
List of Major Changes

1) For the validation of LAERTES (Sect. 4), we changed:
(a) the time period TP1b (old: 1950-2017) to the HYRAS period (new: 1951-2006)
(b) the investigation areas ME and AL are reduced to the corresponding HYRAS grid cells, 
      indicated by ME* and AL*
(c) the estimation of the percentiles is newly done considering only wet days with R>0.1mm
(d) we included additional quantities like the linear error in probability space L and a   
     frequency analysis
(e) Figure 5 was re-done using perturbed sequences of concatenated ensemble members to 
     reduce the influence of member size on the shape of the curves.

2) Figure 8a was wrong (old version), we replaced it with the correct one
3) More precise captions of figures and tables in both the manuscript and the supplemental material
4) We rearranged the Section 2.2 describing the ensemble data to be more precise and consistent
5) We rearranged the introduction
6) We adjusted the conclusions accordingly



Point-by-point response to Reviewer #1
Florian Ehmele on behalf of all co-authors

October 31, 2019
Update: March 9, 2020

Dear reviewer No. 1, 
Thank you very much for your work and the useful and valuable comments that will
help to improve the scientific  quality  of  our  manuscript.  Below you will  find your
comments given in gray and our responses to the individual points in black. Please also
consider our comments to Reviewer 2 as there is some coincidence of the comments
and the corresponding answers.

This manuscript addresses the issue of heavy precipitation in RCM simulations. This is a very
timely  issue  with  importance  for  many  sciences,  which  rely  on  RCM  simulations.  My
fundamental  concern  with  this  study  is  the  first  conclusion  (“Extreme precipitation  is  well
represented in LAERTES-EU.”).  The same is  expressed in the authors’  short  summary (“The
simulations show a good agreement with observations for both statistical  distributions and
time series of heavy precipitation.”). I am sorry, but I just can not see enough support for this
crucial statement in the manuscript.
You and also RC2 have the same concerns about this first conclusion. Thinking about
this a second time we came along that this statement might be too general. It was
meant that heavy precipitation is consistent in all parts of LAERTES-EU and that our
results fit in the range of previous studies (e.g. Früh et al., 2010) and also in the range
of observations knowing that the used observational data sets have uncertainties as
well.  We will  rewrite this  to be more precise what was meant to be stated here.
However, we do think that, for instance, the IPCs do support the statement in terms
of the statistical distribution of precipitation values. The time series of LAERTES-EU
(ensemble mean) is within the range of both analyzed observational data sets, and the
ensemble  spread  covers  the  observed  variability.  Please  note  that  it  was  never
intended that LAERTES-EU shows a one-by-one agreement with historical events.

1) The authors state that E-OBS underestimates precip by almost a third. To me, this means
that these data are not useful to evaluate the performance of extreme value simulations. As E-
OBS is only available for land surfaces, I also find it surprising that the ME box includes parts of
the North Sea.
E-OBS has some limitations, like a certain underestimation especially for extremes, but
these have been mentioned by several previous studies like Haylock et al (2008) or
Hofstra et al. (2009), and mainly appear in a grid point comparison with measurement
sites. As these and other studies already used and analyzed E-OBS, we follow their
conclusions  and  did  not  perform  a  further  analysis  on  data  quality.  Keeping  the
limitations in mind, E-OBS can be useful  for evaluation. Unfortunately,  there is no
other high-resolution daily precipitation data set available that covers entire Europe
for  a  quit  long  time  period.  As  the  focus  of  this  study  is  on  intensive  areal
precipitation, we think it does not make sense to use single ground based observations
that potentially are available for longer time scales, or in terms of the focus on long-
term evolution other products like satellite data with a very limited time frame are not



helpful  and also have limitations.  We will  add a comment on this  situation to the
revised manuscript.
The prudence region are defined as regular lat/lon-boxes and therefore cover ocean
areas as well. But, in every case ocean grid cells have been set to a missing value in
every dataset and therefore, they are not in the results. We will add a sentence on
that in the method section for clarification.

2) The evaluation using IPCs is good, but doing this on a highly aggregated level seems to limit
the opportunity to really test the simulated precip. Here I would like to see more creative tests
such as IPCs for smaller areas and/or IPCs for certain seasons. As the analysis is done now,
there is a risk for error compensation.
For  the  IPCs  no  aggregation  was  done.  We  take  all  grid  point  values  within  the
investigation area (e.g. ME) and at all timesteps into account and group them into a
histogram giving the probability of occurrence (=IPC). On purpose, we only use all year
data and no seasonal differences as the paper would have become to long doing a
seasonal analysis for every part of it. This study was meant to be an introduction to
LAERTES-EU and some long term investigations on the upper part of the precipitation
distribution. 
For  a  more  appropriate  evaluation  of  LAERTES-EU,  we  will  follow Reviewer  2  and
include some further analysis using other methods and quantities. In particular, we will
add a frequency analysis.

3) I am sorry, but I do not see how the Q-Q plots help to evaluate the performance for heavy
precip. If anything, the total precip is evaluated. But even then, comparing cumulative values
introduces a spurious correlation, and on top of that, R2 is no suitable measure as a value of
one does not ensure a ‘perfect’ model. May be I miss something here, but I find this analysis not
convincing.
We will restructure the evaluation part and will introduce additional skill measures in
the evaluation (see also answers to RC2), for example, the linear error in probability
space L (e.g. Potts et al., 1996) 

4) The 99% of precip (=around 10 mm) is not really ‘heavy precipitation.’
Technically,  this  is  correct.  However,  the  focus  of  this  study  is  intensive  areal
precipitation,  which  is  related  to  widespread  flooding  along  the  great  major  river
networks. For a single grid cell, 10 mm is no big deal but 10 mm on average over a
large area such as the Rhine catchment or the entire PRUDENCE region is quite a lot.
Maybe  the  term ‘heavy  precipitation’  somehow  is  irritating  at  this  point.  We  will
include a clarification on that at the beginning of the revised manuscript. Furthermore,
please see also the report of Reviewer 2. We will change the percentile calculation to
wet days only, as currently dry spells are included. 

Minor comments:
P4L115: “more or less independent simulations”. This needs to be clarified. In some respect,
these  simulations  might  be  independent,  but  as  the  same  RCM  is  used,  the  simulations
obviously are dependent!
We agree that this formulation is inept and we will remove it. What was meant is that
the temporal evolution of the day-to-day weather in hindcasts is independent after a
few weeks. The statement did not refer to the model system. The ensemble does not



cover the full range of uncertainty, namely the model uncertainty. But, in the context
of the paper we regard this as an advantage, since the data set is homogeneous over
time due to the consistent model setup.

P6L149: does this mean there was a bias correction? Were extreme precipitation simulations
affected by this at all? I assume not but would like to get some clarification.
The  dry-day  adjustment  only  corrects  the  number  of  days  without  precipitation
(R<0.1mm/day) in the model as RCMs tend to produce too much days with very small
rainfall amounts (drizzle effect; Berg et al., 2012). The absolute values (R>=0.1mm) are
not affected. A bias correction, meaning an adjustment of the absolute precipitation
values by e.g. a quantile mapping, was not performed at this stage. In a consecutive
study (Kautz et  al.,  planned submission in  summer 2020),  a  specific  application of
LAERTES-EU for hydrological issues will be presented for which such a bias correction
is mandatory. For any other application, a reduction of the drizzle effect has to be
done anyway.

P7L197ff:  I  can  see  the  argument  that  GCMs  underestimate  heavy  precip,  but  the  same
argument should, although to a smaller degree, apply to RCMs. So, what is the physical reason
that RCMs ‘tend to overestimate precipitation intensities’?
Two effects are of relevance at this point and which act together. The limited time
period of observations results in unknown distributions, especially at the heavy tail. In
a dataset of 65 years, extreme events with return periods of 100 years or more are not
represented in a statistically robust way. The RCM has a physical background when
calculating  precipitation  amounts  which  makes  it  possible  to  reach  higher  than
observed  values.  Furthermore,  the  huge  number  of  simulations  allows  for  a  more
robust estimate of the high-intensity tail of the distribution, whereas the observations
display only a few single events in this range.



Point-by-point response to Reviewer #2
Florian Ehmele on behalf of all co-authors

October 31, 2019
Update: March 9, 2020

Dear reviewer No. 2, 
Thank you very much for your work and the useful and valuable comments that will
help to improve the scientific quality of our manuscript. Especially your suggestion on
how to implement the comments to the paper are very useful. Below you will find your
comments given in gray and our responses to the individual points in black. Please also
consider our comments to Reviewer 1 as there is some coincidence of the comments
and the corresponding answers.

This paper analyzes long-term trends of heavy precipitation in multiple dynamically downscaled
simulations for the historical  period and the near future over Europe. The different sets of
simulations  are  validated  against  gridded  observations  and  tested  whether  they  can  be
combined to a large ensemble for the detection of trends in the historic time period. This paper
is relevant in terms of assessing the possibility of combining various simulations from the same
RCM with varying driving data.  As well  as, the detection of trends within the historic time
period.

General comments:
1) Please be more clear about what you are showing in the figures. In most cases it wasn’t clear
to me if you are showing the ensemble mean or a metric with pooled data from the entire
ensemble.
Thank you for this feedback. We will change the figure caption to be more precise and
accurate  to  become  more  clear.  Therefore  we  will  also  include  the  related  minor
comments you wrote below.

2) Several sections need more clarification on what was analyzed and for what spatial extend
and aggregation.
Going through your major and minor comments below and include them into the new
version of the manuscript, we think this will clarify a lot of points within the text.
Please see our detailed comments to the specific points below.

Major comments:
. . . Model evaluation:
1) I have concerns with the comparison of E-OBS, CCLM and HYRAS over the sub-region AL. It
is not clear to me whether the comparison was only performed for the HYRAS grid cells, which
cover  a  substantially  smaller  area  than  E-OBS  and  CCLM,  or  whether  E-OBS  and  CCLM
represent the entire AL domain compared to a much smaller area in HYRAS. On P8-L204f you
state this concern yourself ‘[. . .] which might be a reason for the vanished differences between
E-OBS and HYRAS and the resulting specious deviations to the RCM’. Did you compare the
three datasets for the HYRAS grid cells only? If not please do so.
This is a crucial comment, thank you for that. Checking our data we found out that the
analysis for the AL region indeed was performed for the entire region for CCLM and
E-OBS but HYRAS only for available grid cells. We will fix this in the new manuscript



version and also double check our results for the ME region to be done on HYRAS grid
cells only. We will name the sub-areas of ME and AL, in which HYRAS is available, with
an asterisk (ME* or AL*), to be clear.

2) Further, you state that ‘[. . .] by taking into account all grid points and all time steps within
the investigation are (P6-L151)’, does this mean that for both ME and AL you have included
ocean  grid  cells  in  the  spatial  average  of  the  RCM  data?  For  both  domains  gridded
observational datasets are only available over land. Please clarify this, and in any case ocean
grid cells were included remove them from the comparison.
In every case, ocean grid cells have been set to a missing value in every data set and
therefore, they are not in the results. We will add a sentence on that in the method
section for clarification.

2) In P8-L212f you state that ‘[. .  .]  HYRAS was aggregated to the E-OBS/RCM grid [. . .]’.
However, you first mentioned this here for the Q-Q plots, so can I assume that the IPC’s in
Figure 2 are also based on aggregated HYRAS data? Please clarify this and if the aggregation of
HYRAS applies to all related analysis then please move this detail to the methods section.
The HYRAS data have first been aggregated to the E-OBS/RCM grid of 0.22° resolution
for all type of analysis in this study. We will clarify this by moving the corresponding
statement more to the front of the manuscript into the method section as you have
requested.

3) Further, if I understand correctly the evaluation is based on the TP1b time period (1950-
2017), however the HYRAS data is only available for the period 1951-2006. Please comment
on why the analysis wasn’t based on the shorter HYRAS time period. I would recommend doing
the analysis for 1951-2006.
In this case, you are right with the different time periods. We assume that there will
be  only  small  changes  when  reducing  TP1b  to  the  HYRAS  period  1951-2006,  but
nevertheless, we will fix this for all analyses in terms of consistency.

4) The evaluation on such a highly aggregated level poses a risk of error compensation. It might
be better to do the evaluation for each grid cell first (e.g. calculating the RMSE) and afterwards
averaging the error metric.
We will restructure the evaluation part and will introduce additional skill measures in
the evaluation. However, as the focus of this study is on intensive areal precipitation,
we do not want to add too detailed grid point based analyses and take a deeper look in
the spatial mean precipitation statistics. Therefore, we add additional quantities like
the  linear  error  in  probability  space  (e.g.  Potts  et  al.,  1996),  and  we  perform  a
frequency analysis on different time scales.

5) Based on the concerns above, I don’t really agree with your first point in the conclusion
‘Extreme precipitation is well represented in the LAERTES-EU [P20-L352]’.
You and also RC1 have the same concerns about this first conclusion. Thinking about
this a second time, we came along that this statement might be too general. It was
meant that heavy precipitation is consistent in all parts of LAERTES-EU and that our
results fit in the range of previous studies (e.g. Früh et al., 2010) and also in the range
of observations knowing that the used observational data sets have uncertainties as
well. We will rewrite this to be more precise.



. . . Added-Value:
6) Regarding your conclusions on the IPCs showing ‘[. . .] a clear added value of RCM data
compared to coarser global models’. From that one figure I don’t really see the added value,
since you haven’t compared the driving GCM with RCM simulation. You have compared the
IPC’s to the 20CR reanalysis dataset. Because of the spatial averaging over such a large area, it
might be that the trends in the GCM and RCM might be very close to each other.
To substantiate this statement we will include the IPCs of the MPI-ESM model in Fig.
2. At least we will include the IPC of data block 1 which used the LR version of MPI-
ESM, and data block 3 which used the HR version as global forcing.

. . . CC-scaling
7) Your conclusion on the trends following the CC-scaling in your conclusion [P21-L379ff] are
flawed. If  you make a statement like this, please perform the temperature scaling with the
LAERTES-EU temperature data and not by relating the precipitation change to a temperature
approximation from another study. Please see Kröner et al (2017) and Pfahl et al (2017) for
other  effects  than  thermodynamics.  Kröner  et  al  (2017),  Climate  Dynamics,
https://doi.org/10.1007/s00382-016-3276-3  Pfahl  et  al  (2017),  Nature  Climate  Change,
https://doi.org/10.1038/nclimate3287
We agree with the reviewer that a relationship should be established using LAERTES-
EU temperature data. We will do some brief analysis with the block 1 & 3 temperature
data  and put  them into  the  context  of  the  already cited studies  on  20th century
temperature  changes.  Then  the  argumentation  should  be  more  consistent  and
reasonable. This will be concentrated in the conclusions.

Minor comments:
P2-L25f: see also Zhang et al (2017) for a discussion on CC scaling Zhang et al (2017), Nature
Geosciences, DOI: 10.1038/NGEO2911
P2-L27-34:  Please  add  some more  recent  literature  on  this  topic,  e.g.  Fischer  and  Knutti
(2016),  Nature,  DOI:  10.1038/NCLIMATE3110  Alexander  (2016),  Weather  and  Climate
Extremes,  http://dx.doi.org/10.1016/j.wace.2015.10.007  Barbero  et  al  (2017),  GRL,
doi:10.1002/2016GL071917
P2-L45f: Please add a view more recent studies on trends in European floods. E.g.: Blöschl et al
(2017),  Science,  DOI:  10.1126/science.aan2506;  Blöschl  et  al  (2019),  Nature,
https://doi.org/10.1038/s41586-019-1495-6
P2-L49f:  Connection  of  Heavy  Precipitation  over  central  Europe  and  cyclones,  see  also
Hoffstätter et al (2017), Int. Journal of Climatology, https://doi.org/10.1002/joc.5386
P2-L55f: Also see van der Wiel et al (2019) and Martel et al (2019) for the added value of large
ensembles for flood risk or return periods of heavy precipitation van der Wiel et al (2019), GRL,
https://doi.org/10.1029/2019GL081967  Martel  et  al  (2019),  Journal  of  Climate,
https://doi.org/10.1175/JCLI-D-18-0764.1
Thank you very much for these recent references. We will go through them and decide
which one and where to include them in the new version of the manuscript.

P4-L114f:  Please  elaborate  more  on  what  you  mean  by  ‘[.  .  .]  more  or  less  independent
simulations’
We agree that this formulation is inept and we will remove it. What was meant is that
the temporal evolution of the day-to-day weather in hindcasts is independent after a



few weeks. The statement did not refer to the model system. The ensemble does not
cover the full range of uncertainty, namely the model uncertainty. But, in the context
of the paper we regard this as an advantage, since the data set is homogeneous over
time due to the consistent model setup.

P5-L139:  What  do  you  mean  by  un-initialized?  Please  clarify  this  for  the  reader,  that  by
initialized you mean initialized by observational(-like) salinity and other variables, whereas the
un-initialized data originate from a normal CMIP5 historical simulation. I had to go to Marotzke
et al (2016) to understand what was meant by this.
We agree that this has been explained insufficiently and will state it more clearly in
the revised manuscript.

P6-L157f: Are the 99th and 99.9th percentile based on all days or wet-days only? If you want
to look at heavy precipitation it might be better to look at wet days only. Like this the values
would not be affected by the dry-day adjustment as much. Further, it is not clear to me if you
have first spatially aggregated and then calculated the percentiles, or the other way around.
Please comment on whether you think that this will make a difference to your results. This
could maybe also solve your concerns on P15-L282f ‘[. . .] an overestimation of precipitation
[...], could be a result of missing data for the applied dry-day correction.’
The percentiles were estimated using all days including dry ones. As we focus on heavy
precipitation we agree with you that using wet days only would be more appropriate.
Nevertheless, the uncertainty in the first half of the century will remain. The dry-day
correction adjusts the number of days without precipitation (R<0.1mm) solely and not
the values themselves (R>=0.1mm). This means that the dry-day correction effects the
percentiles anyway in some case. But, in order to get a more thorough analysis of
heavy precipitation, we will  change to a wet days only calculation. Regarding your
second point, we first did a spatial aggregation of precipitation to receive the areal
precipitation and than calculated the percentile of this spatial mean values which are
of deep interest in this study. The other way round we would get a spatial mean value
of  the  percentile  which  is  more  relevant  for  a  2D  analyses  and  related  spatial
variability  giving  local  effects.  We  will  include  some  sentences  on  that  in  the
manuscript. 

P7-L189: Could you briefly comment on why you chose the old 1961-1990 period as your
reference climatology.
A couple of studies (e.g. Cahill et al., 2015 or Folland et al., 2018) showed that the
climate change signal at least for global mean temperature is significantly increased
since the early 1980s, which is to a lower degree applicable for Europe, too (Folland et
al., 2001). Therefore, using the time period 1981-2010 would possibly include a strong
changing  signal  to  the  analysis.  Using  1961-1990  reduces  the  influence  of  these
effects as this period shows more stable conditions to a certain degree. Doing so,
there  is  more  room  for  the  interpretation  of  the  future  projection  instead  of
comparing them to the directly preceding time period.

References:
Cahill et al. (2015), DOI: 10.1088/1748-9326/10/8/084002
Folland et al. (2018), DOI: 10.1126/sciadv.aao5297
Folland et al. (2001), DOI: 10.1029/2001GL012877



P9-L218f: Your conclusion to Table 2 stating that there is a higher correlation when driven by
MPI-ESM-HR  versus  lower  resolution  MPI-ESM-LR  is  technically  correct,  however  the
differences are so marginal that I find it difficult to attribute the differences to resolution of
driving data. Especially, when not only the resolution is different in the HR and LR simulations,
but  also  the  initialization.  Maybe  add  a  short  sentence  [‘However,  differences  are  only
marginal.’].
Thanks  for  that  comment.  Yes,  the  differences  are  marginal  but  the  differences
between the LR and HR blocks are larger than those within the LR blocks or within the
HR blocks. We will include a statement such as the suggested one to the manuscript. 

Chapter 4.3: This is a nice analysis that shows the benefit of large ensembles, however since
you are not looking at return values afterwards it could be nice to highlight another strength of
large ensemble namely isolating the forced response from internal variability. Since you are
looking at  trends and variability  this  could be a  better  fit.  But this  is  just  a  suggestion to
improve the flow of the paper. Like a said it is a nice analysis as is.
We decided to use return values in this case as it easy to estimate and on a statistical
perspective the amount of data has a significant influence on the estimates. Although
you like the presented analyses, we would like to change Fig. 5 a little bit. For this
particular figure the simulations were put together starting with block 1 simulation 1
and ending up with the last simulation in block 4. Doing so the shape of the curves
strongly depend on the length of the single simulation runs. Therefore, we want to
change the figure using the mean values of 100 random combinations of the simulation
runs. The values of the signal-to-noise ration will not change that much and the given
statements remain valid.

Figure 8a: Shouldn’t there be also some more positive anomalies in the climTP period? Did I
miss something? Because if you base the annual anomalies on this period, shouldn’t you be
having positive and negative anomalies within this period?
We are sorry, but unfortunately there was a wrong figure included at this point. Of
course there should be and there are positive and negative anomalies in the climTP
period. We replace the current plot with the correct one.

Figure 9: Nice plots!
Thank you!

P22-L396f: ‘[. . .] can be used as input for hydrological modeling’. In general, yes and especially
when looking at higher return levels of floods. However, as mentioned a few lines above this
ensemble  is  restricted  by  temporal  homogeneity,  which  can  play  a  very  important  role  in
hydrology.
In  general,  we  agree  with  that  and  it  definitely  makes  sense  when  investigating
historical events, trends, flood frequency, and so on. In a particular application and as
mentioned  in  the  following  sentence,  LAERTES-EU  serves  as  stochastic  weather
generator  which  leads  to  quasi  stochastic  hydrological  simulations  covering  the
internal  climate  variability  and  also  a  wider  range  of  values  occurring.  For  such
statistical applications, LAERTES-EU can be used to get robust hydrological statistics,
too. For this specific case, it is necessary to do a bias correction to avoid too high
discharges as a consequence of an overestimation of precipitation. This application as



well as the bias correction will be part of a consecutive study (Kautz et al., planned
submission in spring 2020). 

Technical Corrections:
Table 1: Projections for the period 2020-28 are missing
The projections are included in block 4 as the given year stand for the initialization
years of the decadal simulations meaning an initialization in 2018 includes data for
2019-2028. We will change Table 1 accordingly so that it is clear that ‘period’ means
the covered years.

Figure 2, 3: Please add the years of the period ([. . .] TP1b (1950-2017)). I had to go back and
look for the TP1b definition. But I would anyway suggest changing the period to 1951-2006
(see major comments).
Both comments will be implemented in the revised version.

P3-L69: Typo (‘Regionla’, ‘Regional’)
P5-L128: grammar (replace ‘it’ with ‘the’)
P20-L342: grammar (‘estimate’ instead of ‘estimated’)
Thanks! We will fix that.

Figure 4: Please clarify what the RCM spread is. I assume it to be Min-May, right?
That’s true. The RCM spread means the range between the minimum and maximum
occurred value of the displayed variable. We will include a short clarification into the
text.
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Abstract. Widespread flooding events are among the major natural hazards in Central
::::::
central Europe. Such events are usually

related to intensive, long-lasting precipitation
::::
over

:::::
larger

:::::
areas. Despite some prominent floods during the last three decades

(e. g. 1997, 1999, 2002, and 2013), extreme floods are rare and associated with estimated long return periods of more than

100 years. To assess the associated risks of such extreme events, reliable statistics of precipitation and discharge are required.

Comprehensive observations, however, are mainly available for the last 50–60 years or less. This shortcoming can be reduced5

using stochastic data sets. One possibility towards this aim is to consider climate model data or extended reanalyses.

This study presents and discusses a validation of different century-long data sets, a large ensemble of decadal hindcasts,

and also projections
:::::::::
predictions

:
for the upcoming decade . Global reanalysis

::::::::
combined

::
to

::
a
::::
new

:::::
large

::::::::
ensemble.

:::::::
Global

::::::::
reanalyses

:
for the 20th century with a horizontal resolution of more than 100 km have been dynamically downscaled with

a regional climate model (COSMO–CLM) towards a higher resolution of 25 km. The new data sets are first filtered using a10

dry–day adjustment. The simulations show a good agreement with
::::::::
Evaluation

:::::::
focuses

:::
on

:::::::
intensive

::::::::::
widespread

:::::::::::
precipitation

:::::
events

::::
and

::::::
related

::::::::
temporal

::::::::::
variabilities

::::
and

::::::
trends.

::::
The

::::::::
presented

:::::::::
ensemble

::::
data

::
is

::::::
within

:::
the

:::::
range

:::
of

:
observations for

both statistical distributions and time series. Differences mainly appear in areas with sparse observation data. The temporal

evolution during the past 60 years is well captured. The results reveal some long-term variability with phases of increased

and decreased heavy precipitation
::::::::::
precipitation

:::::
rates. The overall trend varies between the investigation areas but is

::::::
mostly15

significant. The projections
:::::::::
predictions

:
for the upcoming decade show ongoing tendencies with increased precipitation for

upper percentiles
::::
areal

:::::::::::
precipitation. The presented RCM ensemble not only allows for more robust statistics in general, in

particular it is
:
it

::
is

:::
also

:
suitable for a better estimation of extreme values.

1 Introduction

Ongoing climate change affects not only the global scale but also impacts the regional climate. Regarding air temperature, there20

is a more or less clear trend in the recent past, which reveals a clear anthropogenic signal. However, various climate simulations

show distinct spatial differences for precipitation trends,
:::

especially for heavy precipitation

(e. g. Moberg et al., 2006; Zolina et al., 2008; Toreti et al., 2010). What is known is a theoretical increase of the water vapor

capacity according to the Clausius–Clapeyron (CC) equation of about 6–7 % per degree of temperature increase

1



(e. g. Trenberth et al., 2003; Berg et al., 2009). For instance, Lenderink et al. (2011), Berg et al. (2013), or O’Gorman (2015)25

showed that this CC rate can be surpassed up to a factor 2 (Super–Clausius–Clapeyron scaling). In contrast,

Stephens and Ellis (2008) found a change of precipitation below the theoretical CC rate. Nevertheless, the CC rate generally

thought to be a good proxy for future precipitation projections (Westra et al., 2013).

Easterling et al. (2000) showed that a linear trend in heavy precipitation varies for different countries and depends also on

the considered time period. Moberg and Jones (2005) evaluated observational data from about 80 rain gauges in central and30

western Europe for the time period 1901–1999 revealing an increase in extreme winter precipitation. A recent

::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Moberg et al., 2006; Zolina et al., 2008; Toreti et al., 2010).

::
A

:
review of observed variability and trends in extreme cli-

mate events states that it is difficult to find significant relations between the greenhouse gas-enhanced climate change and

increases or decreases in extreme precipitation events (Field et al., 2012). This is attributed to their rare occurrence, the general

high spatial variability of precipitation, and due to a lack of long-term high-quality observations. Feldmann et al. (2013) found35

an increase of both areal mean precipitation

:::::::::
Magnitude

:::
and

:::::
sign

::
of

::::::
heavy

::::::::::
precipitation

::::::
trends

::::::::
strongly

::::::
depend

:::
on

:::::::
various

::::::
factors

::::
such

:::
as

:::
the

::::::::
regarded

::::
area

::
or

::::
the

:::::::::
considered

::::
time

:::::
period

::::::::::::::::::::::::
(e.g. Easterling et al., 2000).

:::::
Global

:::::::::
tendencies

:::::::
towards

:::::
more

::::::
intense

::::::::::
precipitation

::::::::::
throughout

:::
the

::::
20th

::::::
century

::::
were

::::::::
revealed,

:::
for

::::::::
example,

::
by

::::::::::::::::
Donat et al. (2016).

:::::::
Varying

:::::::
regimes

:::::::
between

:::::::
summer

::::
and

:::::
winter

::::::
season

::::
also

:::::::
account

:::
into

:::::::::::
precipitation

::::::
trends.

:::
For

::::::::
example,

::::::::::::::::::::::::::
Moberg and Jones (2005) found

:::
an

:::::::
increase

::
in

::::::
winter

:::::::::::
precipitation

:::::
across

::::::
central

::::
and40

::::::
western

:::::::
Europe

:::::::
between

:::::
1901

:
and extremes in central Europe in order of 5–10 % which will continue with almost same

magnitude for the next decades. Moreover, the
:::::
1999,

:::::
while

::::::::::::::::::
Pal et al. (2004) found

::
a

:::::::
decrease

::
in

:::::::
summer

:::::::::::
precipitation

:::
for

:::
the

:::::
period

::::::::::
1951–2000.

:::::::::::::::::::::
Dittus et al. (2016) found

::
an

:::::::::
increasing

::::
trend

:::::::
between

:::::
1951

:::
and

::::
2005

::
in

:::::::
extreme

::::
total

:::::::::::
precipitation

:::::::
amounts

::
for

:::::::
Europe

::
in

:::::
GCM

::::::::::
simulations

::::::::
(CMIP5).

:::::::
Similar

:::::
trends

:::::
were

:::::
found

::
in

::::::
global

:::::::::
reanalyses

::::::::::::::::::::::::::::
(e.g. ERA–20C, Poli et al., 2016),

:::
but

:::
not

::
in

:::::::::::
observations.

::
In

::::::::
contrast,

:::::::::::::::::::::
Primo et al. (2019) found

:::::::
positive

:::::
trends

:::
for

::::
two

:::::::::::
ground-based

::::::::::::
observational

:::::::
stations

::
in45

:::::::
Germany

:::::
using

:::::::
extreme

:::::::::::
precipitation

::::::
indices.

:

:::::
Model

:::::::::
resolution

::
is

:::::::
another

::::::
crucial

::::::
factor.

::::
The use of high resolution regional climate models (RCM) instead of global

data sets revealed a more detailed and orographically related spatial structure of the precipitation fields and trends . Global

tendencies towards more intense precipitation throughout the 20th century were also revealed by Donat et al. (2016).

In summary, these studies partly document contrasting results. Following Field et al. (2012), this can have different reasons.50

One major point are the underlying choice of data sets (model runs, reanalysis, and/or observations). The definition

:::::::::::::::::::::::
(e.g. Feldmann et al., 2013).

:::
An

:::::::
increase

::
of

::::
both

:::::
areal

:::::
mean

::::::::::
precipitation

::::
and

:::::::
extremes

:::
in

::::::
central

::::::
Europe

::
in

:::::
order

::
of

:::::::
5–10 %

:::
was

::::::
found

::
in

:::::
RCM

::::::::::
simulations

:::
by

:::::::::::::::::::
Feldmann et al. (2013),

::::::
which

::::
will

::::::::
continue

::::
with

::::::
almost

:::::
same

:::::::::
magnitude

:::
for

::::
the

::::
next

::::::
decade.

::::::::::
Differences

::
in

:::::::::::
precipitation

:::::
trends

::::
also

:::::
stem

::::
from

:::::::
varying

:::::::::
definitions of extreme events varies between

::::
such

::
as

:
cer-

tain thresholds, percentile-based indices, or return periods (e. g. Maraun et al., 2010). Other crucial points are that different55

time periods and areas were investigated as well as different model resolutions
:::::::::::::::::::::
(e.g. Maraun et al., 2010).

:::::
While

:::::
most

::
of

:::::
these

::::::
studies

::::
show

::::::
trends

::
in

::::
daily

::::::::::::
precipitation,

:::
just

::
a

:::
few

::::
deal

::::
with

::::::::
sub-daily

::::::
trends.

::::::::::::::::::
Barbero et al. (2017),

:::
for

:::::::
instance,

:::::::::
compared

:::::
trends

::
in

::::::::
sub-daily

:::
and

:::::
daily

::::::::
extremes.

::::::::
Although

:::::::::
significant

:::::::::
increasing

:::::
trends

::::
were

::::::
found

::
for

::::
both

:::::
time

::::::
ranges,

:::::
trends

::
in

:::::
daily

:::::::
extremes

:::
are

:::::
better

:::::::
detected

::::
than

::
in

::::::::
sub-daily

::::::::
extremes.
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Spatially extended intensive rainfall events are frequently related to widespread flooding along the main river networks of60

central Europe causing major damage in the order of several billion euro (EUR) per event

(e. g. Uhlemann et al., 2010; Kienzler et al., 2015; Schröter et al., 2015; MunichRe, 2017). Mudelsee et al. (2003) investigated

the trends in the occurrence of extreme floods related to heavy precipitation events along the Oder and Elbe rivers. They found

a decrease for winter floods in both river catchments, while there seems to be no significant trend for summer floods. In contrast,

Dittus et al. (2016) found an increasing trend between 195165

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Uhlemann et al., 2010; Kienzler et al., 2015; Schröter et al., 2015; MunichRe, 2017).

::
A
:::::::::

prominent
::::::::

example
::
of
:::::

such
:::
an

::::::
extreme

:
and 2005 in extreme total precipitation amounts for e.g. Europe in global climate model simulations (CMIP5). Similar

trends were found in reanalyses (e. g. ERA–20C, Poli et al., 2016), but not in observations. Moreover, Mudelsee et al. (2004) and

Nissen et al. (2013) highlighted a strong dependency of central European flood events on the specific weather pattern of cyclone

pathway “Vb” like the severe flood event of 2002
:::::::::
devastating

:::::
event

::
is

:::
the

::::
flood

::
in

:::::
2012 along the rivers Elbe and Danube (Ul-70

brich et al., 2003a, b). Such outstanding events are by definition extremely rare, which makes the risk estimation difficult or al-

most impossible due to the limited time period with available area-wide observations

(e. g. Pauling and Paeth, 2007; Hirabayashi et al., 2013). Nevertheless, the estimation of flood risk and related trends for

:::::::::::::::::::::::::::::::::::::::::::::
(e.g. Pauling and Paeth, 2007; Hirabayashi et al., 2013).

::::::::
However,

:::::
trend

:::::::
analyses

::
of

::::
such

:::::::
extreme

::::::
events

:::
and

:::
the

::::::
related

:::::
risks

:::::
during

::
the past and

::
for

::
the future are of great importance for insurance purposes or flood protection75

(e. g. Merz et al., 2014; Schröter et al., 2015; Ehmele and Kunz, 2019).

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Merz et al., 2014; Schröter et al., 2015; Ehmele and Kunz, 2019).

:

A possible way of dealing with the unsatisfactory data availability are century-long simulations using climate models

(e. g. Stucki et al., 2016)
::::::::::::::::::::
(e.g. Stucki et al., 2016) or stochastic approaches

(e. g. Peleg et al., 2017; Singer et al., 2018; Ehmele and Kunz, 2019).80

Several previous studies have investigated long-term trends and variability of extreme precipitation using century-long

reanalysis data sets. For instance,
:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Peleg et al., 2017; Singer et al., 2018; Ehmele and Kunz, 2019).

:::
The

::::::::
currently

::::
used

:::::
GCMs

::::
were

:::::
found

::
to

:::
be

::
in

::::
good

:::::::::
agreement

::::
with

:::
the

::::::::
available

:::
but

::::::
limited

:::::::::::
observations

::::::::::::::::::::::
(Fischer and Knutti, 2016). Brönnimann et al.

(2013) or Brönnimann (2017) analyzed historical extreme events
:::::
using

:::::::::::
century-long

::::::::
reanalysis

::::
data

::::
sets and concluded that

the quality of the reanalysis
::::::::
reanalyses

:
strongly depends on the number and type of the assimilated observations, mainly sea85

level pressure and monthly mean sea surface temperature. The investigated historical events were reproduced, but the magni-

tudes were underestimated. A possible reason is the decreasing number and quality of observations in the early century and

therefore
:
, a lack of assimilation data. The suitability of reanalysis data to investigate extreme precipitation for England and

Wales was investigated by Rhodes et al. (2015). While time series of daily precipitation totals are well represented in both data

sets, timing errors of heavy precipitation events were identified as one of the major problems. Stucki et al. (2012) investigated90

historical flooding events in Switzerland and indicate that the reanalyses underestimate precipitation in Switzerland which may

result from the insufficient representation of the alpine topography. In addition,
::::
The timing and the exact location of heavy

precipitation were also found to be inaccurate.
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::
As

::::::
shown

:::
by

:::::::::::::::::::::::
van der Wiel et al. (2019) or

:::::::::::::::::
Martel et al. (2020),

:::::
large

:::::::::
ensembles

:::
can

:::::
have

:::
an

:::::
added

::::::
values

:::
for

:::::
flood

::::
risk

::::::::
estimation

::::
and

:::
for

:::
the

:::::::::
calculation

:::
of

:::::
return

::::::
periods

:::
of

:::::
heavy

:::::::::::
precipitation.

::::::::::::::::::::::::::
van der Wiel et al. (2019) found

::
a
::::
clear

:::::::
benefit

::
in95

::::
using

:::
an

::::::::
ensemble

::::::::
approach

:::
for

:::
the

:::::::::
estimation

:::
of

:::::::
changes

::
in

:::::::::::
hydrological

::::::::
extremes

::::::::
including

:::::::::
compound

::::::
events

:::::::::
compared

::
to

:::::::::
traditional

::::::::::
approaches.

::::::::::::::::::::::
Martel et al. (2020) found

::::::
similar

:::::::
results,

::::::
namely

::
a
:::::::::
reduction

::
in

:::
the

:::::::::
projected

:::::
return

::::::
period

:::
of

:::::::
100-year

::::::
annual

:::::::::
maximum

::::::::::
precipitation

::::
with

:::
the

:::::::
different

::::::::::
ensembles,

:::::
albeit

::::::
having

:::::::
different

:::::
model

:::::::::
structures

:::
and

::::::::::
resolutions.

::::::::::
Furthermore,

::
it
::::
was

:::::::::
emphasized

::::
that

:
a
::::::
higher

::::::::
resolution

::
is

:::::::::::
advantageous

::
to

::::::
predict

::::::
climate

::::::
change

::::::
signals

::::
over

::::::::
complex

::::::
terrain.

:::::
Other

::::::
studies

::::
also

::::::::::
highlighted

:::
the

::::::::::::
improvements

::
of

:::::
using

:::::
high

:::::::::
resolution

::::::
RCMs

:::
for

:::
the

:::::::::::
investigation

::
of

:::::::
climate

::::::::
extremes100

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Feser et al., 2011; Feldmann et al., 2008, 2013; Schewe et al., 2019),

::::::::
especially

::::
over

:::::::
complex

::::::
terrain

::::::::::::::::::::
(e.g. Torma et al., 2015).

:::
The

::::::
studies

::::::::::
mentioned

:::::
above

:::::::::
document

:::::
partly

::::::::::
contrasting

::::::
results

::::
and

::::::::::
demonstrate

:::
the

::::::::::
challenges

::::::
arising

:::::
when

:::::::
dealing

::::
with

:::::::
extreme

:::::::::::
precipitation

:::
and

::::::
related

:::::::::::
phenomena. In this study, a set of different realizations with one RCM is used and

combined to the new ensemble LAERTES-EU (LArge Ensemble of Regionla
::::::
egional

:
climaTe modEl Simulations for EUrope)

:
,105

:::::
which

:::
can

:::
be

::::
used

:::
for

:::::
more

::::::::
profound

::::::::
statistical

:::::::
analyses. Basis is the global reanalysis data set 20CR (Compo et al., 2011),

which was dynamically downscaled for Europe. Several studies highlighted the improvements of using high resolution RCMs

for the investigation of climate extremes (e. g. Feser et al., 2011; Feldmann et al., 2008, 2013; Schewe et al., 2019), especially

over complex terrain (e. g. Torma et al., 2015). LAERTES-EU consists of a handful of 20th century reanalysis data sets and

a large ensemble of decadal hindcast simulations mainly for the second half of the century. Although all simulations were110

performed with the same RCM version and set-up, LAERTES-EU is a combination of different external forcings, boundary

conditions, and/or assimilation. Projections
:::::::::
Predictions

:
for the upcoming decade will round up our analysis. The investigative

focus lies on heavy precipitation
::::
daily

:::::
values

::
of
::::::::

intensive
:::::
areal

::::::::::
precipitation

::::::
which

:::
can

::
be

:::::::::
associated

::::
with

:::::
major

:::::
flood

::::::
events

in central Europe.
::
As

::::::::::::
demonstrated

::
for

::::::::
example

::
by

::::::::::::::::::
Schröter et al. (2015),

::::::
severe

:::::
flood

:::::
events

:::::
along

:::
the

::::::
major

::::
river

::::::::
networks

::
in

::::::
central

::::::
Europe

:::
are

::::::
related

::
to
:::::::::::

long-lasting
:::
and

::::::::::
widespread

:::::::::::
precipitation

:::::
events

:::
of

::::::
mainly

::::::::
stratiform

::::::
origin

::::
with

:::::::::
embedded115

::::::::
convective

::::::::::::
precipitation.

::::::::
Typically,

:::::::::
intensities

::
do

:::
not

:::::
reach

:::
the

:::::
most

:::::::
extreme

::::
rates

::
of

:::
the

::::::::::
distribution

:::
but

:::
are

:::::::::::
characterized

:::
by

::::
high

:::::
spatial

:::::
mean

::::::
values.

:

LAERTES-EU is validated in terms of coincidence with observations ,
:::::::
regarding

::::::::
temporal

:::::::::
variability,

::::::::
statistical

:::::::::::
distributions,

:::
and possible long-term trendsand temporal variability.

:
. The following research questions will be addressed.120

(1) How well is extreme
::::
areal precipitation represented in the RCM ensemble LAERTES-EU?

(2) What is the added value
::
are

::::::::
potential

::::::
benefits

:
of LAERTES-EU compared to other available data sets?

(3) Which temporal evolution and variability of extreme
::::
areal

:
precipitation over central Europe manifest during the pastand

what are the differences between the simulations and observations?

(4) Which tendency is expected for the upcoming decade?125
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A better interpretation of RCM data and a more profound understanding of extreme
::::
areal

:
precipitation may have several

applications such as risk assessments. However,
::::::::
Although

:::::
being

:::::::
relevant,

:::
we

:::
do

:::
not

::::::
handle

:::
the potential mechanisms behind

temporal variances and trends as well as spatial and seasonal differences are not part of this paper and will be discussed in

continuative studies
::
as

:::
this

::::
goes

::::::
beyond

:::
the

:::::
scope

:::
of

:::
this

:::::
study.

This paper is structured as follows: The data sets which were used in this study are introduced in Sect. 2. Section 3 sums up130

the methods used for the analysis and the validation. In Sect. 4 LAERTES-EU is validated with observations for a reference

period. The investigation of temporal variabilities and trends is given in Sect. 5. Finally, Sect. 6 gives a summary and lists our

main conclusions.

2 Data sets

Two different types of data sets are applied in this study: gridded precipitation data based on observations and , partly century-135

long , climate model simulations (LAERTES-EU). The observational data sets are primarily available for the second half

of the 20th century and serve as reference data for the validation of the ensemble. For validation
::::::::::
Furthermore,

:
we compare

LAERTES-EU with the global
:::::
forcing

::::::
global

:::::
model

::::
and

:::
also

::::
with

:::
the

:::::
global

:
reanalysis data set of 20CR (Compo et al., 2011)as

well, which were used as initial data for some of the RCM simulations.

2.1 Observations140

The main reference for this study is the European observational data set E–OBS version v17 for
:::::::
including

:
daily precip-

itation (Haylock et al., 2008; van den Besselaar et al., 2011)
:
is
::

a
:::::::
gridded

::::
data

:::
set

:
with a horizontal resolution of 0.22◦

(≈ 25 km) , covering the years 1950 to 2017. This version shows some improvements towards older versions, since updated

algorithms and new stations have been included in some areas (e. g. for Poland). The E–OBS algorithm interpolates observa-

tions from weather stations to a regular grid using geostatistical methods (e. g. Journel and Huijbregts, 1978; Goovaerts, 2000)145

::::::::::::::::::::::::::::::::::::::::::
(e.g. Journel and Huijbregts, 1978; Goovaerts, 2000). Note that E–OBS is a land-only data set , and ocean grid points are set

to a missing value. Haylock et al. (2008) stated that rainfall totals in E–OBS are reduced by up to almost one third compared

to the raw station data
::
at

:::
the

::::::::::::
corresponding

:::
grid

:::::
cells. Regarding extremes, the deviation of E–OBS is even more pronounced

(Hofstra et al., 2009).
:::::::::::
Nevertheless,

::::
both

:::::::
studies

:::::
stated

::::
that

:::
the

::::::
spatial

:::::
mean

:::::::::::
precipitation

::
in

:::::::
E–OBS

::
is

::::
very

:::::
close

::
to

:::::
other

:::::::::::
observations.150

Additionally
::::::::
Although

::::::
E–OBS

:::
has

:::::
some

:::::::::
limitations,

:::
we

:::
use

::
it

::
as

::::
main

::::::::
reference

:::
for

:::
this

:::::
study

::
as

::::
there

::
is

::
no

:::::
other

::::::::::
comparable

::::::::::::
high-resolution

:::::
daily

:::::::::::
precipitation

::::
data

:::
set

::::::::
available

::::
that

:::::
covers

::::::
entire

::::::
Europe

:::
for

::
a
::::
long

:::::
time

::::::
period.

:::::
Other

::::::::
products

::::
like

::::::
satellite

::::
data

::::
with

:
a
::::
very

::::::
limited

::::
time

:::::
frame

:::
are

:::
not

::::::
helpful

:::
and

::::
also

::::
have

:::::::::
limitations.

:::::
There

:::
are

:::::
single

::::::::::::
ground-based

::::::::::
observations

::::
with

::::
very

::::
long

::::
time

:::::
series

:::
but

::
as

:::
the

:::::
focus

::
of

::::
this

::::
study

::
is
:::
on

:::::::
intensive

:::::
areal

::::::::::
precipitation

::::
this

::::
data

::
is

::
of

::::::
limited

:::::::::
usefulness

:::
for

::::::::
validation.

:
155

::::::::::
Additionally

::
to

:::::::
E–OBS, we compare the RCM simulations with the high-resolved HYRAS data set provided by the German

Weather Service (DWD; Rauthe et al., 2013). HYRAS is a gridded precipitation data set with a horizontal resolution of up to
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1 km for the time period 1951–2006 and covers Germany and the surrounding river catchments. The HYRAS algorithm also

uses ground based measurements and interpolates the point observations to the regular grid.
:::
For

:::
this

:::::
study,

:::
the

::::::::
HYRAS

::::
data

:::
was

::::
first

:::::::::
aggregated

::
to

:::
the

::::::::::::
E–OBS/RCM

:::::
25 km

::::
grid.

:::::::
HYRAS

::::::::
hereafter

::::::
means

:::
this

:::::::::
aggregated

::::::
25 km

::::
data

:::
set.160

2.2 Regional climate model simulations

LAERTES-EU consists of a combined large downscaling ensemble of simulations with one RCM. There are two different

types: long-lasting simulations of 45–110 years and simulations over one decade. In the latter, only a period of 10 years (e. g.

1961–1970) was simulated with a specific number of ensemble members. Then, the initialization point was shifted by one

year (e. g. 1962–1971) and so on until the end of the covered time period. In total, LAERTES-EU consists of 1183 more or165

less independent simulations (sample size) with approximately 12.500 simulated years. The number of ensemble members at

a specific time varies from 6 at the beginning of the century to a maximum of 188 members between 1970 and 2000 (see Fig.

S1 in Supplementary).

LAERTES-EU is divided into four different data blocks (Table 1). All regional simulations used
:::::::
combines

::
a

::::
large

:::::::
number

::
of

:::::::
regional

::::::::
dynamical

:::::::::::
downscaling

::::::::::
simulations

:::
for

::::::
Europe

:::::::::
performed

::::
with

:
a
::::::
single

:::::
RCM.

::::
The

::::
used

:::::
RCM

::
is the non-hydrostatic170

model of the Consortium for Small-scale Modeling
::::::::
Modelling

:
(COSMO) in climate mode model version 5 (CCLM5; Rockel

et al., 2008)and have ,
:::::
which

:::
has

:
a spatial resolution of 0.22◦ (≈ 25 km). The model covers the EURO–CORDEX

::::::::::::::
EURO–CORDEX1

domain (Jacob et al., 2014). All the simulations were
::::::
Overall,

:::
the

::::::::::
simulations

:::
use

:::
the

:::::
same

:::::::
domain,

:::::
model

::::::
version

::::
and

::::::
set-up,

:::::
which

:::
was

:::::::
adapted

:::::
from

:::::::::::::::
EURO–CORDEX

:::::::::::::::::::
(Kotlarski et al., 2014).

:::::::::
According

::
to

:::::::::::::::::::
Feldmann et al. (2008),

:
a
:::::::
dry–day

:::::::::
correction

:
is
:::::::::
important

::
as

::::::
climate

:::::::
models

::::
tend

::
to

::::::::::
overestimate

:::
the

:::::::
number

::
of

::::
wet

::::
days

::::
with

::::
low

::::::::
intensities

::::::
below

:::::::
0.1 mm,

::::::
known

::
as

:::
the175

:::::
drizzle

:::::
effect

::::::::::::::::
(Berg et al., 2012).

::
In

:::::
order

::
to

::::::
reduce

:::
this

::::::
typical

::::
bias,

::
a
:::::::
dry–day

:::::::::
adjustment

::::
was

:::
first

:::::::
applied

::
to

:::::::::::::
LAERTES-EU.

:::
The

:::::::
E–OBS

:::
data

:::::
were

::::
used

::
for

::::
this

:::::::::
correction,

::
as

::::
they

::::
have

:::
the

::::
same

::::::
spatial

::::::::
extension

:::
and

:::::::::
resolution

::
as

:::
the

::::::
CCLM

::::::::::
simulations.

:::
All

:::::::::
simulations

:::
are

:
performed within the BMBF (Federal Ministry of Education and Research of Germany) project MiKlip II2

(Marotzke et al., 2016) . For all simulations the same domain, model version and set-up, adapted from EURO–CORDEX, were

used.180

The boundary forcing was
::
to

:::::
create

:::
and

::::
test

:
a
:::::::
decadal

:::::::::
prediction

::::::
system

::::::::
including

:
a
::::::::

regional
::::::::::
downscaling

::::::::::
component

:::
for

::::::
Europe.

:

:::
For

::
all

:::::::::::
downscaling

::::::::::
simulations

:::
the

::::::::
boundary

:::::::::
conditions

::::
were

:
derived from the Max–Planck Institute of Meteorology cou-

pled Earth System Model (MPI–ESM). This
:::::
global model consists of the atmospheric component ECHAM6 (Stevens et al.,

2013), the ocean component MPI–OM (Jungclaus et al., 2013), and the land-surface model JSBACH (Hagemann et al., 2013).185

::::::::::::
LAERTES-EU

::
is

::::::
divided

::::
into

:::
four

::::::::
different

:::
data

::::::
blocks

::::::
(Table

::
1)

::::::::
depending

:::
on

:::
the

::::
setup

:::
of

::
the

:::::::
forcing

:::::::::
MPI–ESM

::::::::
ensemble

::::::::::
simulations. The differences between the four different data blocks stems from the setup, external forcing and initialization of

the MPI–ESM simulations. The data blocks 1 and 2 of the RCM ensemble (cf. Table 1) obtained it
:::
the boundary values from

the MPI–ESM–LR simulations using a T63 resolution and 47 vertical layers. Data block 3 and 4 used the MPI–ESM–HR

1http://www.euro-cordex.net
2https://www.fona-miklip.de/

6



Table 1. Overview of the RCM ensemble LAERTES-EU with the name of the simulation
::::
within

:::
the

::::::
MiKlip

:::::
project, the classification into

data blocks, the underlaying set-up (experiment), the covered time period, and the number of simulation years. For data blocks 2 and 4,

period means the range of the initialization years; XX stand for the ensemble number and YYYY for the initialization year.

name block experiment period years comment

as20ncepXX 1 20CR via MPI–ESM–LR 1900–2009 330 3 members of 110 years each

decXXoYYYY 2 MPI–ESM–LR DROUGHTCLIP 1910–2009
::::::::
1911–2019 3000 3 members with 100 decades each

historical_rXi1p1-HR 3 MPI-ESM–HR HISTORICAL 1900–2005 410 run 1–3 each with 106 years,

run 4–5 each with 46 years (1960–2005)

preop 4 MPI–ESM–HR CMIP5 1960–2016
::::::::
1961–2026 2850 5 members with 57 decades each

dcppA-hindcast 4 MPI–ESM–HR CMIP6 1960–2018
::::::::
1961–2028 5900 10 members with 59 decades each

version (Müller et al., 2018) as their driving model. In this version, the horizontal resolution is T127 and 95 vertical layers are190

applied.
:::::
Three

::::
types

::
of

:::::::
forcing

:::::::::
ensembles

:::
can

::
be

::::::::::::
distinguished:

(I)
:::::::::
MPI–ESM

:::::::::
assimilates

::::::::
reanalysis

::::
data

:::
for

::::::::
long-term

::::::::::
simulations

:::::
(data

:::::
block

::
1).

:

(II)
:::::::::
Long-term

::::::::::::
historical-type

::::::::::
simulations,

::::::::
according

::
to

:::
the

:::::::
CMIP5

:::::::::::
specifications

::::::::::::::::::::::::::::
(data block 3; Taylor et al., 2012).

(III)
::::::::
Initialized

:::::::
decadal

::::::::
(10–year)

:::::
hind-

:::
and

:::::::
forecast

::::::::::
simulations

::::
(data

::::::
blocks

:
2
::::
and

::
4).

:

The MPI–ESM forcing data used for the three long-term simulations in data
::
In

::::
data block 1assimilated the

:
,
:::
the

:::
first

::::
type

:::
(I)195

:
is
:::::::
applied.

:::::
Here

:::
the 20th Century Reanalysis (20CR; Compo et al., 2011; Müller et al., 2014) over the period 1900–2009

::::
data

:::::::::::::::::::::::::
(20CR; Compo et al., 2011) are

::::::::::
assimilated

:::
into

:::
the

:::::::::::::
MPI–ESM–LR

:::::::::::::::::
(Müller et al., 2014). 20CR has a spatial resolution of ap-

proximately 2◦ (T62) and was generated using the Global Forecast System (GFS; Kanamitsu et al., 1991; Moorthi et al.,

2001) of the National Centers for Environmental Prediction (NCEP)3. It used a 56 member Ensemble Kalman Filter approach

to assimilate surface pressure, monthly sea surface temperature and sea-ice observations. From these simulations the starting200

conditions for a decadal hindcast ensemble (data block 2) has been derived

(Mieruch et al., 2014; Müller et al., 2014; Reyers et al., 2019; Feldmann et al., 2019). Each year three initialized decadal simulations

were started, to study the long-term predictive skill on decadal time scales.
:::::
Three

::
of

:::
the

:::::
20CR

::::::::
members

:::
are

::::::::::
assimilated

::::
into

:::::::::
MPI–ESM

::
to

::::::
provide

::::::::
long-term

::::
(110

:::::
years

:::::
each)

::::::
climate

::::::::::::
reconstruction

:::::::::
simulations

::::
over

:::
the

::::::
period

:::::::::
1900–2009

:::::::::::::::::
(Müller et al., 2014).

:::::::::
Afterwards,

::
a
::::::::::
downscaling

::::
with

:::::::
CCLM

::::
uses

::::
these

::::::
global

:::::::::
simulations

:::
as

::::::::
boundary

::::::::
conditions

::::::::::::::::::::
(e.g. Primo et al., 2019).

:
205

Data block 3 contains the downscaling of five un-initialized (historical)
::::::
consists

::
of

:::
the

::::::
second

::::
type

::::
(II),

:::::
were

:::
five

::
so

::::::
called

:::::::
historical

:
simulations of MPI–ESM–HR with CMIP5 observed natural and anthropogenic external forcing (Taylor et al., 2012).

3http://www.ncep.noaa.gov/
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Data block
::::::
climate

:::::::
forcing

:::::::::::::::::::
(Taylor et al., 2012) are

::::
used

:::
as

::::::::
boundary

:::::::::
conditions

:::
for

::::::
CCLM.

::::
The

::::::::
ensemble

::::
was

::::::::
generated

:::
by

::::::
starting

:::
the

:::::::::
MPI–ESM

::::
from

::::::::
arbitrary

::::
dates

::
in

::
a

:::::::::::
pre-industrial

::::::
control

:::::::::
simulation

:::::::::::::::::
(Müller et al., 2014).

:::::
Three

::
of

:::
the

::::
five

::::::
CCLM

:::::::
members

:::::
cover

:::
the

::::::
period

:::::::::
1900–2005

::::
(106

:::::
years

::::::
each).

:::
The

::::
two

::::::::
additional

::::::::::
simulations

:::::
cover

:::
the

:::::
period

::::::::::
1960–2005

:::
(46

:::::
years210

:::::
each).

::::
Data

:::::
block

:
2
:::
and

:
4 encompasses two sets of decadal hindcasts over the period since 1960 (Müller et al., 2012; Marotzke et al., 2016).

The preop–ensemble
::::::
consist

::
of

::::::::
initialized

:::::::
decadal

::::::::::
simulations

::::
(type

::::
III).

::::
The

::::::
starting

:::::::::
conditions

:::
are

::::::
derived

:::::
from

::
an

::::::::
observed

::::
state

:::::::::::::::::::::::::::::::::::
(Müller et al., 2012; Marotzke et al., 2016).

:::
For

:::::
each

::::::
starting

:::::
year,

::
an

::::::::
ensemble

::
of
:::::::

decadal
::::::::::
simulations

::
is

::::::::
generated

::::
and

::::
then,

:::
the

:::::::::::
initialization

:::::
point

::
is

::::::
shifted

:::
by

:::
one

::::
year

:::::
(e.g.

::::::::::
1961–1970,

::::::::::
1962–1971,

:::
and

:::
so

::::
on).

::::
Due

::
to

:::
the

:::::::
overlap,

::
a
:::::::
specific215

:::::::
calendar

::::
year

::::
may

:::
be

:::::::
covered

::
by

::::::
several

:::::::
decadal

::::::::
hindcasts

:::::
with

:::::::
different

:::::::
starting

:::::
years.

::::::
These

::::::
decadal

:::::
hind-

::::
and

::::::::
forecasts

:::
thus

::::::::
represent

:::
the

:::::::
current

::::
state

::
of

::::
the

:::::
major

::::::
modes

::
of

:::::::
climate

:::::::::
variability

::::::::
compared

::
to

:::
the

::::::::
so-called

::::::::::::
un-initialized

::::::::
historical

:::::::::
simulations

:::::
(data

:::::
block

:::
3).

:::
The

:::::::::::
downscaling

:::::::::
procedure,

:::
the

:::::
skill,

:::
and

:::
the

:::::
added

:::::
value

:::
are

:::::::::
described

::
in

::::::::::::::::::
Mieruch et al. (2014),

:::::::::::::::::::
Feldmann et al. (2019),

:::
and

:::::::::::::::::
Reyers et al. (2019).

::
In

::::
data

:::::
block

::
2,

:::
the

:::::::
starting

:::::::::
conditions

::
of

:::
the

:::::
three

:::::::
decadal

:::::::
hindcast

::::::::
members

::::
with

:::::::::::::
MPI–ESM–LR

:::
are

:::::::
derived

:::::
from

:::
the220

::::::::::
assimilation

::::::::::
experiments

::
in

::::
data

:::::
block

::
1.

::::
The

::::::
starting

:::::
years

::
of

:::
the

::::::
CCLM

:::::::::::
downscaling

:::::
range

::::
from

:::::
1910

::
to

:::::
2009.

::::
This

::::::
means

::
the

::::
last

::::::::
simulated

::::
year

::
is

:::::
2019.

::::
Data

:::::
block

::
4

:::::::
consists

::
of

::::
two

:::::
parts.

::::
Both

::
of
:::::

them
:::
use

::::
the

:::::::::::::
MPI–ESM–HR

:::::::
version.

:::
The

::::::::
so-called

::::::::::::::
preop-ensemble has five

memberseach year. The climate forcing for these simulations stems also .
::::
The

:::::::
external

::::::
climate

::::::
forcing

::
is

:::::::
derived from CMIP5,

whereas for the 10 member per year dcppA–ensemble the CMIP6 external forcing was applied (Eyring et al., 2016; Boer et al., 2016).225

:
.
:::
The

:::::::
starting

:::::
years

:::::
range

:::::
from

:::::
1960

::
to

:::::
2016

::::
(last

::::::::
simulated

:::::
year

::::::
2026).

:::
The

::::::::
so-called

::::::::::::::
dcppA-hindcast

::::::::
ensemble

::::
has

:::
ten

:::::::
members

::::
and

:::
uses

:::
the

:::::::
external

::::::
forcing

:::
for

::::::
CMIP6

:::::::::::::::::
(Eyring et al., 2016).

::::
The

:::::
global

::::::::::
simulations

:::
are

:
a
::::::::::
contribution

::
to

:::
the

:::::::
Decadal

::::::
Climate

:::::::::
Prediction

::::::
Project

::
of

::::::
CMIP6

::::::::::::::::::::::
(DCPP; Boer et al., 2016).

::::
The

::::::
starting

:::::
years

::
are

:::::
1960

::
to

::::
2018

::::
(last

::::::::
simulated

::::
year

::::::
2028).

The
:
In
:::::

total,
:::::::::::::
LAERTES-EU

:::::::
consists

::
of

:::::
1183

:::::::::
simulation

::::
runs

::::::::
(sample

::::
size)

::::
with

:::::::::::::
approximately

::::::
12.500

::::::::
simulated

::::::
years.230

:::
The

:::::::
number

::
of

::::::::
ensemble

::::::::
members

:::
for

::
a
:::::::
specific

::::
year

:::::
varies

:::::
from

:::
six

::
at

:::
the

::::::::
beginning

:::
of

:::
the

::::::
century

:::
to

:
a
:::::::::
maximum

::
of

::::
188

:::::::
members

:::::::
between

:::::
1970

:::
and

:::::
2000

:::
(see

::::
Fig.

:::
S1

::
in

::
the

::::::::::::
supplemental

::::::::
material).

:::
The

:
simulation in all four data blocks are affected

by the observed
:::::::
external climate forcing, but

:::
they

:
differ with respect to the representation of the observed climate variability,

whereas data block 1 uses assimilated 20CR reanalysis data,
:::
data

:
block 2 and 4 contain initialized hindcastsand

:
,
:::::
which

::
to

:::::
some

:::::
degree

::::::
follow

:::
the

:::::::
observed

::::
low

::::::::
frequency

:::::::::
variability,

::::
and

:::
data

:
block 3 only uses the external forcing information. Nonetheless,235

the four groups of downscaling simulations can be grouped into a large ensemble, since the regional simulations were all

performed with the same setup .
:
of

:::
the

::::::
RCM.

:::::::
Despite

:::
the

::::
same

:::::
initial

:::::::::
conditions

::::
and

:::::
model

::::::
setup,

:::
the

:::::::
temporal

::::::::
evolution

:::
of

::
the

::::::::::
day-to-day

:::::::
weather

::
is

:::::::::::
(statistically)

::::::::::
independent

:::::::
between

:::
the

::::::::
members

::::
after

::
a
:::
few

::::::
weeks.

::::
This

::
is
:::
an

:::::::::
advantage,

:::::
since

:::
the

:::
data

:::
set

::
is

::::::::::::
homogeneous

::::
over

::::
time

:::
but

::::
also

::::::
covers

::::::::::
uncertainties

:::
in

:::
the

::::::::::
observations

::::::::
including

::::::::
unknown

::::
and

:::
not

:::
yet

::::::::
observed

::::::
events. The validity of this combination approach is tested within Sect. 4.240

In order to reduce well-known limitations of climate model simulation, the ensemble data first were filtered using a dry–day

adjustment. According to Feldmann et al. (2008), a dry–day correction is essential as climate models tend to overestimate the
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number of wet days with low intensities below 0.1 mm (Berg et al., 2012), known as the drizzle effect. The dry–day correction

was performed using the E–OBS data, as it has the same spatial extension and resolution.

3 Methods245

The capability of LAERTES-EU to simulate realistic precipitation amounts and distribution is an important requirement. More-

over, temporal variability and possible trends should also be well represented for trustworthy data sets. The methods were

applied to different investigation areas and time periods. Equations and additional information can be found in Appendix A–C.

As the focus of this study is heavy
::::::::
intensive

::::
areal

:
precipitation, we concentrate on high percentiles of spatially aggregated

daily rainfall totals, namely 99 %, and 99.9 %.
::::
The

:::::::::
percentiles

:::
are

:::::
based

::
on

::::
wet

::::
days

::::
only.

:::::
First,

:
a
::::::
spatial

::::::::::
aggregation

::
of

:::::
daily250

::::::::::
precipitation

::::::
values

:::
was

:::::::
applied.

::::::::::
Afterwards,

:::
the

::::::::
percentile

::
of

:::::
these

::::
areal

::::::::::
precipitation

:::::
were

::::::::
calculated

:::
for

::::
each

::::
year

:::::::::
separately.

::
In

::
all

::::
data

::::
sets,

:::::
ocean

::::
grid

::::
cells

::::
were

:::
set

::
to

::
a

::::::
missing

:::::
value

:::
and

::::::::
therefore

:::::::::
neglected.

3.1 Validation methods

LAERTES-EU is analyzed and validated using various methods. The intensity spectrum gives the statistical probability of

each precipitation amount by taking into account all grid points and all time steps within the investigation area
:::
and

:::::::
without255

:::
any

::::::::::
aggregation. Therefore, the range of occurred values is divided into evenly spaced histogram classes, which then are

normalized with the total sample size. The resulting intensity–probability–curve (IPC) is a good indicator , if the model is

capable to simulate realistic precipitation intensity distributions.

::
As

:::
an

:::::::::
extension

::
to

::::
the

:::::
IPCs,

::::
the

:::::
linear

:::::
error

:::
in

:::::::::
probability

::::::
space

::
L
::::

(cf.
::::

Eq.
:::::::
A1–A3

::
in

:::::::::
Appendix

:::
A)

:::
is

::::::::
analyzed

:::::::::::::::::::::::::::::::::::::::
(e.g. Ward and Folland, 1991; Potts et al., 1996).

:::::::::
Therefore,

::::::::
empirical

:::::::::
cumulative

::::::
density

::::::::
functions

:::::::
(ECDF)

:::
are

:::::::::
calculated

:::
for260

::::
each

:::::::::
simulation

:::
run

:::
and

:::
for

:::
the

::::::::::::
observations.

:::
The

::::
data

:::::
basis

::
is

:::
the

::::
same

:::
as

:::
for

:::
the

:::::
IPCs.

:::
The

:::::
value

:::::
∆Cr ::::

(Eq.
:::
A1)

::
is
:::::::
defined

::
as

:::
the

::::::::
difference

::::::::
between

:::
the

:::::
ECDF

::
of

::
a
:::::
model

::::
run

:
r
::::
and

:::
that

::
of

:::
the

::::::::::
observation

:::::::::
(difference

:::
of

:::::::::::
probabilities)

::
up

:::
to

:
a
:::::::
specific

::::::::::
precipitation

::::::::
intensity.

::
It

::
is

::::::::
therefore

:
a
::::::::

measure
:::
for

:::
the

:::::
over-

::
or

::::::::::::::
underestimation

::
of

:::
the

::::::
model.

::::::
Using

:::::
∆Cr,:::

the
:::::
linear

:::::
error

::
in

:::::::::
probability

:::::
space

::::
(Lr;:::

Eq.
::::

A2)
::
is

:::
the

:::::
mean

::
of

:::
the

::::::::
absolute

:::::
values

::::::
|∆Cr|::::

over
:::
the

::::::
entire

::::::::::
precipitation

:::::
range

:::
as

::::::
defined

:::
by

:::::::::::::
Déqué (2012) or

::::::::::::::::
Wahl et al. (2017).

:::
The

::::::
better

::::
both

::::::
density

:::::::
function

::::::::
coincide,

:::
the

:::::
lower

:::
the

:::::
value

::
of
::::
Lr.:::::::::

According
:::
Eq.

::::
A2,265

::
Lr::

is
::::::
always

:::::::
positive.

::::
The

::::::::
ensemble

:::::
mean

::
is

:::::
given

::
by

::
L

::::
(Eq.

::::
A3).

:::
The

:::::::
internal

::::::::
variability

:::
of

::::::::::::
LAERTES-EU

:::
on

:::::::
different

::::
time

::::::::
intervals

:
is
:::::::::

compared
::
to

::::
that

::
of

:::
the

:::::::::::
observations.

:::::
Given

::::
that

:::
the

::::
focus

::
of

::::
this

:::::
study

:
is
:::
on

:::::::
intensive

::::::::::
widespread

:::::::::::
precipitation,

:::
this

:::::::
analysis

::
is

:::::::::
performed

:::::
using

:::::
spatial

:::::
mean

:::::::::::
precipitation

:::::::
amounts

:::::::
averaged

::::
over

:::
the

:::::::::::
investigation

:::::
areas.

::::
First,

:::
the

::::
time

:::::
series

::
of

::::
daily

::::::
spatial

::::::
means

::
are

::::::::::
aggregated

:::
over

::::::::
different

:::::::
intervals,

:::::::
namely

:::::::
monthly,

::::::::
seasonal,

:::
and

::::::
yearly

:::::::::::
precipitation

:::::
sums

::
as

::::
well

::
as

::
5,
::::

10,
::
or

:::::::
30-year

:::::::
running

::::::
means.

::
In

::
a

::::::
second

::::
step,

:::
the

::::::::
standard270

:::::::
deviation

:::
of

:
a
::::::
gamma

::::::::::
distribution

:::
σΓ ::

is
::::::::
calculated

:::
for

::::
each

::
of

:::::
these

:::::::
interval

:::::
series

:::
(see

:::::::::
Appendix

::
A;

::::
Eq.

::::
A4),

:::
for

::::
every

::::::
single

:::::::
member

::
of

:::::::::::::
LAERTES-EU,

:::
and

:::
for

:::
the

:::::::::::
observations.

:::::::
Finally,

:::
the

::::::::
ensemble

:::::
mean

::
of

:::
the

::::
four

::::
data

::::::
blocks

::::
and

::
of

:::
the

::::::::
complete

::::::::
ensemble

:
is
:::::
built.

::::
This

:::::::
method

::::::
enables

:::
the

:::::::
analysis

::
of

::::
how

::::
well

:::
the

:::::::
internal

:::::::::
variability

::
on

::::::::
different

::::
time

:::::
scales

::
is

:::::::
captured

:::
by

::::::::::::
LAERTES-EU.

:
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The quantile–quantile (Q–Q) plot compares the simulated distribution with the observed one using different percentiles of275

daily spatial mean precipitation. The Q–Q distributions are used to calculate the coefficient of determination R2 with R being

the Pearson correlation coefficient (Eq. A5in Appendix A).

The added value of the ensemble size is analyzed by using the signal–to–noise ratio S2N (Eq. A6). Therefore, we determine

a Gumbel distribution (cf. Appendix A) for different sample sizes and the corresponding 90 % confidence interval. The S2N

, then, is
:
is

::::
then

:
the ratio of the return value of the Gumbel distribution divided by the 90 % confidence interval (Früh et al.,280

2010).

3.2 Decadal variability and trend analysis

For the analysis of the temporal evolution of heavy precipitation
:
,
:
we use time series of different percentiles of spatial mean

precipitation and quantities introduced and recommended by the Expert Team on Climate Change Detection and Indices (ETC-

CDI; Karl et al., 1999; Peterson, 2005). Currently, 27 indices for temperature and precipitation are defined by the ETCCDI.285

These indices can be used from local to global scales. Additionally, they combine extremes with a mean climatological state

(Zwiers et al., 2013). In this study, we use the two indices R95pTOT and R99pTOT (Eq. B1–B2 in Appendix B), which indicate

the amount of precipitation above the 95 % or 99 % percentile, respectively.

In terms of trend analysis, a Mann–Kendall test (Mann, 1945; Kendall, 1955) is performed with related significance investi-

gations (Appendix C). Regarding possible oscillations, the complete time series is split into sub-series with a minimum length290

of 10 years and up to 130 years (trend matrix). The Mann–Kendall test is applied to each of this
::::
these

:
sub-series.

3.3 Investigation areas and time periods

The focus of this study is central Europe, implying the countries Germany, Switzerland, the Netherlands, Belgium, Luxem-

bourg, and parts of France, Poland, Austria, the Czech Republic, and Italy. Following Christensen and Christensen (2007),

these countries are mostly coincident with two of the areas defined in the PRUDENCE project (prediction of regional scenarios295

and uncertainties for defining European climate change risks and effects), namely the PRUDENCE regions (PR) Mid–Europe

(ME) and
::
the

:
Alps (AL; Fig. 1).

:::::
Albeit

:::::
these

::::::
boxes

::::::
contain

::::
both

::::
land

::::
and

::::::
ocean,

:::
the

:::::
latter

::::
was

::
set

:::
to

:
a
:::::::
missing

:::::
value

::::
and

::::::::
neglected.

::::::
During

:::::::::
validation,

::::
ME

:::
and

:::
AL

::::
were

:::::::
reduced

::
to

:::
the

:::::::
HYRAS

::::
grid

::::
cells

:::::
lying

:::::
within

:::
the

::::::::::::
corresponding

::::
box,

::::::::
hereafter

::::::
referred

::
to
:::
as

::::
ME∗

:::
and

:::::
AL∗.

The data sets are investigated on different time periods (TP): TP1 covers the past from 1900 to 2017, which is divided into300

a sub-period TP1b containing only the period with available observations from 1950
::::
only

:::::::::
containing

:::
the

::::::
period

::::
1951

:
to 2017

:::::
2006,

::::
with

::::
both

:::::::::::
observations (E–OBS )

:::
and

::::::::
HYRAS)

:::::
being

::::::::
available. The time period TP2 is used for the predictions from

2018 to 2028.
::::
Note

::::
that

:::
the

::::::::::
simulations

::::
were

::::::::::
performed

:::::
within

::::
the

::::::
MiKlip

::::::
project

:::::
back

::
in

:::::
2018

::::::
(using

::::::::::
observations

:::::
until

:::::
2017),

::::::
which

:
is
:::
the

::::::
reason

::::
why

:::
the

:::::::::
prediction

:::::
period

:::::
starts

::
in

:::::
2018.

For climatological aspects, we use the time period 1961–1990, hereafter referred to as climTP. Topographic map of Europe305

at model resolution 0.22◦ with the PRUDENCE regions ME and AL (red boxes) and state borders (black contours).
::
A

::::::
couple

::
of

::::::
studies

:::::::::::::::::::::::::::::::::::::::::::
(e.g. Cahill et al., 2015; Folland et al., 2018) showed

::::
that

:::
the

::::::
climate

:::::::
change

:::::
signal

::::
for

:::::
global

:::::
mean

:::::::::::
temperature

10



Figure 1.
:::::::::
Topographic

::::
map

::
of

::::::
Europe

:
at
:::::

model
::::::::

resolution
:::::
0.22◦

::
(in

:::::
meters

:::::
above

:::::
mean

::
sea

:::::
level;

::::::::
m a.m.s.l.)

:::
with

:::
the

::::::::::
PRUDENCE

::::::
regions

:::::::::
Mid-Europe

::::
(ME;

::::
dark

::
red

::::
box)

:::
and

:::
the

:::
Alps

::::
(AL;

::::
gray

::::
box),

::::
state

::::::
borders

:::::
(black

:::::::
contours),

:::
and

:::
the

::::::
HYRAS

::::
area

::::
(light

:::
red

:::::::
contour).

:::::
Ocean

:::
grid

::::
cells

::
are

:::
set

::
to

:
a
::::::
missing

:::::
value.

::::::::::
significantly

::::::::
increased

:::::
since

::
the

:::::
early

::::::
1980s.

:::::::::
Therefore,

::::
using

:::
the

::::
time

::::::
period

::::::::::
1981–2010

::
as

::::::::
reference

:::::
would

:::::::
possibly

:::::::
include

:
a
::::::
strong

:::::::
changing

::::::
signal

::
to

:::
the

::::::::
analysis.

:::::
Using

::::::::::
1961–1990

::::::
reduces

::::
the

:::::::
influence

:::
of

::::
these

:::::::
effects,

::
as

::::
this

:::::
period

::::::
shows

:::::
more

:::::
stable

::::::::
conditions

:::
to

:
a
::::::
certain

::::::
degree.

::::
This

::::
also

::::::
permits

:::::
more

:::::
room

:::
for

:::
the

:::::::::::
interpretation

::
of

:::
the

:::::
future

::::::::::
predictions.

:
310

4 Validation of the RCM ensemble

In the following, the above described methods are applied in order to validate LAERTES-EU concerning its representativeness

with observations. With this aim, data for the investigation period TP1b is used .
::
and

:::
the

::::::
boxes

:::
ME

::::
and

:::
AL

::::
(cf.

:::
Fig.

:::
1)

:::
are

::::::
limited

::
to

:::
the

:::::::
HYRAS

::::
area

:::::
(ME∗

:::
and

::::::
AL∗).

4.1 Statistics
:::::::::
Statistical

:::::::::::
distributions

::::
and

::::::::::
frequencies315

The IPCs give the range of simulated (observed) precipitation intensities at any grid point in
:::::
within the investigation area and

its corresponding probability (Fig. 2). For both investigation areas, the IPCs reveal a distinct added value of the RCM compared

to the global model. Due to the coarse resolution, the GCM is incapable of simulating intensities greater than approximately

60
:::
100 mm d−1 and underestimates

:::
are

:::
not

:::::
found

::
in

:::
the

::::::
GCMs,

:::::
which

::::::::::::
underestimate by a large degree the probability of a wide

range of intensities.
:::
the

::::
high

:::::::::
intensities.

:::
The

:::::
same

::::::
applies

:::
for

:::
the

:::::
global

:::::::::
reanalysis

::::::
20CR. On the other hand, the RCM tend to320
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Figure 2.
:::::::::::::::::::::
Intensity–probability–curves

:::::
(IPCs)

::
of

::::
daily

::::::
rainfall

::::
totals

::
of

:::
the

::::
RCM

:::::::::
simulations

:::::::
(dry–day

::::::::
adjusted),

:::::::::
observations

:::::::
(E–OBS

:::
and

:::::::
HYRAS),

:::::
GCM

::::::::
simulations

:::::::
(forcing

::::::::
MPI–ESM

:::
data

::
at

:::
two

:::::::::
resolutions

::
LR

:::
and

::::
HR),

:::
and

:::::
global

::::::::
reanalysis

:::
data

::::::
(20CR)

:::
for

::
(a)

::::::::::
Mid–Europe

:::::
(ME∗)

:::
and

::
(b)

:::
the

::::
Alps

:::::
(AL∗),

::::
both

:::::
limited

::
to
:::
the

:::::::
HYRAS

:::
area

:::::
during

:::
the

:::::::::
investigation

:::::
period

:::::
TP1b

::::::::::
(1951–2006).

:::
For

:::
the

::::
IPCs,

::::
every

::::
grid

:::
cell

::::
value

::
at

::::
every

::::
time

:::
step

:::
was

:::::
taken

:::
into

::::::
account

::::::
without

:::
any

:::::::::
aggregation.

overestimate precipitation intensities and the IPCs lie above those of the observations
::::
tends

::
to

:::::::::::
overestimate

:::
the

:::::::::
probability

:::
for

::::::::::
precipitation

:::::::::
intensities

:::::
above

:
a
::::::::
threshold

::
of

::::::::::::
approximately

::::::::::
50 mm d−1,

:
but cover the entire range of values . For Mid–Europe

(Fig. 2a)
:
as

:::
the

:::::::::::
observations.

::::
The

:::::
wider

:::::
range

:::
of

::::::::
intensities

::
at
:::
the

::::::
upper

:::
tail

::
of

:::
the

::::::::::
distribution

::::
may

::::::
include

::::::::
possibly

:::
not

:::
yet

:::::::
observed

::::::
events.

:

:::
For

::::
ME∗, the IPCs of the RCM are close to HYRAS, but there is a systematic difference between HYRAS and E–OBS .325

::::
(Fig.

:::
2a).

:
As already mentioned by Haylock et al. (2008), E–OBS has a certain negative bias up to –30 %

:::::
when

:::::
using

:::
grid

:::::
point

:::::
based

::::::::
quantities. The given deviation between

::
of

:
HYRAS and E–OBS is in between this range. For the Alpine region

::::::
Similar

:::::
results

:::
can

:::
be

:::::
found

:::
for

::::
AL∗ (Fig. 2b), the IPCs of E–OBS and HYRAS are almost identical with values up to 200 mm d−1. The

difference .
::::
The

:::::::::
differences between the RCM simulations and the observations at a given probability again is in order of 20 %,

thus within the E–OBS uncertainty
:::
are

:::::::
slightly

:::
less

::::
than

:::
for

:::::
ME∗. For both investigation areas the range of simulated values330

is much higher with up to 470
:::
400 mm d−1. Note that only a small part of AL is covered by HYRAS which might

::::::::
Naturally,

:::::
higher

:::::::::
intensities

:::
are

::::
more

:::::
likely

::
in
:::
the

:::::::::::
mountainous

::::
AL∗

::::::
region.

:

::
In

::::::
contrast

:::
to

::
the

::::
grid

:::::
point

:::::
based

:::::
IPCs,

:::
Fig.

::
3
:::::
shows

:::
the

:::::
mean

:::::::
standard

::::::::
deviation

::
of

::
a

::::::
gamma

::::::::::
distribution

:::
(cf.

::::
Sect.

:::
3.1

::::
and

::::::::
Appendix

::
A)

:::
for

:::
the

::::
time

:::::
series

:::
of

:::::
spatial

:::::
mean

:::::::::::
precipitation

:::::::
amounts

:::::::::
aggregated

::::
over

:::::::
different

:::::
time

:::::::
intervals.

::::
For

::::
both

:::::
areas,

::::
there

::
is

::
an

:::::::::
expectable

:::::::::
continuous

::::::::
decrease

::
of

:::::::
internal

::::::::
variability

:::::::
towards

::::::
longer

::::::
periods

:::
for

::
all

::::
data

:::::::
sets/data

:::::::
blocks.

:::
For

:::::
ME∗,335

::::::::::::
LAERTES-EU

::
is

::
in

:::::
good

:::::::::
agreement

::::
with

::::
both

::::::::::
observations

:::
at

::::
least

::
up

::
to
::

a
::::::
yearly

::::::::::
perspective.

:::
For

::::::
longer

::::
time

:::::::
periods,

::::
data

::::
block

::
1
:::::
shows

::
a
::::::
slightly

::::::::
different

:::::::
behavior

:::::::::
compared

::
to

:::
the

::::
other

::::
data

::::::
blocks

:::
and

:::::::::::
observations.

::::::::::::
Nevertheless,

:::
data

::::::
blocks

::::
2–4
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Figure 3. Intensity–probability–curve
::::
Mean

:::::::
standard

:::::::
deviation

:::
σΓ ::

in
:::
mm

:
(IPC

::::
mean

::::
over

:::
data

::::::
blocks) of

::::::
spatially

:::::::
averaged

::::::::::
precipitation

::::::::
aggregated

:::
over

:::::::
different

::::
time

:::::::
intervals: daily rainfall totals of the RCM simulations (dry–day adjusted

:::
day), observations

::::::
monthly

:
(E–OBS

and HYRAS
:::
mth),

:::::::
seasonal

:::::
(seas),

:::::
yearly

::::
(yrs),

:
and global reanalysis

::::::::::
5/10/30-year

::::::
running

::::
mean

:
(20CR

::::::::::
5yr/10yr/30yr) for (a) Mid–Europe

(ME)
:

∗
:

and (b) the Alps (AL∗
::::::

(TP1b;
:::::::::
1951–2006)during

:
.
:::
The

::::
four

:::
data

::::::
blocks

::
of

:::::::::::
LAERTES-EU

:::
are

::::::::
considered

:::::::::
separately;

::::
RCM

:::::
mean

::::
stands

:::
for the investigation period TP1b

:::::::
complete

:::::::
ensemble

::::
mean

:::::
(gray).

:::
The

:::::
results

::
for

::::::
E–OBS

:::
and

:::::::
HYRAS

::
are

:::::
given

::
in

::::
black

:::
and

:::::::
magenta.

:::
Note

::::
that

:
it
::
is

:::
not

::::::
possible

::
to

::::::
estimate

:::
the

::::
30yr

:::::
values

::
for

:::
the

::::::
decadals

::
of
::::
data

:::::
blocks

:
2
:::
and

::
4.

:::
and

:::
the

::::::::
ensemble

:::::
mean

:::::::
continue

::
to

::::::
match

::::
with

:::
the

::::::::::
observations

:::
up

::
to

:::
the

::::::
10-year

:::::::
running

:::::
mean.

:::::
Note

:::
that

::
it

::
is

:::
not

:::::::
possible

::
to

:::::::
estimate

:::
the

::::::
30-year

:::::::
running

::::
mean

:::
for

:::
the

:::::::
decadal

:::::::::
simulations

::
of

::::
data

:::::
block

::
2

:::
and

:
4
:::::
given

:::
the

::::
data

:::::::::
availability.

::::
For

:::
data

:::::::
block3,

::::
only

::
an

:::::::
external

::::::
climate

::::::
forcing

::::
was

::::
used

:::::::
meaning

:::::
these

::::::::
so-called

::::::::
historicals

:::
are

::::
free

::::
runs

::
in

:::::
terms

::
of

::::
daily

:::::::
weather

:::::::::
evolution.340

::::::::
Therefore,

::
it
::
is

:::
not

:::::::
expected

::::
that

:::
the

:::::::::::
multi-decadal

:::::::::
variability

::
is

::
in

:::::
phase

::
to

:::
the

:::::::
observed

:::::::::
circulation

:::::
after

:
a
::::::
certain

::::
time,

::::::
which

:::
can be a reason for the vanished differences between

::::::
slightly

::::::
higher

:::::::::
differences

::
of

::::
data

:::::
block

::
3

::::::::
compared

::
to

:::
the

:::::::::::
observations

:
at
::::

the
::::::
longest

::::
time

::::::
scale.

:::::::::::
Furthermore,

::::
note

::::
that

:::
the

::::::
results

::
of

::::
Fig.

::
3
:::
do

:::
not

:::::::
indicate

:
a
:::::::

perfect
:::::
match

:::
of

::::::::::::
LAERTES-EU

:::
in

::::
terms

:::
of

:::::::
absolute

::::::
values,

:::
but

::::::
rather

:::
that

:::
the

:::::::
internal

:::::::::
variability

:::::::
(spread)

::
of

::::::
spatial

:::::
mean

:::::::::::
precipitation

:::::
totals

::
is

::::
well

::::::::
captured.

:::
For

:::
the

:::::::::::
mountainous

::::
AL∗

::::::
region,

:::
the

:::::::
internal

:::::::::
variability

::
is

:::::
higher

::::
and

::
all

::::
data

::::::
blocks

::::
have

::
a
::::::
higher

:::::::
standard

::::::::
deviation

::
at

:::
all345

::::
time

:::::::
intervals.

::::
This

::::::
means

::::
that

::
the

::::::
spread

::
of

:::::::::
simulated

::::::::::
precipitation

::::::::
amounts

:
is
::::::::
increased

:::::::::
compared

::
to

:::
that

:::
of

::
the

:::::::::::
observation.

:
A
::::::::

possible
::::::
reason

:::
for

:::
this

:::::::::
difference

:::
can

:::::::
emerge

::::
from

::::::
sparse

::::::::::::
measurements

::
in
::::

that
::::::
region

:::::::::
considered

:::
for

::::
both

:
E–OBS and

HYRASand the resulting specious deviations to the RCM
:
,
::::::::
especially

:::
for

:::::::::
long-term

:::::::::::
observations.

::::
The

::::
more

:::
or

:::
less

::::::::
constant

::::::::
difference

:::::::
between

:::::::::::::
LAERTES-EU

:::
and

:::
the

:::::::::::
observations

:::
can

::
be

:::
an

:::::::
indicator

::
of

::
a
:::::::
possibly

:::::::::
systematic

::::
bias

::
in

:::
this

::::::
region.
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A direct linkage between observed and simulated precipitation is given by a
:::
The Q–Q plot (Fig. ??). Therefore,

::::
plots350

::
of daily spatial mean precipitation fields for both investigation areas are used.Then, the distributions for these values are

calculated
:::::
shown

::
in

::::
Fig.

::
S2

::
in

:::
the

:::::::::::
supplemental

:::::::
material. Generally speaking, the distribution of the RCM is in better agreement

with
::::::
similar

::
to

:::::
those

::
of

:
the observations, at least with

::
to E–OBS, with little deviations from the optimum (diagonal line) for

most of the spectrum and differences at around 10 % for the upper part of the distribution. In comparison to HYRAS, the

maximum deviation is higher with around 20 %. For AL(Fig. S2), the RCM data differs more and over a wider range of the355

spectrum compared to HYRAS
::

∗,
:::
the

:::::::::
differences

:::::::
between

:::
the

::::::
RCM

:::
and

::::::::
HYRAS

:::
are

:::::
larger than for ME.

:

∗
::::
(Fig.

::::
S2).

:
Even

though HYRAS was aggregated to the E–OBS/RCM grid, the more pronounced differences especially for the extremes might

be a result of the higher resolution of the HYRAS data, which, in particular, is of greater relevance in the mountainous region

of AL
:

∗.

The findings of Fig. ??
::
S2

:
are confirmed by the determination coefficients R2 (Table 2). For both E–OBS and HYRAS

:
, the360

coefficient is very high with R2 > 0.98. There is a slightly higher R2 for E–OBS than for HYRAS, which is an artificial effect

of the data resolution. The region AL∗
:

shows a minimal higher skill compared to ME
:

∗ in E–OBS and slightly lower values

in HYRAS. Table 2 also reveals higher correlations of the CCLM simulations driven by the high resolution
::::::::::::
high-resolution

MPI–ESM–HR
:::
data

:
compared to those driven by the lower resolved MPI–ESM–LR data. Quantile–quantile plot of spatial

mean daily precipitation for investigation period TP1b comparing the RCM simulations (data block 1–4) with E–OBS (solid365

lines) and HYRAS (dashed lines) for Mid–Europe (ME).

::::
Even

::::::
though

::::
this

:::::
seems

::
to

::
be

::::::::::
systematic,

:::
the

:::::::::
differences

:::
are

::::::::
marginal.

:

::::
Table

::
2
::::
also

::::::::
contains

:::
the

:::::
mean

:::::
linear

:::::
error

::
in

::::::::::
probability

:::::
space

::
L
:::
for

::::
the

:::::::
different

::::
data

:::::::
blocks.

::::::
Again,

:::
the

::::::::::
differences

:::::::
between

:::
the

:::
data

::::::
blocks

:::
are

::::::::
marginal

::::
with

::
all

:::::
cases

:::::
being

::::
close

::
to
::::::
L= 0

:::::
which

::::::
stands

::
for

::
a
::::
good

:::::::::
agreement

::
of

:::::::::::::
LAERTES-EU

::::
with

:::::::::::
observations.

::
In

:::::::
contrast

::
to

::::
R2,

:
L
::::

has
:::::
lower

:::::
values

:::
for

:::
the

::::::::::
simulations

::::::
driven

::
by

::::::::::::::
MPI–ESM–LR.

:::
For

:::
all

:::
data

:::::::
blocks,

::
L370

:
is
:::::::::::
considerable

::::::
higher

:::
for

:::
the

:::::::::::
mountainous

::::
AL∗

::::::
region.

:::::
Note

:::
that

:::::
both

::::::::
quantities

:::::
being

:::::
close

::
to

::
its

::::::::
optimum

:::::
value

:::::
does

:::
not

::::::
indicate

::
a
::::::
perfect

::::::
model.

::
It
::::::
rather

:::::
means

::::
that

:::
the

::::::
overall

::::::::
statistics

::::::::
regarding

:::
the

:::::
entire

::::::
range

::
of

:::::::::
intensities

::
to

::
a

::::
high

::::::
degree

:::::::
coincide

::::
with

:::
the

:::::::::::
observations.

4.2 Time series

Beside overall statistics, other properties of LAERTES-EU like the temporal variability should cover the range of observations375

as well. Therefore, we analyze the time series of yearly values of different percentiles of the spatial mean precipitation for

the investigation areas. In Fig. 4
:
, the time series of the 99 % percentile for ME

:

∗ is shown. Both observational data sets have

a high year–to–year variability with similar shapebut the mean over TP1b is about 10 % higher in HYRAS than in E–OBS.

The ensemble mean value is very close to the E-OBS mean with relative deviations between –5
::
of

:::::::::::::
LAERTES-EU

::
is

::::::
higher,

::::
with

:
a
:::::::
relative

::::::::
deviation

::
of

::::
1–10 % and 4 %, and 0.6 % on average during (TP1b . Compared to HYRAS the differences are380

–14 to –5
::::::
average

::
is

:
7 %with –8 % on average). The spread of both observational data sets is covered by the ensemble spread

::::::::
(minimum

:::
to

::::::::
maximum

::::::
values)

:::
of

::::::::::::
LAERTES-EU

:
except for few extreme peaks (e. g. 1985in E–OBS or 1998 in HYRAS). In

AL, the HYRAS
::

∗,
:::
the

::::::
E–OBS

:
mean is about 15

:
5 % higher than E–OBS

:::::::
HYRAS

:
but both time series have again a similar

14



Table 2. Coefficients of determination R2 between the RCM and observations
:::
(top

:::::::
number) for the quantile–quantile contemplation of

Fig. ??
::
S2

:::
and

:::::
linear

::::
error

::
in

::::::::
probability

:::::
space

::
L

::::::
(bottom

:::::::
number)

:::::::
between

::
the

:::::
RCM

:::
and

::::
both

::::::::::
observations

::::::
(E–OBS

::::
and

:::::::
HYRAS)

:
for

Mid–Europe (ME
:

∗) and the Alps (AL
:

∗),
::::::
always

::::
using

:::::::
HYRAS

:::
grid

::::
cells

:::
only.

::::
Both

:::::::
quantities

:::
are

::::
based

:::
on

::::
daily

:::::
spatial

::::
mean

::::::::::
precipitation

:::::::
amounts.

RCM E–OBS HYRAS

ME
:

∗ AL
:

∗
:

ME
:

∗ AL
:

∗
:

Data block 1 0.9914 0.9924 0.9876 0.9835

:::::
0.0016

: :::::
0.0058

: :::::
0.0027

:::::
0.0080

:

Data block 2 0.9914 0.9925 0.9878 0.9848

:::::
0.0009

: :::::
0.0037

: :::::
0.0021

:::::
0.0058

:

Data block 3 0.9963 0.9976 0.9936 0.9930

:::::
0.0017

: :::::
0.0062

: :::::
0.0029

:::::
0.0083

:

Data block 4 0.9966 0.9981 0.9943 0.9938

:::::
0.0011

: :::::
0.0038

: :::::
0.0023

:::::
0.0059

:

shape (Fig. S3). The ensemble mean in this area lies within both observation means and a little closer to HYRAS. The relative

deviation is 6–15
::::
again

::
is
::::::

higher
::::
with

:::::::
relative

:::::::::
deviations

::
of

::::::
12–23 % (10

::
16 % on average) to E–OBS and –8 to 0.2

:::::
18–29 %385

(–5
::
21 % on average) to HYRAS. The ensemble spread also covers the observed variability.

Regarding more extreme values, namely the 99.9 % percentile, similar results can be found . E–OBS shows a certain bias

to HYRAS of approx. 10 % for ME and 25 % for AL (Fig. S4 and S5).
:::::
Again,

:::::::
E–OBS

::::
and

:::::::
HYRAS

:::::
show

:
a
::::::
similar

::::::::
behavior

::
for

::::
both

:::::
areas

::::
with

:::::
mean

:::::
value

:::::::::
differences

::
of

::::
less

:::
than

::::
1 %.

:
The ensemble mean is close to E–OBS with a deviations of –10 to

1
:::::
shows

:
a
::::::
mostly

:::::::
positive

:::
bias

::::
with

:::::::::
deviations

::
of

::::
less

:::
than

:::
10 % (–3

:
6 % on average ) for ME, and 6 to 16

:::::
during

:::::
TP1b)

:::::::::
compared390

::
to

::::::
E–OBS

:::
for

:::::
ME∗

:::
and

:::::
6–18 % (

::::::
average

::
of

:
10 %on average) for AL. Compared to HYRAS, LAERTES-EU differs between

–19 and –7 % (–11 % on average) in ME, and between –18 and –10 % (–15 % on average) in AL.
:

∗.
:
Furthermore, there is

::
are

:
a

distinctly higher spread and variability of the 99.9 % for both, the observations and LAERTES-EU. Again, the minimum values

of the ensemble spread seem to be constant over time, while there is an increase in the maximum values for ME but no clear

signal for AL. Except for a few peaks, LAERTES-EU covers the spread of the observations.395

4.3 Added value of the sample size

In order to demonstrate the added value of the presented LAERTES-EU,
:
we use the signal–to–noise ratio (S2N , Eq. A6)

for different sample sizes and return periods (cf. Appendix A). Sample size, in this case, means the number of data which

is equivalent with the number
::::::::
simulation

:::::
runs.

:::::
Note

:::
that

:::
the

::::::::::
simulations

::::
vary

:::
in

:::::
length

::::::::
(number

::
of

::::::
years)

::::
with

:
a
:::::::::
minimum

15



Figure 4. Time series of the yearly 99 % percentile
:::
(wet

::::
days

:::
and

:::::::
HYRAS

::::
area

::::
only) of

:::
daily

:
spatial mean precipitation

:::::
values for Mid–

Europe (ME
:

∗) during TP1b
::::::::::
(1951–2006) of the LAERTES-EU ensemble mean (black), the ensemble spread (minimum to maximum; gray),

E–OBS (red), and HYRAS (blue). The dotted lines symbolize the mean values of the observations throughout TP1b.

:::::
length

::
of

:::
10

::::
years

::::
and

:
a
:::::::::
maximum

::
of

:::
110

::::::
years.

::
In

::::
order

:::
to

:::::
reduce

:::
the

::::::::
influence

::
of

:::
the

::::::
sample

::::::
length

::
on

:::
the

:::::::
results,

::
the

::::::
single400

::::::::
simulation

::::
runs

:
of simulation runs

::::::::::::
LAERTES-EU

:::::
where

::::::::
randomly

:::::::::::
concatenated

:::::
using

:
a
::::::::::
hundredfold

::::::::::
permutation. Observations

have a sample size of 1.
::::::
Again,

::::
S2N

::
is
:::::::::

calculated
:::
for

:::::
daily

::::::
spatial

:::::
mean

::::::::::
precipitation

::::::::
amounts

::::::
during

:::::
TP1b

::::
only

:::::
using

:::
the

:::::::
HYRAS

::::
area.

:

For both MEand AL, the
:

∗
:::
and

:::::
AL∗, S2N increases with the sample size

::::::
steadily

::::::::
increases

:::
with

:::::::
sample

:::
size

:::
for

::
all

:::::::::
calculated

:::::
return

:::::
values

:
meaning a more statistically robust estimate of the return values (Fig. 5). At the beginning there is a strong increase405

of S2N until a sample size of approximately 10. Between a sample size of 10 to 100 the increase of S2N is weak. This range is

typically used as ensemble size. For a sample size of 100 and more S2N increases rapidly. Signal–to–noise ratio for different

return periods T (colored lines) dependent on the sample size for (a) ME and (b) AL.

Furthermore, the S2N is lower for higher return periods which is a result of
::
the

:::::::::
increasing

::::::::::
uncertainty

::
of

:::
the

::::
best

:::::::
estimate

:::
due

::
to less or even no data

:::::
points

:
for very high return periods. However, S2N also increases with sample size for the very high410

return periods. The robustness of a 2–year return value estimate of a sample of size 20
:
1 is about the same as the 1000–year

estimate for a sample of size 1000.
:::
20.

:
This means that even for extremes, which have not been observed yet, some robust

statistical analysis can be carried out.

16



Figure 5.
:::::::::::
Signal–to–noise

::::
ratio

:::::
S2N

::
for

:::::::
different

:::::
return

::::::
periods

::
T

:::::::
(colored

::::
lines)

:::
of

::::
daily

:::::
spatial

:::::
mean

:::::::::
precipitation

::::::::
dependent

:::
on

:::
the

:::::
sample

:::
size

:::
for

::
(a)

:::::
ME∗

:::
and

::
(b)

::::
AL∗.

::::
The

:::::::::::
LAERTES-EU

:::::::
members

::::
were

::::::::
randomly

::::::
stringed

::::::
together

::::::::
permuting

:::
the

::::
order

:
a
:::::::

hundred
:::::
times.

:::
The

:::::
shown

::::
S2N

::
is

::
the

:::::
mean

::
of

:::
this

:::::::::
permutation.

5 Long-term variability and trends

The temporal evolution and variability of extreme precipitation throughout the entire
::::
past time period TP1

::::::::::
(1900–2017)

:
and415

also for predictions of the upcoming decade
:::
the

:::::::::
predictions

:
(TP2) is

:
;
::::::::::
2018–2028)

:::
are

:
evaluated in this section. Beside time

17



Figure 6. Boxplot of the distribution of daily spatial mean precipitation values
:::::::
(including

:::
dry

:::::
days) for ME. Each decade during TP1 (blue)

was considered separately. The centerline of a box marks the median; the lower and upper end of the box mark the 25th
::::
25 % and 75th

::::
75 %

percentile (interquartile range); the whiskers represent approximately the 99.9 % percentile; TP2
::
the

::::::::
prediction

:::
part

:
is marked in green.

series of percentiles, we use climate change indices and statistical distributions.
::
In

:::
this

:::::::
section,

:::
all

::::
land

::::
grid

::::
cells

::::::
within

:::
the

::::::::::
investigation

:::::
areas

:::
ME

::::
and

:::
AL

:::
are

::::
used

:::
for

:::::::::
calculating

:::
the

:::::
daily

::::
areal

:::::
mean

::::::::::
precipitation

::::::::
amounts.

:

5.1 Precipitation distributions

Figure 6 shows the evolution of the distribution of spatial
::::
areal

:
mean precipitation throughout TP1 and TP2 by treating each420

decade independently. For the core of the distributions, namely medians, interquartile ranges, and upper whiskers, only small

variances can be found between the different decades which means that there is almost no change for the majority of the

precipitation amounts. Nevertheless, a marked positive trend for the uppermost extremes of the distributions appears with max-

imum values around 18 mm d−1 at the beginning of the 20th century and about 24 mm d−1 in the 21st century. The distribution

for the upcoming decade 2020–2028 (Figure 6, green boxplot) shows only minimum
:::::
shows

::::
only

:::::
small

:
differences to those425

of the present decade since 2010 with an almost equal median and interquartile range, but slightly higher maximum values .

::::::
(Figure

::
6,

:::::
green

::::::::
boxplot).

::::
Note

:::
that

:::
the

::::::
decade

::::::::::
2010–2019

:::::::
contains

:::
the

:::::
years

::::
2018

:::
and

:::::
2019

::::
from

:::
the

::::::::::
predictions,

:::
and

::::
that

:::
the

:::
last

::::::::
“decade”

:::::::::
2020–2028

::
is

::::::
shorter

::::
with

::
9

:::::
years.

The boxplot for AL is shown in Fig. S6 and illustrates that not only the high percentiles reveal a decrease in the middle of the

century, but the entire distribution is shifted towards lower values. Nevertheless, there is no clear tendency for the maximum430

values. For TP2 (Fig. S6, green boxplot) the
::
the

:::::::::
upcoming

::::::
decade

:::
the

:
distribution is similar to that of the present decade in
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Table 3. Overall trend
:
of
:::::

daily
:::::
spatial

::::
mean

::::::::::
precipitation

:
during TP1 and TP2

::::::::::
(1900–2028) using a linear regression of the yearly series

of the 99 % and 99.9 % percentile (pct;
:::
wet

::::
days

::::
only) for ME and AL; Given are absolute values and the relative changes (RC) compared

to the climatological mean (climTP;
:::::::::
1961–1990) for the

:::::::
ensemble minimum (min), the

:::::::
ensemble

:
mean, and the

:::::::
ensemble

:
maximum (max)

percentile values
::::
within

:::::::::::
LAERTES-EU, and the related significance (p–value;

:::::::
α= 0.05).

area pct variable trend RC climTP pα

(mm) (%) (mm)

min –0.4 –5.3
:::
–4.6 7.5

::
7.8 0.9966

:::::
0.9387

ME 99 mean 0.7
::
0.8

:
7.0

::
7.8 10.0

:::
10.3 1.0

:::::
1.0000

max 2.6 19.0 13.7
:::
13.9 1.0

:::::
1.0000

min –0.7
:::
–1.0

:
–7.8

::::
–10.9 9.0 0.9974

ME 99.9 mean 1.1 8.2
::
8.4 13.4

:::
13.5 1.0

:::::
1.0000

max 7.2
::
6.7

:
33.2

:::
31.0 21.7

:::
21.6 1.0

:::::
1.0000

min –2.6 –17.8
:

.1 14.6
:::
15.4 1.0

:::::
1.0000

AL 99 mean –0.3
::
0.1

:
–1.5

::
0.4 20.2

:::
21.0 0.9381

:::::
0.7208

max 4.4
::
5.4

:
15.9

:::
18.9 27.7

:::
28.4 1.0

:::::
1.0000

min –3.8 –21
:

–4.3
::::
–23.9 17.8 1.0

:::::
1.0000

AL 99.9 mean –0.0 –0.0 27.3 0.0
:::::
0.0000

max 8.3
::
9.0

:
18.9

:::
20.0 44.0

:::
44.7 1.0

:::::
1.0000

case of median and the upper part of the distribution .
::::
(Fig.

:::
S6,

:::::
green

::::::::
boxplot).

:
The interquartile range is reduced due to a

increased lower boundary of the boxplot.

5.2 Temporal evolution of yearly percentiles

5.2.1 Overview435

The overall trend during TP1 and TP2 using a linear regression for both areas and percentiles is given in Table 3. While the

ensemble mean shows a significant positive trend for ME for both percentiles, a small but significant negative trend can be

found for the 99 % of AL, while there is almost no change in the 99.9 % of AL. In all cases
:
, the ensemble spread increases due

to both a decrease of the minimum values and an increase of the maximum values both being highly significant. The change of

the maximums is stronger than the reduction of the minimums and more pronounced in AL than in ME.440
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Figure 7.
::::
Time

::::
series

::
of

:::
the

:::::
yearly

::::
99 %

:::::::
percentile

::
of

::::
daily

:::::
spatial

::::
mean

::::::::::
precipitation

::::
(wet

:::
days

::::
only)

:::
for

:::::::::
Mid–Europe

:::::
(ME;

:::
land

::::
only)

::
of

:::
the

:::::::::::
LAERTES-EU

:::::::
ensemble

::::
mean

:::::
(solid

::::
line),

:::
and

:::
the

:::::::
ensemble

:::::
spread

::::::::
(minimum

::
to

::::::::
maximum;

:::
dots

:::
and

::::::
shaded

::::
area)

:::::
during

:::
TP1

::::::::::
(1900–2017;

::::::::
black/gray)

:::
and

::::
TP2

:::::::::
(2018–2028;

:::::::
reddish).

Analogous to Table 3 we analyze the trend for TP1b only (Table S1 in Supplementary
:::
the

:::::::::::
supplemental

::::::::
material). The

tendencies are the same for all cases but less pronounced except for the mean 99.9 % of AL where the negative trend during

TP1b is slightly stronger than for the whole time series.

Figure 7 shows the temporal evolution of the 99 % percentile during the 20th and the beginning of the 21st century for the

whole LAERTES-EU. As given in Table 3, the lower boundary changes are small, while there is a visible positive trend of the445

ensemble mean and the upper boundary of the ensemble spread. Note that the larger spread from the 1960s onwards might be

artificial due to the decisively larger number of members of data block 4. Nevertheless, there is a clear consistency in the time

series for ME.

Some differences emerge for the Alpine region AL (Fig. S7). At first, there is a distinct decrease of the ensemble mean

between 1960 and 1970 which might reveal from the rising number of members. As the ensemble matches well with the450

observations, we presume an overestimation of precipitation in the first half of the 20th century in that region, which could be

a result of missing data for the applied dry–day correction. Due to the more complex terrain, the structure of the precipitation

fields is more complex, and therefore more sensitive for different types of effects such as the dry–day correction. Time series

of the yearly 99 % percentile of spatial mean precipitation for Mid–Europe (ME) of the LAERTES-EU ensemble mean (solid

line), and the ensemble spread (dots and shaded area) during TP1 (black/gray) and TP2 (reddish).455
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Table 4.
::::::::::

Climatological
:::::
mean

::::::
(climTP;

::::::::::
1961–1990)

::
of

:::
days

:::
per

::::
year

:::::::
exceeding

:::
the

::::
99 %

:::
and

::::::
99.9 %

:::::::
percentile

::::
(pct;

:::
wet

::::
days

::::
only)

:::
for

:::
ME

:::
and

:::
AL,

::::
linear

::::::::
regression

::::
(LR)

:::
and

::::::
relative

:::::
change

::::
(RC)

::::::::
compared

:
to
::::::
climTP

:::
for

::::::
different

::::::::::
investigation

:::::
periods

::::
(TP),

:::
and

::::::
related

:::::::::
significance

:::::::
(p–value;

::::::::
α= 0.05).

:::
area

: ::
pct

: ::::::
climTP

::
TP

: ::
LR

: :::
RC

::
pα

:::
ME

::
99

::::
3.20

:::
1+2

:::
1.25

: ::::
39 %

:::::
1.0000

:

::
1b

:::
0.76

: ::::
24 %

:::::
1.0000

:

:::
99.9

: ::::
0.60

:::
1+2

:::
0.36

: ::::
60 %

:::::
1.0000

:

::
1b

:::
0.19

: ::::
32 %

:::::
1.0000

:

:::
AL

::
99

::::
3.11

:::
1+2

::::
–0.17

: ::::
–6 %

:::::
0.8262

:

::
1b

::::
–0.37

: :::::
–12 %

:::::
0.9251

:

:::
99.9

: ::::
0.62

:::
1+2

::::
–0.02

: ::::
–2 %

:::::
0.7084

:

::
1b

::::
–0.04

: ::::
–6 %

:::::
0.2973

:

The results for the 99.9 % percentile are similar for both areas (Fig. S8 and S9). The positive trend for ME is even more

pronounced, while the drop in the 1960s for AL is less visible and therefore,
:
the time series is more constant.

Climatological mean 1961–1990 (climTP) of days per year exceeding the 99 % and 99.9 % percentile (pct) for ME and

AL, linear regression (LR) and relative change (RC) compared to climTP for different investigation periods (TP), and related

significance (p–value). area pct climTP TP LR RC pαME99 3.55 1+2 1.39 39 % 1.0 1b 1.11 31 % 1.0 99.9 0.57 1+2 0.36 63 %460

1.0 1b 0.27 47 % 1.0 AL 99 3.78 1+2 –0.26 –7 % 0.9618 1b –0.58 –15 % 0.9964 99.9 0.61 1+2 –0.01 –2 % 0.6825 1b –0.01

–1 % 0.3775

Taking a look into
::
For

:::::
ME, the evolution of the number of days exceeding the climatological mean percentile ,

:::::
reveals

:
a

strong positive and significant trend appears for ME for
:::
for both the 99 % (Fig. 8, top) and 99.9 % percentile (Fig. S10). The

exact values of the climTP mean, the linear regression, the relative change, and the significance can be found in Table 4 (top465

numbers). For the Alpine region
:::
AL, the year–to–year variability is higher and the overall trend is slightly negative (Fig. 8,

bottom, and S11) and at least significant for the 99 % percentile. Again, we analyze the trend for TP1b separately (Table 4,

bottom numbers). the
::::
The tendencies for TP1b are the same but less pronounced except for the days exceeding the 99 %

percentile in AL, where there is a stronger trend signal in TP1b compared to the whole time series, which is also significant to

a high degree.470

5.2.2 Past trends and
:::::::
periodic oscillations

Trend analysis of the 99 % percentile for ME with (a) the relative amount of members of LAERTES-EU with a positive (blue)

or negative (red) trend; (b) the trend in mm per year averaged over the members from (a), and (c) relative amount of members
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Figure 8. Deviation of the
::::::::::
LAERTES-EU

::::::::
ensemble

:
mean

::
of

:::
the yearly number of days above the 99 % percentile

:::
(wet

::::
days

:::::
only)

::
of

::::
daily

:::::
spatial

::::
mean

::::::::::
precipitation compared to the climatology (1961–1990; climTP;

:::::::::
1961–1990) for ME (top

:
a)

:::::::::
Mid-Europe

:::::
(ME), and AL

(bottom
:
b)

::
the

::::
Alps

::::
(AL). Red bars indicate negative anomalies (less days), blue bars positive anomalies (more days). The predictions (TP2

:
;

::::::::
2018–2028) are given in green. The black line indicates a linear regression.

from (a) that have a significant trend; cases with no distinct number (less than 60 %) of members with same trend sign are

marked in gray in (a)–(c). For a more detailed analysis of trends, the method
::::::::::::
Mann–Kendall

:::
test

:
described in Sect. 3.2 is475

applied to the time series of daily spatial mean precipitation
:::::::::
percentiles. Figure 9a shows the

::::::
relative number of LAERTES-

EU members (relative) with
:::
that

:::::
show

:
a positive or negative trend of the 99 % percentile for ME. Only cases in which more

than 60 % of the complete ensemble members reveal the same tendency are then considered for further investigations. For these
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Figure 9.
:::::
Trend

::::::
analysis

::
of

:::
the

::::
99 %

::::::::
percentile

:::
(wet

::::
days

:::::
only)

::
of

::::
daily

:::::
spatial

::::
mean

::::::::::
precipitation

:::
for

:::
ME

::::
with

::
(a)

:::
the

::::::
relative

::::::
amount

::
of

:::::::
members

::
of

:::::::::::
LAERTES-EU

::::
with

:
a
::::::
positive

:::::
(blue)

::
or
:::::::

negative
::::
(red)

:::::
trend;

::
(b)

:::
the

::::
trend

::
in
:::::::::

millimeter
::
per

::::
year

:::::::
averaged

::::
over

:::
the

:::::::
members

:::
from

:::
(a),

::::
and

::
(c)

::::::
relative

::::::
amount

::
of

:::::::
members

::::
from

:::
(a)

:::
with

::
a

::::::::
significant

::::
trend;

:::::
cases

:::
with

:::
no

:::::
distinct

::::::
number

::::
(less

::::
than

:::::
60 %)

::
of

:::::::
members

:::
with

::::
same

::::
trend

::::
sign

:::
are

:::::
marked

::
in
::::
gray

::
in

::::::
(a)–(c).

casesthe
:
,
::
the

::::::::
ensemble

:
mean trend is calculated (Fig. 9b) and the relative amount of significant members is displayed (Fig. 9c).

All cases in which the ensemble reveals ambiguous tendencies are neglected (gray areas).480

To a high degree the single members show the same behavior, especially for the longer time series where positive trends are

dominant. On a decadal time scale (diagonal line in Fig. 9),
:
some oscillations appear with phases of increasing and decreasing

precipitation. This signal might be smoothed as it is not expected that the decadal simulations of data blocks 2 and 4 cover

the natural variability at this time scale in detail. Furthermore, these simulations are not expected to be in phase with the long

lasting simulations of data blocks 1 and 3. The trends on this time scale reach rates of up to 0.1 mm a−1 or 1 mm per decade,485

respectively. The overall trend is weaker with rate of 0–0.02 mm a−1 or 0–2 mm per century, respectively. Positive trends are

more often significant than the negative, while only a small part of the ensemble shows significant trends. Similar results can

be found for the Alpine region
::
AL

:
(Fig. S12). The trends on the decadal time scale reach higher rates but the oscillation is less

pronounced than in ME. Again, most of the positive trends are significant, while just a few members with negative trends are

significant.490

For the 99.9 % percentile of ME(Fig. S13) ,
:
large parts of LAERTES-EU show positive trends .

::::
(Fig.

:::::
S13).

:
On the decadal

time scale a clear sequence of positive and negative trends is visible. Both the increases and decreases are more pronounced than

for the 99 % percentile but only a few members are significant. In the Alpine region (Fig. S14)
:::
For

:::
AL,

:
even more parts of the

ensemble have the same tendency of heavy precipitation and a higher number of members have a significant trend .
::::
(Fig.

:::::
S14).
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These trends exceed rates of decisively more than ± 0.1 mm a−1. In contrast to the results above, the 99.9 % percentile for AL495

seems to have a multidecadal oscillation, while the overall trend of the complete time series is negative.

5.2.3 Future projections
:::::::::
predictions

With respect for the upcoming decade (TP2;
::::::::::
2018–2028), LAERTES-EU predicts an continuation of the current trend with an

increase especially for the 99.9 % percentile (Fig. 7, and S6–S8; reddish area). In comparison to the last decade (2007–2017),

the RCM mean of the 99 % percentile increases of about 0.6 % for ME and about 2.1 % for AL. The 99.9 % percentile increases500

about 2.0 % for ME and 3.0 % for AL.

Further to this absolute change, the number of days exceeding the climatological 99 % percentile shows an increase of 4.9 %

for ME and 8.4 % for AL, and 6.7 % (ME) and 22.4 % (AL) in case of the 99.9 % compared to the mean of 2007–2017. This

also manifests in the relative anomaly (Fig. 8, and S10–S11; green bars).

Relative deviation of (a) the R95pTOT index and (b) the R99pTOT index of the LAERTES-EU mean compared to the505

climatology (climTP) for ME. Red bars indicate negative (dry) anomalies, blue bars positive (wet) anomalies. The predictions

(TP2) are given in green. The black line indicates a linear regression.

Nevertheless, a more detailed trend analysis illustrated in Fig. 9 and also Fig. S12–14 reveals that LAERTES-EU shows

no clear tendency for the 99 % for
:::::
during

:
TP2. Just in a few cases,

:
more than 60 % of the members have a similar mainly

positive trend signal, whichhowever ,
::::::::
however,

:
is not significant. In case of the 99.9 % percentile, 60–70 % of the members510

show a strong positive trend of more than 0.1 mm a−1 with 20–40 % of them being significant. Although the tendency for TP2

is ambiguous and less significant, it shows continuity to the present decadeand so we conclude that a positive trend is likely.

5.3 Climate change indices

The results described in the previous section
:::::::
sections also manifest in the considered ETCCDI climate change indices (Table 5).

R95pTOT shows a positive trend for ME (Fig. 10a) with a relative change of about 18 % and a strong negative trend of515

approximately –15 % for AL (Fig. S15). Remarkably, there is a high positive deviation in the early
:::
first

:::
half

::
of

:::
the

:
20th century

compared to the climTP amount for AL which might be artificial due to the mentioned problems of the dry–day correction.

R99pTOT shows a positive change for ME (Fig. 10b) and
:
a
:
slightly negative trend for AL (Fig. S16). The overemphasis

::::::::::::
overestimation for AL in the early century is less pronounced for this index. Considering only the TP1b, the tendencies are the

same in all cases. The positive trends for ME are less pronounced, while the negative trends for AL are stronger. The estimated520

trends are highly significant except for the R99pTOT of AL for the whole time series.

Compared to the present decade, the projections show a continuation of the positive trend for ME with an increase of 2 % for

R95pTOT and 5 % for R99pTOT. In contrast, both indices show a positive trend for AL with an increase of 7 % for R95pTOT

and 8 % for R99pTOT, which is a complete reversion of the overall trend.

::::::::
Compared

::
to

:::
the

::::::
present

:::::::
decade,

:::
the

:::::::::
predictions

:::::
show

:
a
:::::::::::
continuation

::
of

:::
the

::::::
positive

:::::
trend

:::
for

:::
ME

::::
with

::
an

:::::::
increase

::
of
::::
2 %

:::
for525

::::::::
R95pTOT

::::
and

:::
5 %

:::
for

:::::::::
R99pTOT.

::
In

:::::::
contrast,

::::
both

:::::::
indices

::::
show

::
a

::::::
positive

:::::
trend

:::
for

:::
AL

::::
with

:::
an

:::::::
increase

::
of

:::
7 %

:::
for

:::::::::
R95pTOT

:::
and

:::
8 %

:::
for

:::::::::
R99pTOT,

::::::
which

:
is
::
a
::::::::
complete

:::::::
reversion

:::
of

:::
the

::::::
overall

:::::
trend.
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Figure 10.
::::::
Relative

:::::::
deviation

::
of
:::

(a)
:::
the

:::::::
R95pTOT

:::::
index

:::
and

:::
(b)

::
the

::::::::
R99pTOT

:::::
index

::
of

::
the

::::::::::::
LAERTES-EU

:::::::
ensemble

::::
mean

::
of
:::::

daily
:::::
spatial

::::
mean

::::::::::
precipitation

:::
(wet

::::
days

:::
and

::::
land

::::
only)

::::::::
compared

::
to

:::
the

:::::::::
climatology

:::::::
(climTP;

:::::::::
1961–1990;

:::::
Table

::
5)

::
for

::::::::::
Mid-Europe

:::::
(ME).

:::
Red

::::
bars

::::::
indicate

::::::
negative

::::
(dry)

:::::::::
anomalies,

:::
blue

::::
bars

::::::
positive

::::
(wet)

::::::::
anomalies.

::::
The

::::::::
predictions

:::::
(TP2;

:::::::::
2018–2028)

:::
are

::::
given

::
in

:::::
green.

:::
The

:::::
black

:::
line

::::::
indicates

::
a
::::
linear

::::::::
regression.

Table 5. Climatological mean 1961–1990 (climTP
:
;
:::::::::
1961–1990) of ETCCDI quantities for

:::::::::
Mid-Europe

:
(ME

:
)
:
and

::
the

::::
Alps

::
(AL

:
), linear

regression (LR) and relative change (RC) compared to climTP for different investigation periods (TP), and related significance (p–value
:
;

:::::::
α= 0.05).

::::
Both

:::::
indices

:::
are

::::
based

:::
on

:::
wet

::::
days

:::
only

::
of

::::
daily

:::::
spatial

:::::
mean

:::::::::
precipitation

::::
(land

:::::
only).

area ETCCDI climTP TP LR RC pα

(mm) (mm) (%)

ME R95pTOT 157.5 1+2 28.4 18 1.0

1b 20.1 13 1.0

R99pTOT 43.8 1+2 15.6 36 1.0

1b 12.2 28 1.0

AL R95pTOT 306.7 1+2 –46.3 –15 1.0

1b –54.3 –18 1.0

R99pTOT 88.5 1+2 –4.5 –5 0.8953

1b –10.8 –12 0.9891
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6 Summary and Conclusions

We have presented a novel combined
::
the

:::::
novel

:
ensemble LAERTES-EU of

::::::::
combining

:
various regional climate model simula-

tions to better estimated heavy
::::
done

::::
with

:::::::::::::
COSMO–CLM

::
to

::::::
analyze

:::::::::
long-term

:::::::::
variability

:::
and

:::::
trends

:::
of

::::
flood

::::::
related

::::::::
intensive530

::::
areal

:
precipitation across central Europe. The whole RCM ensemble was divided into four data blocks depending on forc-

ing data, assimilation schemes, or the initialization of the driving global
:::::
model MPI–ESM.

:::
The

:::::
setup

::
of

:::
the

::::::::
COSMO

::::::
model

:::::::
remained

::::
the

::::
same

:::
for

:::
all

::::::::::
simulations.

:
In total, the presented LAERTES-EU consists of over 1100 simulation runs with ap-

proximately 12.500 simulated years on a 25 km horizontal resolution.

The focus of investigation was laid on the PRUDENCE regions Mid–Europe (ME) and
:::
the Alps (AL). Regarding heavy535

precipitation
:::::::
intensive

:::::
areal

:::::::::::
precipitation, we concentrated on high percentiles, namely 99 % and 99.9 % . It was not expectable

that the simulations are
::
of

:::::::
spatially

:::::::
averaged

:::::
daily

::::::::::
precipitation

::::::::
amounts.

::::
Note

::::
that

:
it
::::
was

:::
not

:::::::
expected

::::
that

::::::::::::
LAERTES-EU

::::
was

able to reproduce
::::::::
historical precipitation events on a daily base in detail, but have a better

::::
more

:::::::
accurate

:
performance regarding

long-term variations, and statistical distributions
::
on

:
a
:::::
larger

:::::
scale

::::::::::
perspective. Furthermore, the given resolution restricts the

consideration of convective processes, so we analyzed time series of spatial mean precipitation
::::::::::
concentrated

:::
on

:::::
larger

:::::
scale540

:::::::::
phenomena.

With respect to our
::::
initial

:
research questions, the following main conclusions can be drawn

:::
and

:::::::
summed

:::
up

:
out of the

presented results
:
,
:::::
which

::::
will

::
be

::::::::
discussed

:::::
more

:::::::
detailed

:::::::::
afterwards:

(1) Extreme precipitation is well represented in LAERTES-EU
:
is
:::::::
capable

::
of

::::::::::
representing

:::
the

:::::
range

::
of

:::::::
extreme

::::
areal

::::::::::
precipitation

::::::
similar

::
to

::
the

:::::
used

:::::::::::
observational

::::
data

:::
sets

:::
and

::::
also

:::
fits

:::
into

:::
the

:::::
range

::
of

::::::::
previous

::::::
studies

::::::::::::::::::
(e.g. Früh et al., 2010). The four545

data blocks are consistent and have similar precipitation distributions(IPCs), which are within the uncertainty of the

observations. The ensemble range
:::
also covers the observed temporal evolution.

(2) The added-value
:::::::
benefits of the large ensemble size manifests in a strong increase of the signal–to–noise ratio be-

yond the typically used ensemble sizes and in high statistical significances of estimated trends for the ensemble mean.

::::::::::
Furthermore,

::::
the

:::::::::
distribution

:::
of

::::::::::
precipitation

:::::
totals

::
is
::::::::::

represented
:::
in

:
a
:::::
more

::::::
concise

::::
way

::::::
taking

:::
the

:::::::::
limitations

:::
of

:::
the550

:::::::::
considered

::::::::::
observations

::::
into

:::::::
account.

:

(3) Long-term trends reveal spatial differences in sign and strengthand between the members. These tendencies are partly

significant.
::::::
Despite

::
a
::::
quite

:::::
large

::::::::
ensemble

::::::
spread,

:::
the

::::::::
ensemble

:::::
mean

::::::
shows

::::
more

:::::::
explicit

::::::
results.

:
Distinct oscillations

can
:::
also

:
be found on shorter time scales (e. g. decades).

(4) The projections
::::::::
predictions

:
for the upcoming decade show a continuation of past tendencies with increasing heavy555

precipitation
:
in
::::::

terms
::
of

::::
both

::::::::
intensity

:::
and

::::::::::
occurrence

:::::::::
frequency

:::
for

:::
ME

:
without any discontinuity . However

::
to

:::
the

:::::::
previous

::::
time

::::::
period.

:::
On

:::
the

::::
other

::::
hand, LAERTES-EU shows no clear signal and less significance for the projections

:::
for

:::
AL.

Regarding the validation (1),
:::
grid

:::::
point

:::::
based intensity–probability–curves (IPCs)and

:
,
::::
areal

:::::
mean

::::::::::
precipitation

:::::::::::
distributions

:::::::
(internal

:::::::::
variability

::
σΓ::::

and
:::::
linear

:::::
error

::
in

:::::::::
probability

:::::
space

::::
L),

:::
and

:
Q–Q distributions have been analyzed. In all cases

:
, the560
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IPCs of the simulations show an overestimation of precipitation
::
in

:::::
order

::
of

:::::::
10–20 %

:
compared to E–OBSof about one third.

Haylock et al. (2008) found out that E–OBS has
::
can

:::::
have

:
a certain negative bias of up to 30 % compared to raw

:::::
single

::::::
ground

:::::
based

:::::::
punctual

:
observations. Taking this into account,

:
the IPCs are almost coincident. Nevertheless

::::::::::
Furthermore, the

IPCs of LAERTES-EU show only small deviation compared to the high resolution HYRAS data set . Distinct differences

mainly appear in the Alpine Mountains, which can be explained by less spatial coverage of observations. Furthermore, the565

IPCs and
::::::::::
(aggregated

::
to

:::
the

::::::
model

:::::
grid).

::::
The

:::::
IPCs

:::
and

::::
also

::::
the Q–Q distributions of all four data blocks are coincident

which was a prerequisite for the combination to one large ensemble. The Q–Q distributions
::
of

:::::::
spatially

::::::::::
aggregated

:::::
mean

::::::::::
precipitation

:
reveal less differences between modeled and observed precipitation compared to

::::::::::::
LAERTES-EU

:::
and

:
E–OBSand

:
,

:::
but an underestimation of simulated rainfall compared to HYRAS by about 10 %.

:::
The

:::::
linear

::::
error

::
in
::::::::::
probability

:::::
space

:
L
::::::
shows

:
a
::::
good

:::::::::
agreement

::
of

:::::::::::::
LAERTES-EU

::::
with

:::::::::::
observations

::
in

:::::
terms

::
of

:::
the

::::::::::
distribution

::
of

::::
daily

:::::
areal

::::
mean

:::::::::::
precipitation

:::::
totals.

::::
For570

:::::::
different

::::::::::
aggregation

:::::::
intervals

:::::
from

::::
daily

::::::
values

::
up

::
to
:::::::
10-year

:::::::
running

::::::
means,

:::
the

:::::::
internal

::::::::
variability

::::::::
(standard

::::::::
deviation

::::
σΓ)

::
of

::::::::::::
LAERTES-EU

:::::::
matches

::
to
::
a
::::
high

::::::
degree

::::
with

:::
that

:::
of

::::
both

:::::::::::
observations.

::::
Note

::::
that

::::
both

::::::::
quantities

::
L

:::
and

:::
σΓ:::

do
:::
not

:::::::
indicate

::::::
whether

:::
the

:::::::::
simulated

:::::::
absolute

::::::::::
precipitation

::::::
values

:::::::
coincide

::::
with

:::
the

:::::::::::
observations,

:::
but

:::::
rather

:::::
show

:::
the

:::::::::
agreement

::
of

::::::::
statistical

::::::::
properties.

:

Regarding (2), LAERTES-EU reveals a clear added value due to the large sample size. Estimates of long return periods575

are more robust compared to smaller ensembles
:::::
which

::
is
:::

of
::::::::::
importance,

:::
for

::::::::
instance,

:::
for

::::
risk

:::
and

:::::::::
insurance

::::::::::
applications.

Furthermore, trends at least in the ensemble mean are highly significant. The IPCs also show a clear added value
:::::
benefit

:
of

RCM data compared to coarser global models
::
the

:::::::
coarser

:::::
global

::::::
model

::::::::::
(MPI–ESM)

::
or

:::
the

:::::
20CR

::::::
global

::::::::
reanalysis. Regarding

extremes, LAERTES-EU includes a broader range of precipitation totals
:::
with

::::
even

::::::
higher

::::::
values,

:
which are not covered by

observations due to their limited temporal availability.
::::::::
Although

::
the

:::::::::
presented

:::::
results

:::::
reveal

::
a
:::::
broad

:::::
range

::
of

:::::::::
realizations

::::::
within580

::::::::::::
LAERTES-EU,

:::
the

::::::::
statistics

::
of

:::
the

::::::::
ensemble

:::::
mean

::::::
clearly

::::::
benefit

:::::
from

:::
the

::::
large

::::::::
ensemble

::::
size

::::
with

:
a
::::::

better
:::::::::::::
signal–to–noise

::::
ratio.

:

Besides a proper representation of precipitation, long-term trends and temporal variations were of special interest. Regarding

(3), the presented results show a good
:::::::::
reasonable agreement of LAERTES-EU concerning the temporal evolution of the con-

sidered percentiles of spatially aggregated daily precipitation totals for the different investigation areas. The ensemble mean is585

within the range of the observations and the spread (min–to–max
:::::
spread

:::::::::
(minimum

::
to

:::::::::
maximum) covers the observed variabil-

ity except a few peaks.
:::
The

::::::::
ensemble

:::::
mean

:::::
shows

::
a
:::::
small

::::::
positive

::::
bias

::::::::
compared

:::
to

::::
both

:::::::::::
observational

::::
data

::::
sets. Throughout

the complete
:::
time

::::::
period TP1

:::::::::::
(1900–2017), positive and significant trends can be found for ME in both percentiles and

:::::
(99 %

:::
and

:::::::
99.9 %)

:::
and

:
also in the number of days exceeding the climatological mean (1961–1990). For AL, there is no clear trend

signal in the ensemble mean but an increase in the maximum values. In contrast
:
, the number of days exceeding the climatology590

is decreasing . The positive trends for ME with relative changes about 7–8 % are coincident with the theoretical 6–7 % per

Kelvin temperature change (CC rate) as Moberg et al. (2006) found an increase of approximately 1 K during the 20th century

for Europe. The negative trends for AL, however, do not fit in this theoretical estimate. The maximum simulated percentile

values increase with a super–CC rate up to a factor 4.
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:::::::::::
climatological

:::::
mean

::::::::::
percentiles

::
is

:::::::::
decreasing

::
in

:::
this

:::::
area. Comparing the trends of TP1 to the shorter TP1b

::::::::::
(1951–2006),595

the tendencies are the same but less pronounced in TP1b. On a decadal time scale,
:
some oscillations can be found with periods

of increasing precipitation and such with decreasing values. Similar results as for time series of percentiles can be found using

climate change indices (ETCCDI).

Regarding (4), the projections for the upcoming decade until 2028
:::::::::
predictions

:::
for

:::
the

::::
next

::::::
decade

:::::::::
2018–2028

:
(TP2) reveal

ongoing tendencies of heavy precipitation indices. A special case is the Alpine region
::
AL

:
where the slightly negative trends in600

the past (TP1) turn to positive once
::::
ones. Both the continuity for ME and the reversion for AL appear in all time series,

::::::
namely

::
the

:
number of days or ETCCDI variablesand all

::
of

::::::::
threshold

:::::::::::
exceedance,

::::::::
ETCCDI

::::::::
variables,

::::
and

::::::::::
investigated

:
percentiles.

While there is
::
are

:
a clear signal and high significance building

::
for

:
the ensemble meanfirst, the trends are ambiguous and less

significant when
::
the

::::::::
ensemble

::::::::
members

:::::
were considered separately. However, we conclude that this tendencies are likely as

it is a continuation of the results of the present decade. Similar results for parts of LAERTES-EU were found by Reyers et al.605

(2019).

::::::::::
Precipitation

:::::::
remains

::
a
::::::::::
challenging

::::
task

:::
for

:::::
both

:::::::::
reanalyses

::::
and

::::::
climate

::::::
model

::::::::::
simulations

:::
of

:::
the

::::
past

::::
and

:::
the

::::::
future

::::
with

:::::
partly

::::::::::
contrasting

::::::
results

::::::
shown

::
by

:::::::
several

:::::::
previous

:::::::
studies.

:::::::::::
Furthermore,

:::::::::
long-term

:::::::::::::
comprehensive

:::::::::::
observations

:::
are

:::
not

:::::::
available

::::::
which

:::::
makes

::
a

::::::::
validation

:::::::
difficult

:::
due

::
to

:::
the

::::
high

::::::
spatial

:::::::::
variability

::
of

:::::::::::
precipitation.

::::
This

::::
also

:::::
affects

::::::::
analyses

::
of

:::::
trends

::
or

::::::
climate

:::::::::
variability.

:::::
What

::
is

:::::
known

::
is

:
a
:::::::::
theoretical

:::::::
increase

::
of

:::
the

:::::
water

:::::
vapor

:::::::
capacity

::::::::
according

::
to

:::
the

::::::::::::::::
Clausius–Clapeyron610

::::
(CC)

:::::::
equation

::
of

:::::
about

::::::
6–7 %

:::
per

:::::
degree

::
of

::::::::::
temperature

:::::::
increase

:::::::::::::::::::::::::::::::::::::
(e.g. Trenberth et al., 2003; Berg et al., 2009),

::::::
which

:::::::
assumes

:
a
::::
near

:::::::
constant

::::::
relative

::::::::
humidity.

::::
The

:::
CC

:::
rate

::
is

:::::::
generally

:::::::
thought

::
to

::
be

:
a
:::::
proxy

:::
for

:::::
future

:::::::::::
precipitation

:::::::::
projections

:::::::::::::::::
(Westra et al., 2013).

:
A
::::::
recent

:::::::::
discussion

:::::
about

:::
the

::::::
validity

:::
of

::
the

::::
CC

:::
rate

::
as

:::
an

:::::::
estimate

:::
for

:::::
future

::::::::::
projections

::
of

:::::
heavy

:::::::::::
precipitation

:::
can

:::
be

:::::
found

::
in

::::::::::::::::
Zhang et al. (2017).

::::
They

:::::::
pointed

:::
out

:::
that

::::::
beside

:::
the

:::::::::::::
thermodynamic

:::::::::
responses,

:::::::
changes

::
in

:::::
heavy

:::::::::::
precipitation

::::
may

::
be

::::
also

::::::::
influenced

:::
by

:::::::::
dynamical

::::::
effects.

:::::::::::
Furthermore,

::::::::::::::::::
Pfahl et al. (2017) and

:::::::::::::::::::::::
Kröner et al. (2017) showed

::::
that

::::::::::
precipitation

:::::
trends

::::
can615

::
be

::::::::
regionally

:::::::::
influenced

:::
by

:::::::::::
contributions

::::
from

::::
both

:::::::::
lapse-rate

:::
and

:::::::::
circulation

::::::
effects.

:

:::
The

::::::::
ensemble

:::::
mean

:::
of

::::::::::::
LAERTES-EU

::::::
shows

::
an

::::::::
increase

::
of

:::::
about

::::::
1.9 ◦C

:::
for

:::
ME

::::
and

::::::
2.3 ◦C

:::
for

:::
AL

:::
for

:::
the

::::::
yearly

:::::
mean

:::::::::::::
2 m-temperature

::
of

::::::
spatial

::::::
means

::::::
during

:::
the

::::
20th

::::::
century

:::::
(TP1;

:::::::::::
1900–2017).

::::::::
Including

:::
the

::::::::::
predictions

::::::
(TP2),

:::
the

:::::::
increase

::
is

::::
about

::::::
2.4 ◦C

:::
for

:::
ME

::::
and

::::::
2.8 ◦C

::
for

::::
AL.

:::
For

::::::::
instance,

::::::::::::::::::::::::
Simmons et al. (2017) found

::
an

:::::::
increase

::::
over

::::::::
European

::::
land

:::::::
masses

::
of

::::::::::::
approximately

::::
2 ◦C

::
in

:::
the

:::::
mean

::::::::
compared

:::
to

:::::::::::
pre-industrial

:::::::::
conditions.

:::::::::::::::::::::::
Moberg et al. (2006) found

::
an

:::::::
increase

::
of
::::::

about
::::
1 ◦C620

::
for

::::::::::
temperature

:::::::::
extremes.

:::::
Thus,

::::::::::::
LAERTES-EU

::
is

::::::
within

:::
the

:::::
range

::
of

:::::::
observed

::::::::
changes.

::::
The

:::::::
increase

::
in

::::::::::
temperature

::::
over

:::
the

:::::
entire

::::
time

:::::
period

::
is
:::::::::
equivalent

::
to

:
a
::::

CC
::::::
scaling

::
of

:::::
about

::::::::
15–20 %.

::::
The

::::::::
extracted

:::::::
changes

::
of

:::
the

::::
high

:::::::::::
precipitation

:::::::::
percentiles

::
for

::::
ME

:::::
make

::
up

:::
to

::::
50 %

:::::::::
compared

::
to

:::
the

:::::::::
theoretical

:::
CC

::::::
value.

::::::::
However,

:::
the

:::::::
negative

:::::::::
tendencies

:::
for

:::
AL

:::
do

:::
not

:::
fit

:::
into

::::
this

::::::::
theoretical

::::::::
estimate.

:

The presented LAERTES-EU data set can be used for various applications .
:::::
fields.

::
In

:::::::::
particular,

:::
the

:::::::::
simulations

:::
are

:::::
used

::
as625

::::
input

:::
for

:::::::::::
hydrological

::::::::
modeling

:::
and

::::::
further

:::::::::::
applications

::::
such

::
as

:::::
flood

:::
risk

:::::::::::
assessments.

::::
The

::::::::
presented

::::::::
ensemble

::
in

::::
this

::::
case

:::
can

::
be

::::
used

:::
as

:
a
:::::::::
stochastic

:::::::
weather

::::::::
generator

::::::
treating

:::
the

::::::
single

::::::::::
simulations

::::::::::::
independently.

::::
This

:::::
leads

::
to

:::
the

:::::::::
production

::
of

::
a

:::::::::::::
quasi-stochastic

::::::::::
hydrological

::::::::
discharge

::::
data

:::
set.

::::
Due

::
to

:::
the

:::::
large

::::::::
ensemble

::::
size,

::::::::
estimates

::
of

::::
high

:::::
return

::::::
periods

:::::::
become

:::::
more

:::::
robust.

:
However, it has to be mentioned that the composition of the four data blocks to one ensemble restricts the temporal
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homogeneity. Nevertheless, the agreement with intensity distributions, observations, and statistics is very high.
:::::::::
Moreover,

:::
the630

::::::::
validation

:::::::
showed

:
a
:::::::
positive

::::
bias

::
of

:::
the

:::::::::
ensemble

:::::
mean

::::::
which,

:::::::
together

::::
with

:::
the

::::::::::::
overestimation

:::
of

:::
low

::::::::::
intensities,

:::::::
requires

:
a
::::
bias

:::::::::
correction

::
to

:::::
avoid

:::::::::
unrealistic

::::::::::
discharges.

::::
This

::::::::::
application

::
as

:::::
well

::
as

:::
the

::::
bias

:::::::::
correction

::
of

:::::::::::::
LAERTES-EU

::::
will

:::
be

::::::::
addressed

::
in

:
a
::::::::::
consecutive

:::::
study.

:

In this studywe have been
:
,
:::
we

::::
have

:
focused on all-year variances, oscillations, or trends. Future investigations will

:::
can

address a seasonal differentiated analysis of trends and oscillations as well as a more detailed investigation of the spatial distri-635

bution of these findings . In particular, the simulations can be used as input for hydrological modeling and further applications

such as flood risk assessments. The presented ensemble in this case acts as a stochastic weather generator treating the single

simulations independently. Estimates of high return periods become more robust.

Furthermore, analyses of possible mechanisms behind observed oscillations are in preparation
:::
and

::::::::
potential

:::::::::::
mechanisms

:::::
behind

::::
the

::::::::
observed

:::::::::
variability. Previous studies indicated that there is a strong relation between precipitation in Europe640

and the North Atlantic Oscillation (NAO), especially during wintertime (e.g., Hurrell, 1995; Rîmbu et al., 2002; Haylock

and Goodess, 2004; Nissen et al., 2010; Pinto and Raible, 2012). Moreover, Casanueva et al. (2014) found a connection

between extreme precipitation and the Atlantic Multidecadal Oscillation (AMO) during the whole year. The investigations

of Bloomfield et al. (2018) revealed long-term changes in mean sea level pressure in the North Atlantic region and related

storminess over Europe, which might be an artifact of a rising number of available and assimilated observations in the last645

decades.

Data availability. The E–OBS data (Haylock et al., 2008) is online available after registration at https://www.ecad.eu/download/ensembles/

ensembles.php. The 20CR data (Compo et al., 2011) can be found on https://www.esrl.noaa.gov/psd/data/20thC_Rean/. HYRAS (Rauthe

et al., 2013) can be requested at the German Weather Service (DWD). The RCM data (MiKlip data) will be made available via the CERA

database (http://cera-www.dkrz.de/; last access: July 2019) of the German Climate Computing Center (DKRZ).650
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Appendix A: Statistical Quantities

The
::::
linear

:::::
error

::
in

:::::::::
probability

:::::
space

::
L

::::
uses

:::
the

::::::::
difference

::
of

:::::::::::
probabilities

::::
∆C

::::::
defined

:::
as:

∆Cr(x) = ecdfmod,r(x)− ecdfobs(x) ,
:::::::::::::::::::::::::::::::

(A1)

:::::
where

::::::::
ecdfmod,r::

is
::::

the
::::::::
empirical

:::::::::
cumulative

:::::::
density

:::::::
function

::
of

::::
the

:::::
model

::::
run

::
r,

:::
and

:::::::
ecdfobs :::

that
:::

of
:::
the

::::::::::
observation

::
up

:::
to

::::::::::
precipitation

:::::::
intensity

::
x.

::::
The

:::::
linear

::::
error

::
in

:::::::::
probability

:::::
space

:::
Lr ::

for
::
a

:::::
model

:::
run

:
r
::
is

::::
then

::::::
defined

::
as

:::::::::::::::::::::::::::
(Déqué, 2012; Wahl et al., 2017):655

Lr =
1

n
·
n∑

x=1

|∆Cr(x)| .
:::::::::::::::::::

(A2)

::
Lr::::::::

describes
:::
the

:::::
mean

:::::
value

::
of

::::
∆Cr::::

over
:::
the

:::::
entire

:::::
range

::
of
:::::::::::
precipitation

:::::::::
intensities

:
x
:::::::
grouped

::::
into

::
n

::::::
classes.

::::::
Using

:::::::
absolute

:::::
values

::::::
avoids

:
a
::::::::::::
compensation

::
of

::::::
positive

::::
and

:::::::
negative

::::::
values.

::::
The

:::::
better

::::
both

::::::::::
distributions

::::::::
coincide,

:::
the

:::::
lower

:::
the

::::
value

:::
of

:::
Lr.

:::
The

::::::::
ensemble

:::::
mean

::
of

:::
Lr::

is
:::::
given

:::
by:660

L=
1

M

M∑

r=1

Lr ,

::::::::::::

(A3)

::::
with

::
M

:::::
being

:::
the

::::
total

:::::::
number

::
of

:::::::::
simulation

::::
runs.

:

:::
The

::::::
model

:::::::::::
performance

:::
on

:::::::
different

:::::::::
frequency

::::::::
intervals

::
is

::::::
further

::::::::
validated

::::::
using

:::
the

::::::::
standard

::::::::
deviation

::
of

::
a
:::::::
gamma

:::::::::
distribution

:::
σΓ::::::::::::

(Wilks, 2006),
:::::
which

::
is
:::::
given

:::
by:

:

σ2
Γ = αβ2 .

:::::::::
(A4)665

::
In

:::
this

::::::::::
formulation,

::
α
::
is

:::
the

:::::
shape

:::::::::
parameter

::
of

:::
the

::::::
gamma

::::::::::
distribution,

::::
and

:
β
:::
its

::::
scale

:::::::::
parameter.

:

:::
The

::::::::::::::
quantile–quantile

:::::::
analysis

::::
uses

:::
the

:
Pearson correlation coefficient (Wilks, 2006) is given by

::::
given

:::
by:

:

R=

N∑
k=1

{[yk − yk] · [xk −xk]}
√

N∑
k=1

[xk −xk]
2 ·
√

N∑
k=1

[yk − yk]
2

, (A5)

with the data series x and y of lengthN . The range ofR isR ∈ [−1;+1] with a perfect anti-correlation atR=−1 and a perfect

correlation at R= +1.670

The Gumbel distribution
:::::::::::::
signal–to–noise

:::::
ration

:::::
S2N

::
in

:::
this

:::::
study

::
is

::::::
defined

:::
as:

S2N =
RVT,Gumbel

CI90,T
,

::::::::::::::::::

(A6)

::::
with

::
the

::::::
return

::::
level

:::
RV

::
of

:::
the

:::::::
Gumbel

::::::::::
distribution

:
at
:::::
return

::::::
period

::
T

::::::
divided

:::
by

::
its

::::
90 %

:::::::::
confidence

:::::::
interval

:
at
::
T
::::::::::::::::
(Früh et al., 2010).

:::::
Small

:::::
values

::
of

:::::
S2N

:::::::
indicate

:
a
::::
more

::::::::
uncertain

::::::::
estimate,

::::
high

:::::
values

::
a

::::
more

::::::
robust

:::
one.

::::
The

:::::::
Gumbel

:::::::::
distribution

:
(Wilks, 2006)
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is an extreme value type-I distribution and often used for return period estimation. Its cumulative density function (cdf) is given675

by
:
:

F (x) = exp

(
−exp

(
−x−β

α

))
, (A7)

with the free parameters β = σ
√

6 ·π−1 and α= x−γβ, where σ is the standard deviation of the sample x
:::::::
assuming

::
a

::::::
normal

::::::::::
distribution, and γ = 0.57721 Euler’s constant. For x,

:
usually a series of yearly maximum values is used. The relationship

between the cdf and the return period T is given by (Wilks, 2006):
:

680

T =
1

1−F (x)
. (A8)

The signal–to–noise ration S2N in this case is defined as

S2N =
RVT,Gumbel

CI90,T
,

with the return levelRV of the Gumbel distribution at return period T divided by the 90 % confidence interval at T (Früh et al., 2010).

Small values of S2N indicate a more uncertain estimate, high values a more robust one.685

Appendix B: ETCCDI quantities

Two out of the 27 indices introduced and recommended by the Expert Team on Climate Change Detection and Indices4

(ETCCDI; Karl et al., 1999; Peterson, 2005) are used in this study. R95pTOT describes the annual total precipitation sum of

all values above the climatological 95 % percentile of wet days (RR> 1 mm) during the reference period 1961–1990. The

R95pTOT of the year k is defined as
:
:690

R95pTOTk =

W∑

w=1

RRwk ∀ RRwk >RRp95 , (B1)

where RRwk is the daily precipitation amount on a wet day during year k, RRp95 is the climatological 95 % percentile, and W

the total number of wet days in year k. Analogously, the R99pTOT is defined replacing the 95 % with the 99 % percentile.
:
:

R99pTOTk =

W∑

w=1

RRwk ∀ RRwk >RRp99 . (B2)

Appendix C: Trends and Significance695

A Mann–Kendall Test (Mann, 1945; Kendall, 1955) is performed for the detection of trends and its related significance. To

account for possible oscillations within long time series, we first split the complete time series into sub-series with a minimum

4http://etccdi.pacificclimate.org/
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length of 10 years and up to over 100 years (trend matrix). The Mann-Kendall Test uses a standardized test statistic Sτ following

a standard Gaussian distribution (SGD). Sτ is given by:

Sτ =





τ−1√
σ2
τ

, τ > 0 ,

0 , τ = 0 ,

τ+1√
σ2
τ

, τ < 0 .

(C1)700

Here, τ is known as the Kendall’s τ and σ2
τ is the variance of the standard Gaussian distribution (SGD). A detected trend is

significant if Sτ lies within the upper and lower quantile z of the SGD at a given significance level α with Sτ ∈
[
zα

2
;z1−α

2

]

::::::::::::::::::
Sτ ∈

[
zα

2
στ ;z1−α

2
στ
]
, respectively (Yue et al., 2002).

Yue et al. (2002) pointed out some weaknesses of the Mann–Kendall test in case of inherent autocorrelation. To avoid a

distortion of the statistic by autocorrelation, Yue et al. (2002) presented the Trend–Free Pre–Whitening (TFPW) method. The705

first step is the estimation of a linear trend between two time steps t= i and t= j using the Theil-Sen Approach (TSA; Theil,

1950; Sen, 1968). The slope b of this linear regression is given by:

b=median

(
xj −xi
j− i

)
,∀i < j . (C2)

In a second step, the original time series x is detrended by subtracting b at each time step t:

x′t = xt− b · t . (C3)710

Afterwards, the lag-1 autocorrelation coefficient r1 is removed from the trend-free series x′:

x′′t = x′t− r1 ·x′t−1 , (C4)

where r1 is given by:

r1 =

1
N−1 ·

N−1∑
i=1

(
x′i−x′

)
·
(
x′i+1−x′

)

1
N ·

N∑
i=1

(
x′i−x′

)2
. (C5)

The modified TFPW time series x∗ result
:::::
results by re-adding the TSA-slope b:715

x∗t = x′′t + b · t . (C6)

This modified time series conserves the trend, but is free of autocorrelation. The Mann–Kendall Test is performed on the TFPW

time series x∗. According to Yue et al. (2002), TFPW has to be considered in cases with non-zero TSA-slope and significant

lag-1 autocorrelation. The significance of a trend or autocorrelation is tested on the 90 % (α= 0.1), 95 % (α= 0.05), and 99 %

(α= 0.01) significance level.720
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