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Abstract. This paper aims to address the continuous debate of whether a ‘hiatus’ occurred in the turn of this century. Several

models have been employed to fit the global mean surface temperature data, and the results suggest that the allegation of an

occurrence of ‘hiatus’ lacks statistical evidence. However, these models had potential deficiencies in their capacity for detect-

ing breakpoints, thereby weakening the arguments that deny the existence of a ‘hiatus’. To address this issue, we propose an

improved sparse representation model, which can automatically segment and fit temperature records using piecewise polyno-5

mials. Simulations revealed improved detection performance; studies on five prominent global temperature records produced

2 to 6 breakpoints, none of which occurred after the year 1976, thus reinforcing arguments denying the existence of a 20th

century ‘hiatus’.

10 

1 Introduction

Because of its broad potential to impact human activities, global warming receives widespread attention from both the scientific

and public sectors of society. In the last few decades, there has been a continuous debate on whether a ‘hiatus’ occurred in

the global mean surface temperature (GMST) (Carter, 2006; Medhaug et al., 2017; Yan et al., 2016). Since the term ‘hiatus’ is15

strongly misleading, the synonyms ‘pause’, ‘slowdown’, and ‘stop’ are also used in the literature (Lewandowsky et al., 2016).

The ‘global warming hiatus’ was defined as a “reduction in GMST trend during 1998-2012 as compared to the trend dur-

ing 1951-2012” (Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013),

implying that there was an abrupt change in the GMST trend during the last years of the previous century.

Due to the complicated nature of earth system dynamics (internal weather factors such as ocean circulations and atmospheric20

motions,e.g., El Niño/southern oscillation (ENSO), volcanic eruptions and aerosol; external factors such as solar irradiance;

anthropogenic factors such as greenhouse gas emissions), long-term changes (i.e., trends) are difficult to distinguish from short-
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term changes (i.e., fluctuations) (Foster and Rahmstorf, 2011). While nearly one hundred papers have been published on this

debate (TI=((climate change OR global warming OR global temperature) AND (hiatus OR slowdown OR pause)) in the Web

of Science database), very little statistical evidence supports the existence of a 20th century GMST ‘hiatus’.25

Most of these studies (Foster and Abraham, 2015; Cahill et al., 2015; Rahmstorf et al., 2017) primarily employed meth-

ods that had insufficient detection abilities given that thedetection of a ‘hiatus’ is sensitive to the way a time series is pro-

cessed (Santer et al., 2011; Hawkins et al., 2014),e.g., fix-sized windows (Fyfe et al., 2016), and were prone to type Ierrors

when there were numerous changes. Therefore, highly sensitive and automatic segmenting methods are required to detecta

‘hiatus’ in the data. Cahill et al. (2015) and Rahmstorf et al. (2017) adopted the change points (CP) model from the statistical30

society to detect trend changes. A CP is formally defined as the point in a dataset where the first order difference changes,and

is detected by fitting the GMST data with piecewise linear lines. However, since the CP model imposes a continuity constraint,

its detection sensitivity is degenerated. In addition, theCP model requires the number of CPs being fixeda priori, other meth-

ods (Fyfe et al., 2016) arbitrarily fix the size of windows. Third, the CP model assumes a linear trend, which further limits its

detection power. Last, the solving of a CP model is based on a Markov chain Monte-Carlo (MCMC), which suffers from the35

fact that its convergence to a global solution is not guaranteed.

In this paper we present a new sparse representation model with four improvements: (1) By abandoning the continuity

constraint, breakpoints are used instead of CPs, such that extra degrees of freedom are available. This modification is not

only reasonable from a theoretical point of view but is also supported by the temperature records and thus improves the

model’s detection power. (2) By utilizing a prominent modelselection method,i.e., Bayesian/Schwarz information criterion40

(BIC/SIC) (Schwarz, 1978), the number of breakpoints is determined automatically. (3) The model fitting is extended from

first order (or linear) to higher orders, such that other trend changes can be detected. (4) Dynamic programming is employed

to solve the proposed model such that a global solution is guaranteed.

2 Methods

First, for a signal (or time series in our case)y = [y1,y2, . . . ,yN ]T of lengthN , we define the term ‘breakpoint’ to mean the45

location where two consecutive pieces (or segments) breaks. e.g., thekth breakpointvk divides thekth piece(vk−1, . . . ,vk]

and thek + 1th piece(vk, . . . ,vk+1]. We also denotev = [v1,v2, . . . ,vK ] as a set ofK breakpoints. For convenience,v0 = 0

andvK+1 = N . Here, the two pieces are distinguished by their statistical distributions (e.g., the amplitude for the piecewise

constant signals, the baseline for the piecewise linear signals,etc.). We denote

εk =
vk∑

i=vk−1+1

(yi − xi)2 (1)50

as the fitting error of thekth segment andxi, i ∈ (vk−1,vk] is the least squares fitting of thekth segment.xi can be a polynomial

of any orderr: constant (r = 0), linear (r = 1), quadratic (r = 2), etc.
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It is worth mentioning that the data fit is highly dependent onsegmenting. If the configuration of segmenting is known,i.e.,

the breakpointsv is fixed, allεk ’s can be estimated up toK least-square fittings. As a result, the fitting ofy with piecewise

polynomials of orderr can be formulated as the following breakpoint detection problem55

argmin
v

{
K+1∑

k=1

εk

}
. (2)

However, this problem is not well defined due to the length ofv (i.e., ‖v‖0 or K, here‖ · ‖0 is theℓ0 quasi norm) not being

considered. Since any consecutiver + 1 data points can be fitted with a polynomial of orderr with zero fitting errors, there

is at least onev with length‖v‖0 = Kmax = ⌈ N
r+1 − 1⌉ that yields a zero value objective function. When the lengthis large

enough, there are a great many ofv that yield zero values. Therefore, we must take the length ofv into account by penalizing60

each breakpoint with a costλ; consequently and thus the penalized least squares optimization problem reads

argmin
v

{
K+1∑

k=1

εk + λ‖v‖0

}
. (3)

This problem is an incarnation of the Occam’s razor principle, or the law of parsimony, and is familiar to signal processing

community as a sparse model (Eldar and Kutyniok, 2012).

The penalty parameterλ can control the fitting’s quality and sparsity, and hence should be tuned carefully. Within the65

Bayesian framework,εk can be viewed as the maximal likelihood estimation when Gaussian noise is present (Idier, 2008).

Therefore, various theories of model selection can be used to choose a properλ (Stoica and Selén, 2004); the Akaike infor-

mation criterion (AIC) (Akaike, 1974), the Bayesian/Schwarz information criterion (BIC/SIC) (Schwarz, 1978), the Hannan

and Quinn criterion (HQC) (Hannan and Quinn, 1979), the minimum description length (MDL) (Rissanen, 1983), and other

variants (Markon and Krueger, 2004) can be directly employed.70

Whenλ is fixed, an unsophisticated method to solve (3) is through a brute-force search that tests all the combinations of

breakpoint locations exhaustively,i.e., CK
N−1,∀K ∈ [0,Kmax] of possiblev’s, which is computationally prohibited whenN

is larger than 50. Advanced methods were developed to reducethe computational burden. For more detailed explanation of

the rational of this model and the associated optimization algorithm, the readers are referred to (Duan et al., 2019) andthe

references therein.75

3 Results

3.1 Justification of the breakpoints

The first enhancement to the presented model is through its utilization of breakpoints. Breakpoints are discontinuities in a

fitting, and their use has been controversial among previousstudies. The CP model assume that the fitting is continuous in

order to be ‘physical’. However, as shown in Fig. 1, the annual variance, which is defined here as the difference between the80
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Figure 1. Annual variance in GISTEMP dataset.

maximal and minimal monthly temperature within a year, is soimmense (0.37±0.10◦C) that it cannot be ignored. For a larger

time space, the assumption thatannual temperatures are discontinuous makes sense.

3.2 Performance of the proposed model

To test the performance of the proposed model, and compare itwith the CP model in (Cahill et al., 2015), we simulated a

dataset and fed the data to the proposed model and the CP model(code available at http://iopscience.iop.org/1748-9326/10/8/85

084002/media/Rcode_CPA.R) as well. Details of the simulations are presented in Sec. I of the supplementary materials.The

simulations suggest that the proposed model can achieve higher sensitivity and specificity compared to the CP model whenthe

breakpoints and the slope are significant.

3.3 Fitting of Global surface temperature

Five data sources were used in our analysis: the GISS surfacetemperature analysis (GISTEMP) from the National Aeronautics90

and Space Administration (NASA) (Team, 2018), the temperature records of the National Oceanic and Atmospheric Admin-

istration (NOAA) (Oceanic and , NOAA), HadCRUT4 from Met Office Hadley Centre Climatic Research Unit (Morice et al.,

2012), the Cowtan and Way’s study (Cowtan and Way, 2014), andBerkeley earth (Rohde et al., 2013). The former two datasets

record the global land-ocean temperatures since the year 1880, and the latter three datasets since the year 1850.

We fitted the five time series using our proposed method. Both polynomial orderr = 1 and 2 were used for least squares95

fitting. Because of its robust performance (Duan et al., 2019), BIC/SIC was used to determine the penalty parameterλ =

4

https://doi.org/10.5194/esd-2019-45
Preprint. Discussion started: 5 September 2019
c© Author(s) 2019. CC BY 4.0 License.



(r +1)σ2 lnN , whereN is the length of the time series, andσ ( estimated from the last 50 points of each dataset) the standard

deviation of the noise.

Fig. 2 shows the breakpoint detection results of two representative datasets, namely, the GISTEMP and HadCRUT4; one

includes coverage of the whole globe, and the other has a large gap of missing data in the Arctic (Rahmstorf et al., 2017).100

Because of space limitations, the full results of the five datasets are presented in Sec. II of the supplementary materials.

Tab. 1 summarizes the breakpoints and amplitudes, the standard deviation of the residual, and thep-value of the one-sample

Kolmogorov-Smirnov test of the residuals of all five datasets with the different polynomial ordersr = 1,2. Fig. 3 shows the

distribution of all the detected breakpoints, with absolute amplitudes0.20± 0.07◦C, a maximum temperature of 0.34◦C, and a

minimum temperature of 0.07◦C.105

From these results, we can draw the following conclusions arranged in chronological order: (1) two dramatic climate coolings

were detected around the year 1901 and 1945 in all the datasets except HadCRUT4; (2) a continuous warming between the

year 1901 and 1945 is observed in all the datasets except HadCRUT4; (3) a slow cooling is observed in the years from 1936 to

1976 from HadCRUT4, CW, and Berkeley (see panels (c), (g), and (i) of Fig.2 in the supplementary materials), or a mixture of

breaks are observed from GISTEMP and NOAA; this is called the‘big hiatus’ in other studies (Cahill et al., 2015; Fyfe et al.,110

2016; Carter, 2006); (4) there is no breakpoint after the year 1976, suggesting that no detectable ‘hiatus’ occurred in the turn

of the century as claimed in some literature; (5) overall, the second order fittings of GISTEMP and NOAA provide a concise

and meaningful trend for the GMST (see panels (b) and (f) of Fig.2 in the supplementary materials).

4 Conclusions

In this paper, a piecewise polynomial model is proposed to detect the breakpoints in the GMST records, and the results show115

that no breakpoints are found after the 1970’s. Thus, there is no support for the existence of a ‘hiatus’ in global warmingafter

the turn of the century, which is consistent with other studies; there findings are useful as supplementary evidence for the

‘hiatus’ debate.

The highlights of the proposed method are twofold. First, since the selection of a time interval is important for curve fitting

and trend estimation (Santer et al., 2011), the proposed method combines segmentation of the time intervals and data fitting in120

a natural and automatic way, thereby reducing the bias introduced by manual selection of a time interval. Second, the proposed

method has higher detection sensitivity compared with the other methods, and negative results further reduce the chance of

missing the true ‘hiatus’.

As independent researchers, we conclude that the supposed occurrence of a recent ‘hiatus’ lacks statistical evidence,or was

of less significant than other historical ‘hiatuses’ since the 1850s.125
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Figure 2. The breakpoints of in the global temperature. Left and rightpanels show results with polynomial orderr = 1 andr = 2, and

the top and bottom panels the GISTEMP and HadCRUT4 datasets,respectively. Full results of the five databases are shown inFigure 1 of

supplementary materials.
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Table 1.Summary of the fitting results of five datasets.

Dataset Order (r) Breakpoint (vk)/amplitude (xvk+1 −xvk ) Residual (σ) p-value

GISTEMP
1 1902/-0.198,1939/0.225,1956/0.199,1963/-0.176 0.086 0.736

2 1901/-0.254,1945/-0.223 0.089 0.877

NOAA
1 1895/0.206,1911/0.189,1932/-0.082,1945/-0.344,1963/-0.167 0.075 0.937

2 1901/-0.236,1945/-0.247 0.084 0.748

HadCRUT4
1 1876/0.199,1895/0.238,1911/0.181,1936/0.141,1976/0.091 0.086 0.881

2 1876/0.247,1901/-0.337,1976/0.112 0.090 0.682

CW
1 1876/0.305,1883/-0.127,1901/-0.219,1936/0.156,1976/0.077 0.086 0.940

2 1876/0.215,1901/-0.258,1944/-0.123 0.088 0.756

Berkeley
1 1864/0.229,1876/0.318,1887/0.181,1902/-0.199,1936/0.159,1976/0.074 0.081 0.887

2 1862/0.192,1876/0.343,1901/-0.273,1944/-0.101 0.083 0.845
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Figure 3. The distribution of breakpoints. Dot and circle markers represent polynomial orderr = 1 and 2, respectively. Blue, red, green,

black and magenta colors represent dataset GISTEMP, NOAA, HadCRUT4, CW, and Berkeley, respectively.
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