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Abstract. With the ongoing warming of the globe, it is important to quantify changes in the recent behaviour of extreme

events given their impacts on human health, infrastructure and the natural environment. We use the sub-daily, multi-variate,

station-based HadISD dataset to study the changes in the statistical distributions of temperature, dewpoint temperature and

wind speeds. Firstly, we use zonally averaged quantities to show that the lowest temperatures during both day and night are

changing more rapidly than the highest, with the effect more pronounced in the northern high latitudes. Along with increases5

in the zonally-averaged mean temperature, the standard deviation has decreased and the skew increased (increasing positive

tail/decreasing negative tail) over the last 45 years, again with a stronger, more robust signal at higher latitudes. Changes in the

distribution of dewpoint temperature are similar to those of temperature. However, changes in the distribution of wind speeds

indicate a more rapid change at higher speeds than at lower.

Secondly, to assess in more detail the spatial distribution of changes as well as across seasons and hours of the day we10

study each station individually. For stations which show clear indications of change in the statistical moments, the higher the

statistical moment, generally the more spatially heterogenous the patterns of change. The standard deviations of temperatures

are increasing in a band stretching from Europe through to China, but are decreasing across North America and in the high

northern latitudes, indicating broadening and narrowing of the distributions respectively. Large seasonal differences are found

in the change of standard deviations of temperatures over North America and eastern China. Temperatures in Eastern Asia also15

have increasing skew in the winter in contrast to the remainder of the year. The dewpoint temperatures show smaller variation

in all of the moments, but similar patterns to the temperatures. For wind speeds, apart from the USA, standard deviations are

decreasing across the world, indicating a decrease in variability.

Finally, we use quantile regression to show changes in the percentiles of distributions over time. These show an increase

of high quantiles of temperature in eastern Europe during the summer, and also in northern Europe for low quantiles in the20

winter, also indicating broadening and narrowing of the distributions respectively. In North America, the largest changes are

at the lower quantiles in northern latitudes for autumn and winter. Quantiles of dewpoint temperature are changing most in the

autumn and winter, especially in the northern parts of Europe.
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1 Introduction

The study of changes in the extremes of essential climate variables is vital given their impacts on human health, infrastructure,25

agriculture and the natural environment. The Intergovernmental Panel on Climate Change (IPCC) released a Special Report on

Extremes (SREX, Field et al., 2012), and therein outlined three simple classes of the way changes in extremes occur; shifting

the mean, increasing the variability, and changing the symmetry. Past studies have indicated that there is uncertainty around

how changes in the occurrence or intensity of extreme values arise. Are extremes changing due to changes in the location of

the distribution mean with no change in the distribution shape (Griffiths et al., 2005; Simolo et al., 2011), or are changes in30

the shape of a distribution the primary driver of changes in extremes? If so, is the change in shape only the consequence of a

change in the variance or does it also arise from changes in higher order moments (Della-Marta et al., 2007; Ballester et al.,

2010)?

There are a whole host of ways to study climate extremes and determine how these have changed over the recent past.

One common approach is to use climate extremes indices to characterise moderate extremes in timeseries of station data, for35

example those developed by the World Meteorological Organisation (WMO) Commission for Climatology (CCl), World Cli-

mate Research Programme (WCRP), and Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM)

Expert Team in Climate Change Detection and Indices (ETCCDI, Alexander et al., 2006). A number of datasets comprising

these indices now exist, allowing for detailed investigations of past changes and comparisons to model and reanalysis fields

(e.g. Caesar et al., 2006; Donat et al., 2013a, b). Another route uses extreme value theory to model the tails of the distributions,40

and from these few points characterise the occurrence and intensity of extreme events, including those not yet observed in

the modern data record. The “block maximum” approach models a set of e.g. annual, maxima with a Generalised Extreme

Value distribution (e.g. Christidis et al., 2011). Alternatively, the “peaks over threshold” approach models all peaks over a fixed

threshold with the Generalised Pareto distribution (e.g. Brown et al., 2008).

A further method characterises the complete distribution using all available data to establish what are the causes of changes45

in climate extremes. The advantage of this approach is that it uses all of the available information, and can be extended to more

or less extremal parts of the distribution. A number of the ETCCDI temperature indices use the 10th and 90th percentile values,

which only probe moderate extremes. A recalculation of these indices at 1st and 99th percentile values is possible, but given

the diverse sources of data in the HadEX datasets (Donat et al., 2013b), this would be a large undertaking by the international

community. Furthermore, as the climate continues to warm, the relative intensity or duration of extreme events against warmer50

average conditions may be of interest; for example, how warm is the relatively warmest 10 per cent of days now compared to

the same fraction selected between 1961-90?

Hence, a number of recent studies have investigated past changes in the distributions of observed land-surface tempera-

tures. Most have used the Global Historical Climate Network Daily (GHCND, Menne et al., 2012) or its gridded version

(HadGHCND, Caesar et al., 2006, temperature only) as these provide daily maximum and minimum temperature values. Do-55

nat and Alexander (2012) compared two periods to show that the means of both temperature measures have shifted to warmer

values. Along with larger changes in the minimum than the maximum temperatures, this has resulted in increases in the skew
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of the distributions. However changes in standard deviation were less significant (at 10%) and more heterogeneous. Over

North America, Shen et al. (2011) show that the standard deviation and skewness were decreasing, but that the kurtoses of the

maximum temperatures were increasing, in contrast to the decrease in the kurtoses of minimum temperatures. A subsequent60

study investigated seasonal changes in the distribution moments over 1950-2010 (Cavanaugh and Shen, 2014). McKinnon et al.

(2016) showed that for most stations between 1980 and 2015, over just the summer months, trends can mostly be explained by

a shift in the distribution with no change in shape. Reanalyses (e.g. Huntingford et al., 2013; Gross et al., 2018), or coupled

models (e.g. Lewis and King, 2017) have also been used in the study of changes in the shapes of current and future distributions

of essential climate variables (ECVs).65

In this study, we use the sub-daily, station data from a single dataset, as opposed to the maximum and minimum daily

temperatures (either station based or gridded). We note that by using a single dataset, we have not investigated the effect of

dataset choice on our findings, something which can have a large effect (Gross et al., 2018). In order to compare with a number

of previous studies we perform three different assessments to see how the distributions of temperature, dewpoint temperature,

and wind speed have changed in recent years. We outline the dataset and station selection criteria in Section 2. The three70

assessments are outlined in Sections 3 to 5, with a summary in Section 6.

2 Input Data

To study the changes in distributions related to climate extremes, we use the sub-daily HadISD dataset (Dunn et al., 2012,

2014, 2016; Dunn, 2019). This is updated annually, and now covers a period 1931-2018 inclusive. Improved station selection

and merging processes as well as minor changes in the quality control tests are features of version 3.0.0.2018f over version75

1.0.x. This version contains 8139 unique station locations, with some of these being composited from individual records in

the ISD (Integrated Surface Dataset, Smith et al., 2011). As a result of the long standing issues surrounding the free sharing

of observational climate data (Thorne et al., 2017), the bulk of these stations are in the Northern Hemisphere, concentrated in

North America and Europe. In contrast to some of the previous studies outlined in the Introduction (e.g. Donat and Alexander,

2012), we do not create a gridded form of the HadISD for this assessment, but retain the individual stations as input to the80

analyses, similar to e.g. Cavanaugh and Shen (2014); McKinnon et al. (2016).

HadISD undergoes a homogeneity assessment using the Pairwise Homogeneity Algorithm (PHA, Menne and Williams Jr,

2009) to identify the number and size of inhomogeneities in its four main ECVs, including temperature and wind speed

(Dunn et al., 2014). This used monthly averages derived from the sub-daily HadISD observations to compare station-pair

differences to identify potential jumps in timeseries, a process which is more effective for stations and variables with low85

variability. Although no adjustments are made, the outputs of the PHA allow stations that have few or small inhomogeneities

to be selected, i.e. those with the most homogeneous records (see Dunn et al., 2014). They found that for temperature the best

balance of station network against the exclusion of stations with the worst inhomogeneities occurred between 1◦ and 2◦ C.

Therefore in all of the investigations below, we select those stations that have fewer than inhomogeneities, allowing jumps of

up to 1◦ C (temperature and dewpoint) or 1 m s−1 (as the distribution of the inhomogeneities in the wind speed data are similar,90
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see Figure 10 of Dunn et al., 2014). This balances retaining sufficient stations to study the behaviour across the globe with

removing those with very large inhomogeneities.

As the selected stations still contain uncorrected inhomogeneities, we note that these will have affected the analysis of

the statistical properties of the observations outlined herein. But the distributions of the estimated inhomogeneities as shown

in Dunn et al. (2014, 2016) do not have a strongly non-zero mean, and the central portions retained by the approach above95

have no clear asymmetry. Therefore, as the following analyses use combinations of stations or look for contiguous regions

of change that cross national (i.e. observing-practice) boundaries, we do not expect large effects arising from the remaining

inhomogeneities themselves.

Although the HadISD v3.0.x contains data from 1931 onwards, there is a large increase in the number of stations from 1973

onwards (the reason why HadISD v1.0.x started then, see Fig. 2 in Dunn et al., 2016). Therefore we restrict our analysis to the100

time period from 1st January 1973 unless otherwise stated. We also remove data from February 29th for ease of analysis.

3 Zonal Distribution Changes

We firstly look at the changes in distributions of anomalies of the temperatures, dewpoint temperatures and wind speeds

for all stations in a specified latitude band on an annual basis. By combining stations together, the quantity of observations

available to define the distribution is increased at the expense of spatial resolution. Donat and Alexander (2012) used the105

HadGHCND gridded daily temperature dataset (Caesar et al., 2006) to compare two 30-year periods of daily maximum and

minimum temperatures (1951-80 and 1981-2010) globally, and for three smaller zonal regions (Northern Hemisphere, Tropics

and Southern Hemisphere). Here we develop this method further using the sub-daily data available in the HadISD as well as

narrower 10-degree zonal bands.

We select those stations that fall within each 10 degree band. An approximation for the whole-hour timezone of the station110

is calculated from the station longitude, enabling the Universal Time (UTC) observation time to be converted to local time.

We then extract those portions of data that correspond to daytime and night-time, using the time periods 09:00-20:00 and

21:00-08:00 respectively, to ensure that the minimum temperatures are on the whole captured during the night-time portion,

and the maximum temperatures in the daytime. At high latitudes these definitions of day- and night-time will vary in accuracy

throughout the year, but should split the 24 hour day into the hours with most and least insolation. There are few stations at the115

highest latitudes where 24-hours of day or night occur.

Climatologies for stations for each day of the year for the day- and night-time data are calculated separately, requiring the

equivalent of 15 years of 3-hourly observations over the 1981-2010 period. These climatologies are used to create anomalies

from the sub-daily data. The creation of climate anomalies also restricts this analysis to stations that have consistent records

within this recent climatology period.120

To investigate the changes in the distributions of these zonally averaged quantities over time, we split the data up into nine

intervals each of five years in length (1974-78, 1979-83, .., 2014-2018). By not including 1973, we can assess changes over

a 45 year period. Furthermore, we only take those stations that have sufficient observations spread over the entire analysis
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Figure 1. Maps showing the locations of HadISD stations contributing to the zonal analysis along with the 10 degree latitude bands for TOP

temperature, MIDDLE dewpoints, and BOTTOM windspeeds.
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period. In each interval, we require there to be more observations than the number equivalent to hourly observations for 1/4

of the 5-year interval. Also, at least 3/4 of the intervals require sufficient data for the station to be incorporated into the final125

distribution. This is to ensure that non-uniform distributions of observations within a station record (both within a five-year

interval and across the entire record) do not overly influence the final distributions. The stations which pass these selection

criteria are shown in Fig 1. A more technical summary of these processing and selection criteria is shown in the Technical

Supplement.

We determine the values for the first four statistical moments (mean, standard deviation, skew and [excess] kurtosis) of the130

resulting distributions. These in turn represent the central tendency, the spread, the asymmetry and the “peaked-ness” of the

distribution. Distributions with non-zero skew or kurtosis indicate departures from a pure Gaussian shape. We note that the

skew and kurtosis measures are not fully orthogonal (McKinnon et al., 2016), but will use these measures in this analysis

because of their well-understood nature. Other statistical moments, e.g. linear (or L-) moments (Hosking, 1990) have also been

used for the analysis of changes in the characteristics of distributions (e.g. Fowler et al., 2005; Simolo et al., 2011). However, as135

noted above, we use the ordinary statistical moments to enable clearer comparison with previous, similar analyses (e.g. Donat

and Alexander, 2012).

The linear change in these ordinary moments, along with 1 ˆsigma range have been derived from the median of pairwise

slopes method (e.g. Sen, 1968; Lanzante, 1996), and are shown for each latitude band in Table 1 and Supplementary Information

Table S1 & S2 for temperature, dewpoint temperature and wind speed respectively. We do not expect any changes in the140

parameters of the distributions to be linear, but it is a useful way to summarise their gross changes over time together with the

relative certainty of these changes. Latitude bands where the range in trend values does not encompass zero are highlighted in

bold, as for these we can be more confident that there is a true change in the value over time.

3.1 Temperatures

The results from day- and night-time temperature observations for the Northern Hemisphere are shown in Fig. 2 and Table 1.145

We can be more confident of changes that are seen in latitude bands containing a large number of stations than in those which

only contain a handful. The Southern Hemisphere is shown in Supplementary Information Fig. S1 and Table S1, as it includes

considerably fewer stations. It is clearly evident from these figures and tables that there has been a shift in the location of the

distributions from the early period to the later period, with the most recent period being on average warmer than the earliest.

This behaviour agrees with the results presented in Donat and Alexander (2012) who shows increases in the mean of around150

1◦C between the early (1951-1980) and late (1981-2010) periods in their study (for all their regions and for both maximum

and minimum temperatures). We note that their period of study is longer (60 years) compared to the period presented in this

work (45 years). It is also unsurprisingly in agreement with the widespread warming of the Earth’s surface (Stocker, 2014).

In both day- and night-time observations, positive increases in the mean that are clearly different from zero are seen in

all latitude bands (Table 1). The strongest increases are seen in the highest northern latitudes, with increases on the whole155

becoming smaller when heading towards the equator for both halves of the day. Changes in the southern hemisphere show less
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Figure 2. Dry bulb temperature distributions in latitudinal bands for LEFT day-, and RIGHT night-time observations for the Northern Hemi-

sphere stations. The y-axis has been normalised for ease of comparison. The number of stations contributing to each set of distributions is

shown in the top left of each sub-panel, with the latitude range in the top right. The short vertical bars indicate the location of the 5th and

95th percentile values for each distribution.
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variation with latitude, and are on the whole smaller than in the north, though still showing overall increases. There are few

differences in the day- and night-time increases for each latitude band, in most cases the ranges overlap.

The northern mid-to-high latitudes also see a consistent decrease in the standard deviations in both day and night time.

However, south of 20◦N, the signal is less consistent. In fact, during day- and night-time most tropical and southern-latitude160

bands have ranges that encompass zero, though the most bands suggest decreases. Although Donat and Alexander (2012)

also found decreases in standard deviation in the extra-tropics, between 30◦S-30◦N they found an increase when using zonal

averages. This decrease suggests that the maximum temperatures are warming less quickly than the minimum temperatures,

reducing the spread of the distribution in the northern hemisphere.

Consistent changes in the skew and kurtosis for both day- and night-time or across latitude bands are not as apparent in Table165

1. Slight increases in skew (growth in the positive tail and shrinking of the negative tail) are seen for the daytime high latitudes

(north and south). In contrast, during night-time, some tropical regions show decreases in skew. The kurtosis decreases in the

tropics at both times of day, with a more mixed signal at the high latitudes. Donat and Alexander (2012) also found an increase

in the skew in all regions except for Tmax in the tropics, which is broadly consistent with the changes shown in Table 1.

3.2 Dewpoint Temperatures170

The changes in the dewpoint temperatures (Supplementary Information Table S1 and Figs. S2-S3) show a slightly more com-

plex picture than for the dry-bulb temperatures. In general, the mean again shows an increase in both day- and night-time

values, with larger increases over time in the northern hemisphere high-latitudes, similar to the dry-bulb temperatures. In the

southern hemisphere however, and especially at high latitudes, this increasing signal is less strong with few cases where the

confidence intervals do not span zero. One southern latitude band even shows a clear decrease in mean dewpoint temperatures175

over the last 45 years. Also, trends close to the equator are greater than at latitudes immediately to the north and south of this

equatorial belt.

The tendency has been for standard deviations in many northern latitudes to decrease, but there are also a number of in-

creases, especially in the southern hemisphere, though determined from few stations. For the skew, in the daytime, these

increase in the north and decrease in the south, with a similar, but not as consistent pattern in the night-time. The changes in180

kurtosis do not show any clear pattern in comparison to the other moments.

3.3 Wind speeds

We also assess changes in the sub-daily wind speeds (for example, 1 or 2 minute average values over the USA DeGaetano,

1997, or 10 minute average values over the UK), but there are fewer stations where this variable has been sufficiently observed

(see Supplementary Information Table S2 and Fig. S4). In fact, all latitude bands in the Southern Hemisphere have fewer185

than ten stations, and so we do not study this hemisphere. We use the same method as for the temperatures but note that the

anomalies will be truncated at the negative end by the zero-bounded nature of this variable.

For the northern hemisphere, most latitude bands show reductions in the mean and also the standard deviation over time

for both day- and night-time observations, with an uncertainty range distinct from zero. In the lower mid-latitudes, there are
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Band N-stations Mean (◦C decade−1) St. Dev. (◦C decade−1) Skew (decade−1) Kurtosis (decade−1)

Day

70→ 60 190 0.40 (0.36→ 0.49) −0.19 (−0.22→−0.15) 0.04 (0.03→ 0.06) 0.06 (−0.00→ 0.14)

60→ 50 537 0.33 (0.29→ 0.42) −0.09 (−0.13→−0.04) 0.03 (0.02→ 0.05) −0.04 (−0.14→ 0.04)

50→ 40 644 0.33 (0.32→ 0.39) −0.06 (−0.09→−0.03) −0.00 (−0.01→ 0.03) −0.02 (−0.09→ 0.00)

40→ 30 393 0.29 (0.27→ 0.30) −0.10 (−0.12→−0.04) 0.02 (0.01→ 0.04) 0.05 (0.03→ 0.09)

30→ 20 157 0.24 (0.23→ 0.27) −0.05 (−0.07→−0.01) 0.03 (0.02→ 0.06) 0.06 (0.05→ 0.09)

20→ 10 92 0.18 (0.16→ 0.22) −0.01 (−0.03→ 0.03) 0.01 (0.00→ 0.04) 0.01 (−0.02→ 0.07)

10→ 0 28 0.16 (0.13→ 0.19) 0.00 (−0.00→ 0.01) −0.01 (−0.03→ 0.01) −0.10 (−0.11→−0.07)

0→−10 12 0.18 (0.17→ 0.24) −0.02 (−0.02→ 0.01) 0.04 (0.03→ 0.06) −0.15 (−0.16→−0.13)

−10→−20 32 0.15 (0.13→ 0.19) 0.04 (0.03→ 0.07) 0.01 (−0.00→ 0.04) −0.17 (−0.20→−0.06)

−20→−30 37 0.12 (0.11→ 0.15) −0.08 (−0.09→−0.07) 0.03 (0.01→ 0.05) 0.20 (0.17→ 0.22)

−30→−40 32 0.21 (0.18→ 0.26) 0.01 (−0.03→ 0.04) 0.07 (0.06→ 0.09) 0.11 (0.09→ 0.16)

−40→−50 11 0.09 (0.07→ 0.19) 0.01 (−0.02→ 0.05) 0.05 (0.04→ 0.08) −0.03 (−0.05→ 0.01)

Night

70→ 60 156 0.39 (0.33→ 0.48) −0.16 (−0.20→−0.14) 0.00 (−0.01→ 0.03) 0.04 (−0.03→ 0.12)

60→ 50 489 0.30 (0.25→ 0.40) −0.07 (−0.10→−0.03) 0.03 (0.01→ 0.06) −0.10 (−0.19→ 0.00)

50→ 40 575 0.32 (0.30→ 0.35) −0.10 (−0.11→−0.07) 0.01 (−0.01→ 0.04) −0.01 (−0.07→ 0.04)

40→ 30 326 0.29 (0.27→ 0.30) −0.11 (−0.13→−0.04) 0.05 (0.03→ 0.07) 0.04 (−0.01→ 0.12)

30→ 20 95 0.27 (0.25→ 0.29) −0.06 (−0.08→−0.00) 0.00 (−0.01→ 0.02) 0.11 (0.09→ 0.14)

20→ 10 63 0.19 (0.19→ 0.26) −0.05 (−0.05→−0.02) 0.07 (0.06→ 0.10) −0.29 (−0.40→−0.20)

10→ 0 14 0.22 (0.19→ 0.24) 0.00 (−0.00→ 0.03) −0.07 (−0.08→−0.05) −0.42 (−0.49→−0.38)

0→−10 6 0.21 (0.16→ 0.26) −0.07 (−0.08→−0.03) 0.02 (0.00→ 0.06) −0.55 (−0.71→−0.32)

−10→−20 8 0.24 (0.20→ 0.28) −0.02 (−0.03→ 0.02) −0.10 (−0.12→−0.01) 0.21 (0.09→ 0.32)

−20→−30 21 0.17 (0.13→ 0.20) −0.05 (−0.07→−0.02) 0.02 (0.01→ 0.05) 0.10 (0.05→ 0.12)

−30→−40 24 0.22 (0.21→ 0.23) −0.07 (−0.08→−0.01) 0.04 (0.04→ 0.06) 0.14 (0.11→ 0.18)

−40→−50 11 0.09 (0.06→ 0.16) 0.01 (0.00→ 0.05) 0.01 (0.00→ 0.03) −0.08 (−0.11→−0.02)
Table 1. Linear change per decade in fits to parameters in zonal analysis for TOP day-, and BOTTOM night-time temperature observations

over 1974-2018. Values in bold show parameters and bands where the 1σ range of the fitted trend does not include zero.
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indications for a small increase in standard deviations, but at a lower magnitude than other changes. Tropical regions show190

decreases in the skewness over day- and night-time, but high latitudes an increase during the day.

These decreases in the mean wind speed over land have been noted in past studies (termed “stilling”, Roderick et al., 2007;

McVicar et al., 2012), and monitoring studies have also shown decreases over time for the high and low wind speed values (e.g.

Azorin-Molina et al., 2019). However, these recent regular global assessments also use the HadISD and so differences are not

expected. A number of possible explanations have been proposed to explain the stilling, which may be reversing in recent years195

(Azorin-Molina et al., 2019), including amongst others changes in the surface roughness because of land use changes (Vautard

et al., 2010), variability of the atmospheric circulation (Azorin-Molina et al., 2016), and instrumental issues with wind sensors

(Azorin-Molina et al., 2017, 2018).

3.4 Zonal Summary

As can be seen in both Fig. 2 and Table 1 (as well as Fig. S1 in the Supplementary Information) there is a clear increase in the200

mean temperatures with time across all latitude bands and times of day. However, this is also combined with a decrease in the

standard deviation over the northern hemisphere. The width of the distribution of temperatures is therefore narrowing. Also,

the skew of the distribution is becoming more positive, which indicates that the positive tail is growing and the negative tail

is shrinking. Together, these three changes indicate that there has been a greater change in the low tail than in the high tail of

the temperature distribution. The changes in the kurtosis are mainly increases (the tropical decreases rely on small samples),205

indicating a change to more peaked distributions, and a reduction in both tails. Although Donat and Alexander (2012) found

similar increases in the mean and skew of daily maxima and minima, they showed increases in the standard deviation for

tropical regions not found here.

Markers indicating the location of the 5th and 95th percentile values in Fig. 2 track the changing tails of the distributions.

Qualitatively for the northern hemisphere, the low tails have changed more than the high tails, as the vertical lines cover a210

greater spread, and more so for the higher latitudes than the tropical regions. These highlight changes in the standard deviation

and also the skew on top of changes in the mean. However, there is no striking difference between the day- and night-time plots

for temperature. The number of stations in the southern hemisphere is much smaller, but there are no systematic differences

between the behaviours of the low and high tails (see Supplementary Information). A similar pattern is seen for the dewpoint

temperatures, with a greater shift for the lower tail, and no striking difference between night- and daytime values. The wind215

speeds show little change in the lower tails (Supplementary Information Fig. S4), but decrease in the value of the 95th percentile

over time. Further investigations into the changes in the 5th and 95th percentile values are presented in Section 5.

The intention of investigating the day and night time values separately was to echo analyses conducted in other studies of

daily maximum and minimum temperatures. Many of these show that the minimum temperatures are changing faster than the

maxima, and so we expected to find a difference between day and night time, either for the parameters of the distributions or220

in the tail markers. However, the clearest difference remains between the upper and lower tails. This analysis shows increases

in the mean and skew, and decreases in the northern hemisphere standard deviations. These changes in the statistical moments

of the temperature distributions indicate that the lower tails are shifting more rapidly than the upper tails. Hence, as well as a
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change in the location of the distribution, the shape has also changed, resulting in changes to occurrence of extremes. Although

fewer stations contribute to the wind speed observations, these also show changes in location and shape, with larger changes in225

the upper tails caused by decreases in the mean and standard deviations.

Increases in the mean for the temperature and dewpoint temperatures are expected under a warming world (Stocker, 2014),

and so it is the coherent changes in the higher moments which are of greater interest in this analysis. A greater change in the

minima than the maxima can drive both the decrease in standard deviation and also the increases in the skew, but interestingly

we see no difference between the magnitude of night-time changes compared to daytime ones. Some studies using climate230

models suggest that changes in extremes in a warming world (from anthropogenic forcings) come from changes in the shape

as well as location of the temperature distributions (Clark et al., 2006; Hegerl et al., 2004). More recent work has looked

at the effect of moisture on extreme temperatures, in the soil (Whan et al., 2015) or the atmosphere (Sherwood and Huber,

2010; Matthews, 2018), where the separation into latent and sensible heating when moisture is present can reduce the peak

temperatures.235

We note that observations in HadISD have a finite numerical resolution, arising from the point of recording, through tran-

scription, rounding, conversion and truncation, and in cases combinations and multiples of these. As in this part of our analysis

we blend anomalies calculated using daily climatologies from different stations together, and assuming a random distribution

of these effects within a latitude band we do not discuss the impact of all these processes at this point, but in the next section

(Section 4).240

This analysis combines station anomalies together in zonal bands, separately for local day- and night-time. In doing so, it

removes any small scale, regional changes in the characteristics of the distributions of the meteorological variables. We have

also not split the analysis up into seasons (neither 3-month or wet/dry), and so large changes occurring in only part of the year

will have been diluted in this analysis. In the following section we improve the assessment of regional and seasonal changes

but in doing so reduce the number of observations available to characterise the distributions.245

4 Station Distribution Changes

To investigate the geographical patterns of changes in these meteorological parameters in more detail than in Section 3, we

study each station individually. This reduces the amount of data available to characterise the distribution at the gain of increased

spatial information. A similar approach was used by e.g. Cavanaugh and Shen (2014); McKinnon et al. (2016) in their investi-

gations into the changing shape of temperature distributions on a daily basis from GHCND. However, the sub-daily nature of250

HadISD means we are able to investigate the distributions at different times throughout the day, rather than the changes of the

maximum and minimum values independently. A large proportion of the stations in the HadISD only report every three hours,

rather than hourly. Therefore we use the station longitude to adjust from UTC to local time, collating to the nearest 3-hourly

time point (00:00, 03:00, ...).

For each station a climatology over 1981-2010 is calculated for each day of the year for each 3-hourly time point (365×255

(24/3)), requiring that at least 15 years of data are present. These 3-hourly climatologies are subtracted from the observations to
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create 3-hourly anomalies. The analysis is performed using observations over the entire year and also for standard three-month

seasons.

The 45 years (1974-2018 inclusive) are split into five 9-year periods, and the anomalies within each period and at each three-

hourly time point (0000, 0300, ... etc.), are combined, annually as well as seasonally. Using fewer periods of longer length than260

in Section 3 allows for better characterisation of the distributions at the individual station level, at the expense of the number

of periods. This is in contrast to the previous analysis (Section 3) where combining stations together increases the number of

observations contributing to a distribution. For the three-month seasons, using periods nine years in length means there are

maximally around 800 observations from which the distribution at a single time point can be characterised, if all observations

are present (3 months ×∼ 30 days × 9 years). The first four moments of the distributions are only calculated if there are more265

than 300 observations present within a 9-year period (roughly the equivalent of 1 months worth of observations at a given time

point). A more technical summary of these processing and selection criteria is shown in the Technical Supplement.

We again use the median of pairwise slopes method (Sen, 1968; Lanzante, 1996) to characterise the change in the moments

over time, but only if there are sufficient data in at least four of the five periods. Again, we do not expect any changes to be

linear, but this enables the convenient visual inspection of changes over time. Even if our data completeness criteria result in270

the inclusion of stations which have a non-uniform distribution of observations across the years and seasons, coherent, robust

changes (if they are present) will still stand out across the stations.

4.1 Temperature

In Fig. 3 we show changes in the mean, standard deviation, skew and kurtosis for the temperature data for all seasons from

HadISD at 15:00 and at 06:00 local time in Fig. 4, to correspond approximately with the times of maximum/daytime and275

minimum/nighttime temperature respectively. Other times are available in the Supplementary Material. Despite 8139 stations

being available in the HadISD v3.0.0.2018f dataset, after selection for homogeneity and length of record, only around 3200

have quantified changes in distributional parameters, the total number of stations is shown in parentheses at the bottom right-

hand corner of each panel. Those stations where the 1σ̂ range of the fitted trend excludes zero are plotted with a larger symbol

than those where this range encompasses zero. As is also clear from these figures, there are many fewer stations in the southern280

hemisphere than in the north. The highest concentration of stations is in Europe and eastern Asia, and this uneven meridional

distribution will have affected the zonal average calculations in Section 3.

For the distributions of daytime/maximum temperature (15:00, Fig. 3), it is immediately apparent that there are large and

coherent changes in the mean and standard deviation over the period of record of these stations. Almost all changes in the

mean are positive, with the strongest signal in Eurasia, and lower values in North America. Approximately 95 per cent (3062285

plotted out of a total of 3224) of the stations have trends where the uncertainty range does not encompass zero. The majority

of changes in standard deviation at high northern latitudes are negative, along with most of central North America. There are

increases over Europe and parts of China and southern Russia. Fewer stations (around 45 per cent, 1542/3224) have trends

where the uncertainty range of the trends do not encompass zero.
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Figure 3. Trend over 1974-2018 in distribution parameters for temperature at 15:00 local time, showing the mean, standard-deviation, skew

and kurtosis. The stations where the 1σ̂ range of the fitted trend excludes zero are plotted with a larger symbol (the number of these is shown

in the bottom right hand corner of each plot). The total number of stations available is shown in parentheses.

Changes in skew and kurtosis have a more heterogenous signal, and again around half the stations exhibit changes where the290

uncertainty range does not include zero. However, the changes are not completely random, with consistent regional patterns

in some areas, but these are smaller than for the standard deviation. The general pattern is for slight increases in the skew,

except in a belt around the tropics and in south-east Europe. The kurtosis shows decreases in north-central Europe, and a band

extending eastwards from the White Sea across to China and India, with a more mixed signal elsewhere with smaller areas

showing coherent changes.295

The night time observations (06:00) show very similar general patterns for changes in the mean and standard deviation,

with quasi-global increases in the mean, and decreases in the standard deviation at high latitudes and increases for China,

Europe and south-eastern Russia. However, the magnitude of the changes in the mean are lower than for the daytime (15:00)

observation, especially over Europe.
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Figure 4. Trend over 1974-2018 in distribution parameters for temperature at 06:00 local time, showing the mean (◦C), standard-deviation

(◦C), skew and kurtosis. The stations where the 1σ̂ range of the fitted trend excludes zero are plotted with a larger symbol (the number of

these is shown in the bottom right hand corner of each plot). The total number of stations available is shown in parentheses.

There is a stronger change between the skewness for the 06:00 observations and those from 15:00, with larger regions300

showing a coherent signal. Decreases are visible more widely in Europe, and also in India and parts of south-east Asia; and

increases in the high latitudes, as well as North America. Regions with a strong decrease in kurtosis are mid-western North

America, India through China and a band in north western Russia, but in contrast to 15:00, large parts of Europe show an

increase.

4.1.1 Temperature Changes Across the Day305

In Fig. 5 we show the maps for changes in the mean for all eight of the 3-hourly time-stamps. All hours of the day show an

increase in the mean, with the strongest signals during the daytime (09:00, 12:00, 15:00). The region with the largest trends is

Europe. However, it also has the highest station densities, and so the eye is more drawn to this region than areas which also

show large trends but from a sparser station network.
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Figure 5. Trend over 1974-2018 in distribution mean for temperature at each three hourly interval. The stations where the 1σ̂ range of the

fitted trend excludes zero are plotted with a larger symbol (the number of these is shown in the bottom right hand corner of each plot). The

total number of stations available is shown in parentheses.
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Figure 6. Trend over 1974-2018 in distribution standard deviation for temperature at each three hourly interval. The stations where the 1σ̂

range of the fitted trend excludes zero are plotted with a larger symbol (the number of these is shown in the bottom right hand corner of each

plot). The total number of stations available is shown in parentheses.
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Figure 7. Trend over 1974-2018 in distribution skewness for temperature at each three hourly interval. The stations where the 1σ̂ range of

the fitted trend excludes zero are plotted with a larger symbol (the number of these is shown in the bottom right hand corner of each plot).

The total number of stations available is shown in parentheses.

17



The trends in standard deviation show decreases at all hours in high northern latitudes, North America, and southern Asia310

(Indian subcontinent and surroundings), Fig. 6. Increases in the standard deviation are seen in a band, from Europe across to

China. The skew from HadISD (Fig. 7) shows increases in most regions except the majority of Europe and parts of Asia. The

decreases in skew over Europe are strongest in the mid-morning (09:00) and weakest in the late evening (21:00). Also, changes

in standard deviation and skew are the inverse of each other, when comparing Figs. 6 and 7.

4.1.2 Seasonal Temperature Changes315

In the Supplementary Information Figs. S9-S12 we show the changes for the first four moments from the 15:00 observations

across the four seasons of the year (and Figs. S13-S16 for the 06:00 observations), with the standard deviations at 15:00

being reproduced here in Fig 8. Again, the strongest variations are over Eurasia. Changes in the mean temperature at 15:00

are smallest in boreal winter1 (DJF), and strongest over a wide area in spring (MAM). However, summer (JJA) temperatures

increase strongly with time around the Mediterranean and across continental Europe, and winter (DJF) has strong warming320

in the western part of Russia and Scandinavia. In North America, the largest trends are seen in SON (especially in higher

latitudes), with little variation over the other seasons, especially spring and summer. A similar, but less intense pattern is

observed at 06:00.

Although increases in the standard deviation are seen across Asia in springtime and summer at 15:00, a more mixed pattern

is present in this region in autumn; decreases are seen in the far east in winter (Fig 8). At 0600, the pattern is somewhat similar,325

though with the Indian sub-continent and surrounding regions showing consistent decreases throughout the year. Over North

America, standard deviations increase during spring, but mostly decrease during the other seasons, except in summer at 06:00.

Further increases in the standard deviation are also found around the Mediterranean and in south-eastern Europe for most of

the year, with decreases in the north of the continent (British Isles and Scandinavia). Increases in the standard deviation are

generally weaker and decreases more prevalent across all seasons at 06:00 then at 15:00.330

Patterns of changes in the skew have some clear features, with decreases in China for all seasons except winter. Europe also

shows decreases in the spring, but a more mixed pattern for the rest of the year. Increases in the skew at 15:00 are found in

northern high latitudes during spring, as well as India for most of the year. Over North America, decreases in skew are observed

during spring and autumn in the southern half, but in the northern half during summer.

4.1.3 Temperature Discussion335

The results at 15:00 and 06:00 can be compared to the maximum and minimum temperatures in the study by Donat and Alexan-

der (2012) using HadGHCND between 1951 and 2010. Unsurprisingly, the increase in the mean temperatures is also visible in

the HadGHCND study, along with numerous other studies on recent climate change. However, HadGHCND shows stronger in-

creases in the minimum temperatures (analogous to 06:00 here), whereas HadISD shows stronger increases in daytime (15:00)

1We will use the seasonal descriptions for the northern mid-latitudes, as the station density is highest and we are able to draw the clearest inferences. We

note that these seasonal descriptions are not appropriate for all regions, and hence have defined them in the plots by months as well as the text where they are

introduced.
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Figure 8. Trend over 1974-2018 in distribution standard deviation for temperature at 1500 local time across the four seasons. The stations

where the 1σ̂ range of the fitted trend excludes zero are plotted with a larger symbol (the number of these is shown in the bottom right hand

corner of each plot). The total number of stations available is shown in parentheses.

temperatures. The HadGHCND dataset uses inverse distance weighting to convert the daily station observations into a gridded340

dataset. One aspect of this process is that it smooths the data, and also can lead to very few stations contributing to large areas

of interpolated values.

citetdonat12 find larger regions showing stronger increases in standard deviation around Hudson Bay for both maximum

and minimum temperature values than for HadISD. The heterogeneous nature of the changes in the standard deviation, along

with the smaller fraction of stations showing clear trends is in line with the study of Huntingford et al. (2013). For the skew,345

HadGHCND shows decreasing skew in Greenland, northern Africa, the coasts of eastern Asia and parts of Australia and

increases over Europe, in contrast to the results of this study, which in some regions may be the result of low station densities

in HadISD (Fig 1). The strong decreases in kurtosis observed close to the tropics in Section 3 are now shown to be concentrated

in southern India and south-east Asia, and not always linked to an opposite trend in the standard deviation.
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Although McKinnon et al. (2016) link the first four statistical moments derived from GHCND between 1980 and 2015 onto350

orthogonal basis functions, these still are closely tied to the original statistical moments. Over Europe, the geographical peak

of trends in the daytime/maximum mean are both in eastern Europe. However, HadISD does not show such a strong feature of

increasing standard deviations across Asia, and GHCND does not show the decreasing daytime standard deviations in northern

Europe, but those in eastern Asia do agree. The results from HadISD do not show daytime cooling in the eastern half of

North America observed in GHCND. However the general decrease in variance is observed in both. The increase in the central355

southern region of North America in GHCND is not present here, though the agreement is better by night.

Comparing the seasonal plots with those from Cavanaugh and Shen (2014, 2015) using daily GHCND temperatures over

1950-2010 shows generally good agreement for the changes in the mean. They find the strongest changes over Europe and a

clear “warming hole” (Portmann et al., 2009) over the US, especially in JJA and DJF. In HadISD, the strongest changes are

over Europe, and the location of the largest values moves between the seasons; but the warming hole is only weakly apparent360

during JJA over North America. For standard deviation, both Cavanaugh and Shen (2014) and our study find coherent decreases

in the Northern Hemisphere, as well as increases in MAM over North America. Over Europe, however, JJA shows the largest

differences, with widespread increases in Cavanaugh and Shen (2014, 2015) but changes in both directions are clear in HadISD.

McKinnon et al. (2016) also show the decrease in standard deviation over North America, except for a region of increase on

the Gulf of Mexico. Also across Eurasia, the patterns are similar in HadISD and McKinnon et al. (2016). The positive trends365

in skewness found over North America (Cavanaugh and Shen, 2014, 2015) in GHCND are not as prominent in HadISD nor in

McKinnon et al. (2016) also using GHCND, with contiguous regions of negative trends in all seasons.

Part of these differences may result from inherent differences in the datasets, for example the differing temporal periods

used; HadISD using 1974-2018 compared to GHCND 1980-2015/1950-2010 and HadGHCND 1951-2010. We note that the

number of stations reporting in HadISD prior to 1973 is much lower, restricting the possibility of extending our analyses further370

into the past. Also, here we and McKinnon et al. (2016) do not combine the stations together, unlike in Section 3, Donat and

Alexander (2012) and in Cavanaugh and Shen (2014, 2015). The largest difference is that the sub-daily data within HadISD are

not the true maximum and minimum values which comprise GHCND and HadGHCND. Although we have used the morning

and afternoon values as proxies to the true daily maximum and minimum temperatures, this will not always be the correct

match. This does, however, allow the study of how extremes are changing throughout the day. It is difficult to say which of375

these analyses is the best at determining the change in the distributions of temperature, given the different temporal periods

and processing methods, station selections and level of smoothing. Where a number of studies agree on the sign of the change,

results are naturally more reliable than regions where they do not.

Changes in the temperature distributions for stations in China are likely to be the result not only of warming on a global

scale, but also from more local effects arising from rapid urbanisation (Sun et al., 2016). Impacts from urbanisation are also380

likely in other regions undergoing rapid development in recent decades. As only a small fraction of the Chinese station network

is unaffected by urbanisation (32% in 2015, Wang et al., 2015), any changes are more representative of the urban areas (and

hence a larger fraction of the population). Our study period coincides with the rapid urbanisation over China, and as noted

above, we see strong increases in the mean of the temperature distributions at all times of the day. Stronger warming is seen
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between 06:00 and 12:00 for northern and western parts of China, but not for the southern, coastal regions. Wang et al. (2017)385

found that the effect of urbanisation was greater on the minimum (morning) temperatures than the maximum (afternoon) ones,

which we find in the northern and western parts, but not in the southern, coastal ones (Fig 5). Although China is one example

of recent and rapid urbanisation, with resulting effects on the observations as well as people’s experience of the weather, other

parts of the world will also be affected. This may be to a lesser extent because of a station network better suited to climate

monitoring, or the urbanisation occurring over a longer time period.390

A number of different causes for changes in temperatures beyond the anthropogenic warming signal, have been suggested.

These drivers of change are likely to influence the distributions of observations across the hours of the day in different ways.

Large scale circulation changes would change the weather patterns experienced by different regions. Studies across the world

have found local and global modes of variability linked to changes in cold and warm extreme temperatures (e.g. Scaife et al.

2008; Kenyon and Hegerl 2008; Barrucand et al. 2008; Sillmann and Croci-Maspoli 2009; Zongxing et al. 2012; Ning and395

Bradley 2015). Hence changes to at these large scale circulation patterns and modes will affect the extremes. However, taking

the El Niño Southern Oscillation as an example, there is no consensus on the change under global warming (Stevenson, 2012;

Cai et al., 2014; Kim et al., 2014; Vega-Westhoff and Sriver, 2017). That said, as some of the changes in the higher moments

shown here have a strong zonal component, especially over Eurasia, this suggests some influence of the poleward expansion

of the Hadley Cells (Hu and Fu, 2007) which have been linked to anothropogenic forcings (Lu et al., 2007; Lucas et al., 2014;400

Tao et al., 2016) on the changes in shape of the temperature distributions.

Other drivers of change in observed temperature distributions have been suggested, including enhanced land-atmosphere

coupling and soil-moisture (e.g. Seneviratne et al., 2006; Jaeger and Seneviratne, 2011; Hirschi et al., 2011) or changes in

cloudiness and radiation (e.g. Lenderink et al., 2007). In a modelling study of future summer climate over Europe, Fischer

and Schär (2008) find that the seasonal cycle as well as interannual and intraseasonal variability have separate effects on the405

temperature variabiloty, and each of these are affected to a different level by the other drivers.

4.2 Dewpoint Temperature Changes

Comparing the changes in the dewpoint temperature moments across the day and the seasonal cycle (Supplementary Informa-

tion Figs. S17 to S28) with those from the temperatures, shows that on the whole these two variables are quite closely aligned.

Despite fewer stations passing the selection criteria for this variable, there are still coherent patterns of change. Over the eight410

time points during the day, the changes in the mean dewpoints show less variation than the temperatures, most clearly apparent

over Europe in the early afternoon. This suggests that the relative humidity over this region has decreased for this part of the

day. A similar but less striking decrease in daytime relative humidity is also seen over North America. This decrease in the

relative humidity has been observed regionally and globally in the homogenised HadISDH dataset (Willett et al., 2014, 2019),

which is based on the HadISD.415

The changes in the higher moments of the dewpoint temperature are also reasonably constant through the day, but have a

greater spatial heterogeneity and lower magnitude than the temperatures. Notably, there is a clear increase in skew over south-
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east Asia during the daytime and early evening, which is not seen in the temperature results, indicating a change in shape away

from a low-dewpoint tail towards a high-dewpoint tail.

Seasonally, the greatest change in the dewpoint mean is in SON and DJF over Europe in both the day- and night-time,420

contrasting with the temperatures of MAM and JJA for the day and also DJF at night. Again the standard deviations and

kurtoses are very similar for day and night across all seasons between the dewpoints and temperatures. For the skews, the

increase in skew over south-east Asia noted above is most prominent during SON, during the daytime, but is also present at

night and differs from the behaviour of the temperatures for all seasons.

4.3 Wind speed Changes425

There are fewer stations with sufficient observations to assess changes in wind speed (Supplementary Information Figs. S29

to S33), and very few in the Southern Hemisphere. As a result we focus our analysis on North America and Eurasia. The

proportion of stations where changes in the distribution could be assessed varies between each time step to a greater extent than

for the two temperature variables. Despite this, regions with sufficient station densities show a diurnal cycle in the behaviour

of wind speed trends. There are stronger trends for declining wind speeds during the daytime (09:00-18:00) than for the night-430

time hours. And there are also no large regions that show large increases (at the same magnitude as decreases) in the wind

speeds at any time point. However some individual stations do show some increases, for example in south-eastern Europe. For

the other three moments (not shown) there are even smaller differences than for the mean for the annual changes over the day.

We show the seasonal changes at 15:00 for all four moments in Supplementary Information Figs. S30 to S33. For the mean

there are no large changes across the seasons. The changes in standard deviation are also generally unvarying compared to the435

temperature measures. There are increases in the USA, with stronger values during spring and autumn. All other regions with

sufficient station density have decreases in the standard deviation. Both skew and kurtosis show no strong seasonal variations.

Skews are increasing over North America but there are no coherent, strong changes elsewhere. The kurtosis is mostly decreasing

in south-eastern Europe, and also on the whole across Asia.

4.4 Discussion of Station-Level Distributions440

Across all seasons, times of day and locations, there are strong increases in the means of both temperature and dewpoint

temperature with time as expected in a warming world (Stocker, 2014). Although the geographical distribution of stations

is not uniform, there appear to be larger increases in Europe, especially during the spring and summer The largest increases

in Europe also occur during the daytime rather than night-time, which matches the behaviour seen in Table 1 40-60N (the

latitudes corresponding to Europe).The standard deviations show stronger decreases in the northern latitudes, but more regions445

with increases in the mid- and tropical latitudes in the northern hemisphere. Seasonally, North America shows decreases in the

daytime and night-time standard deviation in winter and summer, but increases in spring (Fig. 8 and Supplementary Information

Figs. S10 and S14), which was also observed in Cavanaugh and Shen (2015). This indicates a change towards less variability

in winter and summer, but a change towards greater variability in spring for both day- and night-time temperatures.
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We also note that in Section 3, standard deviations of the temperatures and dewpoint temperatures were decreasing more450

or less across the whole northern hemisphere, whereas in this study there are regions with clear increases. The zonal study

combines the stations together, even if individually any change in the statistical moments over time would not show clear

changes (1σ̂ range of the trends encompassing zero). In contrast, Figs. 3 and 4 emphasise those stations where the 1σ̂ range of

fitted trends do not include zero. As noted, this is only around half of the total number of stations and many of the others show

decreasing trends.455

Changes in annual skew are different on either side of the North Atlantic, with predominantly increases in North America,

and decreases in Europe across the day, and hence a rather small change in the zonally averaged results (Section 3). The

seasonal results show increases at higher latitudes (Canada and Scandinavia), and decreases further south (USA and continental

Europe) in spring. Other seasons show a more heterogeneous pattern in Europe, but increases across central Asia in summer

and autumn, similar to the patterns from GHCND in Cavanaugh and Shen (2015). In China which was not included in their460

study, all seasons except winter show decreases in the skews. For the kurtoses, Cavanaugh and Shen (2015) found strong

decreases in the southern parts of North America in the summer, which are not seen in HadISD. However, the strong decreases

over parts of Europe in winter are present in HadISD.

The observations in HadISD have a finite numerical resolution, with more recent observations being more often recorded

to 0.1◦C, and those from earlier parts of the record to 1◦C. Underlying this is a more complex process of conversion between465

Fahrenheit and Celsius (or knots and miles per hour to metres per second), possible truncation and rounding (or vice versa) as

well as human induced errors during transcription, digitisation or recording. In the GHCND, Rhines et al. (2015) found that

65% of all temperature observations were misaligned as a result of these effects, and so it is likely that large fraction of the

HadISD observations also have been affected.

Rounding has an effect on the mean and standard deviation dependent on the rounding resolution and any offset in the470

two scales from zero (rounding width and shift parameter), with zero bias for some combinations (Schneeweiß et al., 2010;

Sheppard, 1897), and likely therefore on higher moments as well.

These changes are combined with the discrete measurement times, which also are more likely to be hourly in the more recent

period, and more stations will be recording only every three or six hours in the earlier period. More frequent recording results

in a greater likelihood of values close to the true extremes being recorded. Hence, under a stationary climate, this could result475

in both an increase in the maximum temperatures and a decrease in the minimum temperatures (for a perfect, sinusoidal diurnal

cycle). Combined with a warming climate, this could result in an enhancement of the maximum temperatures recorded. There

will also have been changes in instruments and recording practices over the period, though the homogeneity assessment should

have identified any gross traces these have left in the data record.

It is possible that the effect of these data measurement issues is systematic across the entire global network. We also note480

that despite the automated quality control and homogeneity assessment of HadISD, there are likely to be data artefacts still

present in this global dataset. Therefore further investigation is needed to determine how these two aspects combine to affect

the extremes recorded and their change over time in the sub-daily data. However, in our analysis we have looked for contiguous

regions of coherent changes for large numbers of stations, spanning geo-political boundaries. Wholesale changes of national
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networks and their measurement routines causing systematic biases in the results presented here are likely to stand out as485

political areas, which are not observed.

5 Quantile Regression

Studies of the characteristics of a distribution are useful in describing the overall changes in a meteorological variable. However,

they do not make the changes in extremes immediately clear, although they can be calculated through, e.g. extreme value theory.

An alternative way to study the changes in the climate that show changes in past extreme events is to investigate the changes of490

the quantiles of a distribution themselves. This enables the question of “how much warmer are the warmest 10 per cent of days

now than they were in the past?” to be addressed. Quantile regression can be used to calculate trends in specified quantiles of

a distribution, rather than trends in the mean (Koenker and Bassett Jr, 1978; Koenker and Hallock, 2001; Barbosa et al., 2011;

Franzke, 2015). This allows, for example, cases where there is little or no mean trend but an increased variance over time to

be assessed more completely. In the case of climate observations, and especially given the impact of extreme events on society495

and infrastructure, quantile regression allows the changes in these extremes over time to be made apparent.

The observations in HadISD naturally contain both an annual and a diurnal cycle. If run purely on these raw data, then the

annual upper quantiles are likely dominated by summer daytime temperatures, and the lower by winter night-time temperatures.

Although using standard three-month seasons would enable the more detailed study of winter and summer quantiles, those from

the shoulder seasons (spring and autumn) would be dominated by the earlier or later parts of these seasons given the strong500

annual cycle. For this reason McKinnon et al. (2016) use daily maximum and minimum temperature data from GHCND over

July and August only to reduce the effect of the seasonal cycle in their study.

Our approach is to use de-seasonlised data, which removes the seasonal aspect described above and also the issue that

quantile regression results can be biased when applied to discrete data (Machado and Silva, 2005; McKinnon et al., 2016). The

observations in HadISD are at a finite numerical resolution (e.g. temperatures are reported to the nearest 0.1◦C, 0.5◦C or 1◦C).505

We use a daily climatology to create hourly anomalies of the HadISD data, retaining the diurnal cycle. Within each calendar

day, the numerical resolution remains unchanged by the subtraction of a daily mean from the hourly observations (within-day

differences will still have 0.1◦C, 0.5◦C or 1◦C resolution). However, etween each calendar day, the different climatology value

will result in a different offset, so that between-day differences would not result in discrete values. Hence, overall, the values

passed to the quantile regression algorithm will be less discrete than the raw observations themselves. As discussed in Sections510

3.4 and 4.4, we note that the final resolution of HadISD hides the effects of conversion, rounding and truncation (multiple times

in various orders) that could occur between measurement and the current use (Rhines et al., 2015).

Daily means were calculated for 1981-2010, requiring at least eight observations in each 24-hour period (equivalent to

3-hourly data). The daily climatology was calculated requiring at least 15 years of data to obtain an average. Finally, the

climatology was smoothed using a 5-point binomial filter and subtracted from the sub-daily data for each day to make the515

climate anomalies. An example of the changes in the percentiles of a timeseries is shown in Fig. 9.
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Figure 9. An example of the Quantile Regression analysis for a single station, with the trends in the quantiles in red, and the ordinary least

squares (OLS) fit in yellow. This is for station 154810-99999, Constanţa Mihail Kogălniceanu International Airport, Romania.

Both Europe and North America have high station densities (see Section 4) compared with other regions, and so our analysis

is focussed on these two regions (see also McKinnon et al., 2016). Furthermore, we show the results using a space-filling

method, Voronoi tesselation (derived from Delaunay triangulation, Voronoï, 1908; Delaunay, 1934), which uses the perpen-

dicular bisectors of the lines joining each station to split the land surface up into polygons, with each polygon containing a520

single station. These have then been coloured to show the results of the quantile regression. Stations for which the slope of

the quantile shown is not significantly different from zero (p > 0.05 as determined by the quantile regression algorithm) are

shown in grey, but we do no further significance testing on these trends. It should be noted that areas of high station density

will naturally have smaller polygons, but the human eye is drawn to the larger blocks of colour arising from sparse station

networks. However, the advantage of this approach is that the underlying station information is retained, as opposed to it being525

smoothed when applying some form of gridding method.

We show the changes in the quantiles (0.01, 0.05, 0.1, 0.9, 0.95, and 0.99) over Europe for both JJA and DJF in Figs. 10

and 11 respectively. In some sub-regions large numbers of stations show similar patterns, suggesting that there is a coherent

change in the quantile in that area. However, within these there may be isolated stations/cells showing changes in the opposite

direction. Although we have selected those stations that do not have many or large breaks in their timeseries (as determined by530

PHA, see Section 2), and the HadISD has undergone a number of quality control checks, there will inevitably be a few data

quality issues remaining.

The largest change in the summer (JJA) quantiles is observed in south-eastern Europe and western Asia (Fig. 10), focussed

on the area north and west of the Black Sea. The increase observed in these regions becomes progressively less strong towards

lower quantiles and also with distance from this region. This indicates that the temperature distribution is broadening over time,535

with the upper tails changing more rapidly than the lower tails; i.e. the warmest N per cent of events are becoming warmer
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as the percentile values change, more rapidly than the cool events (where N is 1, 5, 10 etc). In contrast, the regions close to

the North Sea and especially Scandinavia show slight increases for the lower quantiles that becomes less strong for higher

quantiles. For the north and west of the UK in general and Scandinavia except western Norway, there are even decreases for

the highest quantiles.540

Conversely, in the winter (DJF), the strongest increases are in the northern regions and the lower quantiles, with Scandinavia,

the Baltic states along with Benelux, Denmark and northern Germany indicating a narrowing of the temperature distribution

over time. In the higher quantiles, there are increases for eastern Europe but not as much as in the summer. Westernmost

Europe shows very little change across all quantiles. We show the panels for the shoulder seasons (MAM and SON) in the

Supplementary Information Figs. S34 and S35. There is a general increase for all the percentiles, and the cold quantiles in545

the north east of the region shown are warming faster than the rest. But in contrast to Figs. 10 and 11 these increases are

much slower and the regions are less coherent. Overall, these results show that warm extremes are becoming more common

more quickly during the summer in south-eastern Europe, than elsewhere across the continent. Similarly, cool extremes are

becoming less common more quickly during winter in northern Europe than elsewhere.

Franzke (2015) performed quantile regression on daily mean, maximum and minimum temperatures between 1950 and 2013.550

The mean temperatures show strong regions of increase in both the 5th and 95th percentiles in eastern Europe and western

Russia, especially north of the Black Sea, with the higher percentile region covering a larger area than for the results presented

here. When using summer maxima, Franzke (2015) shows a more uniform increase over all of Europe at the higher percentile,

except Scandinavia, which behaves similarly in Fig. 10. The magnitudes of the change in the winter temperature percentiles

from HadISD are consistent with the studies of Barbosa et al. (2011); Franzke (2015). The behaviour over Turkey stands out in555

Franzke (2015), but not in HadISD, suggesting a difference in the way these data have been processed or effects arising from

the difference in temporal coverage or even station selection.

The difference in behaviour of the lower and upper quantiles indicate a change in the variance of the sub-daily temperatures

over Europe, which has already been suggested by the results from Section 4. During the summer, the variance in the large

region to the north of the Black Sea, has increased. In contrast, during winter the variance over Scandinavia and northern560

Europe has decreased. Both of these changes are also clearly visible in Supplementary Information Fig. S10 showing the

seasonal change of the standard deviation for each station. Franzke (2015) found a more widespread, uniform decrease in

variance in the winter months over Europe, but with a stronger decrease over Scandinavia. However, Franzke (2015) found no

increase in variance during the summer in eastern Europe.

Over North America (Supplementary Information Figs. S36 to S39), the trends in quantiles are on the whole smaller than565

for Europe for most of the year. In the spring (MAM), there are moderate increases in the south-west, which are stronger for

the higher quantiles. For the summer (JJA) the higher quantiles show decreases in the northern, central regions, but increases

for the lower quantiles in the south west. In the autumn (SON) and winter (DJF) the strongest changes are in the north of

the continent at the lower quantiles with more moderate increases in the south and the higher quantiles. Hence the most rapid

changes are in the cool extremes during autumn and winter in the north, with less rapid changes in the warm extremes in spring570

in the south-west. Using GHCND, Rhines et al. (2017) show a similar pattern, with a strong increase in lower percentiles for
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Figure 10. Trend over 1973-2017 in quantiles of temperature (◦C decade−1) at TOP 0.01, 0.05 and 0.10; and BOTTOM 0.90, 0.95, 0.99 over

Europe during summer (JJA).

northern latitudes in winter. In the spring their data show decreases in the lower percentiles in the north and increases in the

south, almost the opposite in the autumn, and general warming for the minimum temperatures in the summer. We also find

the strongest changes for the lower percentiles during winter, indicating a reduction in the range of temperatures during that

season.575

We also show changes in the dewpoint temperatures (Supplementary Information Figs. S40 to S43) and wind speeds (Fig.

S44) over Europe. The dew point temperatures indicate small increases of the quantiles in most regions with no strong regional

differences for MAM and JJA for any quantile. However, in SON and DJF, there are stronger increases in the lower quantiles

for the north of the region (Scandinavia and north-western Russia), but small increases for other regions and quantiles. So,

although the summer warm extremes are becoming more common in south-eastern Europe, there is no corresponding change580

in the dew point temperatures, suggesting a decrease in the relative humidity. However, in the northern parts, the dew point

temperatures are changing roughly in step with the dry-bulb temperatures.

Only the annual changes in wind speeds are shown (Supplementary Information Fig. S44), with some blank tiles and regions

because of the smaller number of stations with sufficient observations. There are no large changes in the lower quantiles

but clear and larger decreases in the upper quantiles, which matches the behaviour observed in Section 3 and the decrease in585
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Figure 11. Trend over 1973-2017 in quantiles of temperature (◦C decade−1) at TOP 0.01, 0.05 and 0.10; and BOTTOM 0.90, 0.95, 0.99 over

Europe during winter (DJF).

variance observed in Section 4.3. The larger changes in the upper quantiles also suggest the skews are becoming more negative,

with decreases in the number and intensities of extremely high wind speeds.

6 Summary

To investigate the changes in the shape of the distributions of temperatures and wind speeds in the HadISD dataset, we have

performed three types of assessment. Firstly, by combining the data from the station based observations into zonal averages,590

the resulting distributions are built from large numbers of observations at the expense of some spatial information. Using five-

year bins from 1973 to 2018, we demonstrated the change in the distributions and percentile values. As expected, the mean

temperatures increase for both day- and night-time (Stocker, 2014). However, the standard deviations decrease for the northern

hemisphere (where there are most stations). Although changes are seen in both tails of the distribution, they are greater in the

lower tail. This behaviour is consistent with both the more rapid change in low temperature extremes (Davy et al., 2017) as well595

as the decrease in diurnal temperature range (Alexander et al., 2006; Thorne et al., 2016a, b). The dewpoint temperatures show
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similar, if more heterogeneous, behaviour in this analysis. Atmospheric moisture, as well as that in the soil may be acting as a

brake on the change in the maximum temperatures, resulting in the consistent changes in shape of the distributions observed.

In contrast, the wind speeds showed decreases in the mean, but also in the standard deviations, with larger shifts in the

upper tail than the lower. The changes in distributions observed on a zonal level suggest this may be driven by changes in the600

upper tail. A number of causes for this “stilling” have been proposed, from changes in land-use and circulation patterns to

instrumental degradation.

To improve the spatial discrimination, we assessed changes in the distributions for each station individually. The sub-daily

nature of HadISD allows these to be calculated across the hours of the local day as well as annually or seasonally. The

temperature means show the expected increase over time, but with a daily cycle showing a more rapid increase of mean605

temperatures during the early afternoon than in the early hours of the morning. However, the higher order moments are much

less homogeneous, but have a smaller variation throughout the day. Trends in the standard deviations are on the whole negative,

except for a band from the Mediterranean across to central Asia. Conversely, trends in the skew of the temperatures are

mainly positive, except over Europe and across into western Asia, indicating increasing warm extremes (positive tail) and

decreasing cool extremes. These patterns are in some regions different from those reported in previous investigations by Donat610

and Alexander (2012) and McKinnon et al. (2016) obtained using (derivatives of) GHCND (true maximum and minimum

values). For the seasonal changes, which can be compared to Cavanaugh and Shen (2014), there are also differences to the

patterns obtained from GHCND.

These disparities may result from a variety of differences in the datasets and methods. Firstly, the period used in this study

is 1974-2018 compared to 1950-2010 (Donat and Alexander, 2012; Cavanaugh and Shen, 2014) and 1980-2015 (McKinnon615

et al., 2016). Also, by using all of the sub-daily observations in HadISD, this work incorporates the effect of changes across

the entire distribution, even if we are concentrating on either the moments or specific percentile values (e.g. all temperature

observations rather than just the maxima and minima). The studies using GHCND use the true maximum and minimum values,

which allow the focussed investigation of the momentary extremes. We also do not perform any spatial smoothing of the

underlying stations, which could result in less variable fields, with smaller extremes.620

A number of different drivers for changes in temperatures have been proposed, including changes in global and large scale

circulation patterns, land-atmosphere coupling, and cloudiness and radiation. And a number of these have also been shown

to be changing as a result of anthropogenic climate change. Over Eurasia, the quasi-zonal patterns of change of the higher

moments suggest a link to the expanding Hadley Cells, but further study is required.

Finally we perform a quantile regression analysis to determine how the values of the percentiles have changed, and therefore625

how the warmest days and coolest nights feel in comparison to others. This approach is in contrast to the ETCCDI indices

which use percentiles (e.g. TX90p), which capture the exceedence rate of a fixed percentile value. Here we show that over

Europe, the upper percentiles are changing fastest in the large region north-west of the Black Sea in the summer, but the lower

percentiles are changing faster in northern Europe and Scandinavia in the winter. Hence the warmest N per cent of summer

days are becoming warmer more rapidly than the coolest N per cent in south-eastern Europe, and the reverse for winter days630

and particularly nights in the north. Coherent changes in dewpoint temperatures are less clear, with increases in the lower

29



percentiles in autumn and winter for the northern parts of Europe. For the wind speeds, as expected from the other analyses,

the higher quantiles show a decline over Europe, with stronger decreases in the east.

All the studies presented herein show widespread increases in mean temperature, and less rapid rises in the dewpoints, as

expected from numerous other studies on the observed change in global temperatures. However, the changes in the higher635

moments are of more interest. Although in many cases (seasons and quantities) the patterns of change are very similar to prior

studies (e.g. Donat and Alexander, 2012; Cavanaugh and Shen, 2014, 2015; McKinnon et al., 2016), there are still differences

in the spatial patterns between all of the studies. These could arise from differences in the input data (daily extrema versus

hourly values) as well as the temporal and spatial coverage. Furthermore, we have used a single, station-based dataset, and

differences between datasets (Gross et al., 2018) or the effect of gridding (Cavanaugh and Shen, 2015) can change the apparent640

behaviour of higher moments. Nevertheless, in these investigations, we have shown that there are changes in the mean, the

standard deviations and the skews of the distributions studied. And, when using a sub-daily dataset of temperatures, changes

in the number and intensity of extremes appear to arise from the combination of changes in all three of these moments. Further

investigations are however needed to determine the underlying drivers for the changes in these distributions, and hence the

changes in extremes.645
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