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Abstract. Solar Radiation Management (SRM) has been proposed as a means to reduce global warming in spite of high green-

house gas concentrations and to lower the chance of warming-induced tipping points. However, SRM may cause economic

damages, and its feasibility is still uncertain. To investigate the trade-off between these (economic) gains and damages, we

incorporate SRM into a stochastic-dynamic integrated assessment model and perform the first rigorous cost-benefit analysis of

sulphate-based SRM under uncertainty, treating warming-induced climate tipping and SRM failure as stochastic elements. We5

find that within our model SRM has the potential to greatly enhance future welfare and merits being taken seriously as a policy

option. However, if only SRM and no CO2 abatement is used, global warming is not stabilised and will exceed 2K. Therefore,

even if successful, SRM can not replace but only complement CO2 abatement. The optimal policy combines CO2 abatement

and modest SRM and succeeds in keeping global warming below 2K.
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1 Introduction

Despite the Paris agreement target to keep global mean temperature change “well below 2K” in order to prevent “dangerous

climate change” (UNFCCC, 2015), no decisive reduction of CO2 emissions has yet taken place (Le Quéré et al., 2018). This has

sparked renewed interest in the possibility of cooling the climate system by geoengineering (Crutzen, 2006). Among several

suggested approaches, only Solar Radiation Management (SRM), i.e. reflecting part of the incoming solar radiation back into15

space, has the potential to offset the global mean temperature changes projected by 2100 (Keller et al., 2014).

Several SRM techniques have been proposed (Latham et al., 2008; Ahlm et al., 2017; Gabriel et al., 2017; Seneviratne et al.,

2018), although for some of them it is yet unknown whether they will be effective in cooling the planet and whether they will be

technically feasible. The scheme that is most likely to become ripe for employment in the near future is sulphate aerosol-based

SRM (McClellan et al., 2010; Moriyama et al., 2017). The scheme involves injecting precursor gases such as SO2 into the20

stratosphere. This leads to the formation of reflective sulphate aerosols in the lower stratosphere which increase the Earth’s

albedo and cause surface cooling. Such cooling – of about 0.4K over several years (Stowe et al., 1990; Thompson et al., 2009)
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– was observed following the Pinatubo eruption (Stowe et al., 1990; Thompson et al., 2009; Stenchikov et al., 1998; Robock,

2000) which injected 8-10 Mt(S) (megatonnes of sulphur), mainly as SO2, into the stratosphere (Ward, 2009). It is still uncertain

whether SRM can completely eliminate future global warming. High aerosol concentrations lead to faster coagulation, which

reduces albedo and accelerates deposition (Visioni et al., 2017). One study (Kleinschmitt et al., 2018) suggests that SRM

cannot provide a stronger negative radiative forcing than −2W/m2, while others find that sufficiently strong forcing can be5

achieved, albeit at very high injection rates (Niemeyer and Timmreck, 2015; Niemeyer and Schmidt, 2017).

The potential benefits of SRM are obvious: a reduction of global warming and warming-induced damages, and a reduced

transition likelihood of temperature-related climate tipping points (Cai et al., 2016). However, SRM cannot avert all climate

change (Kravitz et al., 2013). In particular, global mean precipitation is expected to decrease (Andrews et al., 2010; MacMartin

and Kravitz, 2016), and the spatial precipitation patterns may change. Ocean acidification will continue unless atmospheric10

CO2 concentrations are reduced (Tjiputra et al., 2015).

The implementation costs of sulphate SRM are estimated to be 2− 10× 109$/Mt of injected gas (McClellan et al., 2010;

Moriyama et al., 2017), which is modest compared to the world GDP of 80× 1012$ (data for 2017, World Bank (2017)).

For comparison, building and installing enough solar cells to meet global energy demand would, at current prices, cost about

2.5×1014$, although prices are decreasing rapidly (Cassedy and Grossman , 2017). However, apart from moral issues (Robock15

et al., 2009), sulphate SRM may have damaging effects on human health (Effiong and Neitzel, 2016) and the environment (Pitari

et al., 2014; Ward, 2009) that are still poorly understood (Irvine et al., 2017). A sudden discontinuation of SRM will cause

rapid warming ("termination shock") to levels dictated by greenhouse gas concentrations (Brovkin et al., 2009; Matthews and

Caldeira, 2007), which could put more stress on ecosystems and societies than a gradual warming (Trisos et al., 2018).

At least two major uncertainties are of great importance for cost-benefit analysis of SRM: the possibility of warming-20

induced tipping behaviour (whose likelihood is reduced by SRM) and the possibility of SRM failure, either by inefficiency

(Kleinschmitt et al., 2018) or because (unforseen) damaging side-effects force one to abandon it (Robock et al., 2009). In this

study we use a stochastic version of the integrated assessment model DICE (Nordhaus, 1992) to compute the (economically)

optimal policy including CO2 abatement and SRM.

Here we build on earlier studies, which often included uncertainty only through parameter sensitivity analysis (Goes et al.,25

2011; Bahn et al., 2015) or as a simplified two-step decision problem (Moreno-Cruz and Keith, 2013). Two recent studies

(Heutel et al., 2016, 2018) include climate tipping behaviour and parameter uncertainty in DICE but employ a simple 4-

step look-ahead scheme that is unsuitable for long-term optimisation. We employ dynamic programming (Bellman, 1957) to

perform the first rigorous cost-benefit analysis of SRM under uncertainty, albeit with a simple model.

The DICE model has been criticised for being overly simple (Pindyck, 2017). In particular, it employs a very aggregated30

damage function for assessing the material and immaterial cost of climate change (see Nordhaus and Boyer (2000) for the

calibration), which ignores irreversibility of damages and delayed damage (e.g. slow melt of ice caps) and which in later

model versions (Nordhaus, 2018) has only received minor updates (Auffhammer, 2018), despite new studies on the subject

(IPCC WG2, 2014). Neither does it include climate adaptation. In addition, DICE has an overly simplified energy sector with

exogenous costs for CO2 reduction and does not include negative emission techniques. Finally, assuming only one global35
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"social planner", it disregards the possibility of conflict or imperfect collaboration. Despite these shortcomings, we believe

DICE to be a useful testbed for exploratory studies, which should serve as a first orientation and be expanded using more

detailed models.

The paper is organised as follows: In Sect. 2.1 we present our model GeoDICE, a stochastic DICE model including Geo-

engineering, and in Sect. 2.3, we describe the scenarios employed. The results are presented in Sect. 3.1 (deterministic cases)5

and Sect. 3.2 - 3.3 (stochastic cases), with a sensitivity analysis in Sect. 3.5. A summary and discussion is presented in Sect. 4.

2 Methods

2.1 GeoDICE: a stochastic DICE model including Geoengineering

Our code is based on Cai et al. (2016), which in turn combines the 2013 version of DICE (Nordhaus, 1992, 2018) and the DSICE

framework (Cai et al., 2012) for stochastic treatment of DICE. Here, we include SRM as an additional policy option (together10

with CO2 abatement). To this end, we incorporate the cooling effect, implementation costs, and environmental damages of

SRM into DSICE. A summary of the model parameters and their standard values is given in Table 1.

2.1.1 SRM and Radiative Forcing

To the radiative forcing equation, we add a contribution that depends sublinearly on the sulphur injection rate (Niemeyer and

Timmreck, 2015). The total radiative forcing F takes the form15

F = αCO2 ln((CPI +C)/CPI) +Fother − η αSO2× exp[−(βSO2/IS)γSO2 ]≡ FC +Fother +FS . (1)

The first term FC describes the contribution of the increase C in atmospheric CO2 concentration above the preindustrial

value CPI and is the same as in DICE. The second term Fother represents the effects of other greenhouse gases (eg. CH4,

N2O, halogen compounds) and industrial aerosol. In DICE, this term is prescribed. However, it seems unlikely that a society

that makes great efforts towards abating CO2 emissions does nothing towards combatting other pollutants.20

Ciais et al. (2013) quantify various forcing agents, some of which we believe can be more easily abated than others. In

particular, we assume that roughly 30% of the current CH4 emissions (contributions related to fossil fuel production, e.g.

leakage, and biomass burning), 10% of the N2O emissions (likewise from industry and fossil fuel production) and 100% of

the emission of halogen compounds could be abated, whereas 70% of the CH4 emissions (natural sources and agriculture)

and 90% of N2O emissions (agriculture) cannot be abated. Tropospheric ozone, another important greenhouse gas, is formed25

in chemical reactions with pollutants which likewise can be partially abated. As a rough estimate, about 50% of the radiative

forcing stemming from non-CO2 greenhouse gasses could be abated. For simplicity, we assume that this also holds for (mainly

cooling) industrial aerosol. Thus we put

Fother = Fother,DICE × (1−κµ),
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Symbol Meaning Value

αCO2 Effect CO2 on radiative forcing; see eq. 1 5.35W/m2

αSO2 scales sulphate radiative forcing; see eq. 1 65W/m2

βSO2 scales sulphate radiative forcing; see eq. 1 2246Mt(S)/yr

γSO2 scales sulphate radiative forcing; see eq. 1 0.23

η sulphate rad. forcing correction; see eq. 1 0.742

b1 strength temperature response; see eq. 4 0.126 K
W/m2

b2 strength temperature response; see eq. 4 0.0254 K
W/m2

τT1 time scale temperature response; see eq. 4 1.89yr

τT2 time scale temperature response; see eq. 4 13.6yr

pT precipitation dependence on temp.; see eq. 6 0.0806(mm/day)/K

pC precipitation dependence on CO2; see eq. 6 −0.0229(mm/day)/(W/m2)

pS precipitation dependence on SRM; see eq. 6 −0.0077(mm/day)/(W/m2)

ψC econ. damage from CO2 conc. ; see eq. 9 1.703× 10−3K−2

ψT econ. damage from warming; see eq. 9 0.4(mm/day)−2

ψP econ. damage from precip. change; see eq. 9 3.31× 10−8(ppmv)−2

ψS econ. damage from SRM; see eq. 9 9.27× 10−5(Mt(S))−2

ψfail econ. damage from SRM failure; see sect. 3.3 0.01/Mt(S)

Ω remaining fraction econ. output after tipping; see eq. 7 0.9

λS implementation cost SRM; see eq. 7 14× 109$/Mt(S)

λ0 cost of abatement; see eq. 8 2.15

λ1 cost of abatement; see eq. 8 0.418$/kg(C)

λ2 cost of abatement; see eq. 8 2.0

λ3 cost of abatement; see eq. 8 0.005yr−1

κtipp tipping probability per year and K warming; see eq. 10 0.00255/yr/K

Ttipp temperature threshold for (damage) tipping; see eq. 10 2K

Talb temperature threshold for albedo tipping; see eq. 11 1.5K

αalb radiative forcing strength for albedo tipping; see eq. 11 1.07W/m2/K

κfail probability of SRM failure per year; see sect. 2.1.4 0.00056/yr

ρ pure rate of time preference (constant in time); see eq. 12 0.015/yr

δK rate of capital depreciation; see Nordhaus (1992) 0.065/yr

Table 1. Model parameters of the GeoDICE model related to the representation of SRM. The carbon model parameters can be found in Table

5 of Joos et al. (2013), and others in DICE/DSICE (Cai et al., 2012).
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where κ= 0.5, µ is the abatement of CO2, i.e. the fraction of CO2 emissions avoided, and Fother,DICE is the prescribed

contribution used in DICE.

The third term FS describes the influence of sulphate SRM. The sulphate injection leads to a (negative) radiative forcing at

the top of the atmosphere which is given by αSO2× exp[(−βSO2/IS)γSO2 ], as found in an atmospheric chemistry modelling

study (Niemeyer and Timmreck, 2015), where IS is the annual injection rate of sulphur into the stratosphere (measured in5

Mt(S)/year).To achieve a modest radiative forcing of−2W/m2 at the Top Of the Atmosphere (TOA), an annual injection of 10

Megatonnes of sulphur (Mt(S)), equivalent to one Pinatubo eruption, is required, whereas to achieve a forcing of −8.5W/m2

(offsetting the greenhouse gas forcing projected for 2100 under the RCP8.5 scenario), 100Mt(S)/year is needed. However,

due to fast adjustment processes, the TOA radiative forcing is not sufficient to predict the impact on global mean surface

temperature (Kravitz et al., 2015). For example, it is found (MacMartin and Kravitz, 2016) that to compensate 7.42W/m210

forcing from quadrupling CO2, the solar constant would have to be reduced by (4.2± 0.6)%, which amounts to 10.1W/m2

TOA (taking into account the Earth’s albedo). In other words, the top of atmosphere radiative forcing arising from changes in

the solar constant is less efficient than forcing caused by CO2 by a factor of η = 0.742. We assume here that sulphate SRM has

the same efficiency factor η as solar dimming, since both processes take place above the troposphere, and multiply the sulphate

SRM contribution to F by this factor in eq. (1). Note that there is still considerable uncertainty about the forcing efficiency15

of SRM. For example, Tilmes et al. (2018) find higher efficiencies and an almost linear relationship for injection rates up

to 25Mt(S)/yr, while Kleinschmitt et al. (2018) suggests that the maximal radiative forcing achievable with sulphate SRM

might be limited to 2W/m2. This possibility that SRM is much less efficient is qualitatively included in the Realistic Storyline

scenario described below, which captures that SRM may never work at all. For numerical reasons, we impose an upper bound

of IS ≤ 100Mt(S)/yr on the injection rates, i.e. we do not allow them to exceed≈ 10 Pinatubo eruptions per year. This upper20

limit is a much higher injection rate than considered in most detailed studies of the environmental and climate effects of SRM.

The limit is never reached except in the somewhat extreme SRM-only scenario (see sect. 2.3).

2.1.2 Carbon cycle and Climate response

We replace the carbon-climate part of DSICE by an emulator of full-fledged climate model simulations (Aengenheyster et al.,

2018; MacMartin and Kravitz, 2016). We also include global mean precipitation as a proxy for the residual climate change25

(changes remaining if SRM is employed to keep global mean temperature constant).

As in DICE, CO2 can be emitted by fossil fuel combustion and landuse change. The former contribution is calculated within

our model, the latter is prescribed externally, using the same values as DICE. We model carbon concentrations based on the

Green’s function found by Joos et al. (2013).

Current CO2 concentrations C(t) (above pre-industrial) can be computed from emissions E at all previous times t′ < t:30

C(t) =

∫
t′<t

GC(t− t′)E(t′)dt′, (2)

where G(t− t′) is the Green’s function determining how a unit emission pulse contributes to the concentrations t− t′ years

later, and E(t′) an emission pulse at time t′. Following Joos et al. (2013), GC(s) can be represented as a sum of exponentials,
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GC(s) = a0 +
∑N
n=1 ase

−s/τn , with n= 3, and the temporal evolution of C can be rewritten as

C(t) = C0(t) +

N∑
n=1

Cn(t), (3a)

dC0/dt= a0E, (3b)

dCn/dt= anE−
1

τn
Cn. (3c)

Here a0 represents the fraction of carbon emissions staying permanently in the atmosphere. The model parameters an, τn were5

obtained from a multi-model study (Joos et al. (2013), see their Table 5) and thus represent a best estimate for the behaviour of

the carbon cycle, provided that nonlinear effects (e.g. saturation of carbon sinks with increasing CO2 concentrations) are small.

The initial values are C0 = 39.01ppmv, C1 = 35.84ppmv, C2 = 21.74ppmv, C3 = 4.14ppmv, since our model does not start

at pre-industrial times (1765) but in 2005.

For the global mean temperature change (relative to pre-industrial), we follow the same approach, fitting the temperature10

response to a 1-year pulse of radiative forcing obtained by a multi-model study (MacMartin and Kravitz, 2016) onto a sum of

exponentials, obtaining

T = T1 +T2 (4a)

dTn(t)/dt= bnF −
1

τTn
Tn (4b)

where F is the radiative forcing from eq. (1) and other parameters are in Table 1. For the temperature response to a radiative15

forcing pulse, there is no permanent response T0. The initial values (year 2005) are T1 = 0.466K and T2 = 0.436K.

The response of global mean precipitation P to CO2-induced or SRM-induced radiative forcing is based on MacMartin and

Kravitz (2016) and can be split into a slower temperature-driven increase of 2.5%/K and an instantaneous contribution due

to CO2 and SRM (Andrews et al., 2010). In particular, increased CO2 concentrations cause additional absorption of longwave

radiation, warming the atmosphere and causing a more stable stratification, which suppresses precipitation, while surface20

warming enhances precipitation. For a gradual increase in CO2 and zero SRM, the temperature-driven effect dominates over

the instantaneous contribution, leading to a net moistening. For SRM, the instantaneous contribution is much weaker than for

CO2. More specifically, the response GfP of the global mean precipitation P to a one-year-long 1W/m2 pulse of radiative

forcing from agent f (f stands for CO2 or a change in the solar constant) in year 0, obtained by MacMartin and Kravitz (2016),

can be expressed as25

GfP (t) = bfδt,0 + aGT (t), (5)

where GT is the temperature response to a 1W/m2 forcing and δt,0 = 1 if t= 0 and 0 else. This means that in the year of

the forcing pulse, the fast response bf plays a role, whereas in later years, the precipitation response is determined by the

temperature response. As before, we use the result for reduction in the solar constant as a proxy for sulphate SRM. By lack

of data, the fast response to other forcing agents constituting Fother is ignored. With these results, the change in global mean30
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precipitation w.r.t pre-industral can be written as

P (t) = pTT (t) + pCFC(t) + pSFS(t). (6)

where pTT is the ‘slow’ precipitation change mediated by warming, whereas pCFC and pSFS are the instantaneous responses,

expressed in terms of the radiative forcings F . Throughout our study, FC > 0 (CO2 leads to a positive radiative forcing) and

FS < 0 (SRM is used to lower the radiative forcing). As explained above, pT > 0 and pC < pS < 0. Therefore, if SRM were5

employed such as to cancel the global mean temperature change (FS =−FC −Fother, hence T = 0), the slow responses

stemming from temperature change would cancel and the fast response to CO2 would dominate, reducing P .

We use P as a proxy for residual climate change, i.e. for all effects which remain even if global mean temperature changes

are cancelled by SRM.

2.1.3 The Damage function and SRM costs10

As in DICE (Nordhaus, 1992), the gross domestic product (GDP) Ȳ is diminished by climate-related damage and by expen-

ditures for climate policy (CO2 abatement and SRM implementation). Including these losses, we retain for the net output:

Y = Ω
1

1 +D
ΛȲ −λSIS . (7)

Here, Ω describes damage due to tipping points (see sect. 2.1.4). If tipping has occurred, then Ω = 0.9 (reducing the economic15

output), else Ω = 1 (output not reduced). D ≥ 0 describes non-tipping damage (discussed below). Λ is a factor describing the

abatement costs (Λ< 1 in case of abatement, and Λ = 1 in case of no abatement) taken over from DICE-2013 (Nordhaus and

Boyer, 2000; Nordhaus, 2018):

Λ(µ) = 1−Λ0(t)µλ0 (8a)

Λ0(t) =
λ1σ(t)

λ2
[λ2− 1 + exp(−λ3t)] (8b)20

where σ(t) is the carbon intensity (amount of carbon released per dollar production, in absence of abatement), and λi are

constants. Since CO2 emission is proportional to Ȳ , so are abatement costs (the more economic output, the more CO2 emissions

and hence the higher the costs of eliminating a fraction µ of these emissions). λSIS is the implementation cost of SRM, which

we assume to be linear in the injection rate IS and independent of Ȳ . Two studies (McClellan et al., 2010; Moriyama et al.,

2017) suggest that the costs for lifting gasses to 20km height are of the order of 2− 10× 109$/Mt of injected gas. Taking25

an intermediate value of 7× 109$/Mt, and assuming that the gas used is SO2 (which has twice the molecular weight of

elementary S), this amounts to 14× 109$/Mt(S). Note that H2S would have a lower weight per mole of S, which might

reduce transportation cost. However, H2S is also more poisonous and thus potentially harder to handle. To be conservative, we

assumed the costlier solution.

While the original DICE model assumes that climate-induced damage D scales with the square of temperature change T30

(D(T ) = ψ0T
2 with constant ψ0), we keep the quadratic structure but split the damage function into three climate-related
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Figure 1. Graphical representation of the damage function. The black thin arrows represent contributions to the damage function, while grey

arrows depict how the climate variables influence each other (+ and - stand for increasing and decreasing effects, respectively; see eq. (4) and

(6)). The percentages for C, T , and P are based on the contributions of these variables for the standard case of 2.5K warming in equilibrium

and in absence of SRM. In this standard case, our damage equals that of the DSICE model (Cai et al., 2012). The sulphur injections that

would be needed to offset 2.5K warming cause a direct damage of 20% of the standard damage function.

contributions and one contribution representing the damage inflicted by sulphate SRM (see fig. 1):

D(T,P,C,IS) = ψTT
2 +ψPP

2 +ψCC
2 +ψSI

2
S (9)

where T , P , C are the changes (w.r.t. pre-industrial) of global mean temperature, global mean precipitation and atmospheric

CO2 concentration, respectively, and IS the sulphur injection rate in Mt(S)/yr. Note that while SRM counteracts the effect

of CO2 on both temperature and precipitation, the relative influence of the forcing agents on both variables differs, so that it5

is not possible to compensate the warming and precipitation change at the same time. Both positive and negative precipitation

changes P are considered damaging, because both require ecosystems and humanity to adapt. An increase in atmospheric

CO2 may not be damaging in itself, or even benefit plant growth (Ciais et al., 2013); but we consider C as a (rough) proxy

for ocean acidification, which we do not model explicitly. The coefficients ψ (values: see Table 1) are chosen such that for

the standard case of 2.5K warming in equilibrium without SRM, our total damage equals that of the original DICE model,10

and the contributions by T , P , and C are 60%, 30%, and 10%, respectively. The standard case was determined by running

the climate module of GeoDICE to equilibrium with constant greenhouse gas concentrations, such as to obtain T = 2.5K.

Following Aengenheyster et al. (2018), and approximately in agreement with RCP scenarios, it was hereby assumed that other

forcing agents (other greenhouse gases and aerosols constituting Fother) contribute 14% of the total radiative forcing. These
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other forcing agents are not assumed to cause direct damage. The damages associated with the annual sulphur injections needed

to offset a warming of 2.5K are assumed to equal 20% of the standard case damage.

Previous studies (Heutel et al., 2016, 2018) likewise split the damage function, but without including residual climate change

(P ). Heutel et al. (2018) assume oceanic and atmospheric CO2 to cause 10% of the the total damage each (20% in total).

However, atmospheric CO2 is not known to cause substantial direct damage and may even be beneficial to plant growth (Ciais5

et al., 2013), while oceanic CO2 leads to ocean acidification. As mentioned, we do not explicitly compute oceanic CO2, but

reduce total CO2-related damage to 10% because half of the total damage in Heutel et al. (2018) seems in fact small. The

splitting between T and P is somewhat arbitrary, but is based on the rough assumption that, although precipitation changes can

have substantial impact, much of the damage is either determined by temperature (especially sea level rise, a major contributor)

or at least strongly influenced by it (e.g. hurricanes), hence ψT > ψP . The damage related to SRM depends on the injection10

rate, not on the percentage of compensated greenhouse gas forcing as was (somewhat unrealistically) assumed in earlier studies

(Heutel et al., 2016, 2018). The choice of ψS is again somewhat arbitrary, as virtually no data on the economic damage of SRM

is available. However, our main conclusions are unaffected by the exact choice of the parameters ψ (see Sect. 3.5).

2.1.4 Tipping points and SRM failure

Climate change may not only lead to smooth and predictable damages, but also induce low-probability, high-impact, irreversible15

events such as a collapse of ice sheets (Cai et al., 2015, 2016). The chance of such tipping behaviour is thought to increase

with temperature. We take tipping into account in a stylised way, assuming that there is one tipping event that, once activated,

reduces GDP by 10% for all subsequent time steps (i.e. Ω = 0.9 in eq. (7)). The likelihood of tipping obeys

Ltipp =

0 T < Ttipp

(T −Ttipp)×κtipp T > Ttipp

, (10)

i.e., it is zero if the global mean temperature change T < Ttipp = 2K, but increases linearly with warming above 2K. While20

in the real climate system a sharp threshold might not exist, this choice reflects ‘political reality’, in which policy makers set

thresholds for ‘dangerous’ climate change to be avoided. The constant κtipp is chosen such that in a scenario where the policy

maker uses only abatement and remains unaware of possible tipping behaviour, the probability of tipping within 400 years is

50%. This order of magnitude of the likelihood and damage of tipping is consistent with earlier studies (Cai et al., 2016).

We also take into account the possibility that SRM has to be abolished. While possible reasons remain speculative at this25

point, it is not inconceivable that SRM has an unexpected destructive side effect, such as a massive deterioration of the ozone

layer. We model this by assuming that each year, there is a probability κfail that SRM may not be applied anymore in the future.

The cumulative probability of SRM failure over 400 years is 20%. Failure is assumed irrevocable; once failed, SRM remains

unavailable forever. In the basic scenarios (see sect. 2.3), we include no economic damage related to SRM failure, because

humanity is optimistically assumed to realise such dangers and abandon SRM in time (see however the Realistic Storyline30

scenario in sect. 3.3 and the high SRM failure damage scenario in sect. 3.4).
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Finally, in the Albedo Tipping Scenario (see sect. 3.4), we replace the damage tipping point described above by a tipping

point which causes an additional radiative forcing (thought of as being due to temperature-driven albedo changes), loosely

following Lemoine and Traeger (2014). The forcing obeys

Falb = αalbmax(T −Talb,0) (11)

i.e., a positive, temperature-dependent forcing occurs if the tipping point is activated and if T exceeds the threshold Talb =5

1.5K. The tipping probability obeys eq. (10) except that the threshold Ttipp is replaced by Talb. Note that this tipping point is

reversible in the sense that Falb can decrease again if T decreases.

2.2 Optimisation and Performance Measures

As in DICE, we assume that all decisions are made by a single policy maker who aims to optimise the welfare of the (homoge-

neous) world population. As in DICE, welfare depends entirely on consumption. The economic output is spent on investment10

I = rY and global consumption Lc= Y − I where r is the saving rate, and L and c are the world population and per capita

consumption, respectively. We assume a fixed saving rate of r = 22%. The utility u (which can be thought of as the current

"happiness" of the world population) depends on c: u= L(c1−γ − 1)/(1− γ) with γ = 2 and the quantity to be maximised is

the expectation value E(W ) of the welfare W (the time-integrated, discounted utility):

W =
∑
t

u(t)e−ρt (12)15

where t is (discrete) time and ρ the rate of pure time preference. The greater ρ, the less does the far future count towards W .

The morally correct value of ρ has been fiercely discussed (Stern et al., 2007; Lilley, 2012; Ackerman, 2007). Here, we will not

join the ethical debate on the ‘correct’ value, but use the standard value of 1.5% and perform a sensitivity study with ρ= 0.5

(see Sect. 3.5).

The decision variables are the amount of CO2 abatement µ (the fraction of CO2 avoided) and the sulphur injection rate20

IS . The model is integrated in yearly time steps, but the decision variables µ and IS are changed only once a decade to save

computational effort. The "policy" (sequence of values for µ and IS) is optimised such as to maximise the expected welfare

E(W ) over a time horizon till 2400, though the far future is heavily discounted. The optimisation is performed using Dynamic

Programming (see appendix). Once an optimal policy is found, it is evaluated by running an ensemble of 5000 members with

this policy and Monte-Carlo realisations of the stochastic elements (climate tipping and SRM failure). The best policy is the25

one yielding the highest expected welfare E(W ) . For easier comparison, we define a performance measure based on the

improvement of W under policy π with respect to a no-action policy (µ= 0, IS = 0):

ζ(π) = 100%× Wπ −W0

WAD −W0
(13)

where Wπ , W0, and WAD are the expectation values over the Monte-Carlo ensemble of the welfare associated with policy π,

the no-action case, and the optimal policy for the deterministic Abatement-only case (the policy that would be optimal if the30
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decision maker may only use abatement, and no climate tipping occurs), respectively. By construction, the relative performance

is 100% for Abatement-only in the deterministic case.

Although the objective for the optimisation is the expectation value of the welfare, it is also interesting to investigate the

range of possible welfare outcomes, especially the worst (or at least relatively bad) case scenario. Hence we present two

additional performance measures, based on the 10th and 90th percentile of the welfare Wπ . Similar to eq. (13) we define5

ζX(π), the X-percentile relative performance of a policy π, as

ζX(π) = 100%× Wπ,X −W0

WAD −W0
(14)

where Wπ,X is the Xth percentile of the welfare (discounted cumulated utility) for policy π. Note that WAD and W0 are still

the mean (i.e. not percentiles) welfare associated with the optimal policy for the deterministic Abatement-only case, and the

no action case, respectively.10

2.3 Scenarios

In Sect. 3.1 - 3.2 we first consider three stylised policy scenarios. The first is Abatement-only, in which the decision maker is

allowed to use CO2 abatement but no SRM. The second is SRM-only, in which the decision maker uses only SRM, until an

SRM failure occurs, after which only abatement may be used. This scenario represents a society which does not reduce CO2

emissions but relies entirely on SRM (until it fails). The third is Abatement+SRM, wherein the decision maker can use both15

Abatement and SRM, unless SRM fails, after which only abatement is used. A no-policy scenario with neither abatement nor

SRM serves as benchmark for performance comparison (see eq. (14)). These three standard scenarios are first discussed in a

deterministic setting (Sect. 3.1), i.e. in absence of climate tipping and SRM failure, before addressing them in the full model

with uncertainty (Sect. 3.2).

While the previous stylised scenarios serve to isolate specific effects, we also present a more Realistic Storyline (see20

Sect. 3.3) which allows for the fact that it may take time to develop SRM technology, generate a legal framework and public

support, and evaluate associated risks. Also, all these proceses may fail or the effectiveness of SRM might be found too low.

Therefore we assume that SRM will become possible only in 2055, and only at 30% probability. To be precise, at each time

step until 2055, there is an equal probability that humanity discovers that SRM is impracticable. In the first decade where SRM

is allowed, there is a 20% probability of SRM failure; in the second decade, 10%; in the third decade 5% and after that 1%25

per decade, i.e. after some decades of testing, failure becomes less likely. In this scenario, we also investigate the effect of a

damage in case of SRM failure (‘termination shock’): SRM failure is accompanied by a one-time reduction of the GDP by a

factor 1−ψfailIS where IS is the injection rate in Mt(S)/yr and ψfail is given in Table 1.

11



a) b)

c) d)

Figure 1: deterministic

FIG4 halen we ook uit vorig paper (realistic storyline)

2

Figure 2. Optimal policy and climate model results for the three stylised scenarios in the deterministic setting. a) Abatement (fraction of CO2

emissions avoided), b) SRM (Mt(S)/yr), c) atmospheric CO2 concentration in ppmv, d) global mean temperature above pre-industrial (K).

The blue dashed line represents the Abatement-only scenario, yellow dash-dotted: SRM-only, solid green: Abatement + SRM, red dotted

(only plot c and d): no climate action (i.e. neither abatement nor SRM).
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Policy ζ peak SRM Ab. 50% Ab.90% SCC

Abatement-only 100% / 2114 2212 35

SRM-only 186% * / / 21

Abatement+SRM 238% 35.1 2134 2243 20
* SRM does not peak, but keeps increasing until the upper limit of 100Mt(S)/yr.

/ = Not applicable

Table 2. Comparison of policies in the deterministic setting (no tipping, no SRM failure). Abatement-only means that no SRM is used,

SRM-only means that no abatement is used (unless SRM fails; see text), and in Abatement+SRM both are used. The performance ζ (see

eq. (13)) is a measure of the increase in expected cumulated discounted utility w.r.t. the no-action scenario, and is normalised such as to

yield 100% for Abatement-only. The column ‘peak SRM’ contains the highest SRM values (in Mt(S)/yr) over all time steps. ‘Ab 50%’ and

‘Ab 99%’ show the year in which the abatement reaches 50% and 99%, respectively. SCC is the social cost of carbon in the first time step

(measured in $(2005)/t(C)).

3 Results

3.1 The deterministic case

As a reference, we first consider the deterministic case, i.e. without SRM failure and tipping points, in the three stylised

scenarios (see Fig. 2 and Table 2). Allowing SRM in addition to abatement delays abatement by 2-3 decades, but does not

replace it (Fig. 2a). CO2 concentrations in Abatement+SRM (Fig. 2c) peak slightly later than in Abatement-only and reach5

higher values (875ppmv instead of 741ppmv). SRM helps to reduce global warming considerably: The global mean temperature

change T peaks at 1.6K for Abatement+SRM, but at 3.1K for Abatement-only (Fig. 2d). SRM slightly deceases towards the end

of the simulation, when CO2 concentration also goes down. This illustrates the potential use of SRM as a transition technology,

especially under ambitious abatement: SRM can be used for a limited time in modest strength to cut off a warming overshoot.

In SRM-only, CO2 concentrations reach 2000ppmv in 2260 and continue to increase (Fig. 2c). Note that currently known10

fossil fuel reserves are insufficient to generate this much carbon, but it is not impossible that fracking and newly discovered

coal deposits will lead to sufficient fuel resources (Cassedy and Grossman , 2017). The temperature increase T continues to

rise, reaching 5.4K in 2400 (Fig. 2d), although it is lower than in the no-action case (neither SRM nor abatement). Due to the

sub-linear increase of the radiative forcing with SRM, very SO2 high injection rates would be needed to stabilise T with SRM-

only, so that the damage related to sulphate injection outweighs the climate damages. Compared to SRM-only, considerably15

less SRM is needed in Abatement+SRM, namely≈ 35Mt(S)/year (Fig. 2b; 3−4 Pinatubo eruptions per year), yet T remains

much lower. This suggests that abatement is required in order to achieve long-term temperature stabilisation.

The relative performance ζ(π) for SRM-only and Abatement+SRM, becomes 186% and 238%, respectively (see Table 2).

(By construction, ζ = 100% for Abatement-only in the deterministic setting.) The reason for the better performance of SRM-

only compared to Abatement-only is that SRM-only yields lower temperatures and a higher utility in the first two centuries,20
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Policy ζ ζ10 ζ90 SRM fail Tipping peak SRM Ab. 50% Ab.90% SCC

No action 0% / 96.2% / / / 45

Abatement-only (det. policy**) 100% / 49.5% / 2114 2212 42

Abatement-only 105% 77% 121% / 37.8% / 2095 2215 41

SRM-only 181% 179% 185% 19.8% 60.96% * / / 23

Abatement + SRM 219% 220% 223% 20.2% 6.2% 35.0 2139 2242 20

Realistic Storyline 125% 78% 190% 79.9% 30.1% 31.4 2106 2234 37
* SRM does not peak, but keeps increasing until the upper limit of 100Mt(S)/yr.

** Tipping can occur, but the policy maker ignores this and chooses the policy which would be optimal in the deterministic case.

/ = Not applicable

Table 3. Comparison of policies in the stochastic setting, i.e. including climate tipping and SRM failure. No action means that neither

abatement nor SRM are used; other scenarios are explained in Sect. 2.3. The perfomance measures ζ, ζ10 and ζ90 are given in eq. (13) and

eq. (14). The columns ‘SRM fail’ and ‘Tipping’ show the probability that SRM failure or climate tipping occurs before 2415. The column

‘peak SRM’ contains the highest SRM value (in Mt(S)/yr) over all time steps and over all ensemble members. This corresponds to members

in which no SRM failure or climate tipping occurred, at least before the time of the SRM peak. ‘Ab 50%’ and ‘Ab 99%’ show the year in

which the abatement reaches 50% and 99%, respectively. SCC is the social cost of carbon in the first time step (measured in $(2005)/t(C)).

which contribute most to the cumulative utility due to discounting. In addition, postponing damage is beneficial as it allows

more time for accumulating capital.

3.2 The effect of uncertainties

Next, we include the stochastic elements, temperature-induced tipping and SRM failure, and determine again the optimal

policies for each scenario, prior to evaluating the optimal policy by means of a Monte-Carlo ensemble (see Sect. 2.2). In5

Fig. 3b - l, we plot the policy (abatement and SRM) carbon concentration and temperature for the three stylised scenarios. The

plots depict some sample paths of individual Monte-Carlo runs (thin blue lines), the range of possible outcomes (shading) and

the ensemble mean (red line). For comparison, the results from the deterministic case (compare Fig. 2) are also plotted (blue

dashed lines).

In the Abatement-only scenario, the danger of tipping initially leads to higher abatement (Fig. 3d) than in the deterministic10

case, although the temperature is not kept below the 2K threshold (see Fig. 3j). If tipping occurs, the abatement decreases

again, as there is no further tipping point to be avoided. (This effect is caused by having a single tipping point which, once

activated, does not react to system changes. Compare the Albedo tipping point in sect. 3.4.) The relative performance is 105%

(see Table 3, row 3), i.e. it slightly improves when the decision maker takes tipping into account (compare Table 3, row 2).

Recall that the reference scenario for WAD uses the policy that would be optimal in absence of tipping, i.e. the policy maker15

ignores climate tipping.

14



a) Tipping probability b) SRM-ONLY: c) ABATEMENT+SRM:

d) ABATEMENT-ONLY: e) SRM-ONLY: f) ABATEMENT+SRM:

g) ABATEMENT-ONLY: h) SRM-ONLY: i) ABATEMENT+SRM:

j) ABATEMENT-ONLY: k) SRM-ONLY: l) ABATEMENT+SRM:

Figure 2: stochastic

3

Figure 3. Tipping risk and policy in the stochastic setting (i.e. with tipping point and SRM failure). a) cumulative probability of tipping for

Abatement-only (blue dashed line), SRM-only (yellow dash-dotted) and Abatement+SRM (green solid). b)-l): policy and climate response

for the same scenarios (zoomed in on years 2015-2300 to enhance readability), namely Abatement-only (left column, plots d),g),j)), SRM-

only (middle column, plots b),e),h),k)), and Abatement+SRM (right column, plots c),f),i),l)). Variables shown are: SRM deployed (first row,

plots b), c)); note the different y-axis scale), abatement fraction (second row, plots d),e),f)), atmospheric CO2 content in ppmv (third row,

plots g),h),i)), and global mean temperature change (last row, plots j),k),l); note the different y-axis scale). The thin blue lines represent a

sample of individual ensemble members, the thick red line the ensemble mean, and the blue shaded area indicates the range of possible values

in the whole ensemble. The dashed blue line depicts the results from the deterministic case (Fig. 2) for reference.

15



In the Abatement+SRM case, the optimal policy closely resembles the deterministic one if no SRM failure occurs (Fig. 3c,f).

Without SRM failure, T stays below 2K (Fig. 3l), and hence no tipping occurs. In case of an SRM failure, the temperature

suddenly increases and abatement suddenly increases, as the decision maker now tries to limit the warming (and tipping risk)

with only abatement. Note that such a sudden increase in abatement may not be feasible in reality. If climate tipping occurs,

abatement is reduced again. Compared to Abatement-only, the abatement is delayed by 3-4 decades.5

In the SRM-only scenario, the policy again resembles the deterministic case provided no SRM failure occurs and T is below

2K (Fig. 3b). When T = 2K is reached, SRM increases sharply to reduce the tipping risk. As before, abatement strongly

increases after SRM failure, but is reduced slightly if tipping occurs (Fig. 3e). SRM-only has a performance of 181%, much

higher than Abatement-only. However, the chance of climate tipping by the year 2415 is considerably higher for SRM-only

(61.0% vs 37.8% for Abatement-only, see Table 3). As in the deterministic setting, the reason is that initially SRM can control10

the global warming more effectively than abatement, while abatement is a long-term measure. Hence damage is postponed to

the far future which is heavily discounted. The cumulative probability of tipping is lower for SRM-only than for Abatement-

only until 2350, when the situation reverses (Fig. 3a).

Compared to the deterministic cases, including uncertainty slightly reduces the difference in relative performance between

Abatement-only and the scenarios using SRM (compare Table 3 vs Table 2). There are two competing effects: The danger of15

tipping might favour using SRM, which reduces the tipping probability in the near future, while the possibility of SRM failure

reduces the performance of SRM-based scenarios.

In Abatement-only, there is a high spread between the relative performance measures ζ, ζ10 and ζ90, compared to SRM-only

and Abatement+SRM. This is due to the fact that in most (> 90%) of the ensemble members, SRM keeps global warming below

2K at least until ≈ 2200. Hence SRM postpones climate tipping into the far future (except in the few ensemble members with20

early SRM failure), while for Abatement-only, tipping can occur as early as 2080. Early tipping greatly reduces the performance

because it reduces the GDP for a long period of time and because it is less heavily discounted. For Abatement+SRM, only 6.2%

(i.e.< 10%) of the ensemble members show climate tipping, but they strongly affect the mean performance. This explains why,

for this scenario, ζ < ζ10.

Although DICE is too limited to give reliable absolute values of the Social Cost of Carbon (SCC) (van den Bergh and Botzen,25

2015), comparing scenarios gives qualitative insight into how SRM affects the SCC (Table 2 and Table 3). For Abatement-

only, the SCC in 2015 is 35$/t(C) (in 2005$) in the deterministic case and 41$/t(C) when including tipping points. For

Abatement+SRM, the SCC is 20$/t(C) (both deterministic and stochastic): SRM lowers the SCC by partially compensating

the damage caused by CO2 emissions. For SRM-only, the SCC is only slightly higher, namely 21$/t(C) (deterministic) and

23$/t(C) (stochastic), because SRM suppresses most climate damage in the near future, which is discounted least.30

3.3 Realistic Storyline

The previous scenarios were very stylised, in order to isolate the impact of SRM and stochastic elements. However, the actual

situation is more complex: Presently SRM is not available and we do not know whether it ever will be; yet we might want to

decide now whether to pursue (research and development of) SRM. To address this question, we consider a "Realistic Storyline"
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a) b)

c) d)

Figure S3: Policy and climate for the realistic storyline (see main text for details). a) Abatement fraction, b)
SRM in 100 Mt(S)/yr, c) atmospheric carbon concentration in ppmv, d) global mean temperature change w.r.t
pre-industrial.
Paths for which SRM becomes banned (turns out infeasible) before 2055 show a high abatement, which decreases in
case they hit the temperature tipping point. If SRM is not banned before 2055, abatement starts lower. In 2055, the
first time step where SRM might be available, the injection rates are low because of the high chance of failure and
fear for the associated punishment. Later, when SRM failure becomes less likely, it is used more amply if available.
CO2 concentrations are highest and temperature lowest in the ensemble members where SRM is available for a long
time.

16

Figure 4. Optimal policy and climate development for the Realistic Storyline scenario. a) Abatement fraction, b) SRM in 100 Mt(S)/yr, c)

atmospheric carbon concentration in ppmv, d) global mean temperature change w.r.t pre-industrial. The thin blue lines represent a sample

of individual ensemble members, the thick red line the ensemble mean, and the blue shaded area indicates the range of possible values in

the whole ensemble. The dashed blue line depicts the results from a deterministic reference case in which SRM becomes available in 2055

certainly and neither SRM failure nor climate tipping occur.

17



scenario, in which we assume that SRM will become possible only in 2055, and only at 30% probability (in the decades before

2055, there is a certain probability each time step that SRM is declared infeasible, e.g. because scientists identify unacceptable

environmental risks). We also assume that after 2055, the probability of SRM failure decreases in time, i.e. with ongoing

testing, and allow for damage associated with a termination shock in case of SRM failure (see Sect. 2.3). Unlike (irreversible)

climate tipping, the termination shock is a short-lived phenomenon and is stronger for large SRM.5

In those ensemble members where SRM becomes available in 2055, it is used sparingly in the first time step, because

the probability of failure is still high and the decision maker wants to limit the termination shock. In later time steps, SRM

is used only slightly less than in the Abatement+SRM scenario, peaking at 31.4% rather than 35%. This difference mainly

arises because the decision maker wants to reduce the termination shock: If the termination shock damage is omitted from the

Realistic Storyline, SRM peaks at 34.7%.10

In the first time step (2015), when the decision maker assumes that SRM will become available with 30% probability

only, the abatement is µ(2015) = 0.17, only slightly less than in the Abatement-only scenario where µ(2015) = 0.18. For

comparison, in a deterministic reference case in which SRM will be available from 2055 certainly, and no SRM failure or

tipping occurs, µ(2015) = 0.14 (see Fig. 4). As time progresses until 2055, the ensemble members diverge: If SRM is already

banned, abatement increases, but if a time step has passed without a ban, the decision maker becomes more optimistic that15

SRM will become feasible and abatement becomes less ambitious. In ensemble members where SRM becomes available,

50% abatement is reached 45 years later than in cases where SRM remains impossible. For current policy, however, the most

important point is that in 2015 ("now"), the 30% chance of SRM becoming available does not lead to significant reduction in

optimal abatement.

On the other hand, the performance ζ of this scenario is 125% (Table 3), significantly higher than for abatement-only. The20

lowest 10-th percentile performance, ζ10 is very similar to the Abatement-only scenario. In the Realistic Storyline, the low-

performance members are those in which SRM never becomes available, and the policy (i.e. trajectory of abatement) in these

runs is very similar to Abatement-only. However, ζ90 is much higher for the Realistic Storyline than for Abatement-only. This

measure is dominated by those members in which SRM becomes available. The total climate tipping risk for the Realistic

Storyline is 30.1%, compared to 37.8% in the Abatement-only scenario. The SCC for the Realistic Storyline is 37$/t(C), 12%25

lower than for Abatement-only.

These comparisons between the Realistic Storyline and Abatement-only indicate that the former performs better. This is be-

cause in those cases where SRM does become available, the welfare gain of climate policy is twice as high as in the Abatement-

only case. Therefore, a policy maker in 2015 should not dismiss SRM prematurely, but keep the option open (by encouraging

research and development). If we are lucky and SRM works well, it can greatly enhance future welfare, whereas if it never30

becomes feasible, we are not worse off than with abatement-only. (Note, however, that we did not include the possibility of a

large-scale SRM test with huge unexpected damage, but assumed careful, well-designed research.) However, the prospect of

possible future SRM should not lead to a significant reduction in abatement efforts at the current stage.
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Figure 1: SRM as insurance

1

Figure 5. Policy and temperature for the ‘SRM as insurance’ scenarios (see sect. 3.4). The top row shows the scenario with high damage

in case of SRM failure, while the bottom row shows the scenario with an albedo tipping point. The left column (a,d) show abatement, the

middle one (b,e) SRM, and the right (c,f) warming. The thin blue lines represent a sample of individual ensemble members, the thick red line

the ensemble mean, and the blue shaded area indicates the range of possible values in the whole ensemble.

3.4 SRM as ‘Climate Insurance’?

In the previous scenarios, SRM was used in a continuous way as a complement for abatement in order to further reduce global

warming, especially when the warming was highest. Here we investigate under which circumstances it can be advisable to use

SRM as an ‘insurance’, that is, suddenly increase its use or even voluntarily delay using it at all.

First, we consider a situation in which SRM is very dangerous, and thus unattractive to use unless climate change is also5

very dangerous. This is achieved by assigning a very high, but one-time, damage to SRM failure, namely reducing capital by

a factor ΩK = IS/(IS + IS0) in case of SRM failure. Here IS is the injection rate in Mt(S)/yr and IS0 = 5Mt(S)/yr. This

means that already at modest injection rates, SRM failure is assumed to cause substantial capital losses. In addition, we increase

the likelihood of tipping failure by a factor of 4. Apart from these changes, the scenario is the same as the Abatement+SRM

scenario in sect. 3.2. This scenario is not necessarily considered the most likely, but serves as a proof of concept. The result10

is that SRM is not until the tipping threshold T = 2K, threatens to be reached (see fig. 5a-c). When the threshold is reached,

SRM is started and somewhat more SRM is applied than strictly necessary to keep below T + 2K. This is because in our

parametrisation, damage levels off somewhat with increasing injection rate, i.e. if SRM is used at all, then a little extra doesn’t

make failure costs that much worse. The temperature is kept below T = 2K throughout, unless SRM fails. Compared to the
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standard Abatement+SRM case, peak SRM is reduced to 27.6Mt(S)/yr, i.e. by about 21%, and 50% abatement is reached in

2127, i.e. 12 years earlier. This experiment shows that the possibility of SRM causing high damage can cause a delay in its use

until climate change also becomes very dangerous (tipping threshold reached).

Second, we replace the standard tipping point in Abatement+SRM by the ‘albedo’ tipping point (see sect. 2.1.4). It is found

that if the policy maker can use SRM freely, he does not employ it to such a degree as to stay below T = Talb = 1.5K, but5

takes the (small) chance of crossing the threshold. If this happens, he does increase SRM to counteract the albedo feedback

(the ‘bump’ after 2200 in fig. 5e)). Although the time step for determining policies is 10 years, the albedo feedback is weak

enough that no runaway global warming occurs, since with SRM, T −Talb and hence Falb is small. This is why a modest

increase suffices to suppress this effect. However, if SRM has failed, temperature is much higher than Talb, increasing both

the probability of albedo tipping and the radiative forcing strength if tipping occurs. As in the standard ‘Abatement+SRM’10

scenario, the policy maker increases abatement in case of SRM failure to avoid the tipping point. However, if the albedo

tipping occurs after SRM failure, the policy maker increases abatement yet again in order to limit the positive temperature

feedback. Nonetheless, the albedo tipping can cause additional warming of more than 2K. A positive climate feedback tipping

point can thus lead to enhanced climate policy - SRM or abatement or both - after being triggered, in order to reduce its

consequences.15

3.5 Sensitivity Analysis

The results of our model substantially depend on the rate of time preference ρ (see Sect. 2.2). In Abatement-only, reducing ρ

from the standard value of 1.5% to a lower value of 0.5% will lead to stronger abatement: 50% abatement is reached 27 years

earlier (see Table 4). This is expected, as a lower rate of time preference means that the decision maker gives more weight

to the welfare of future generations and is more willing to sacrifice present consumption to reduce climate change. The SCC20

rises from $41/t(C) to $70/t(C). Interestingly, abatement also increases in the Abatement+SRM scenario (50% abatement

is reached 23 years earlier) when reducing ρ to 0.5%, while the peak SRM (definition: see Table 3) decreases by about 11%.

In other words, a decision maker who cares strongly about the future will choose to reduce CO2 emissions rather than forcing

future generations to rely on SRM, which causes damages and might fail. The SCC rises from $20/t(C) to $30/t(C).

A potentially important limitation of DICE is that abatement costs are exogenous, whereas in reality one would expect costs25

to decline with growing employment (learning-by-doing). While fully exploring learning-by-doing is outside the scope of this

study, we estimate the sensitivity to abatement costs in a simulation wherein abatement costs decrease more quickly in time

and reach a lower value for t→∞. This is done by putting λ2 = 1.5,λ3 = 0.015 in eq. (8), which lowers abatement cost by a

factor of about 0.6 after 70 years, compared to the standard scenario. The resulting policy shows a faster abatement by about

30 years, leading to a lower peak in atmospheric carbon (745ppm instead of 870ppm). Peak SRM is reduced to 29Mt(S)/yr,30

as less SRM is needed if carbon concentrations are lower. Thus the development of abatement cost can significantly affect the

need for SRM.

The distribution of the damages between the two major contributors, namely warming and residual climate change, was

chosen rather arbitrarily. However, halving ψT (warming contribution) and doubling ψP (residual contribution) does not
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Scenario Abate 50% peak SRM SCC

Abatement-only, standard 2095 / 41

Ab.+SRM, standard 2139 35.0 20

Abatement-only, low rate of pure time preference (ρ= 0.5%) 2068 / 70

Ab.+SRM, low rate of pure time preference (ρ= 0.5%) 2116 31.1 30

Faster decline abatement cost (λ2→ 2;λ3→ 0.015) 2112 29.0 21

Ab.+SRM, less temp. damage, more precip.damage (ψT → ψT /2, ψP → ψP × 2) 2143 32.6 17

Ab.+SRM, lower tipping threshold (Ttipp = 2K→ 1K) 2139 35.6 21

Ab.+SRM, double damage from tipping (Ω = 0.8) 2136 34.8 20

Ab.+SRM, double climate tipping probability (κtipp→ κtipp× 2) 2137 34.9 20

Ab.+SRM, quadrupled SRM failure probability (κfail→ κfail× 4) 2121 34.3 23

Ab.+SRM, double damage from SRM (ψS → ψS × 2) 2133 26.8 22

Ab.+SRM, half damage from SRM (ψS → ψS/2) 2143 43.6 20
Table 4. Policy metrics of the sensitivity runs. ‘Abate 50%’ is the year in which Abatement reaches 50% (µ= 0.5). ‘peak SRM’ (in

Mt(S)/yr) is the highest SRM value of the ensemble (over all times and all members) and corresponds to those ensemble members without

early SRM failure or climate tipping. ‘SCC’ is the social cost of carbon in $(2005)/t(C). All simulations were preformed in the stochastic

settings and are either Abatement-only or Abatement+SRM (abbreviated here as Ab.+SRM). The first two cases, labelled ‘standard’, are

repeated from Table 3 for convenience. The sensitivity runs correspond to those discussed in Sect. 3.5.

qualitatively affect our results. 50% abatement is reached 4 years later in the Abatement+SRM scenario, and SRM peaks

at 32.6Mt(S)/year instead of 35.0Mt(S)/year, i.e. the optimal policy still combines a similar abatement with modest SRM. The

SCC drops from $20/t(C) to $17/t(C). Lowering the tipping threshold from 2K to 1K leads to a 2% increase in peak SRM,

while not affecting abatement. Doubling the damages associated with climate tipping (Ω = 0.9→ Ω = 0.8) only accelerates

50% abatement by 3 years in the Abatement+SRM case and the SCC remains at $20/t(C). Doubling the likelihood of climate5

tipping (κtipp) accelerates 50% abatement by 2 years and likewise does not affect SCC. Increasing the failure probability of

SRM (κfail) by a factor of 4, i.e. such that SRM failure occurs in 80% of the ensemble members rather than 20%, increases

the SCC only by 15% in the Abatement+SRM scenario, i.e. from $20/t(C) to $23/t(C).The reason is that the likelihood of

SRM failure in the first decades, which are least discounted, is still fairly small. The peak SRM is reduced only by 2%: As

long as SRM is available, it is used despite high failure probability. 50% abatement is reached in 2121, rather than 2138, in10

the ensemble mean. Doubling the damage associated with SRM (i.e. doubling ψS) accelerates 50% abatement by 6 years and

the SCC rises from $20/t(C) to $22/t(C). The peak SRM is reduced by about 23%, to 26.8Mt(S)/yr. Likewise, halving ψS

increases peak abatement by 25%. Hence even if SRM is twice (or half) as damaging as assumed in the standard case, the

optimal policy still employs modest SRM as complement to abatement.
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To summarise, changes in the damage function and/or likelihood of stochastic events do not qualitatively affect the optimal

policy in the Abatement+SRM scenario, which consists of a combination of reasonably high abatement (delayed by a few

decades w.r.t Abatement-only in the standard settings) and modest SRM.

4 Summary and Discussion

In this paper, we present the first cost-benefit analysis of SRM under uncertainty performed with a rigorous optimisation5

approach (dynamic programming). From our analysis we draw two conclusions. First, sulphate SRM has the potential to

greatly enhance future welfare and should therefore be taken seriously as possible policy option. Second, even if successful,

SRM does not replace CO2 abatement, but complements it. In particular, a policy maker who puts great value on the welfare

of future generations (i.e. uses a low rate of pure time preference) will accelerate abatement efforts, which have a long-term

benefit, rather than forcing later generations to rely on SRM. Apart from smoothly reducing peak warming, SRM might also10

have a role to play as emergency measure, e.g. in case of emerging positive warming feedbacks or unforeseen strong climate-

induced damages. However, this might be a risky approach if SRM itself is potentially associated with strong damages.

Compared to previous studies (Goes et al., 2011; Moreno-Cruz and Keith, 2013; Heutel et al., 2018), our results are more

optimistic about SRM, which seems partly due to the improved methodology we adopted. For instance, demonstrating that

welfare is severely impacted if the decision maker makes wrong assumptions on the SRM-related damages (Bahn et al., 2015)15

is not a consistent cost-benefit analysis. The analysis by Goes et al. (2011) only considers a full replacement of abatement

by SRM, rather than a complementary approach. Compared to Heutel et al. (2018), we find a much stronger reduction in

the SCC. However, as discussed previously, their model and optimisation method differ in some crucial points from ours. In

particular, Heutel et al. (2018) assume that the implementation cost and damage associated with SRM depend on the fraction

of CO2-induced radiative forcing that is balanced by SRM - no matter how high the CO2 concentration is - rather than20

letting costs and damage depend on the amount of sulphur injected. Therefore at high (low) CO2 concentrations, they obtain

a much higher (lower) radiative forcing effect from SRM for the same price, which makes SRM more (less) attractive. In

their deterministic simulation, they compensate 50% of the peak CO2-induced radiative forcing of 6W/m2, which in our

model settings would require injection rate of 27Mt(S)/yr - about 80% of our peak injection rate of 35Mt(S)/yr in the

deterministic Abatement+SRM scenario. However, in the first century, Heutel et al. (2018) use considerably less SRM because25

they overestimate the price by ignoring that much lower injection rates are needed while CO2 concentrations are low. So overall

they use too little SRM and therefore end up with higher temperatures (about 2.5K peak warming) and a higher SCC.

Our results should not be interpreted as precise policy recommendations to set, say, exact values of the SCC, as our model

is too limited to offer more than a qualitative exploration and comparison of simple scenarios. For example, uncertainty in the

climate system is limited to one tipping point, while uncertainty in the climate sensitivity is ignored. Our climate model is30

based on linear response theory, and although this approach captures many climate feedbacks adequately, it does not capture

the possible dependence of the response on the background state, e.g. a saturation of carbon sinks (Aengenheyster et al., 2018).
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A controversial component in Integrated Assessment Models such as DICE is the quantification of climate damages (Howard,

2014; van den Bergh and Botzen, 2015), which is highly aggregated and based on very limited data. We introduced additional

parameters to the damage function by making a plausible, but rather ad-hoc attribution of climate damages to temperature,

global precipitation (‘residual climate change’) and CO2 concentrations. Also little is known about the size of ecological, let

alone economic, damages associated with SRM. Gaining a better understanding of these damages, and those related to climate5

change, is essential for conducting a meaningful cost-benefit analysis and ultimately determining a climate policy, hence it

should be given a high priority.

The abatement sector of DICE also has important limitations. First, technological improvement is exogenous (abatement

costs decrease in time at a prescribed rate), rather than including learning-by-doing (costs decrease with technology employ-

ment). This means that in DICE it is advantageous to wait for the later cost reduction, rather than starting early to bring10

abatement price down through learning. In addition, DICE assumes that abatement is always costly, whereas in fact, the en-

ergy transition might rather be a big investment: Once the infrastructure is installed, green energy might be cost-competitive

with fossil fuels. Both effects likely bias our results against early abatement. A faster (still exogenous) decrease in abatement

costs was found to lead to faster abatement and reduced peak SRM. Our model does not include negative emission tech-

niques, which might provide an important alternative to SRM. Neither does it include active adaptation. The trade-off between15

negative emissions, adaptation and SRM would be interesting to study with a more detailed model. Finally, DICE assumes a

homogenous economy and a single decision maker. In reality, the damages and benefits of SRM are likely unevenly distributed,

with potential for solitary actions and conflict, which was not studied here.

Despite the large scientific and political uncertainties which need to be overcome, we believe that one cannot afford to

dismiss SRM at the current stage, as it has the potential to greatly reduce climate risk and enhance future welfare. However,20

the scientific uncertainties, especially concerning efficiency and damages of SRM, as well as the extent by which SRM can

mitigate damages inflicted by global warming, must be better quantified. For the time being, the uncertain prospect of SRM

becoming available should not tempt us to reduce abatement.

Code availability.

Data availability. The code used (described in the Methods section) is available upon request from the corresponding author.25

Code and data availability.

Sample availability.
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Video supplement.

Appendix A: Solving the GeoDICE model

A1 Terminal function

Unrealistic behaviour occurs in the last time steps of an optimisation problem, because the decisions made do not influence

the future anymore (as the future is not simulated). To avoid this problem, we follow Cai et al. (2016) and run the optimisation5

over 600 years, while only considering the first 400 as actual simulation and the final 200 years as ‘terminal function’. During

termination, tipping can still occur and SRM can be freely chosen, while abatement is set to 1. Due to discounting, the trajectory

after 600 years has little relevance for the optimal policy during the first 400 years. Indeed, prolonging the runs to 800 years

had a negligible effect on policies during the first 400 years.

A2 Optimisation method10

The social planner problem aims at finding the policy that maximises the expected cumulative discounted utility. To solve this

problem in the stochastic setting, we apply dynamic programming (Bellman, 1957). This methodology relies on the concept of

the value function to obtain the optimal policy via backward reduction. As our state space is continuous and no analytic solution

is available, we are forced to adopt some approximation scheme to represent the value function at each time step. Following

Cai et al. (2016), we use a Chebyshev approximation, which is well suited for parallelisation. The Chebyshev polynomial is15

obtained by solving a small optimisation problem at each of a finite number of regularly spaced Chebyshev approximation

nodes. We used a fourth-degree Chebyshev polynomial with five approximation nodes per continuous dimension. In combina-

tion with the binary state variables for the tipping point and SRM failure, this results in 312500 approximation nodes per time

step. This method is developed and discussed extensively in the work by Cai (2009); Cai et al. (2012a, 2016). For a complete

overview we refer the reader to these papers and the references therein. Here we outline the methodological choices specific to20

the present application: the boundaries used for the domain of the Chebyshev polynomial, and adjustments to the value function

approximation to accommodate the asymmetry and non-smoothness of the true value function. Additionally, we examine the

accuracy of this methodology when applied in the current setting.

A2.1 Boundaries

In order to define the Chebyshev approximation nodes, we must first set the boundaries of the region of state space in which25

we are interested. To do this, we calculate three trajectories in the deterministic model: first, the optimal trajectory (obtained

by optimising the whole system in all decision variables with standard deterministic optimisation software); second, a ‘high-

emission’ trajectory calculated by setting mitigation and SRM to zero for the whole run; and third, a ‘low-emission’ trajectory,

calculated by setting mitigation to one and SRM to zero for the whole run. We subsequently take as domain boundaries for each

variable the minimum and maximum over these three trajectories, with an additional margin of minus, respectively plus 30%30
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of these values. For all experiments, we check that all the sample paths in the ensemble remained well within the boundaries

of the domain. For approximation nodes close to the boundaries, it will still be possible to select actions that may bring the

system outside the boundaries in the next step. Since a Chebyshev polynomial cannot be extrapolated outside its domain, we

first project the state onto the region of interest before evaluating the approximate value function.

A2.2 Value Function Smoothing5

In the current setting, directly using a Chebyshev polynomial to approximate the value function gives poor results because

the value function exhibits an asymmetry and a non-smoothness that a low-degree Chebyshev polynomial cannot capture. The

discontinuity is caused by the fact that in states with positive temperatures, SRM is available to reduce them, while in states

with negative temperatures this is impossible: therefore, positive temperature deviations are preferred over negative temperature

deviations of equal magnitude. This problem is resolved by allowing ‘reverse’ SRM, which generates a radiative forcing of the10

same magnitude but opposite sign as regular SRM. Allowing such actions changes the value of certain states, thus removing

the asymmetry. This is a purely mathematical construct (we do not assume such reverse SRM is actually possible): the states

with modified values are never reached in actual trajectories, and are only considered in the first place because the domain of

the Chebyshev approximation must be a hypercube.

The non-smoothness results from the fact that the tipping point can only be crossed after a certain threshold is reached:15

this generates a discontinuity in the first derivative of the value function. This is resolved by fitting two separate Chebyshev

polynomials to the two parts of the value function.

A2.3 Accuracy

We test the accuracy of our optimisation by comparing the resulting policy in a deterministic setting to the policy obtained by

regular non-linear optimisation. The difference in action and trajectory is < 3%, while the difference in the SCC is < 2%. For20

the scenario in which only abatement is allowed, errors are lower (0.1−1% for actions and SCC, 0.01−0.1% for trajectories),

which is in line with the accuracy reported by Cai et al (Cai et al., 2016). Good accuracy in the deterministic setting may not

generalise to the stochastic setting when the stochasticity itself introduces issues. To guard against this problem we ensure that

the value function approximation fits well to the actual value function samples obtained at each time step.
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