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Abstract

We investigate the impact of model formulation and horizontal resolution on the ability of
Regional Climate Models (RCMs) to simulate precipitation in Africa. Two RCMs (SMHI-RCA4
and HCLIM38-ALADIN) are utilized for downscaling the ERA-Interim reanalysis over Africa at
four different resolutions: 25, 50, 100 and 200km. In addition to the two RCMs, two different
parameter settings (configurations) of the same RCA4 are used. By contrasting different
downscaling experiments, it is found that model formulation has the primary control over many
aspects of the precipitation climatology in Africa. Patterns of spatial biases in seasonal mean
precipitation are mostly defined by model formulation while the magnitude of the biases is
controlled by resolution. In a similar way, the phase of the diurnal cycle in precipitation is
completely controlled by model formulation (convection scheme) while its amplitude is a
function of resolution. However, the impact of higher resolution on the time-mean climate is
mixed. An improvement in one region/season (e.g. reduction of dry biases) often corresponds to
a deterioration in another region/season (e.g. amplification of wet biases). At the same time,
higher resolution leads to a more realistic distribution of daily precipitation. Consequently, even
if the time-mean climate is not always greatly sensitive to resolution, the realism of the simulated
precipitation increases as resolution increases. Our results show that improvements in the ability
of RCMs to simulate precipitation in Africa compared to their driving reanalysis in many cases
are simply related to model formulation and not necessarily to higher resolution. Such model
formulation related improvements are strongly model dependent and can, in general, not be

considered as an added value of downscaling.
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1 Introduction

Regional climate modeling is a dynamical downscaling method widely used for downscaling
coarse-scale global climate models (GCMs) to provide richer regional spatial information for
climate assessments and for impact and adaptation studies (Giorgi and Gao, 2018; Giorgi and
Mearns, 1991; Laprise, 2008; Rummukainen, 2010). It is well-established that regional climate
models (RCMs) are able to provide added value (understood as improved climatology) compared
to their driving GCMs. This includes better representation of regional and local weather and
climate features as a result of better capturing small-scale processes, including those influenced
by topography, coast lines and meso-scale atmospheric phenomena (Flato et al., 2013; Prein et
al., 2016). However, perceived added value from RCMs may have different causes and it may
not always be for the right reason where “right reason” would result from an improved
representation of regional processes at smaller scales. Such improvement leads to more accurate
simulations on local scales, and can, to some extent, also reduce large-scale GCM biases (Caron
et al., 2011; Diaconescu and Laprise, 2013; Sgrland et al., 2018). Contrastingly, added value may
be attributed to different reasons, not directly related to higher resolution in RCMs but to
different model formulation in the RCMs and their driving GCMs. It is possible that the physics
of a RCM has been targeted for processes specific to the region it is being run for, giving it a
local advantage over GCMs that may have had their physics developed for global application.
However, it is questionable if improvements of such “downscaling” via physics can be
considered as an added value. In general, RCMs can either reduce or amplify GCM biases,

sometimes even changing their signs (Chan et al., 2013).
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Issues as those mentioned above, have raised substantial concerns among regional climate
modelers (e.g., Castro, 2005; Xue et al., 2014). It has been pointed out that understanding of the
added value remains challenging. It would become even more complicated taking into account
the effects of different realizations, such as the size of domain, lateral boundary conditions,
geographical location, model resolution and its internal variability (Di Luca et al., 2015; Hong
and Kanamitsu, 2014; Rummukainen, 2016). All the above factors potentially influence RCM
simulations leading to different interpretations of the downscaling effects, therefore the
robustness of added value. For example, it was shown that over the Alps, downscaling with
multiple RCMs at increasing resolutions in general is able to provide a more realistic
precipitation pattern than the forcing GCMs, and it is regarded as added values from RCMs
(Giorgi et al., 2016; Torma et al., 2015). Similarly, Lucas-Picher et al (2017) found added value
over the Rocky Mountains, another region with strong topographic influence on hydrological
processes. However, the results are not unambiguous and sometimes limited added value is
found when comparing to the forcing data (e.g. Wang and Kotamarthi, 2014) over North
America. This implies that the understanding of downscaling effects is context-dependent and

one should carefully interpret GCM and RCM simulations in order to detect robust added value.

Africa is foreseen to be vulnerable to future climate change, which early on inspired efforts to
employ RCMs for impact and adaptation studies (e.g. Challinor et al., 2007). Further to previous
coordinated downscaling activities over Africa as for example the African Monsoon
Multidisciplinary Analyses (AMMA) (Van der Linden and Mitchell, 2009), the Coordinated
Regional climate Downscaling Experiment (CORDEX) provides a large ensemble of RCM

projections for Africa (Giorgi et al., 2009; Jones et al., 2011). All CORDEX RCMs follow a
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common experiment protocol including a predefined domain at 50km resolution and common
output variables and format that facilitates assessment of projected climate changes in Africa.
Under this framework, RCMs at 50km horizontal resolution are found to have the capability of
providing added value in representing African climatological features compared to their forcing
GCMs, which generally have the resolution coarser than 100km (Dosio et al., 2015;

Moufouma-Okia and Jones, 2015; Nikulin et al., 2012).

However, a number of common challenges to accurately simulate precipitation climatology in
Africa have also been identified for the RCMs. Individual RCMs may exhibit substantial biases
in different aspects of the precipitation climatology as seasonal mean (Endris et al., 2013;
Kalognomou et al., 2013; Kim et al., 2014; Shongwe et al., 2015; Tamoffo et al., 2019), annual
cycle (Favre et al., 2016; Kisembe et al., 2019), onset and cessation of the rainy season
(Akinsanola and Ogunjobi, 2017; Gbobaniyi et al., 2014), number of wet days and their intensity
(Klutse et al., 2016). At the same time, most of these studies found that such biases often
strongly depend on region and season. A RCM with a substantial bias in one region and/or
season may accurately simulate precipitation in other regions and seasons. It was also found that
the multi-model ensemble usually outperforms individual RCMs but it is a result of the

cancelation of opposite-signed biases in different RCMs.

A number of possible explanations for such RCM precipitation-related biases in Africa were
suggested as for example: different convection schemes (see discussion in Kalognomou et al.,
2013), land-atmosphere coupling (e.g. Sylla et al., 2013b) and biases in moisture transport
(Tamoffo et al., 2019). However, most of the CORDEX-Africa studies are still descriptive and

process-based evaluation studies like Tamoffo et al. (2019) are mostly lacking. An additional
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barrier for more process-based evaluation studies is that the CORDEX requires atmospheric
variables at three pressure levels (850, 500 and 200mb) to be provided that seriously limits
evaluation of large-scale and regional circulation (e.g. jet streams) and moisture transport in the

troposphere.

Another common problem for almost all RCMs in Africa is the phase of the diurnal cycle of
precipitation. The majority of RCMs simulate maximum precipitation intensity around local
noon that is too early compared to late afternoon or even late evening maximum evident in
observations (Nikulin et al., 2012). This deficiency of the RCMs is related to the convective
parameterization used and some convection schemes, as for example the Kain—Fritsch (KF), may

outperform others, producing a more realistic diurnal cycle (Nikulin et al., 2012).

All the above deficiencies of the RCMs show that higher resolution does not necessarily lead to a
better performance of the RCMs in terms of precipitation climatology in Africa. It is also not
always clear if differences between the CORDEX Africa RCMs and their driving GCMs are
related to higher RCM resolution or to RCM internal formulation, or to the combination of both.
A thorough understanding of such differences and of the added value of the CORDEX-Africa
RCMs is necessary for robust regional assessments of future climate change and its impacts in

Africa.

In this study, we aim to separate the impact of model formulation and resolution on the ability of
RCMs to simulate precipitation in Africa. We conduct a series of sensitivity, reanalysis-driven
experiments by applying two different RCMs, one of them in two different configurations, at

four horizontal resolutions. Contrasting the different experiments allow us to separate the impact
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of model formulation and resolution. We present an overview and the first results of the
experiments conducted and leave in-depth detailed process studies for different regions to

forthcoming papers.

2 Methods and Data

2.1 The Regional Climate Models

2.1.1 RCA4
The Rossby Centre Atmosphere regional climate model - RCA (Jones et al., 2004; Kjellstrom et

al., 2005; Réisédnen et al., 2004; Rummukainen et al., 2001; Samuelsson et al., 2011) is based on
the numerical weather prediction model HIRLAM (Undén et al. 2002). To improve model
transferability, the latest fourth generation of RCA, RCA4, has a number of modifications for
specific physical parameterizations. This includes the modification of convective scheme based
on Bechtold-Kain-Fritsch scheme (Bechtold et al., 2001) with revised calculation of convective
available potential energy (CAPE) profile according to Jiao and Jones (2008), and the
introduction of turbulent kinetic energy (TKE) scheme (Lenderink and Holtslag, 2004). The
RCA4 model has been applied in many regions worldwide, among them Europe (Kjellstrom et
al., 2016, 2018; Kotlarski et al., 2015), the Arctic (Berg et al., 2013; Koenigk et al., 2015; Zhang
et al., 2014), Africa (Nikulin et al., 2018; Wu et al., 2016), South America (Collazo et al., 2018;
Wu et al., 2017), South-East (Tangang et al., 2018) and South Asia (Igbal et al., 2017; Rana et

al., 2020).
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RCAA4 has three configurations used for CORDEX simulations that are available through the
Earth System Grid Federation (ESGF). They are named (so called RCM version) as v1 (Europe,
Arctic, Africa, Southeast Asia, Central and North America), v2 (South Asia) and v3 (South
America) and differ in some domain-specific re-tuning. In this study we also include a new
configuration - v4. The RCA4-v4 is based on RCA4-v1 but with a change in one parameter
leading to reduced turbulent mixing in stable situations (especially momentum mixing). Such
change in the parameter was applied to reduce a prominent dry bias found in the RCA4-v1

CORDEX Africa simulations over Central Africa (Wu et al. 2016; Tamoffo et al. 2019). Using

two parameter settings of RCA4 allows us to examine how sensitive our results are to such small

tuning of the same RCM.

2.1.2 HCLIM

HARMONIE-Climate (HCLIM) is a regional climate modelling system designed for a range of
horizontal resolutions from tens of kilometers to convection permitting scales of 1-3km (Belusi¢
et al., 2019; Lindstedt et al., 2015). It is based on the ALADIN-HIRLAM numerical weather
prediction system (BelusSic et al., 2019; Bengtsson et al., 2017; Termonia et al., 2018). The
HCLIM system includes three atmospheric physics packages AROME, ALARO and ALADIN,
which are designed for different horizontal resolutions. The ALADIN model configuration used
in this study employs the hydrostatic ARPEGE-ALADIN dynamical core (Temperton et al.,
2001), a mass-flux scheme based on moisture convergence closure for parameterizing deep
convection (Bougeault, 1985), and SURFEX as the surface scheme (Masson et al., 2013). All

details about the version of HCLIM used in this study (HCLIM38), and its applications over
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different regions can be found in (BeluSic et al., 2019). We note that HCLIM38-ALADIN used in
the study is not the same model as ALADIN-Climate used in CORDEX (Daniel et al., 2019). We

refer to HCLIM38-ALADIN as HCLIM-ALADIN hereafter.

2.2 Experimental design

To investigate the response of both RCA4 and HCLIM-ALADIN to horizontal resolution, we
conduct a set of sensitivity experiments driven by the ERA-Interim reanalysis (denoted as
ERAINT hereafter; Dee et al., 2011) at four different resolutions. These resolutions are 1.76,
0.88, 0.44 and 0.22° for RCA4 with the rotated coordinate system and 200, 100, 50 and 25km for
HCLIM-ALADIN with the Lambert Conformal projection. The 0.44° or 50km resolution is
recommended by the CORDEX experiment design and used in the CORDEX-Africa ensemble.

Hereafter, the resolution in kilometers is used unless otherwise specified.

There are two approaches to set up a RCM experiment with simulations at different resolutions.
The first approach is to use the same full domain (including the relaxation zone) for all
simulations at different resolutions. Size of the full domain is defined by the coarsest resolution
in the experiment (200km in our case). A benefit of such experiment setup is a consistent lateral
boundary forcing for all simulations, given the same full domain. However, an unnecessary large
full domain for resolutions finer than 200km (i.e. 100, 50 and 25km) leads to larger RCM
internal variability (IV) compared to simulations at the same resolutions but with a minimum
size full domain. Computational demands at the finer resolutions are also higher in the case of
the large full domain. The second approach is to use different (minimum) full domains for

different resolutions defined only by size of the active domain (the same for all resolutions) and a
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necessary relaxation zone (smaller in km for higher resolution). An advantage of this approach is
less IV and less computational demand for high resolution simulations while a shortcoming is
inconsistent lateral boundary forcing (different size of the full domain). We decided to use the
second approach with the minimum size of the full domain (less IV and computational demand),
although we note that a perfect experiment has to include both approaches, if resources allow.
The setup of the simulations at the four resolutions is identical apart from the timestep (adjusted
to ensure numerical simulation stability) and the size of the full computational domain with the
relaxation zone (see Table 1). The relaxation zone has 8 grid-points in all directions and

increases (in km) at coarser resolution while the interior CORDEX-Africa domain is the same.

As mentioned above, larger size of the computational domain at coarser resolution in our
experiment setup may have a potential impact on the simulated climatology leading to larger IV
developed by the RCMs and weaker constraints on the ERAINT forcing. As a simple test for
domain-dependent RCM IV we perform an additional experiment with RCA4 at 0.88° resolution
taking the full computational domain from the 1.76° RCA4 simulation. Indeed, for the
1981-2010 climatology, seasonal mean precipitation differences between the two experiments
can reach up to 1.25 mm/day (up to 25%) at a few individual grid boxes, often at the edges of the
tropical rain belt, although in general stay below 0.5 mm/day (not shown). Seasonal mean
temperature also differs with up to 1.25°C regionally (not shown). We do not focus on this single
additional sensitivity experiment in the study. A full set of simulations with the same full domain

for all RCMs and resolutions is necessary for robust conclusions.
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Another source of IV in RCMs is related to different initialisation or starting time (e.g.
Lucas-Picher et al., 2008; Sanchez-Gomez and Somot, 2018). We perform two additional
experiments in order to see how different initialisation time impacts the IV in the RCMs. Both
RCA4-v1 and ALADIN at 50km were initialised on 1st January 1980 instead of 1st January
1979 as for all other simulations in the study. It was found that the impact of the different starting
time is much smaller than the impact of the larger domain. For both seasonal mean precipitation
and temperature, differences between the experiments are small over the African continent, in
general, less than 0.5 mm/day for precipitation and 0.25°C for temperature (not shown). Similar
to the domain-dependent sensitivity experiment above, we do not focus on these two additional
initialisation sensitivity experiments in the study. A full investigation of the initialisation-related
RCM IV needs generation of a larger (up to 10 members) ensemble for all RCMs and

resolutions.

We note that in general, both regional models - RCA and HCLIM-ALADIN were developed to
operate at a range of tens of km resolution and their performance at 100 and especially at 200km
may not be optimal. A potential caveat here is that very few RCM physical parameterisations are
automatically scaled to run at very coarse resolution. Thus, RCM deficiencies at the coarser
resolutions may be partly related to the lack of model retuning. We think that such
coarse-resolution simulations are a useful supplement to simulations at a RCM comfortable
resolution zone and help us to understand RCM behaviour without additional,
resolution-dependent tuning. All simulations are conducted without spectral nudging similar to

the CORDEX-Africa RCMs (Nikulin et al., 2012) allowing the RCMs to develop its own

12
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climatology as much as possible. Analysis is done for the CORDEX-Africa domain shown in

Fig. 1.

The difference between a RCM and its driving GCM can, in general, be attributed to three
sources, namely: i) different resolution, ii) different physical formulation and iii) artifacts of the
one-way nesting approach including size of the RCM domain and application of spectral nudging
(e.g. Scinocca et al., 2016). The RCA4 0.88° simulations and the HCLIM-ALADIN 100km one
represent a slight upscaling of ERAINT (about 0.7° or about 77km at the Equator) and we refer
to them as “no added value experiment” (NAVE). No resolution-dependent added value of the
RCMs is expected for these NAVE simulations and all differences between the RCMs and their
driving ERAINT are attributed to different physical formulations and to the artifacts of the one
way nesting. Spectral nudging is not used in our experiment and the one way nesting term is
basically reduced to domain configuration. In contrast, if spectral nudging is used, technical
aspects of the nudging (e.g. which wavelengths should be nudged and at what altitudes) also
contribute to the one way nesting term. In practice, it is not straightforward (if possible at all) to
separate the impact of different physical formulation and artifacts of the one-way nesting
approach. Hereafter, we use “RCM formulation” as a term that includes both RCM physical
formulation and domain-dependent RCM configuration (e.g. size of the full domain).

Table 1. The full domain configuration and time step for the RCA4 and HCLIM-ALADIN
simulations. The full domain includes the 8 grid point relaxation zone.

Experiment name  Horizontal Domain Geographical area Time step
resolution size (deg.) (sec)

(deg./km) (lon x lat)
South, North West, East

RCA4-v* 1.76° 1.76° 66 x 67 -60.5, 55.66 -38.06, 76.34 1200

13
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279

RCA4-v* 0.88° 0.88° 126 x 121 -54.78, 50.82 -33.22, 76.78 1200
RCA4-v* 0.44° 0.44° 222 x 222 -50.16, 47.08 -29.04, 68.20 1200
RCA4-v* 0.22° 0.22° 406 x 422 -48.07, 44.55 -26.95, 62.15 600
HCLIM-ALADIN 200 km 80 x 90 -58.34, 56.71 -46.98, 82.98 1800
200km
HCLIM-ALADIN 100 km 128 x 150 -53.89, 51.70 -37.01, 73.01 1800
100km
HCLIM-ALADIN 50 km 240 x 270 -51.56, 48.98 -35.85, 71.85 1200
50km
HCLIM-ALADIN 25 km 450 x 512 -50.43, 47.73 -33.64, 69.64 600
25km
CORDEX Africa | 0.44° (50 km)
. ” - -~ -4 :
e A
Sl ( T\ |
e ‘ A
" ..

Equator . o

m
0 50 100 250 500 750 1000 1250 1500 1750 2000 2250 2500 3000

Figure 1 Topography (m) for the CORDEX-Africa domain in RCA4 at 50km resolution. Boxes indicate
the four subregions used for spatially averaged analysis: West Africa (WA), East Africa (EA), the
southern Central Africa (CA-S), and eastern southern Africa (SA-E).

2.3 Observations and reanalysis

Observational datasets in Africa, in general, agree well for large-scale climate features but can

deviate substantially at regional and local scales (Fekete et al., 2004; Gruber et al., 2000; Nikulin
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et al., 2012). To take into account the observational uncertainties, we utilize a number of gridded
precipitation datasets. They include three gauged-based datasets: the Global Precipitation
Climatology Centre, GPCC, version 7 (Schneider et al., 2014), the Climate Research Unit
Time-Series, CRU TS, version 3.23 (Harris et al., 2014), and University of Delaware, UDEL,
version 4.01 (Legates and Willmott, 1990). All these three datasets are at 0.5° horizontal
resolution. For the evaluation of precipitation extremes and diurnal cycle simulated by RCMs,
we utilize a satellite-based precipitation dataset from the Tropical Rainfall Measuring Mission,
TRMM 3B42 version 7 (Huffman et al., 2007), which is at 0.25° horizontal resolution and
3-hourly temporal resolution. The TRMM product starts in 1998 and for evaluation of
precipitation extremes and diurnal cycle we use a shorter period (1998-2010) in contrast to
1981-2010 used for evaluation of seasonal means and annual cycle. We also note that the TRMM
3B42-v7 precipitation product provides satellite-based precipitation estimates adjusted by the
GPCC gauge-based precipitation. This means that monthly mean TRMM 3B42 and GPCC
precipitation are almost the same if remapped to the same resolution or averaged over a region.
ERAINT as the driving reanalysis is also used for analysis. In contrast to climate models,
ERAINT precipitation is a short term forecast product and there are several ways to derive
ERAINT precipitation (e.g. different spin-up, base time and forecast steps) that can lead to
different precipitation estimates (Dee et al. 2011). ERAINT precipitation for this study is derived
by the simplest method, without spinup as in some of the previous studies (Dosio et al., 2015;
Moufouma-Okia and Jones, 2015; Nikulin et al., 2012): 3-hourly precipitation uses the base
times 00/12 and forecast steps 3/6/9/12 hours, while daily precipitation uses base times 00/12

and forecast steps of 12 hours. The RCMs and ERAINT represent 3-hourly mean precipitation
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for the 00:00-03:00, 03:00-06:00, ... 21:00-00:00 intervals while TRMM precipitation averages

represent approximately the 22:30-01:30, 01:30-04:30, . . . 19:30-22:30 UTC intervals.

2.4 Methods

The coarsest resolution 200km is used as a reference resolution for spatial maps. The
higher-resolution simulations are aggregated to the 200km grid by the first-order conservative
remapping method (Jones, 1999). In this way we expect that the difference among the aggregated
simulations at common resolution should mainly be caused by the different treatment for
fine-scale processes (Di Luca et al., 2012). For the regional analysis, such as the analysis of
annual cycle, diurnal cycle and daily precipitation intensity, we focus on four subregions,
presenting different climate zones in Africa: West Africa (10°W~10°E, 7.5°N~15°N), East
Africa (30°E~40°E, 15°S~0°S), the southern Central Africa (10°E~25°E, 10°S~0°S), and the
eastern South Africa (20°E~36°E, 35°S~22°S) as defined in Fig. 1. The period 1981-2010 is

used for the analysis in this study, unless otherwise specified.

3 Results and Discussion

3.1 Seasonal mean

In the boreal summer defined here as July-September (JAS), the tropical rain belt (TRB)
associated with the intertropical convergence zone (ITCZ) is positioned to its northernmost
location with the maximum precipitation north of the Equator (Fig. 2a). CRU, UDEL and GPCC
aggregated to the 200km resolution, generally agree well with each other, with only slight local

differences (Fig. 2a-c). ERAINT overestimates precipitation over Central Africa and along the
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Guinea Coast while underestimates it over West Africa, north of the Guinea Coast (Fig. 2d). All
RCAA4-v1 simulations have a pronounced dry bias (Fig. 2e-h) that spatially almost coincides with
the wet bias in ERAINT and increases at coarser resolution (Fig2e-f). RCA4-v4 shows a similar
pattern compared to RCA4-v1 but substantially reduces the dry bias over Central Africa at all
four resolutions (Fig. 2i-1). For both configurations of RCA4, the smallest dry bias is found at the
highest 25km resolution. At the same time, an overestimation of precipitation north of the central
dry-bias region becomes more pronounced, especially for RCA4-v4. HCLIM-ALADIN, in
general, shows some similarities to RCA4 with a pronounced dry bias in West and Central Africa
at 200km that is strongly reduced with increasing resolution. However, a wet bias emerges on the
northern flank of the rain belt at 50 and 25km. For JAS there is a common tendency for both
RCMs to generate more precipitation at higher resolution leading to a reduction of the dry biases
over Central Africa. Such bias reduction may be considered as a resolution-related improvement.
However, the RCM simulations clearly show that the added value of higher resolution can be
region-dependent. An improvement of the simulated precipitation climatology over one region
corresponds to deterioration of the climatology over another region. Moufouma-Okia and Jones
(2015) found a mixed response to resolution in simulated seasonal mean precipitation over West
Africa. Their RCM simulations at 50 and 12km bear a great deal of similarity with each other
while a simulation at 25km shows wetter conditions in the Sahel and drier ones near the coastal
area in the south (see their Fig. 8). In contrast, Panitz et al. (2014) found almost no difference in
seasonal rainfall over West Africa between two RCM simulations at 50 and 25km. We conclude
that for both RCA4 and HCLIM-ALADIN, spatial bias patterns are similar and more related to

model formulation while magnitude of biases are more sensitive to resolution. For example, the
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sign of the bias pattern in our no added value RCM simulations at 100km in JAS (Fig. 2f, j, n) is

almost opposite to the sign of the bias pattern in the driving ERAINT (Fig. 2d).
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Figure 2. GPCC7 mean JAS precipitation for 1981-2010 and differences compared to GPCC?7 in (b-d) the
other gridded observations, (e-h) the RCA4-v1, (i-1) RCA4-v4 and (m-p) HCLIM-ALADIN simulations.

All data sets are aggregated to the coarsest 200km grid.
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In boreal winter (December-February, DJF), the TRB migrates to its most southerly position
covering the latitudes from southern to Central Africa, with the maximum over southern tropical
Africa and Madagascar (Fig. 3a). Similar to JAS, observational uncertainties are generally small
in DJF and there is a pronounced wet bias in ERAINT over Central Africa (Fig. 3d). At 25 and
50km RCA4-v1 has a dipole bias pattern with an underestimation of rainfall over Central Africa
and an overestimation over southern Africa. At 200km there is a pronounced deterioration in the
simulated rainfall: a strong dry bias appears along the eastern coast and Madagascar while the
wet bias is amplified over large parts of southwestern Africa. At 25 and 50km RCA4-v4 shows a
large-scale dipole bias pattern similar in some degree to RCA4-v1. The RCA4-v4 biases are
smaller than the RCA4-v1 ones showing an impact of the re-tuning (reducing mixing in the
boundary layer). The behaviour of RCA4-v4 at coarser resolution is also similar to RCA4-v1. A
similar strong dry bias is emerging along the eastern coast at 200km. However, in contrast to
RCA4-v1, the dry bias over the Democratic Republic of Congo almost completely disappears at
both 100 and 200km. HCLIM-ALADIN simulates almost the same bias pattern at all resolutions,
strongly underestimating rainfall over southeastern Africa and overestimating it over the Guinea
Coast, parts of central Africa and southern Africa. There is a tendency to an increase in
precipitation with higher resolution in HCLIM-ALADIN: the wet biases are amplified and the
dry biases are reduced. Both RCA4 and HCLIM-ALADIN show a common feature -
intensification of the dry bias along the eastern coast of Africa at 200km. Even if both RCMs
have this dry bias in common, there are also differences showing the importance of model

formulation. HCLIM-ALADIN has about the same bias pattern at all four resolutions while the
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372 RCAA4 bias pattern substantially changes across the resolutions. Such resolution dependency in
373 RCA4 may be related to the fact that RCA4 is based on a limited area model and not developed
374 to operate at 100-200km resolution. Contrastingly, HCLIM-ALADIN that is based on a global
375  model shows more consistent results even at 100-200km resolution. This indicates that

376~ HCLIM-ALADIN parameterisations may be better suited to work also at coarser resolution.

377 Although, we also note that the resolution dependency of the RCA4 bias pattern over southern
378  Africa is similar to that found for the CMIP5 GCMs (Munday and Washington, 2018). They

379  show that the GCMs with the coarsest resolution and respectively the lowest topography have the
380  wettest bias over the Kalahari basin and the driest bias over the southeast Africa coast, the

381  Mozambique Channel and Madagascar. Such a bias pattern is related to a smoother barrier to
382  northeasterly moisture transport from the Indian Ocean that penetrates across the high

383 topography of Tanzania and Malawi into subtropical southern Africa. However, in our analysis,
384  HCLIM-ALADIN does not show such resolution-related dependency. In general, similar to JAS,
385  the added value of higher resolution in DJF is region-dependent: with higher resolution biases
386  are reduced over one region but amplified over another.

387
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Figure 3. As Fig. 2, but for DJF.

3.2 Annual cycle

The annual cycle of precipitation over the four subregions is shown in Fig. 4. The observed

annual cycle of precipitation over West Africa depicts the West African Monsoon (WAM)
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rainfall, with maximum precipitation in August (Fig. 4a). All observational datasets (CRU and
UDEL are not shown) and ERAINT agree well with each other with only a small
underestimation of rainfall by ERAINT in June-August. In contrast to the observations,
RCA4-v1 has a bimodal annual cycle with a too early onset of the rainy season (Fig. 4b). The
simulated rainfall is overestimated in March-May, underestimated in July-August during the
active WAM period and is well in line with the observations during the cessation of the WAM
rainfall in September-November. RCA4-v4 shows a similar behaviour but the first rainfall peak
in May is reduced and the annual cycle has a more unimodal shape (Fig. 4c). HCLIM-ALADIN,
in general, shows similar features as both configurations of RCA4, although has more
similarities with RCA4-v4 (Fig. 4d). The too early onset of the rainy season is a common
problem for many RCMs reported by Nikulin et al., (2012). Our results show that this is not
dependent on resolution but instead related to model formulation. Higher resolution reduces the
wet bias during the onset of the rainy season for RCA-v1, has no impact for RCA-v4 and
amplifies the wet bias in HCLIM-ALADIN. Nevertheless, the impact of higher resolution is
more consistent during the rainy season. Increasing resolution tends to increase monsoon rainfall
for both RCMs, resulting in smaller dry biases and a pattern closer to the unimodal one in the
observations. Eastern and Central Africa have a bimodal annual cycle of rainfall with two peaks
around November and May (Fig. 4e,i). GPCC, CRU and UDEL (both not shown) agree well on
the phase and magnitude of the annual cycle for both subregions. ERAINT has a weaker
bimodality overestimating precipitation in December-February over Eastern Africa and all year
round over Central Africa with the largest wet bias during October-April. Both configurations of

RCAA4 fail to reproduce the bimodal annual cycle in Eastern Africa at 200km underestimating
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precipitation all year round and showing a single rainfall peak in December (Fig. 4j,k).
Increasing resolution reduces the dry bias and leads to an improvement in the shape of the annual
cycle. The bimodal shape begins to appear at 100km and becomes much closer to the observation
at 50 and 25km. Despite some mixed dry and wet biases in different seasons, the 25 and 50km
RCAA4 simulations show the best agreement with the observations. In contrast to RCA4,
HCLIM-ALADIN simulates the unimodal annual cycle at all four resolutions and some signs of
bimodality only appear at 25km (Fig. 4h). Similar to RCA4, increasing resolution leads to an
increase in precipitation in HCLIM-ALADIN, although a dry bias is a prominent feature from
November to May in all HCLIM-ALADIN simulations. For Central Africa, the bimodality of the
annual cycle is well reproduced by both RCMs at all resolutions (Fig. 4j-1). HCLIM-ALADIN
maintains similar behavior to that in Eastern Africa, although the difference in precipitation
across the resolutions is small (Fig. 41). On the other hand, for both configurations of RCA4 in
Central Africa, increasing resolution leads to decreasing precipitation during the rainy seasons,
especially in January. Both RCMs strongly reduce the ERAINT wet bias even in the NAVE at
100km. Such improvement indicates that model formulation plays a more important role than
resolution over Central Africa. For the eastern Southern Africa, the annual cycle of precipitation
is unimodal with its maximum during austral summer (Fig. 4m). Similar to West Africa,
uncertainties between observational datasets and reanalysis are small. RCA4 in general
overestimates rainfall during the rainy season with the largest wet bias at 200km. Surprisingly,
the simulated rainfall is almost the same at 25 and 100km while the smallest bias is found at

50km for both RCA4 configurations. HCLIM-ALADIN also overestimates precipitation during
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the rainy season at all four resolutions (Fig. 4p). However, the smallest wet bias in the

HCLIM-ALADIN simulations is found at 50 and 100km.
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Figure 4. Annual cycle of precipitation over the four subregions for 1981-2010 in observations/ERAINT
and as simulated by RCA4 and HCLIM-ALADIN at the four different resolutions. Only land grid boxes
are used for averaging over the subregions. Units are mm/day.
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3.3 Diurnal cycle

The diurnal cycle is a prominent feature of forced atmospheric variability with a strong impact
on regional- and local-scale thermal and hydrological regimes. The diurnal cycle of precipitation
in the tropics is well documented and includes a late afternoon/evening maximum over land (Dai
et al., 2007). However, it is still a common challenge for GCMs (Dai, 2006; e.g. Dai and
Trenberth, 2004; Dirmeyer et al., 2012), RCMs (e.g. Da Rocha et al., 2009; Jeong et al., 2011;
Nikulin et al., 2012) and reanalyses (Nikulin et al., 2012) to accurately represent the diurnal
cycle of precipitation.

The TRMM diurnal cycle of precipitation generally shows an increase of rainfall starting around
noon with maximum reached at around 18:00 local solar time (LST) (Fig. 5). The ERAINT
diurnal cycle is completely out of phase over all subregions with the occurrence of maximum
precipitation intensity around local noon. A common feature of ERAINT is an overestimation of
precipitation around local noon and an underestimation during the rest of the day.
HCLIM-ALADIN shows exactly the same behaviour as ERAINT. Both configurations of RCA4
simulate the diurnal cycle of precipitation more accurately compared to ERAINT and
HCLIM-ALADIN. The phase of the diurnal cycle, in general, is pretty well captured over all
four subregions. In terms of precipitation intensity RCA4 underestimates rainfall from afternoon
to morning over West (Fig. 5b,c) and Central Africa (Fig. 5j,k). Reducing mixing in the
boundary layer results in flattening of the diurnal cycle over West Africa (Fig. 5b, c) while there
are almost no changes over Central Africa (Fig. 5j, k). RCA4-v1 very well simulates the diurnal
cycle over Eastern Africa with only some underestimation in early morning and afternoon (Fig.

5f). RCA4-v4 improves rainfall intensity in early morning but at the same time shows a slightly
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larger underestimation in afternoon than RCA4-v1 (Fig. 5g). Over Southern Africa the RCA4
simulations at 200km are the closest to the observation (Fig. 5n,0) while the simulations at
higher resolutions underestimate the amplitude of the diurnal cycle in the afternoon.

Figure 5 clearly shows that the phase of the diurnal cycle of precipitation in Africa does not
depend on resolution but instead depends on model formulation. Both ERAINT, with the Tiedtke
convection scheme (Tiedtke, 1989), and HCLIM-ALADIN with the Bougeault scheme
(Bougeault, 1985) trigger precipitation too early during the diurnal cycle while both
configurations of RCA4 with the same Kain—Fritsch (KF) scheme (Bechtold et al., 2001)
simulate much more realistic diurnal cycle. It has previously been shown that the KF scheme is
able to reproduce late afternoon rainfall peaks for the regions where moist convection is
governed by the local forcing, for example in the southeast US (Liang, 2004) and in the tropical
South America and Africa (e.g. Bechtold et al., 2004; Da Rocha et al., 2009). Nikulin et al.,
(2012) also found that a subset of RCMs that employ the KF scheme show an improved
representation of the phase of the diurnal cycle in Africa. Our results indicate that the impact of
resolution is only seen in the amplitude of the diurnal cycle. However, such impact is not
homogeneous across the subregions and the RCMs. For HCLIM-ALADIN, increasing resolution
leads to increasing rainfall intensity in all regions but southern Africa. RCA4 shows a similar
behaviour over West Africa, while there is a mixed response over Eastern and Central Africa.
These findings are in line with previous studies investigating resolution effects for GCMs (Covey
et al., 2016; Dirmeyer et al., 2012) and for RCMs (Walther et al., 2013). In coarser-scale models
(e.g >10km), increasing resolution only leads to changes in the magnitude, but not in the phase

of the diurnal cycle of precipitation over land.
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Nevertheless, studies conducting sensitivity experiments using resolutions finer than 10 km do

find improvements in the representation of the phase (Dirmeyer et al., 2012; Sato et al., 2009;

Walther et al., 2013).
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Figure 5. Diurnal cycle of 3-hourly mean precipitation over the four subregions for 1998-2010 in
observations/ERAINT and as simulated by RCA4 and HCLIM-ALADIN at the four different resolutions.
Only land grid boxes are used for averaging over the subregions and only wet days with more than
1mm/day are taken for estimations of the diurnal cycle.
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3.4 Frequency and intensity of daily precipitation

Figure 6 shows the empirical probability density function (PDF) of daily precipitation intensities
over the four subregions. The TRMM?7-0.25 dataset, aggregated to the common 1.76° resolution
(TRMM7-1.76), as expected has a shorter right tail with no precipitation intensities larger than
100 mm day™ and higher frequency for lower intensities less than 25 mm day™ (Fig. 6a,e,i,m).
The two TRMM7 PDFs provide reference bounds for datasets with resolution between 0.25° and
1.76°. However, uncertainties in gridded daily precipitation products in Africa are large (Sylla et
al., 2013a) and we take the TRMM bounds as an observational approximation focusing more on
differences in the simulated PDFs across the four resolutions. Over West, East and central Africa
ERAINT overestimates the frequency of low (< 10 mm day™) and extremely high (>150 mm
day™) intensities while it underestimates the frequency of precipitation intensities in between
(Fig. 6a,e,i), especially over West Africa (Fig. 6a). In southern Africa (Fig. 6m) ERAINT
represents the frequency of daily mean precipitation more accurately compared to the other three
regions but shows almost no events with more than 150 mm day™ in contrast to the observations.
Both RCMs, in general, have the same tendency to generate more higher-intensity precipitation
events with increasing resolution over all four subregions. In West Africa RCA4-v1 strongly
underestimates the frequency of intensities with more than 20 mm day™ at 200, 100 and 50km
(Fig. 6b). A substantial improvement appears only at 25km where the right tail of the PDF
extends up to 250 mm day™, although the frequency of precipitation events from about 50 to 150
mm day™ is still underestimated.

The RCA4-v4 configuration markedly reduces the RCA4-v1 biases and shows more realistic

PDFs at all four resolutions (Fig. 6¢). The RCA4-v4 50km simulation generates precipitation
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events up to 250 mm day™ strongly contrasting to the RCA4-v1 simulation at the same resolution
(no events for more than 100 mm day™). However, RCA4-v4 overestimates frequencies of high
intensities at 25km. Such sharp difference between two configurations of RCA4 at the same
resolution shows that model formulation also plays an important role for accurately reproducing
daily precipitation. Over West Africa all HCLIM-ALADIN simulations overestimates the
frequency of low precipitation intensities (less than 10 mm day™) and underestimates the
frequency of intensities in the range of 10-150 mm day™ (Fig. 6d). Similar to RCA4, higher
resolution leads to more high-intensity precipitation events in the HCLIM-ALADIN simulations.
However, RCA4 and HCLIM-ALADIN behave in a different way with increasing resolution.
Both RCMs change the PDFs by adding more higher-intensity precipitation events extending the
right-hand tail towards higher intensities. In addition, RCA4 also increases the frequency of
medium- and high-intensity events especially going from 50 to 25km. In eastern Africa both
RCAA4 configurations reproduce the observed PDFs almost perfectly (Fig. 6f, g). All four
resolutions are located within the TRMM-1.76 and TRMM-0.25 boundaries and the coarsest and
finest resolutions coincide with the respective TRMM PDFs. Contrastingly, HCLIM-ALADIN
strongly underestimates the frequency of precipitation events with more than 20 mm day™ (Fig.
6h) over eastern Africa and even the highest 25km resolution is located below the coarse
TRMM-1.76 dataset. In central Africa both RCMs overestimate the occurrence of intensities less
than 20 mm day™ (Fig. 6j,k,1), especially HCLIM-ALADIN (Fig. 61) and strongly underestimate
the frequency of higher-intensity events. The PDFs at all four resolutions for both RCMs are
located below the coarsest TRMM-1.76 PDF. We note that observational uncertainties in

precipitation are very large over central Africa and we should be careful in the interpretation of
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Fig. 6j-1. Seasonal mean precipitation, for example, can differ by more than 50% across different
observational datasets (Washington et al., 2013). Additionally, the TRMM dataset is scaled by
the gauge-based GPCC precipitation product while almost no long-term gauges are available in
the region (Nikulin et al., 2012). In southern Africa RCA4 and HCLIM-ALADIN simulate the
precipitation PDFs quite accurately (Fig. 6n-p). An interesting detail is that the 50km
HCLIM-ALADIN simulation shows higher frequency for intensities in the range of 50 to about
200 mm/day than the 25km simulation.

In general, we see the improvement of simulated daily rainfall intensities with increasing
resolution across the African continent. There are many studies showing a similar resolution-
dependent improvement over both complex terrains and flat regions (e.g. Chan et al., 2013;
Huang et al., 2016; Lindstedt et al., 2015; Olsson et al., 2015; Prein et al., 2016; Torma et al.,
2015; Walther et al., 2013). Our results are in agreement with the above studies and confirm

increasing fidelity of simulated daily rainfall intensities with increasing resolution.
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Figure 6. Probability distribution function of daily precipitation intensities pooled over the four subregions
for 1998-2010 in observations/ERAINT and as simulated by RCA4 and HCLIM-ALADIN at the four
different resolutions. TRMM?7-1.76 represents TRMM?7-0.25 aggregated from its native 0.25° resolution
to 1.76°. A base-10 log scale is used for the frequency axis and the first bin (0-1 mm day™) is divided by
10. Only land grid boxes are used for pooling over the subregions and the season is different for the
different regions.
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4 Summary and Conclusion

In this study we have investigated the impact of model formulation and spatial resolution on
simulated precipitation in Africa. A series of sensitivity, ERA-Interim reanalysis-driven
experiments, were conducted by applying two different RCMs (RCA4 and HCLIM-ALADIN) at
four resolutions (about 25, 50, 100 and 200km). The 100km experiment, at resolution a bit
coarser than the driving ERA-Interim reanalysis, by default does not provide any
resolution-dependent added value while such added value is expected for the 50 and 25km
experiments. The 200km experiment is about 3 times upscaling of ERAINT to resolution of
many CMIP5 GCMs and should only be considered as a supplementary experiment since RCMs
do not aim to operate at such coarse resolution. In addition to the two different RCMs, the
standard CORDEX configuration of RCA4 is supplemented by another configuration with
reduced mixing in the boundary layer. Such configuration was developed to deal with a strong
dry bias of RCA4 in Central Africa. Contrasting the two different RCMs and the two different
configurations of the same RCM at the four different resolutions allow us to separate the impact
of model formulation and resolution on simulated rainfall in Africa.

Even if the results often depend on region and season and a clear separation of the impact of
model formulation and resolution is not always straightforward, we found that model
formulation has the primary control over many aspects of the precipitation climatology in Africa.
The 100km NAVE shows that patterns of spatial biases in seasonal mean precipitation are mostly
defined by model formulation. These patterns are very different between the driving ERAINT

and RCMs, sometimes even with opposite signs, exemplified by the two configurations of RCA4
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in JAS (Fig. le-1). Resolution in general controls the magnitude of biases and for both RCA4 and
HCLIM-ALADIN higher resolution usually leads to an increase in precipitation amount while
preserving large-scale bias patterns. A side effect of such an increase in precipitation amount is
that an improvement in one region (e.g. reduction of dry biases) often corresponds to a
deterioration in another region (amplification of wet biases) as for HCLIM-ALADIN in JAS
(Fig. 1m-p). Nevertheless, on average the smallest biases in seasonal means are found for the
simulations at 50 and 25km resolution.

The impact of model formulation and resolution on the annual cycle of precipitation is mixed
and strongly depends on region and season. For example, in both West and Central Africa the
shape of the annual cycle for the 100km NAVE is different from ERAINT. However, the impact
of model formulation is opposite between these two regions. In West Africa both RCMs
deteriorate the ERAINT annual cycle by simulating a too early onset of the rainy season. In
contrast, over Central Africa, both models improve the ERAINT annual cycle by reducing a
strong wet bias and changing the unimodal annual cycle to a bimodal one similar to the
observations. The impact of resolution can also be different. In West and East Africa, higher
resolution (50 and 25km) leads to an improvement in the annual cycle (more realistic shape and
smaller biases). In contrast, over Central Africa, the 25km RCA4 simulations show the largest
biases while the HCLIM-ALADIN simulations at all four resolutions are almost similar. In
general, it is difficult to conclude on a common impact of model formulation and resolution on
the annual cycle.

The phase of the diurnal cycle in Africa is completely controlled by model formulation

(convection scheme) while its amplitude is a function of resolution. Both ERAINT and
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HCLIM-ALADIN show a too early precipitation maximum around noon while RCA4 simulates
a much more realistic diurnal cycle with an evening maximum. Higher resolution does not
change the phase of the diurnal cycle but its amplitude, although the impact of resolution on the
amplitude is mixed across the four subregions and time of the day.

A pronounced and well known impact of higher resolution on daily precipitation intensities is a
more realistic distribution of daily precipitation. Our results also show that higher resolution, in
general, improves the distribution of daily precipitation. This includes reduced overestimation of
the number of days with low precipitation intensities and reduced underestimation of the number
of days with high intensities. The latter results in extending the right-hand tail of the distribution
towards higher intensities similar to observations. This also means that at higher resolutions the
time-mean climate (e.g. seasonal mean and annual cycle) is made up of more realistic
underpinning daily precipitation than at lower resolutions. It is also worth emphasizing that if
low resolution models are not able to simulate high rainfall days then it will be difficult for them
to say anything robust about projected climate changes in high rainfall events. However,
regionally, model formulation can also play an important role in the distribution of daily
precipitation. For example, in West Africa the 50km RCA4-v4 configuration with reduced
mixing in the boundary layer shows a remarkable improvement in the shape of the PDF (Fig. 6¢)
compared to the standard RCA4-v1 configuration at the same resolution (Fig 6b). Moreover, the
RCA4-v4 configuration at 50km shows almost the same PDF as RCA4-v1 at 25km. Such
contrast indicates that for daily precipitation intensities model formulation can have the same

impact as doubled resolution.
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Improvements in simulated precipitation in high-resolution RCMs relative to coarse-scale GCMs
are often attributed as being a resolution-dependent added value of downscaling. Our results
show that for Africa improvements are not always related to higher resolution but also to
different model formulation between the RCMs and their driving reanalysis. A common
framework for quantifying added value of downscaling is to evaluate some aspects of the climate
in high-resolution RCM simulations and in their coarse-resolution driving reanalysis or GCMs
over a historical period (Di Luca et al., 2015; e.g. Hong and Kanamitsu, 2014; Rummukainen,
2016). If the RCM simulations show smaller biases compared to reference observations than the
driving GCMs, one can conclude that RCMs provide an added value and vice versa. However,
such a framework does not separate the impact of different model formulation between RCMs
and their driving GCMs and higher resolution in the RCM simulations. Our results indicate that
improvements in RCM simulations may simply be related to different model formulation and not
necessarily to higher resolution. In general, model formulation related improvements cannot be
considered as an added value of downscaling as such improvements are strongly model
dependent and cannot be generalised. However, such formulation-related and region-specific
improvements from RCMs could in principle be also used in GCMs.

Within the commonly used RCM evaluation framework, e.g. the CORDEX evaluation
experiment, it is not straightforward, if possible at all, to isolate the impact of model formulation
and resolution in RCM simulations. We show that running RCMs at about the same resolution as
a driving reanalysis (e.g. ERAINT at about 80km or ERA5 at about 30km) helps to separate the
impacts of model formulation and higher resolution in dynamical downscaling. We propose that

such a simple additional experiment can be an integral part of the RCM evaluation framework in
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order to elucidate the added value of downscaling. In our study, as the first step, we focus only
on precipitation that has large relevance for climate change impact studies. As the next step, we
foresee similar studies looking also at other variables and especially at processes and drivers
relevant for regional climate.

Moreover, the same NAVE framework can be used for quantifying the added value in
RCM-based future climate projections. For this, one needs to downscale GCMs at their native
resolution in addition to the standard CORDEX resolutions (25 or 50km). The RCM projections
at the native GCM resolution serve as the NAVE in the climate change context. A potential
caveat, already mentioned in our study, is that RCMs are generally developed and tuned to
operate at resolution of tens of km. “Downscaling” a GCM at its native resolution, for example
150 or 200km, may lead to artefacts related to a lack of RCM retuning for coarser resolution.
Nerveless, more and more GCMSs, for example in CMIP6, have resolution finer than 100km that

allows application of the NAVE.
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Code availability

The analysis is done in MATLAB and IDL and codes can be provided by request as they are but
without support on implementing them in another computing environment.
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