al.

(2013);

van der Werf

et al. (2017)
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Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Land Evaporation E 2001–

2011

The GLEAM data sets are created by using

a set of algorithms, input forcing data sets

from reanalyses, optical and microwave

satellites and other merged sources. The

model itself consists of four modules:

potential evaporation (Priestley and Tay-

lor equation), interception (Gash analytical

model), soil (mulit-layer soil model + data

assimilation) and stress (semi-empirical).

The data are sampled on a graticule of

0.25◦ and have a daily temporal coverage.

Martens et al.

(2017); Mi-

ralles et al.

(2011)

Land Evaporative

Stress Factor

S 2001–

2011

The GLEAM data sets are created by using

a set of algorithms, input forcing data sets

from reanalyses, optical and microwave

satellites and other merged sources. The

model itself consists of four modules:

potential evaporation (Priestley and Tay-

lor equation), interception (Gash analytical

model), soil (mulit-layer soil model + data

assimilation) and stress (semi-empirical).

The data are sampled on a graticule of

0.25◦ and have a daily temporal coverage.

Martens et al.

(2017); Mi-

ralles et al.

(2011)
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Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Land Potential Evap-

oration

Ep 2001–

2011

The GLEAM data sets are created by using

a set of algorithms, input forcing data sets

from reanalyses, optical and microwave

satellites and other merged sources. The

model itself consists of four modules:

potential evaporation (Priestley and Tay-

lor equation), interception (Gash analytical

model), soil (mulit-layer soil model + data

assimilation) and stress (semi-empirical).

The data are sampled on a graticule of

0.25◦ and have a daily temporal coverage.

Martens et al.

(2017); Mi-

ralles et al.

(2011)

Land Interception

Loss

Ei 2001–

2011

The GLEAM data sets are created by using

a set of algorithms, input forcing data sets

from reanalyses, optical and microwave

satellites and other merged sources. The

model itself consists of four modules:

potential evaporation (Priestley and Tay-

lor equation), interception (Gash analytical

model), soil (mulit-layer soil model + data

assimilation) and stress (semi-empirical).

The data are sampled on a graticule of

0.25◦ and have a daily temporal coverage.

Martens et al.

(2017); Mi-

ralles et al.

(2011)
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Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Land Root-Zone Soil

Moisture

SMroot 2001–

2011

The GLEAM data sets are created by using

a set of algorithms, input forcing data sets

from reanalyses, optical and microwave

satellites and other merged sources. The

model itself consists of four modules:

potential evaporation (Priestley and Tay-

lor equation), interception (Gash analytical

model), soil (mulit-layer soil model + data

assimilation) and stress (semi-empirical).

The data are sampled on a graticule of

0.25◦ and have a daily temporal coverage.

Martens et al.

(2017); Mi-

ralles et al.

(2011)

Land Surface Soil

Moisture

SMsurf 2001–

2011

The GLEAM data sets are created by using

a set of algorithms, input forcing data sets

from reanalyses, optical and microwave

satellites and other merged sources. The

model itself consists of four modules:

potential evaporation (Priestley and Tay-

lor equation), interception (Gash analytical

model), soil (mulit-layer soil model + data

assimilation) and stress (semi-empirical).

The data are sampled on a graticule of

0.25◦ and have a daily temporal coverage.

Martens et al.

(2017); Mi-

ralles et al.

(2011)
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Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Land Bare Soil Evap-

oration

Eb 2001–

2011

The GLEAM data sets are created by using

a set of algorithms, input forcing data sets

from reanalyses, optical and microwave

satellites and other merged sources. The

model itself consists of four modules:

potential evaporation (Priestley and Tay-

lor equation), interception (Gash analytical

model), soil (mulit-layer soil model + data

assimilation) and stress (semi-empirical).

The data are sampled on a graticule of

0.25◦ and have a daily temporal coverage.

Martens et al.

(2017); Mi-

ralles et al.

(2011)

Land Snow Sublima-

tion

Es 2001–

2011

The GLEAM data sets are created by using

a set of algorithms, input forcing data sets

from reanalyses, optical and microwave

satellites and other merged sources. The

model itself consists of four modules:

potential evaporation (Priestley and Tay-

lor equation), interception (Gash analytical

model), soil (mulit-layer soil model + data

assimilation) and stress (semi-empirical).

The data are sampled on a graticule of

0.25◦ and have a daily temporal coverage.

Martens et al.

(2017); Mi-

ralles et al.

(2011)
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Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Land Transpiration Et 2001–

2011

The GLEAM data sets are created by using

a set of algorithms, input forcing data sets

from reanalyses, optical and microwave

satellite sensors and other merged sources.

The model itself consists of four modules:

potential evaporation (Priestley and Tay-

lor equation), interception (Gash analytical

model), soil (mulit-layer soil model + data

assimilation) and stress (semi-empirical).

The data are sampled on a graticule of

0.25◦ and have a daily temporal coverage.

Martens et al.

(2017); Mi-

ralles et al.

(2011)

Land Open-water

Evaporation

Ew 2001–

2011

The GLEAM data sets are created by using

a set of algorithms, input forcing data sets

from reanalyses, optical and microwave

satellite sensors and other merged sources.

The model itself consists of four modules:

potential evaporation (Priestley and Tay-

lor equation), interception (Gash analytical

model), soil (mulit-layer soil model + data

assimilation) and stress (semi-empirical).

The data are sampled on a graticule of

0.25◦ and have a daily temporal coverage.

Martens et al.

(2017); Mi-

ralles et al.

(2011)

Land White Sky

Albedo for

Visible Wave-

lengths

BHR_V IS 1998–

2012

White sky albedo, also known as bi-

hemispherical reflectance (only diffuse il-

lumination), estimated from satellite ra-

diometer data. The spatial resolution of this

product is 1 km with a temporal sampling

of 8 days.

Lewis et al.

(2012)
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Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Land Black Sky

Albedo for

Visible Wave-

lengths

DHR_V IS 1998–

2012

Black sky albedo, also known as

directional-hemispherical reflectance

(only direct illumination), estimated from

satellite radiometer data. The spatial

resolution of this product is 1 km with a

temporal sampling of 8 days.

Lewis et al.

(2012)

Water Fractional

Snow Cover

MFSC 2003–

2013

Global fractional snow cover product using

mainly satellite infrared radiometer data

(ATSR-2, AATSR). Glaciers, continental

ice shields and snow on ice are exempt

from the data. Values stand for the percent-

age of the area of a grid cell covered by

snow integrated over time (daily, weekly or

monthly). The spatial resolution is 1 km.

Luojus et al.

(2010); Met-

sämäki et al.

(2015)

Water Snow Water

Equivalent

SWE 1980–

2012

Snow water equivalent product covering

the northern hemisphere (35◦N–85◦N),

created by using microwave sensor data

(SMMR, SSM/I, SSMIS). Glaciers, con-

tinental ice shields and mountaineous re-

gions are exempt from the data. Values

stand for the water equivalent of snow

per grid cell in millimetres aggregated

over time (daily, weekly or monthly). The

weekly data is produced by giving every

day the mean value of a sliding window (-

6 days). The monthly data is given as the

weekly mean and maximum per calendar

month. The spatial resolution is approxi-

mately 25 km.

Luojus et al.

(2010)
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Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Land Land Surface

Temperature

LST 2002–

2011

The GlobTemperature Land Surface Tem-

perature product used here is a product of

a satellite infrared radiometer (AATSR). It

has global coverage with a spatial sampling

of 0.05◦ and consists of 2 measurement av-

erages (day and night). The values are an

approximation of the average land surface

temperature per grid cell in K. It is an im-

proved version of the ESA AATSR data set

(UOL_LST_3P, v2.1).

Ghent (2012)

Atmosphere Total Column

Water Vapour

TCWV 1996–

2008

The TCWV product was derived through

combination of various satellite spectrom-

eter and microwave sensor data sets. It re-

sembles the total mass of water contained

in a column of air from the surface to 200

hPa. The unit is kg m−2, the spatial sam-

pling is 0.5◦ and the data is provided as

daily composites. From 1996–2002 includ-

ing, the data consists of weekly/monthly

means.

Schröder

et al. (2012);

Schneider

et al. (2013)

Atmosphere Precipitation Precip 1980–

2015

The Global Precipitation Climatology

Project (GPCP)

Adler et al.

(2003); Huff-

man et al.

(2009)

41



Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Atmosphere Mean total

ozone column

Ozone 1996–

2011

The total ozone column data from the

Ozone CCI project is derived from GOME

spectrometer acquisitions. For the ESDL,

Level 2 data have been used. They are

given in Dobson units (DU) and have a spa-

tial resolution of 320 km x 40 km. The tem-

poral resolution depends on the latitude,

with the longest revisit time being 3 days

at the equator.

Van Roozen-

dael et al.

(2012); Lerot

et al. (2014)

Land Fraction of

Absorbed

Photosynthet-

ically Active

Radiation

fAPAR_

TIP

1982–

2016

The fAPAR, describing the amount and

productivity of vegetation, was derived by

using a Two Stream Inversion Package

(TIP) method based on the Two-stream

model developed by Pinty et al. (2006).

The product is delivered in two spatial res-

olutions (0.05◦ and 0.5◦) and with a daily

temporal coverage.

Disney et al.

(2016); Bless-

ing and Löw

(2017)

Land Leaf Area In-

dex

LAI 1982–

2016

The LAI, defined as half the total canopy

area per unit ground area (m2 m−2), was

derived by using a Two Stream Inversion

Package (TIP) method based on the Two-

stream model developed by Pinty et al.

(2006). The product is delivered in two

spatial resolutions (0.05◦ and 0.5◦) and

with a daily temporal coverage.

Disney et al.

(2016); Bless-

ing and Löw

(2017)
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Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Land White Sky

Albedo for

Visible Wave-

lengths from

AVHRR

BHR_V IS 1982–

2016

White sky albedo, also known as bi-

hemispherical reflectance (only diffuse il-

lumination), estimated from satellite ra-

diometer data. This data set extends the

GlobAlbedo data by using additional input

data sources (AVHRR, geostationary satel-

lites). The product is delivered in two spa-

tial resolutions (0.05◦ and 0.5◦) and with a

daily temporal coverage.

Lewis et al.

(2012);

Danne et al.

(2017)

Land Black Sky

Albedo for

Visible Wave-

lengths from

AVHRR

DHR_V IS 1982–

2016

Black sky albedo, also known as

directional-hemispherical reflectance

(only direct illumination), estimated from

satellite radiometer data. This data set

extends the GlobAlbedo data by using

additional input data sources (AVHRR,

geostationary satellites). The product

is delivered in two spatial resolutions

(0.05◦ and 0.5◦) and with a daily temporal

coverage.

Lewis et al.

(2012);

Danne et al.

(2017)

Land Fraction of

Absorbed

Photosynthet-

ically Active

Radiation from

AVHRR

fAPAR

_AVHRR

1982–

2006

The AVHRR derived fAPAR, describing

the amount and productivity of vegeta-

tion, was derived from AVHRR black sky

albedo data. The product is delivered in

two spatial resolutions (0.05◦ and 0.5◦)

and with a daily temporal coverage.

Gobron et al.

(2017)
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Table A1: Data streams in the current implementation of the ESDL.

Domain Variable Short Coverage Description References

Land Soil Moisture SM 1978–

2017

The ESA CCI Soil Moisture data combine

various active and passive microwave sen-

sors into a homogenised product. It repre-

sents the soil water content in the upper 5

cm of the soil. Produced at a spatial sam-

pling of 0.25◦ and a temporal sampling of

one day. Gaps in periods of snow cover or

frozen conditions, and in areas with very

dense vegetation.

Liu et al.

(2012);

Dorigo et al.

(2017); Gru-

ber et al.

(2017)
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