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Abstract 8 

Under variable and changing climates groundwater storage sustains vital ecosystems and 9 

enables freshwater withdrawals globally for agriculture, drinking-water, and industry. Here, 10 

we assess recent changes in groundwater storage (ΔGWS) from 2002 to 2016 in 37 of the 11 

world’s large aquifer systems using an ensemble of datasets from the Gravity Recovery and 12 

Climate Experiment (GRACE) and Land Surface Models (LSMs). Ensemble GRACE-13 

derived ΔGWS is well reconciled to in-situ observations (r = 0.62–0.86, p value <0.001) for 14 

two tropical basins with regional piezometric networks and contrasting climate regimes. 15 

Trends in GRACE-derived ΔGWS are overwhelmingly non-linear; indeed, linear declining 16 

trends adequately (R2 >0.5, p value <0.001) explain variability in only two aquifer systems. 17 

Non-linearity in ΔGWS derives, in part, from the episodic nature of groundwater 18 

replenishment associated with extreme annual (>90th percentile, 1901–2016) precipitation 19 

and is inconsistent with prevailing narratives of global-scale groundwater depletion at the 20 

scale of GRACE footprint (~200,000 km2). Substantial uncertainty remains in estimates of 21 

GRACE-derived ΔGWS, evident from 20 realisations presented here, but these data provide a 22 

regional context to changes in groundwater storage observed more locally through 23 

piezometry. 24 
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1 Introduction 25 

Groundwater is estimated to account for between a quarter and a third of the world’s annual 26 

freshwater withdrawals to meet agricultural, industrial and domestic demand (Döll et al., 27 

2012; Wada et al., 2014; Hanasaki et al., 2018). As the world’s largest distributed store of 28 

freshwater, groundwater plays a vital role in sustaining ecosystems and enabling adaptation 29 

to increased variability in rainfall and river discharge brought about by climate change 30 

(Taylor et al., 2013a). Sustained reductions in the volume of groundwater (i.e. groundwater 31 

depletion) resulting from human withdrawals or changes in climate have historically been 32 

observed as declining groundwater levels recorded in wells (Scanlon et al., 2012a; Castellazzi 33 

et al., 2016; MacDonald et al., 2016). The limited distribution and duration of piezometric 34 

records hinder, however, direct observation of changes in groundwater storage globally 35 

including many of the world’s large aquifer systems (WHYMAP and Margat, 2008). 36 

Since 2002 the Gravity Recovery and Climate Experiment (GRACE) has enabled large-scale 37 

(≥ 200,000 km2) satellite monitoring of changes in total terrestrial water storage (ΔTWS) 38 

globally (Tapley et al., 2004). As the twin GRACE satellites circle the globe ~15 times a day 39 

they measure the inter-satellite distance at a minute precision (within one micron) and 40 

provide ΔTWS for the entire earth approximately every 30 days. GRACE satellites sense 41 

movement of total terrestrial water mass derived from both natural (e.g. droughts) and 42 

anthropogenic (e.g. irrigation) influences globally (Rodell et al., 2018). Changes in 43 

groundwater storage (GRACE-derived ΔGWS) are computed from ΔTWS after deducting 44 

contributions (equation 1) that arise from other terrestrial water stores including soil moisture 45 

storage (ΔSMS), surface water storage (ΔSWS), and the snow water storage (ΔSNS) using 46 

data from Land Surface Models (LSMs) either exclusively (Rodell et al., 2009; Famiglietti et 47 

al., 2011; Scanlon et al., 2012a; Famiglietti and Rodell, 2013; Richey et al., 2015; Thomas et 48 
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al., 2017) or in combination with in situ observations (Rodell et al., 2007; Swenson et al., 49 

2008; Shamsudduha et al., 2012).  50 

ΔGWS = ΔTWS – (ΔSMS + ΔSWS + ΔSNS)      (1) 51 

Substantial uncertainty persists in the quantification of changes in terrestrial water stores 52 

from GRACE measurements that are limited in duration (2002 to 2016), and the application 53 

of uncalibrated, global-scale LSMs (Shamsudduha et al., 2012; Döll et al., 2014; Scanlon et 54 

al., 2018). Computation of ΔGWS from GRACE ΔTWS is argued, nevertheless, to provide 55 

evaluations of large-scale changes in groundwater storage where regional-scale piezometric 56 

networks do not currently exist (Famiglietti, 2014). 57 

Previous assessments of changes in groundwater storage using GRACE in the world’s 37 58 

large aquifer systems (Richey et al., 2015; Thomas et al., 2017) (Fig. 1, Table 1) have raised 59 

concerns about the sustainability of human use of groundwater resources. One analysis 60 

(Richey et al., 2015) employed a single GRACE ΔTWS product (CSR) in which changes in 61 

subsurface storage (ΔSMS + ΔGWS) were attributed to ΔGWS. This study applied linear 62 

trends without regard to their significance to compute values of GRACE-derived ΔGWS over 63 

11 years from 2003 to 2013, and concluded that the majority of the world’s aquifer systems 64 

(n = 21) are either “overstressed” or “variably stressed”. A subsequent analysis (Thomas et 65 

al., 2017) employed a different GRACE ΔTWS product (Mascons) and estimated ΔSWS 66 

from LSM data for both surface and subsurface runoff, though the latter is normally 67 

considered to be groundwater recharge (Rodell et al., 2004). Using performance metrics 68 

normally applied to surface water systems including dams, this latter analysis classified 69 

nearly a third (n = 11) of the world’s aquifer systems as having their lowest sustainability 70 

criterion. 71 
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Here, we update and extend the analysis of ΔGWS in the world’s 37 large aquifer systems 72 

using an ensemble of three GRACE ΔTWS products (CSR, Mascons, GRGS) over a 14-year 73 

period from August 2002 to July 2016. To isolate GRACE-derived ΔGWS from GRACE 74 

ΔTWS, we employ estimates of ΔSMS, ΔSWS and ΔSNS from five LSMs (CLM, Noah, 75 

VIC, Mosaic, Noah v.2.1) run by NASA’s Global Land Data Assimilation System (GLDAS). 76 

As such, we explicitly account for the contribution of ΔSWS to ΔTWS, which has been 77 

commonly overlooked (Rodell et al., 2009; Richey et al., 2015; Bhanja et al., 2016) despite 78 

evidence of its significant contribution to ΔTWS (Kim et al., 2009; Shamsudduha et al., 79 

2012; Getirana et al., 2017). Further, we characterise trends in time-series records of 80 

GRACE-derived ΔGWS by employing a non-parametric, Seasonal-Trend decomposition 81 

procedure based on Loess (STL) (Cleveland et al., 1990) that allows for resolution of 82 

seasonal, trend and irregular components of GRACE-derived ΔGWS for each large aquifer 83 

system. In contrast to linear or multiple-linear regression-based techniques, STL assumes 84 

neither that data are normally distributed nor that the underlying trend is linear 85 

(Shamsudduha et al., 2009; Humphrey et al., 2016; Sun et al., 2017).  86 

 87 

2 Data and Methods 88 

2.1 Global large aquifer systems 89 

We use the World-wide Hydrogeological Mapping and Assessment Programme (WHYMAP) 90 

Geographic Information System (GIS) dataset for the delineation of world's 37 Large Aquifer 91 

Systems  (Fig. 1, Table1) (WHYMAP and Margat, 2008). The WHYMAP network, led by 92 

the German Federal Institute for Geosciences and Natural Resources (BGR), serves as a 93 

central repository and hub for global groundwater data, information, and mapping with a goal 94 

of assisting regional, national, and international efforts toward sustainable groundwater 95 
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management (Richts et al., 2011). The largest aquifer system in this dataset (Supplementary 96 

Table S1) is the East European Aquifer System (WHYMAP no. 33; area: 2.9 million km2) 97 

and the smallest one the California Central Valley Aquifer System (WHYMAP no. 16; area: 98 

71,430 km2), which is smaller than the typical sensing area of GRACE (~200,000 km2). 99 

However, Longuevergne et al. (2013) argue that GRACE satellites are sensitive to total mass 100 

changes at a basin scale so ΔTWS measurements can be applied to smaller basins if the 101 

magnitude of temporal mass changes is substantial due to mass water withdrawals (e.g., 102 

intensive groundwater-fed irrigation). Mean and median sizes of these large aquifers are 103 

~945,000 km2 and ~600,000 km2, respectively. 104 

2.2 GRACE products 105 

We use post-processed, gridded (1° × 1°) monthly GRACE TWS data from CSR land 106 

(Landerer and Swenson, 2012) and JPL Global Mascon (Watkins et al., 2015; Wiese et al., 107 

2016) solutions from NASA’s dissemination site (http://grace.jpl.nasa.gov/data), and a third 108 

GRGS GRACE solution (CNES/GRGS release RL03-v1) (Biancale et al., 2006) from the 109 

French Government space agency, Centre National D'études Spatiales (CNES). To address 110 

the uncertainty associated with different GRACE processing strategies (CSR, JPL-Mascons, 111 

GRGS), we apply an ensemble mean of the three GRACE solutions (Bonsor et al., 2018). 112 

CSR land solution (version RL05.DSTvSCS1409) is post-processed from spherical 113 

harmonics released by the Centre for Space Research (CSR) at the University of Texas at 114 

Austin. CSR gridded datasets are available at a monthly timestep and a spatial resolution of 115 

1° × 1° (~111 km at equator) though the actual spatial resolution of GRACE footprint 116 

(Scanlon et al., 2012a) is 450 km × 450 km or ~200,000 km2. To amplify TWS signals we 117 

apply the dimensionless scaling factors provided as 1° × 1° bins that are derived from 118 

minimising differences between TWS estimated from GRACE and the hydrological fields 119 
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from the Community Land Model (CLM4.0) (Landerer and Swenson, 2012). JPL-Mascons 120 

(version RL05M_1.MSCNv01) data processing involves the same glacial isostatic adjustment 121 

correction but applies no spatial filtering as JPL-RL05M directly relates inter-satellite range-122 

rate data to mass concentration blocks (Mascons) to estimate monthly gravity fields in terms 123 

of equal area 3° × 3° mass concentration functions in order to minimise measurement errors. 124 

Gridded mascon fields are provided at a spatial sampling of 0.5° in both latitude and 125 

longitude (~56 km at the equator). Similar to CSR product, dimensionless scaling factors are 126 

provided as 0.5° × 0.5° bins (Shamsudduha et al., 2017) to apply to the JPL-Mascons product 127 

that also derive from the Community Land Model (CLM4.0) (Wiese et al., 2016). The scaling 128 

factors are multiplicative coefficients that minimize the difference between the smoothed and 129 

unfiltered monthly ΔTWS variations from the CLM4.0 hydrology model (Wiese et al., 2016).  130 

Finally, GRGS GRACE (version RL03-v1) monthly gridded solutions of a spatial resolution 131 

of 1° × 1° are extracted and aggregated time-series data are generated for each aquifer 132 

system. A description of the estimation method of ΔGWS from GRACE and in-situ 133 

observations is provided below. 134 

2.3 Estimation of ΔGWS from GRACE 135 

We apply monthly measurements of terrestrial water storage anomalies (ΔTWS) from 136 

Gravity Recovery and Climate Experiment (GRACE) satellites, and simulated records of soil 137 

moisture storage (ΔSMS), surface runoff or surface water storage (ΔSWS) and snow water 138 

equivalent (ΔSNS) from NASA’s Global Land Data Assimilation System (GLDAS version 139 

1.0) at 1° × 1° grids for the period of August 2002 to July 2016 to estimate (equation 1) 140 

groundwater storage changes (ΔGWS) in the 37 WHYMAP large aquifer systems. This 141 

approach is consistent with previous global (Thomas et al., 2017) and basin-scale (Rodell et 142 

al., 2009; Asoka et al., 2017; Feng et al., 2018) analyses of ΔGWS from GRACE. We apply 3 143 

gridded GRACE products (CSR, JPL-Mascons, GRGS) and an ensemble mean of ΔTWS and 144 
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individual storage component of ΔSMS and ΔSWS from 4 Land Surface Models (LSMs: 145 

CLM, Noah, VIC, Mosaic), and a single ΔSNS from Noah model (GLDAS version 2.1) to 146 

derive a total of 20 realisations of ΔGWS (Table S5) for each of the 37 aquifer systems. We 147 

then averaged all the GRACE-derived ΔGWS estimates to generate an ensemble mean 148 

ΔGWS time-series record for each aquifer system. GRACE and GLDAS LSMs derived 149 

datasets are processed and analysed in R programming language (R Core Team, 2017). 150 

2.4 GLDAS Land Surface Models 151 

To estimate GRACE-derived ΔGWS using equation (1), we use simulated soil moisture 152 

storage (ΔSMS), surface runoff, as a proxy for surface water storage ΔSWS (Getirana et al., 153 

2017; Thomas et al., 2017), and snow water equivalent (ΔSNS) from NASA’s Global Land 154 

Data Assimilation System (GLDAS). GLDAS system (https://ldas.gsfc.nasa.gov/gldas/) 155 

drives multiple, offline (not coupled to the atmosphere) Land Surface Models globally 156 

(Rodell et al., 2004), at variable grid resolutions (from 2.5° to 1 km), enabled by the Land 157 

Information System (LIS) (Kumar et al., 2006). Currently, GLDAS (version 1) drives four 158 

land surface models (LSMs): Mosaic, Noah, the Community Land Model (CLM), and the 159 

Variable Infiltration Capacity (VIC). We apply monthly ΔSMS (sum of all soil profiles) and 160 

ΔSWS data at a spatial resolution of 1° × 1° from 4 GLDAS LSMs: the Community Land 161 

Model (CLM, version 2.0) (Dai et al., 2003), Noah (version 2.7.1) (Ek et al., 2003), the 162 

Variable Infiltration Capacity (VIC) model (version 1.0) (Liang et al., 2003), and Mosaic 163 

(version 1.0) (Koster and Suarez, 1992). The respective total depths of modelled soil profiles 164 

are 3.4 m, 2.0 m, 1.9 m and 3.5 m in CLM (10 vertical layers), Noah (4 vertical layers), VIC 165 

(3 vertical layers), and Mosaic (3 vertical layers) (Rodell et al., 2004). For snow water 166 

equivalent (ΔSNS), we use simulated data from Noah (v.2.1) model (GLDAS version 2.1) 167 

that is forced by the global meteorological data set from Princeton University (Sheffield et 168 
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al., 2006); LSMs under GLDAS (version 1) are forced by the CPC Merged Analysis of 169 

Precipitation (CMAP) data (Rodell et al., 2004). 170 

2.5 Global precipitation datasets 171 

To evaluate the relationships between precipitation and GRACE-derived ΔGWS, we use a 172 

high-resolution (0.5 degree) gridded, global precipitation dataset (version 4.01) (Harris et al., 173 

2014) available from the Climatic Research Unit (CRU) at the University of East Anglia 174 

(https://crudata.uea.ac.uk/cru/data/hrg/). In light of  uncertainty in observed precipitation 175 

datasets globally, we test the robustness of relationship between precipitation and 176 

groundwater storage using the GPCC (Global Precipitation Climatology Centre) precipitation 177 

dataset (Schneider et al., 2017) (https://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html) 178 

from 1901 to 2016. Time-series (January 1901 to July 2016) of monthly precipitation from 179 

CRU and GPCC datasets for the WHYMAP aquifer systems were analysed and processed in 180 

R programming language (R Core Team, 2017). 181 

2.6 Seasonal-Trend Decomposition (STL) of GRACE ΔGWS  182 

Monthly time-series records (Aug 2002 to Jul 2016; supplementary Figs. S1-S36) of the 183 

ensemble mean GRACE ΔTWS and GRACE-derived ΔGWS were decomposed to seasonal, 184 

trend and remainder or residual components using a non-parametric time series 185 

decomposition technique known as “Seasonal-Trend decomposition procedure based on a 186 

locally weighted regression method called Loess (STL)” (Cleveland et al., 1990). Loess is a 187 

nonparametric method so that the fitted curve is obtained empirically without assuming the 188 

specific nature of any structure that may exist within the data (Jacoby, 2000). A key 189 

advantage of STL method is that it reveals relatively complex structures in time-series data 190 

that could easily be overlooked using traditional statistical methods such as linear regression.  191 
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STL decomposition technique has previously been used to analyse GRACE ΔTWS regionally 192 

(Hassan and Jin, 2014) and globally (Humphrey et al., 2016). GRACE-derived ΔGWS time-193 

series records for each aquifer system were decomposed using the STL method (see equation 194 

2) in the R programming language (R Core Team, 2017) as: 195 

tttt RSTY ++=          (2) 196 

where Yt is the monthly ΔGWS at time t, Tt is the trend component; St is the seasonal 197 

component; and Rt is a remainder (residual or irregular) component.  198 

The STL method consists of a series of smoothing operations with different moving window 199 

widths chosen to extract different frequencies within a time series, and can be regarded as an 200 

extension of classical methods for decomposing a series into its individual components 201 

(Chatfield, 2003). The nonparametric nature of the STL decomposition technique enables 202 

detection of nonlinear patterns in long-term trends that cannot be assessed through linear 203 

trend analyses (Shamsudduha et al., 2009). For STL decomposition, it is necessary to choose 204 

values of smoothing parameters to extract trend and seasonal components. Selection of 205 

parameters in STL decomposition is a subjective process. The choice of the seasonal 206 

smoothing parameter determines the extent to which the extracted seasonal component varies 207 

from year to year: a large value will lead to similar components in all years whereas a small 208 

value will allow the extracted component to track the observations more closely. Similar 209 

comments apply to the choice of smoothing parameter for the trend component. We 210 

experimented with several different choices of smoothing parameters (see supplementary Fig. 211 

S37) and checked the residuals (i.e. remainder component) for the overall performance of the 212 

STL decomposition model. We conducted the Shapiro‐Wilk normality test on the residuals 213 

after fitting the STL smooth line with a range of trend-cycle (t.window) and seasonal 214 

(s.window) windows and compared the p values. Visualization of the results with several 215 
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smoothing parameters (supplementary Fig. S37) and the corresponding smaller p values (i.e., 216 

p value <0.01) of the normality test suggested that the overall structure of time series at all 217 

sites could be captured reasonably well using window widths of 13 for the seasonal 218 

component and 37 for the trend. We apply the STL decomposition with a robust fitting of the 219 

loess smoother (Cleveland et al., 1990) to ensure that the fitting of the curvilinear trend does 220 

not have an adverse effect due to extreme outliers in the time-series data (Jacoby, 2000). 221 

Finally, to make the interpretation and comparison of nonlinear trends across all 37 aquifer 222 

systems, smoothing parameters were then fixed for all subsequent STL analyses. 223 

 224 

3 Results 225 

3.1 Variability in ΔTWS of the large aquifer systems 226 

Ensemble mean time series of GRACE ΔTWS for the world’s 37 large aquifer systems are 227 

shown in Fig. 2 (High Plains Aquifer System, no. 17) and supplementary Figs. S1-S36 228 

(remaining 36 aquifer systems). The STL decomposition of an ensemble GRACE ΔTWS in 229 

the High Plains Aquifer System (no. 17) decomposes the time series into seasonal, trend and 230 

residual components (see supplementary Fig. S37). Variance (square of the standard 231 

deviation) in monthly GRACE ΔTWS (Figs. 3a and 4, Supplementary Table S1) is highest 232 

(>100 cm2) primarily under monsoonal precipitation regimes within the Inter-Tropical 233 

Convergence Zone (e.g. Upper Kalahari-Cuvelai-Zambezi-11, Amazon-19, Maranho-20, 234 

Ganges-Brahmaputra-24). The sum of individual components derived from the STL 235 

decomposition (i.e., seasonal, trend and irregular or residual) approximates the overall 236 

variance in time-series data. The majority of the variance (>50%) in ΔTWS is explained by 237 

seasonality (Fig. 3a); non-linear (curvilinear) trends represent <25% of the variance in ΔTWS 238 

with the exception of the Upper Kalahari-Cuvelai-Zambezi-11 (42%). In contrast, variance in 239 



11 

 

GRACE ΔTWS in most hyper-arid and arid basins is low (Fig. 3a), <10 cm2 (e.g., Nubian-1, 240 

NW Sahara-2, Murzuk-Djado-3, Taodeni-Tanezrouft-4, Ogaden-Juba-9, Lower Kalahari-241 

Stampriet-12, Karoo-13, Tarim-31) and largely (> 65%) attributed to ΔGWS (Supplementary 242 

Table S2). Overall, changes in ΔTWS (i.e., difference between two consecutive hydrological 243 

years) are correlated (Pearson correlation, r >0.5, p value <0.01) to annual precipitation for 244 

25 of the 37 large aquifer systems (Table S1). GRACE ΔTWS in aquifer systems under 245 

monsoonal precipitation regimes is strongly correlated to rainfall with a lag of 2 months (r 246 

>0.65, p value <0.01). 247 

3.2 GRACE-ΔGWS and evidence from in-situ piezometry 248 

Evaluations of computed GRACE-derived ΔGWS using in situ observations are limited 249 

spatially and temporally by the availability of piezometric records (Swenson et al., 2006; 250 

Strassberg et al., 2009; Scanlon et al., 2012b; Shamsudduha et al., 2012; Panda and Wahr, 251 

2015; Feng et al., 2018). Consequently, comparisons of GRACE and in situ ΔGWS remain 252 

opportunity-driven and, here, comprise the Limpopo Basin in South Africa and Bengal Basin 253 

in Bangladesh where we possess time series records of adequate duration and density. The 254 

Bengal Basin is a part of the Ganges-Brahmaputra aquifer system (aquifer no. 24) whereas 255 

the Limpopo Basin is located between the Lower Kalahari-Stampriet Basin (aquifer no. 12) 256 

and the Karoo Basin (aquifer no. 13). The two basins feature contrasting climates (i.e. 257 

tropical humid versus tropical semi-arid) and geologies (i.e. unconsolidated sands versus 258 

weathered crystalline rock) that represent key controls on the magnitude and variability 259 

expected in ΔGWS. Both basins are in the tropics and, as such, serve less well to test the 260 

computation of GRACE-derived ΔGWS at mid and high latitudes.  261 

In the Bengal Basin, computed GRACE and in situ ΔGWS demonstrate an exceptionally 262 

strong seasonal signal associated with monsoonal recharge that is amplified by dry-season 263 
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abstraction (Shamsudduha et al., 2009; Shamsudduha et al., 2012) and high storage of the 264 

regional unconsolidated sand aquifer, represented by a bulk specific yield (𝑆𝑆𝑦𝑦) of 10% (Fig. 265 

S38a). Time-series of GRACE and LSMs are shown in Fig. S39. The ensemble mean time 266 

series of computed GRACE ΔGWS from three GRACE TWS solutions and five NASA 267 

GLDAS LSMs is strongly correlated (r = 0.86, p value <0.001) to in situ ΔGWS derived 268 

from a network of 236 piezometers (mean density of 1 piezometer per 610 km2) for the 269 

period of 2003 to 2014. In the semi-arid Limpopo Basin where mean annual rainfall (469 mm 270 

for the period of 2003 to 2015) is one-fifth of that in the Bengal Basin (2,276 mm), the 271 

seasonal signal in ΔGWS, primarily in weathered crystalline rocks with a bulk 𝑆𝑆𝑦𝑦 of 2.5%, is 272 

smaller (Fig. S38b). Time-series of GRACE and LSMs are shown in Fig. S40. Comparison of 273 

in situ ΔGWS, derived from a network of 40 piezometers (mean density of 1 piezometer per 274 

1,175 km2), and computed GRACE-derived ΔGWS shows broad correspondence (r = 0.62, p 275 

value <0.001) though GRACE-derived ΔGWS is ‘noisier’; intra-annual variability may result 276 

from uncertainty in the representation of other terrestrial stores using LSMs that are used to 277 

compute GRACE-derived ΔGWS from GRACE ΔTWS. The magnitude of uncertainty in 278 

monthly ΔSWS, ΔSMS, and ΔSNS that are estimated by GLDAS LSMs to compute 279 

GRACE-derived ΔGWS in each large-scale aquifer system, is depicted in Fig. 2 and 280 

supplementary Figs. S1-S36. The favourable, statistically significant correlations between the 281 

computed ensemble mean GRACE-derived ΔGWS and in situ ΔGWS shown in these two 282 

contrasting basins indicate that, at large scales (~200,000 km2), the methodology used to 283 

compute GRACE-derived ΔGWS has merit. 284 

3.3 Trends in GRACE-ΔGWS time series 285 

Computation of GRACE-derived ΔGWS for the 37 large-scale aquifers globally is shown in 286 

Figs. 2 and 5. Figure 2 shows the ensemble GRACE ΔTWS and GLDAS LSM datasets used 287 
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to compute GRACE-derived ΔGWS for the High Plains Aquifer System in the USA (aquifer 288 

no. 17 in Fig. 1); datasets used for all other large-scale aquifer systems are given in the 289 

Supplementary Material (Figs. S1–S36).  In addition to the ensemble mean, we show 290 

uncertainty in GRACE-derived ΔGWS associated with 20 realisations from GRACE products 291 

and LSMs. Monthly time-series data of ensemble GRACE-derived ΔGWS for the other 36 292 

large-scale aquifers are plotted (absolute scale) in Fig. 5 (in black) and fitted with a Loess-293 

based trend (in blue). For all but five large aquifer systems (e.g., Lake Chad Basin-294 

WHYMAP no. 7, Umm Ruwaba-8, Amazon-19, West Siberian Basin-25, and East European-295 

33), the dominant time-series component explaining variance in GRACE-derived ΔGWS is 296 

trend (Fig. 3b, and supplementary Figs. S41-S77). Trends in GRACE-derived ΔGWS are, 297 

however, overwhelmingly non-linear (curvilinear); linear trends adequately (R2 >0.5, p value 298 

<0.05) explain variability in GRACE-derived ΔGWS in just 5 of 37 large-scale aquifer 299 

systems and of these, only two (Arabian-22, Canning-37) are declining. GRACE-derived 300 

ΔGWS for three intensively developed, large-scale aquifer systems (Supplementary Table S1: 301 

California Central Valley-16, Ganges-Brahmaputra-24, North China Plains-29) show 302 

episodic declines (Fig. 5) though, in each case, their overall trend from 2002 to 2016 is 303 

declining but non-linear (Fig. 1). 304 

3.4 Computational uncertainty in GRACE-ΔGWS 305 

For several large aquifer systems primarily in arid and semi-arid environments, we identify 306 

anomalously negative or positive estimates of GRACE-derived ΔGWS that deviate 307 

substantially from underlying trends (Fig. 6 and supplementary Fig. S78). For example, the 308 

semi-arid Upper Kalahari-Cuvelai-Zambezi Basin (11) features an extreme, negative anomaly 309 

in GRACE-derived ΔGWS (Fig. 6a) in 2007-08 that is the consequence of simulated values 310 

of terrestrial stores (ΔSWS + ΔSMS) by GLDAS LSMs that exceed the ensemble GRACE 311 

ΔTWS signal. Inspection of individual time-series data for this basin (Fig. S11) reveals 312 
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greater consistency in the three GRACE-ΔTWS time-series data (variance of CSR: 111 cm2; 313 

Mascons: 164 cm2; GRGS: 169 cm2) compared to simulated ΔSMS among the 4 GLDAS 314 

LSMs (variance of CLM: 9 cm2; Mosaic: 90 cm2; Noah: 98 cm2; VIC is 110 cm2). In the 315 

humid Congo Basin (10), positive ΔTWS values in 2006-07 but negative ΔSMS values 316 

produce anomalously high values of GRACE-derived ΔGWS (Fig. 6b, Fig. S10). In the 317 

snow-dominated, humid Angara-Lena Basin (27), a strongly positive, combined signal of 318 

ΔSNS + ΔSWS exceeding ΔTWS leads to a very negative estimation of ΔGWS when 319 

groundwater is following a rising trend (Fig. 6c, Fig. S26). 320 

3.5 GRACE ΔGWS and extreme precipitation 321 

Non-linear trends in GRACE-derived ΔGWS (i.e., difference in STL trend component 322 

between two consecutive years) demonstrate a significant association with precipitation 323 

anomalies from CRU dataset for each hydrological year (i.e., percent deviations from mean 324 

annual precipitation between 2002 and 2016) in semi-arid environments (Fig. 7, Pearson 325 

correlation, r = 0.62, p <0.001). These associations over extreme hydrological years are 326 

particularly strong in a number of individual aquifer systems (Fig. 5; Supplementary Tables 327 

S3 and S4) including the Great Artesian Basin (36) (r = 0.93), California Central Valley (16) 328 

(r = 0.88), North Caucasus Basin (34) (r = 0.65), Umm Ruwaba Basin (8) (r = 0.64), and 329 

Ogalalla (High Plains) Aquifer (17) (r = 0.64). In arid aquifer systems, overall associations 330 

between GRACE ΔGWS and precipitation anomalies are statistically significant but 331 

moderate (r = 0.36, p <0.001); a strong association is found only for the Canning Basin (37) 332 

(r = 0.52).  In humid (and sub-humid) aquifer systems, no overall statistically significant 333 

association is found yet strong correlations are noted for two temperate aquifer systems 334 

(Northern Great Plains Aquifer (14), r = 0.51; Angara−Lena Basin (27), r = 0.54); weak 335 

correlations are observed in the humid tropics for the Maranhao Basin (20, r = 0.24) and 336 

Ganges-Brahmaputra Basin (24, r = 0.28). 337 
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Distinct rises observed in GRACE-derived ΔGWS correspond with extreme seasonal 338 

(annual) precipitation (Fig. 5; Table S3 and Table S4). In the semi-arid Great Artesian Basin 339 

(aquifer no. 36) (Fig. 5 and supplementary Fig. S35), two consecutive years (2009–10 and 340 

2010–11) of statistically extreme (i.e., >90th percentile, period: 1901 to 2016) monthly 341 

precipitation interrupt a multi-annual (2002 to 2009) declining trend. Pronounced rises in 342 

GRACE-derived ΔGWS in response to extreme annual rainfall are visible in other semi-arid, 343 

large aquifer systems including the Umm Ruwaba Basin (8) in 2007, Lower Kalahari-344 

Stampriet Basin (12) in 2011, California Central Valley (16) in 2005, Ogalalla (High Plains) 345 

Aquifer (17) in 2015, and Indus Basin (23) in 2010 and 2015 (Tables S3 and S4 and Figs. S2, 346 

S8, S12, S16, S22). Similar rises in GRACE-derived ΔGWS in response to extreme annual 347 

rainfall in arid basins include the Lake Chad Basin (7) in 2012 and Ogaden-Juba Basin (9) in 348 

2013 (Table S3 and Figs. S7, S9). In the Canning Basin, a substantial rise in GRACE-derived 349 

ΔGWS occurs in 2010–11 (Tables S3 and S4 and Fig. S36) in response to extreme annual 350 

rainfall though the overall trend is declining. 351 

Non-linear trends that feature substantial rises in GRACE-derived ΔGWS in response to 352 

extreme annual precipitation under humid climates, are observed in the Maranhao Basin (20) 353 

in 2008-09, Guarani Aquifer System (21) in 2015-16, and North China Plains (29) in 2003. 354 

Consecutive years of extreme precipitation in 2012 and 2013 also generate a distinct rise in 355 

GRACE-derived ΔGWS in the Song-Liao Plain (30) (Tables S3 and S4 and Figs. S29). In the 356 

heavily developed (Table S2) Ganges-Brahmaputra Basin (24), a multi-annual (2002 to 2010) 357 

declining trend is halted by an extreme (i.e., highest over the GRACE period of 2002 to 2016 358 

but 59th percentile over the period of 1901 to 2016 using CRU dataset) annual precipitation in 359 

2011 (Tables S3 and S4 and Figs. S23). Consecutive years from 2014 to 2015 of extreme 360 

annual precipitation increase GRACE-derived ΔGWS and disrupt a multi-annual declining 361 

trend in the West Siberian Artesian Basin (25) (Tables S3 and S4 and Figs. S24). In the sub-362 
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humid Northern Great Plains (14), distinct rises in GRACE-derived ΔGWS occur in 2010 363 

(Tables S3 and S4 and Figs. S14) in response to extreme annual precipitation though the 364 

overall trend is linear and rising. The overall agreement in mean annual precipitation between 365 

the CRU and GPCC datasets for the period of 1901 to 2016 is strong (median correlation 366 

coefficient in 37 aquifer systems, r = 0.92). 367 

 368 

4 Discussion 369 

4.1 Uncertainty in GRACE-derived ΔGWS 370 

We compute the range of uncertainty in GRACE-derived ΔGWS associated with 20 potential 371 

realisations from applied GRACE (CSR, JPL-Mascons, GRGS) products and LSMs (CLM, 372 

Noah, VIC, Mosaic). Uncertainty is generally higher for aquifers systems located in arid to 373 

hyper-arid environments (Table 2, see supplementary Fig. S79). Computation of GRACE-374 

derived ΔGWS relies upon uncalibrated simulations of individual terrestrial water stores (i.e., 375 

ΔSWS, ΔSWS, ΔSNS) from LSMs to estimate ΔGWS from GRACE ΔTWS. A recent 376 

global-scale comparison of ΔTWS estimated by GLDAS LSMs and GRACE (Scanlon et al., 377 

2018) indicates that LSMs systematically underestimate water storage changes. Further, the 378 

absence of river-routing and representation of lakes and reservoirs in the estimation of ΔSWS 379 

by LSMs constrains computation of GRACE ΔGWS as similarly recognised by Scanlon et al. 380 

(2019). Finally, substantial variability in ΔSMS among GLDAS models and the limited depth 381 

(<3.5 m below ground level) to the deepest soil layer over which these LSMs simulate ΔSMS 382 

also hamper estimation of GRACE ΔGWS, especially in drylands where the thickness of 383 

unsaturated zones may an order of magnitude greater (Scanlon et al., 2009). 384 

We detect probable errors in GLDAS LSM data from events that produce large deviations in 385 

GWS (Fig. 5). These errors occur because GRACE-derived ΔGWS is computed as residual 386 
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(equation 1); overestimation (or underestimation) of these combined stores produces negative 387 

(or positive) values of GRACE-derived ΔGWS when the aggregated value of other terrestrial 388 

water stores is strongly positive (or negative) and no lag is assumed (Shamsudduha et al., 389 

2017). Evidence from limited piezometric data presented here and elsewhere (Panda and 390 

Wahr, 2015; Feng et al., 2018) suggests that the dynamics in computed GRACE-derived 391 

ΔGWS are nonetheless reasonable yet the amplitude in ΔGWS from piezometry is scalable 392 

due to uncertainty in the applied Sy (Shamsudduha et al., 2012). 393 

Assessments of ΔGWS derived from GRACE are constrained by both their limited timespan 394 

(2002–2016) and course spatial resolution (>200,000 km2). For example, centennial-scale 395 

piezometry in the Ganges-Brahmaputra aquifer system (no. 24) reveals that recent 396 

groundwater depletion, (i.e., groundwater withdrawals that are unlikely to be replenished 397 

within a century as per Bierkens and Wada (2019)), in NW India traced by GRACE (Fig. 5 398 

and supplementary Fig. S23) (Rodell et al., 2009; Chen et al., 2014) follows more than a 399 

century of groundwater accumulation (see supplementary Fig. S80) through leakage of 400 

surface water via a canal network constructed primarily during the 19th century (MacDonald 401 

et al., 2016). Long-term piezometric records from central Tanzania and the Limpopo Basin of 402 

South Africa (Supplementary Fig. S81) show dramatic increases in ΔGWS associated with 403 

extreme seasonal rainfall events that occurred prior to 2002 and thus provide a vital context 404 

to the more recent period of ΔGWS estimated by GRACE. At regional scales, GRACE-405 

derived ΔGWS can differ substantially from more localised, in situ observations of ΔGWS 406 

from piezometry. In the Karoo Basin (aquifer no. 13), GRACE-derived ΔGWS is also rising 407 

(Fig. 5 and supplementary Fig. S13) over periods during which groundwater depletion has 408 

been reported in parts of the basin (Rosewarne et al., 2013). In the Guarani Aquifer System 409 

(21), groundwater depletion is reported from 2005 to 2009 in Ribeiro Preto near Sao Paulo as 410 
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a result of intensive groundwater withdrawals for urban water supplies and irrigation of 411 

sugarcane (Foster et al., 2009) yet GRACE-derived ΔGWS over this same period is rising.  412 

4.2 Variability in GRACE ΔGWS and role of extreme precipitation 413 

Non-linear trends in GRACE-derived ΔGWS arise, in part, from inter-annual variability in 414 

precipitation which has similarly been observed in analyses of GRACE ΔTWS (Humphrey et 415 

al., 2016; Sun et al., 2017; Bonsor et al., 2018). Annual precipitation in the Great Artesian 416 

Basin (aquifer no. 36) provides a dramatic example of how years (2009–10, 2010–11 from 417 

both CRU and GPCC datasets) of extreme precipitation can generate anomalously high 418 

groundwater recharge that arrests a multi-annual declining trend (Fig. 5), increasing 419 

variability in GRACE-derived ΔGWS over the relatively short period (15 years) of GRACE 420 

data. The disproportionate contribution of episodic, extreme rainfall to groundwater recharge 421 

has previously been shown by (Taylor et al., 2013b) from long-term piezometry in semi-arid 422 

central Tanzania where nearly 20% of the recharge observed over a 55-year period resulted 423 

from a single season of extreme rainfall, associated with the strongest El Niño event (1997–424 

1998) of the last century (Supplementary Fig. S81a). Further analysis from multi-decadal 425 

piezometric records in drylands across tropical Africa (Cuthbert et al., 2019) confirm this bias 426 

in response to intensive precipitation.  427 

The dependence of groundwater replenishment on extreme annual precipitation indicated by 428 

GRACE-derived ΔGWS for many of the world’s large aquifer systems is consistent with 429 

evidence from other sources. In a pan-tropical comparison of stable-isotope ratios of oxygen 430 

(18O:16O) and hydrogen (2H:1H) in rainfall and groundwater, Jasechko and Taylor (2015) 431 

show that recharge is biased to intensive monthly rainfall, commonly exceeding the 70th  432 

percentile. In humid Uganda, Owor et al. (2009) demonstrate that groundwater recharge 433 

observed from piezometry is more strongly correlated to daily rainfall exceeding a threshold 434 
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(10 mm) than all daily rainfalls. Periodicity in groundwater storage indicated by both 435 

GRACE and in situ data has been associated with large-scale synoptic controls on 436 

precipitation (e.g., El Niño Southern Oscillation, Pacific Decadal Oscillation,) in southern 437 

Africa (Kolusu et al., 2019), and have been shown to amplify recharge in major US aquifers 438 

(Kuss and Gurdak, 2014) and groundwater depletion in India (Mishra et al., 2016).  439 

In some large-scale aquifer systems, GRACE-derived ΔGWS exhibits comparatively weak 440 

correlations to precipitation.  In the semi-arid Iullemmeden-Irhazer Aquifer (6) variance in 441 

rainfall over the period of GRACE observation following the multi-decadal Sahelian drought 442 

is low (Table S1) and the net rise in GRACE-derived ΔGWS is associated with changes in 443 

the terrestrial water balance resulting from land-cover change (Ibrahim et al., 2014). In the 444 

Amazon (16), rising trends in GRACE-derived ΔGWS, which are aligned to ΔTWS reported 445 

previously by Scanlon et al. (2018) and Rodell et al. (2018), occur during a period (2010–446 

2016; see supplementary Table S18) that is the driest since the 1980s (Chaudhari et al., 447 

2019); analyses over the longer term (1980–2015) point nevertheless to an overall 448 

intensification of the Amazonian hydrological cycle. 449 

4.3 Trends in GRACE ΔGWS under global change 450 

Our analysis identifies non-linear trends in GRACE-derived ΔGWS for the vast majority (32 451 

of 37) of the world’s large aquifer systems (Figs. 1, 5 and 8). Non-linearity reflects, in part, 452 

the variable nature of groundwater replenishment observed at the scale of the GRACE 453 

footprint that is consistent with more localised, emerging evidence from multi-decadal 454 

piezometric records (Taylor et al., 2013b) (Supplementary Fig. S81a). The variable and often 455 

episodic nature of groundwater replenishment complicates assessments of the sustainability 456 

of groundwater withdrawals and highlights the importance of long-term observations over 457 

decadal timescales in undertaking such evaluations. Dramatic rises in freshwater withdrawals, 458 
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primarily associated with the expansion of irrigated agriculture in semi-arid environments, 459 

have nevertheless led to groundwater depletion, computed globally from hydrological models 460 

(e.g., Wada et al., 2010; de Graaf et al., 2017) and volumetric-based calculations (Konikow, 461 

2011). Further, groundwater depletion globally has been shown to contribute to sea-level rise 462 

(e.g., Wada et al., 2016).  However, as recognised in a comprehensive review by Bierkens 463 

and Wada (2019), groundwater depletion is often localised, occurring below the footprint 464 

(200,000 km2) of GRACE as has been well demonstrated by detailed modelling studies in the 465 

California Central Valley (Scanlon et al., 2012a) and North China Plain (Cao et al., 2013). 466 

Projections of the sustainability of groundwater withdrawals under global change are 467 

complicated, in part, by uncertainty in how radiative forcing will affect large-scale, regional 468 

controls on extreme annual precipitation like El Niño Southern Oscillation (Latif and 469 

Keenlyside, 2009). Globally, Reager et al. (2016) show a trend towards enhanced 470 

precipitation on the land under climate change. Given this trend and the observed 471 

intensification of precipitation on land from global warming (Allan et al., 2010; Westra et al., 472 

2013; Zhang et al., 2013; Myhre et al., 2019), groundwater recharge to many large-scale 473 

aquifer systems may increase under climate change as revealed by the statistical relationships 474 

found in this study between ΔGWS and extreme annual precipitation. The magnitude of this 475 

increase is, however, unlikely to offset the impact of human withdrawals in areas of intensive 476 

abstraction for irrigated agriculture as shown in NW India by Xie et al. (2020).  The 477 

developed set of GRACE-derived ΔGWS time series data for the world’s large aquifer 478 

systems provided here offers a consistent, additional benchmark alongside long-term 479 

piezometry to assess not only large-scale climate controls on groundwater replenishment but 480 

also opportunities to enhance groundwater storage through managed aquifer recharge. 481 

 482 
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5 Conclusions 483 

Changes in groundwater storage (ΔGWS) computed from GRACE satellite data continue to 484 

rely upon uncertain, uncalibrated estimates of changes in other terrestrial stores of water 485 

found in soil, surface water, and snow/ice from global-scale models. The application here of 486 

ensemble mean values of three GRACE ΔTWS processing strategies (CSR, JPL-Mascons, 487 

GRGS) and five land-surface models (GLDAS 1: CLM, Noah, VIC, Mosaic; GLDAS 2: 488 

Noah) is designed to reduce the impact of uncertainty in an individual model or GRACE 489 

product on the computation of GRACE-derived ΔGWS. We, nevertheless, identify a few 490 

instances where erroneously high or low values of GRACE-derived ΔGWS are computed; 491 

these occur primarily in arid and semi-arid environments where uncertainty in the simulation 492 

of terrestrial water balances is greatest. Over the period of GRACE observation (2002 to 493 

2016), we show favourable comparisons between GRACE-derived ΔGWS and piezometric 494 

observations (r = 0.62 to 0.86) in two contrasting basins (i.e., semi-arid Limpopo Basin, 495 

tropical humid Bengal Basin) for which in situ data are available. This study thus contributes 496 

to a growing body of research and observations reconciling computed GRACE-derived 497 

ΔGWS to ground-based data. 498 

GRACE-derived ΔGWS from 2002 to 2016 for the world’s 37 large-scale aquifer systems 499 

shows substantial variability as revealed explicitly by 20 potential realisations from GRACE 500 

products and LSMs computed here; trends in ensemble mean GRACE-derived ΔGWS are 501 

overwhelmingly (87%) non-linear. Linear trends adequately explain variability in GRACE-502 

derived ΔGWS in just 5 aquifer systems for which linear declining trends, indicative of 503 

groundwater depletion, are observed in 2 aquifer systems (Arabian, Canning); overall trends 504 

for three intensively developed, large-scale aquifer systems (California Central Valley, 505 

Ganges-Brahmaputra, North China Plains) are declining but non-linear. This non-linearity in 506 

GRACE-derived ΔGWS for the vast majority of the world’s large aquifer systems is 507 
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inconsistent with previous analyses at the scale of GRACE footprint (~200,000 km2) 508 

asserting global-scale groundwater depletion. Groundwater depletion, more commonly 509 

observed by piezometry, is experienced at scales well below the GRACE footprint and is 510 

likely to be more pervasive than suggested by the presented analysis of large-scale aquifers.  511 

Non-linearity in GRACE-derived ΔGWS arises, in part, from episodic recharge associated 512 

with extreme (>90th percentile) annual precipitation. This episodic replenishment of 513 

groundwater, combined with natural discharges that sustain ecosystem functions and human 514 

withdrawals, produces highly dynamic aquifer systems that complicate assessments of the 515 

sustainability of groundwater withdrawals from large aquifer systems. These findings 516 

highlight, however, potential opportunities for sustaining groundwater withdrawals through 517 

induced recharge from extreme precipitation and managed aquifer recharge.  518 
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Tables and Figures 789 

Table 1. Identification number, name and general location of the world’s 37 large aquifer 790 
systems as provided in the WHYMAP database (https://www.whymap.org/). Mean climatic 791 
condition of each of the 37 aquifer systems based on the aridity index is tabulated. 792 
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1 Nubian Sandstone 
Aquifer System Africa Hyper-

arid 20 Maranhao Basin South 
America Humid 

2 Northwestern Sahara 
Aquifer System Africa Arid 21 

Guarani Aquifer 
System (Parana 

Basin) 

South 
America Humid 

3 Murzuk-Djado Basin Africa Hyper-
arid 22 Arabian Aquifer 

System Asia Arid 

4 Taoudeni-Tanezrouft 
Basin Africa Hyper-

arid 23 Indus River Basin Asia Semi-
arid 

5 Senegal-Mauritanian 
Basin Africa Semi-

arid 24 Ganges-Brahmaputra 
Basin Asia Humid 

6 Iullemmeden-Irhazer 
Aquifer System Africa Arid 25 West Siberian 

Artesian Basin Asia Humid 

7 Lake Chad Basin Africa Arid 26 Tunguss Basin Asia Humid 

8 Umm Ruwaba 
Aquifer (Sudd Basin) Africa Semi-

arid 27 Angara-Lena Basin Asia Humid 

9 Ogaden-Juba Basin Africa Arid 28 Yakut Basin Asia Humid 

10 Congo Basin Africa Humid 29 North China Plains 
Aquifer System Asia Humid 
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Upper Kalahari-

Cuvelai-Zambezi 
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18 
Atlantic and Gulf 

Coastal Plains 
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North 
America Humid 37 Canning Basin Australia Arid 

19 Amazon Basin South 
America Humid     
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Table 2. Variability (expressed as standard deviation) in GRACE-derived estimates of GWS 795 
from 20 realisations (3 GRACE-TWS and an ensemble mean of TWS, and 4 LSMs and an 796 
ensemble mean of surface water and soil moisture storage, and a snow water storage) and 797 
their reported range of uncertainty (% deviation from the ensemble mean) in world’s 37 large 798 
aquifer systems. 799 
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1 Nubian Sandstone 
Aquifer System 1.05 83 20 Maranhao Basin 5.68 136 

2 Northwestern Sahara 
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System (Parana 
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3.37 77 

3 Murzuk-Djado Basin 1.17 189 22 Arabian Aquifer 
System 2.01 163 

4 Taoudeni-Tanezrouft 
Basin 0.99 193 23 Indus River Basin 3 78 

5 Senegal-Mauritanian 
Basin 3.23 96 24 Ganges-Brahmaputra 
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Aquifer System 1.52 116 25 West Siberian 
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Main Figures: 802 
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 816 

 817 

Fig. 1. Global map of 37 large aquifer systems from the GIS database of the World-wide 818 

Hydrogeological Mapping and Assessment Programme (WHYMAP); names of these aquifer 819 

systems are listed in Table 1 and correspond to numbers shown on this map for reference. 820 

Grey shading shows the aridity index based on CGIAR’s database of the Global Potential 821 

Evapo-Transpiration (Global-PET) and Global Aridity Index (https://cgiarcsi.community/); 822 

the proportion (as a percentage) of long-term trends in GRACE-derived ΔGWS of these large 823 

aquifer systems that is explained by linear trend fitting is shown in colour (i.e. linear trends 824 

toward red and non-linear trends toward blue).  825 
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Fig. 2. Time-series data of terrestrial water storage anomaly (ΔTWS) from GRACE and 849 

individual water stores from GLDAS Land Surface Models (LSMs): (a) Ensemble monthly 850 

GRACE ΔTWS from three solutions (CSR, Mascons, GRGS), (b-c) ensemble monthly 851 

ΔSMS and ΔSWS + ΔSNS from four GLDAS LSMs (CLM, Noah, VIC, Mosaic), (d) 852 

computed monthly ΔGWS and (e) monthly precipitation from August 2002 to July 2016, (f) 853 

range of uncertainty in GRACE-derived GWS from 20 realisations, (g) ensemble TWS and 854 

annual precipitation, and (h) ensemble GRACE-derived GWS and annual precipitation for the 855 

High Plains Aquifer System in the USA (WHYMAP aquifer no. 17). Values in the Y-axis of 856 

the top four panels show monthly water-storage anomalies (cm) and the bottom panel shows 857 

monthly precipitation (cm). Time-series data (a-e) for the 36 large aquifer systems can be 858 

found in supplementary Figs. S1-S36.  859 
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 880 

Fig. 3. Seasonal-Trend decomposition of (a) GRACE ΔTWS and (b) GRACE ΔGWS time-881 

series data (2002 to 2016) for the world’s 37 large aquifer systems using the STL 882 

decomposition method; seasonal, trend and remainder or irregular components of time-series 883 

data are decomposed and plotted as pie charts that are scaled by the variance of the time 884 

series in each aquifer system. 885 
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 887 

 888 

 889 

Fig. 4. Monthly time-series data (black) of ensemble GRACE ΔTWS for 36 large aquifer 890 

systems with a fitted non-linear trend line (Loess smoothing line in thick blue) through the 891 

time-series data; GRACE ΔTWS for the remaining large aquifer system (High Plains Aquifer 892 

System, (WHYMAP aquifer no. 17) is given in Fig. 2. Shaded area in semi-transparent cyan 893 

shows the range of 95% confidence interval of the fitted loess-based non-linear trends; light 894 

grey coloured bar diagrams behind the lines on each panel show annual precipitation anomaly 895 

(i.e., percentage deviation from the mean precipitation for the period of 1901 to 2016); 896 

banner colours indicate the dominant climate of each aquifer based on the mean aridity index 897 

shown in the legend on Fig. 1. 898 
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 900 

 901 

 902 

Fig. 5. Monthly time-series data (black) of ensemble GRACE ΔGWS for 36 large aquifer 903 

systems with a fitted non-linear trend line (Loess smoothing line in thick blue) through the 904 

time-series data; GRACE ΔGWS for the remaining large aquifer system (High Plains Aquifer 905 

System, (WHYMAP aquifer no. 17) is given in Fig. 2. Shaded area in semi-transparent cyan 906 

shows the range of 95% confidence interval of the fitted loess-based non-linear trends; light 907 

grey coloured bar diagrams behind the lines on each panel show annual precipitation anomaly 908 

(i.e., percentage deviation from the mean precipitation for the period of 1901 to 2016); 909 

banner colours indicate the dominant climate of each aquifer based on the mean aridity index 910 

shown in the legend on Fig. 1. 911 

 912 

 913 



37 

 

 914 

 915 

 916 

 917 

 918 

 919 

 920 

 921 

 922 

 923 

 924 

 925 

 926 

 927 

 928 

 929 

 930 

 931 

 932 

 933 

Fig. 6. Time series of ensemble mean GRACE ΔTWS (red), GLDAS ΔSMS (green), 934 

ΔSWS+ΔSNS (blue) and computed GRACE ΔGWS (black) showing the calculation of 935 

anomalously negative or positive values of GRACE ΔGWS that deviate substantially from 936 

underlying trends. Three examples include: (a) the Upper Kalahari-Cuvelai-Zambezi Basin 937 

(11) under a semi-arid climate; (b) the Congo Basin (10) under a tropical humid climate; and 938 

(c) the Angara-Lena Basin (27) under a temperate humid climate; examples from an 939 

additional five aquifer systems under semi-arid and arid climates are given in the 940 

supplementary material (Fig. S75). 941 
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Fig. 7. Relationships between precipitation anomaly and annual changes in non-linear trends 973 

of GRACE ΔGWS in the 37 large aquifer systems grouped by aridity indices; annual 974 

precipitation is calculated based on hydrological year (August to July) for 12 of these aquifer 975 

systems and the rest 25 following the calendar year (January to December); the highlighted 976 

(red) circles on the scatterplots are the years of statistically extreme (>90th percentile; period: 977 

1901 to 2016) precipitation. 978 
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 996 

 997 

 998 

 999 

 1000 

 1001 

Fig. 8. Standardised monthly anomaly of non-linear trends of ensemble mean GRACE 1002 

ΔGWS for the 37 large aquifer systems from 2002 to 2016. Colours yellow to red indicate 1003 

progressively declining, short-term trends whereas colours cyan to navy blue indicate rising 1004 

trends; aquifers are arranged clockwise according to the mean aridity index starting from the 1005 

hyper-arid climate on top of the circular diagram to progressively humid. Legend colours 1006 

indicate the climate of each aquifer based on the mean aridity index; time in year (2002 to 1007 

2016) is shown from the centre of the circle outwards to the periphery. 1008 
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