

1 **Fractional governing equations of transient groundwater flow in unconfined
2 aquifers with multi-fractional dimensions in fractional time**

3

4 **M. Levent Kavvas¹, Tongbi Tu^{2,3}, Ali Ercan², and James Polzinelli¹**

5 ¹Hydrologic Research Laboratory, Department of Civil and Environmental Engineering,
6 University of California, Davis, CA 95616, USA.

7 ²J. Amorocho Hydraulics Laboratory (JAHL), Department of Civil and Environmental
8 Engineering, University of California - Davis, CA, 95616, USA

9 ³Now at Department of Environmental Science, Policy and Management, University of California,
10 Berkeley, CA 94720.

11

12 Correspondence to: M. Levent Kavvas (mlkavvas@ucdavis.edu)

13

14 **Abstract:** In this study a dimensionally-consistent governing equation of transient unconfined
15 groundwater flow in fractional time and multi-fractional space is developed. First, a fractional
16 continuity equation for transient unconfined groundwater flow is developed in fractional time and
17 space. For the equation of groundwater motion within a multi-fractional multi-dimensional
18 unconfined aquifer, a previously-developed dimensionally consistent equation for water flux in
19 unsaturated/saturated porous media is combined with the Dupuit approximation to obtain an
20 equation for groundwater motion in multi-fractional space in unconfined aquifers. Combining the
21 fractional continuity and groundwater motion equations, the fractional governing equation of
22 transient unconfined aquifer flow is then obtained. Finally, two numerical applications to
23 unconfined aquifer groundwater flow are presented to show the skills of the proposed fractional
24 governing equation. As shown in one of the numerical applications, the newly-developed
25 governing equation can produce heavy-tailed recession behavior in unconfined aquifer discharges.

26 **1. Introduction**

27

28 Nearly 70 years ago in his hydrologic studies of the High Aswan Dam, Hurst (1951) has
29 discovered that the flow time series of the Nile river demonstrated fluctuations whose rescaled
30 range may not be proportional to the square root of the observation duration, but may be
31 proportional to the duration raised to a power H (the so-called Hurst coefficient) that is larger than
32 0.5 but less than 1. This finding, now called as the “Hurst phenomenon” implies that in such river
33 flows the integral scale (the integral of the flow autocorrelation function with respect to the time
34 lag, over the range from zero to infinity) may not exist, putting the process outside the Brownian
35 domain of finite-memory processes where the integral scale is finite. Since the Hurst phenomenon
36 amounts to the clustering of wet years with wet years and the dry years with the dry years, the so-
37 called “Joseph effect” in the Bible (Mandelbrot, 1977), it has important consequences on the
38 planning and operation of water storage systems over long periods (Koutsoyiannis, 2005). Hurst
39 phenomenon in hydrologic flow processes was later demonstrated convincingly by various
40 researchers, including Eltahir (1996), Radziejewski and Kundzewicz (1997), Montanari et al.
41 (1997), and Vogel et. al. (1998) among others. In order to model the Hurst phenomenon in river
42 flows the fractional Gaussian noise (FGN), where the rescaled range for the time series of a flow
43 process in a time interval $[0, t]$ is proportional to t^H for $0.5 < H < 1$, was introduced by Mandelbrot
44 and Wallis (1969). FGN model was later extended by Koutsoyiannis (2002) in order to model
45 satisfactorily a range of time scales, including the conventional Brownian finite memory flow
46 processes. Aside from the FGN models, physically-based models of the Hurst phenomenon were
47 also developed by various authors, including Klemes (1974), Beran (1994) and Koutsoyiannis
48 (2003). However, a physically-based model that explains the Hurst phenomenon explicitly in terms
49 of the hydrologic process mechanisms is still missing. Yevjevich (1963, 1971) provided a plausible
50 physical explanation for the Markovian structure of the annual river flows within a river basin by
51 linking the annual evolution of the water storage in the basin to the exponential recession in
52 baseflow of the basin runoff. Meanwhile, baseflow in basin runoff is mainly due to unconfined
53 aquifer flow to the neighbouring stream network of the basin. As shall be shown in a numerical
54 example later in this paper, the conventional unconfined groundwater flow equation with integer
55 powers does result in the hydraulic head of and the discharge from the aquifer to decay
56 exponentially, that would result in the Markovian finite memory behaviour of the river outflow
57 from the basin. Such exponentially decaying baseflow, while it can be explained by the mechanics

58 of the conventional unconfined groundwater flow governing equation with integer powers, may
59 not produce the heavy tailed recession behaviour necessary for the long range dependence in river
60 flows, the basic characteristic of the Hurst phenomenon, reported in annual river flow series in the
61 above-mentioned studies. The conventional integer-power governing equations of the unconfined
62 groundwater flow, having finite memory, are fundamentally in the Brownian domain, and may not
63 model the heavy-tailed baseflow recession behaviour that would be necessary to model the Hurst
64 phenomenon in annual river flows. What is needed is a new structure for the governing equation
65 of unconfined groundwater flow that can reproduce heavy tailed behaviour with time in the
66 hydraulic head and aquifer discharge recession, that would then lead to heavy-tailed recession
67 behaviour in the baseflow of the river basin. Furthermore, various researchers also reported long-
68 range dependence in groundwater level fluctuations (e.g., Li and Zhang, 2007; Yu et al., 2016; Tu
69 et al., 2017; and the references therein). One possible way to reproduce heavy-tailed recession
70 behavior in the hydraulic head and discharge of an unconfined aquifer is by means of a new
71 governing equation of unconfined groundwater flow with fractional powers. Such behavior in an
72 anisotropic confined groundwater aquifer with time and space fractional operators in its governing
73 equation was recently demonstrated (Kavvas et al. 2017a, Tu et al. 2017). Accordingly, the
74 reported study will follow a similar approach to develop a new governing equation for unconfined
75 groundwater aquifers.

76 Reporting that conventional geometries cannot characterize groundwater flow in many
77 fractured rock aquifers (Black et al., 1986), and the observed drawdown tends to be underestimated
78 in early times and overestimated at later times by the conventional radial groundwater flow model
79 (Van Tonder et al., 2001), Cloot and Botha (2006) developed a fractional governing equation for
80 radial groundwater flow in integer time and fractional space in a uniform homogeneous aquifer.
81 They used the Riemann-Liouville (RL) fractional derivative form (please see Podlubny, 1998 page
82 62-77, for a comprehensive explanation of the RL fractional derivative) in their model formulation.
83 Atangana and Bildik (2013), Atangana (2014), and Atangana and Vermeulen (2014) then
84 reformulated the fractional radial groundwater flow model of Cloot and Botha (2006) by the
85 Caputo differentiation framework (to be detailed in the next section) , and reported better
86 performance. Compared to the Riemann-Liouville derivative approach, the Caputo framework has
87 a fundamental advantage of being able to accommodate physically-interpretable real-life initial
88 and boundary conditions (Podlubny, 1998). In simple terms, a differential equation which is

89 based on Riemann-Liouville (RL) fractional derivative, requires the limit values of the RL
90 fractional derivative for its initial and boundary values which have no known physical
91 interpretation (Podlubny, 1998, page 78). Meanwhile, "Caputo derivatives take on the same form
92 as for integer-order differential equations, i.e. contain the limit values of integer-order
93 derivatives..." (Podlubny, 1998, page 79) incorporating the real world initial and boundary
94 conditions into the solution of a fractional governing equation. Atangana and Baleanu (2014)
95 presented a new radial groundwater flow model in fractional time based on a new fractional
96 derivative definition, "conformable derivative" (Khalil et al., 2014). Most recently, Su (2017)
97 proposed a time-space fractional Boussinesq equation and he claimed this fractional equation is a
98 general groundwater flow equation and can be applied to groundwater flow in both confined and
99 unconfined aquifers. However, all of the aforementioned studies only presented the formulated
100 fractional governing groundwater flow equations and no detailed derivations of these governing
101 equations from the fundamental conservation principles were provided.

102 Wheatcraft and Meerschaert (2008) derived the groundwater flow continuity equation in the
103 fractional form by using the fractional Taylor series approximation. They further removed the
104 linearity / piecewise linearity restriction for the flux and the infinitesimal control volume
105 restriction. When developing the fractional continuity equation, the groundwater flow process was
106 considered in fractional space but in integer time by Wheatcraft and Meerschaert (2008). They
107 further assumed the same fractional power in every direction of the fractional porous media space.
108 Furthermore, only the mass conservation was considered in their derivation, but not the fractional
109 water flux equation. Mehdinejadiani et al. (2013) expanded the approach of Wheatcraft and
110 Meerschaert (2008) to the derivation of a governing equation of groundwater flow in an
111 unconfined aquifer in fractional space but in integer time. In their derivation, they used the
112 conventional Darcy formulation for the water flux with integer spatial derivative while utilizing
113 fractional spatial derivatives in their continuity equation.

114 Olsen et al. (2016) pointed out that the derivations in Wheatcraft and Meerschaert (2008) and
115 Mehdinejadiani et al. (2013) utilized the fractional Taylor series, as formulated by Odibat and
116 Shawagfeh (2007), which utilized local Caputo derivatives. In order to expand the local Caputo
117 derivatives in the above-mentioned studies, Olsen et al. (2016) utilized the fractional mean value
118 theorem from Diethelm (2012) to develop a continuity equation of groundwater flow with left and
119 right fractional nonlocal Caputo derivatives in fractional space but in integer time. Olsen et al.

120 (2016) did not address the water flux formulation in fractional space, and, hence, did not develop
121 a complete governing equation of groundwater flow. They also did not address the multifractional
122 spatial derivatives in order to address anisotropy within an aquifer. Around that time, Kavvas et
123 al. (2017a) utilized the mean value formulation from Usero (2007), Odibat and Shawagfeh (2007)
124 and Li et al. (2009) to derive a complete governing equation of transient groundwater flow in a
125 confined, anisotropic aquifer with fractional time and multi-fractional space derivatives which
126 addressed not only the continuity but also the water flux (motion) in fractional time-space and the
127 effect of a sink/source term. By employing the above-mentioned fractional mean value
128 formulations, Kavvas et al. (2017a) developed the governing equation of confined groundwater
129 flow in fractional time-space in non-local form.

130 As mentioned above, unconfined groundwater flow is the fundamental component of the
131 watershed runoff baseflow since it is the fundamental contributor to the network streamflow within
132 a watershed during dry periods. As such, the behavior of unconfined groundwater flow is key to
133 the physically-based understanding of the long memory in watershed runoff. Meanwhile, as will
134 be seen in the following derivation of its governing equation, unconfined aquifer groundwater flow
135 is uniquely different from the confined aquifer groundwater flow. The fundamental differences
136 between the two aquifer flows is that while the flow in a confined aquifer is linear and
137 compressible, the flow in an unconfined aquifer is nonlinear and incompressible due to the
138 unconfined aquifer being phreatic, its top surface boundary being open to the atmosphere.
139 Accordingly, hydrologists have developed unique governing equations of unconfined aquifer
140 groundwater flow (Bear, 1979; Freeze and Cherry, 1979). Starting with the next section, first the
141 continuity equation of transient unconfined groundwater flow within an anisotropic heterogeneous
142 aquifer under a time-space varying sink/source will be developed in fractional time and fractional
143 space. Then, this fractional continuity equation will be combined with a fractional groundwater
144 motion equation to obtain a transient groundwater flow equation in fractional time-multifractional
145 space within an anisotropic, heterogeneous unconfined aquifer.

146 Analogous to the traditional governing groundwater flow equations, as outlined by Freeze
147 and Cherry (1979) and Bear (1979), the fractional unconfined groundwater flow equations must
148 have specific features (Kavvas et al., 2017a):

149 i. In order for the governing equation to be prognostic, the form of the equation must be known
150 completely from the outset.

151 ii. The fractional governing equations must be dimensionally consistent and be purely
152 differential equations, containing only differential operators without difference operators.

153 iii. As the fractional derivative powers go to integer values, the fractional unconfined
154 groundwater flow equations must converge to the corresponding conventional integer-order
155 governing equations.

156 Within this framework, the governing equations of unconfined groundwater flow in fractional
157 time and fractional space will be developed in the following.

158 **2. Derivation of the Continuity Equation for Transient Unconfined Groundwater Flow in a**
159 **Heterogeneous Anisotropic Multi-Fractional Medium in Fractional Time**

160 To β -order the Caputo fractional derivative $D_a^{k\beta} f(x)$ of a function $f(x)$ may be defined as
161 (Odibat and Shawagfeh, 2007; Podlubny, 1998; Usero, 2007, Li et al., 2009),

$$163 D_a^\beta f(x) = \frac{1}{\Gamma(1-\beta)} \int_a^x \frac{f'(\xi)}{(x-\xi)^\beta} d\xi \quad 0 < \beta < 1, \quad x \geq a \quad . \quad (1)$$

164 where ξ represents a dummy variable in the equation.

165 It was shown in Kavvas et al. (2017b) that one can obtain a β_{x_i} -order approximation (i=1,2)
166 to a function $f(x_i)$ around $x_i - \Delta x_i$ as

$$168 f(x_i) = f(x_i - \Delta x_i) + \frac{(\Delta x_i)^{\beta_{x_i}}}{\Gamma(\beta_{x_i}+1)} D_{x_i - \Delta x_i}^{\beta_{x_i}} f(x_i) \quad ; i=1,2. \quad (2)$$

169 In Equation (2), an analytical relationship between Δx_i and $(\Delta x_i)^{\beta_{x_i}}$ (i=1,2) that will be universally
170 applicable throughout the modelling domain is possible when the lower limit in the above Caputo
171 derivative in equation (2) is taken as zero (that is, $\Delta x_i = x_i$) for $f(x_i) = x_i$ (Kavvas et al. 2017b).

172 Under the Dupuit approximation of horizontal flow streamlines (very small water table
173 gradient) (Bear, 1979), the net mass flux through the control volume of an unconfined aquifer with
174 a flat bottom confining layer, as depicted in Figure 1, that also has a sink/source mass flux
175 $\rho q_v \Delta x_1 \Delta x_2$, can be formulated as

177 $[\rho Q_{x_1}(x_1, x_2; t) - \rho Q_{x_1}(x_1 - \Delta x_1, x_2; t)]\Delta x_2 + [\rho Q_{x_2}(x_1, x_2; t) - \rho Q_{x_2}(x_1, x_2 - \Delta x_2; t)]\Delta x_1 - \rho q_v \Delta x_1 \Delta x_2$ (3)

179
180 where Q_{x_i} is the discharge across a vertical plane of unit width in i-th direction, $i = 1, 2$, ρ is the
181 fluid density, and q_v is the source/sink (recharge/leakage) per unit horizontal area. Then by
182 combining equation (2) with equation (3) with $\Delta x_i = x_i$ ($i=1,2$), and expressing the resulting
183 Caputo derivative $D_0^{\beta_{x_i}} f(x_i)$ by $\frac{\partial^{\beta_{x_i}} f(x_i)}{(\partial x_i)^{\beta_{x_i}}}$, ($i=1,2$) for convenience, yields the net mass flux
184 through the control volume in Figure 1 to the orders of $(\Delta x_1)^{\beta_{x_1}}$ and $(\Delta x_2)^{\beta_{x_2}}$, as

$$\frac{1}{\Gamma(\beta_{x_1}+1)} \left(\frac{\partial}{\partial x_1} \right)^{\beta_{x_1}} \left(\rho Q_{x_1}(x_1, x_2; t) \right) (\Delta x_1)^{\beta_{x_1}} \Delta x_2 + \frac{1}{\Gamma(\beta_{x_2}+1)} \left(\frac{\partial}{\partial x_2} \right)^{\beta_{x_2}} \left(\rho Q_{x_2}(x_1, x_2; t) \right) \Delta x_1 (\Delta x_2)^{\beta_{x_2}} - \rho q_v \Delta x_1 \Delta x_2 \quad (4)$$

185 where different powers for fractional space derivatives are utilized in different directions due to
186 the anisotropy in the flow medium.

187
188 Kavvas et al. (2017b) have shown that to β_{x_i} -order fractional increments in space in the i-th
189 direction, $i=1,2$,

$$(\Delta x_i)^{\beta_{x_i}} = \frac{\Gamma(\beta_{x_i}+1) \Gamma(2-\beta_{x_i})}{x_i^{1-\beta_{x_i}}} \Delta x_i \quad , \quad i=1,2. \quad (5)$$

190 Combining equations (5) and (4) yields for the net mass outflow through the control volume
191 in Figure 1 as (to the order of $(\Delta x_i)^{\beta_{x_i}}$, $i=1,2$),

$$\frac{\Gamma(2-\beta_{x_1})}{x_1^{1-\beta_{x_1}}} \left(\frac{\partial}{\partial x_1} \right)^{\beta_{x_1}} \left(\rho Q_{x_1}(\bar{x}; t) \right) \Delta x_1 \Delta x_2 + \frac{\Gamma(2-\beta_{x_2})}{x_2^{1-\beta_{x_2}}} \left(\frac{\partial}{\partial x_2} \right)^{\beta_{x_2}} \left(\rho Q_{x_2}(\bar{x}; t) \right) \Delta x_1 \Delta x_2 - \rho q_v \Delta x_1 \Delta x_2, \quad \bar{x} = (x_1, x_2). \quad (6)$$

192 Denoting the water volume within the control volume in Figure 1 by V_w and using the concept
193 of specific yield (effective porosity) S_y of a phreatic aquifer (Bear and Verruijt, 1987)

194 $S_y = \frac{\Delta V_w}{\Delta h} \frac{1}{\Delta x_1 \Delta x_2} , \quad (7)$

195 where ΔV_w is the change in water volume in the control volume per change Δh in the hydraulic
 196 head (the elevation of the phreatic surface (water table) above the flat bottom of the aquifer), the
 197 time rate of change of mass within the control volume in Figure 1 may be written as (Bear and
 198 Verruijt, 1987)

$$\frac{S_y(\rho h(\bar{x};t) - \rho h(\bar{x};t-\Delta t))}{\Delta t} \Delta x_1 \Delta x_2 \quad (8)$$

199 which can then be expressed in terms of the approximation (2) with respect to the time dimension
 200 as,

201

$$202 \frac{S_y}{\Delta t} \left[\frac{\Delta t^\alpha}{\Gamma(\alpha+1)} \left(\frac{\partial}{\partial t} \right)^\alpha (\rho h) \right] \Delta x_1 \Delta x_2 \quad . \quad (9)$$

203

204 To α -order fractional increments in time (Kavvas et al. 2017b)

$$(\Delta t)^\alpha = \frac{\Gamma(\alpha+1)\Gamma(2-\alpha)}{t^{1-\alpha}} \Delta t \quad . \quad (10)$$

205 Substituting equation (10) into equation (9), one can obtain the time rate of change of mass in the
 206 control volume, as shown in Figure 1;

207

$$S_y \frac{\Gamma(2-\alpha)}{t^{1-\alpha}} \left(\frac{\partial}{\partial t} \right)^\alpha (\rho h) \Delta x_1 \Delta x_2 . \quad (11)$$

208

209 As the time rate of change of mass within the control volume, as shown in Figure 1, must be
 210 inversely proportional to the net mass flux passing through the control volume, one may combine
 211 equations (6) and (11) to obtain

212

$$213 \left[\frac{\Gamma(2-\beta_{x_1})}{x_1^{1-\beta_{x_1}}} \left(\frac{\partial}{\partial x_1} \right)^{\beta_{x_1}} (\rho Q_{x_1}(\bar{x};t)) + \frac{\Gamma(2-\beta_{x_2})}{x_2^{1-\beta_{x_2}}} \left(\frac{\partial}{\partial x_2} \right)^{\beta_{x_2}} (\rho Q_{x_2}(\bar{x};t)) - \rho q_v \right] \Delta x_1 \Delta x_2 = \\ 214 - S_y \frac{\Gamma(2-\alpha)}{t^{1-\alpha}} \left(\frac{\partial}{\partial t} \right)^\alpha (\rho h) \Delta x_1 \Delta x_2 \quad (12)$$

215

$$216 \frac{\Gamma(2-\beta_{x_1})}{x_1^{1-\beta_{x_1}}} \left(\frac{\partial}{\partial x_1} \right)^{\beta_{x_1}} (\rho Q_{x_1}(\bar{x};t)) + \frac{\Gamma(2-\beta_{x_2})}{x_2^{1-\beta_{x_2}}} \left(\frac{\partial}{\partial x_2} \right)^{\beta_{x_2}} (\rho Q_{x_2}(\bar{x};t)) - \rho q_v = - S_y \frac{\Gamma(2-\alpha)}{t^{1-\alpha}} \left(\frac{\partial}{\partial t} \right)^\alpha (\rho h) \quad (13)$$

217 for $0 < \alpha, \beta_{x_1}, \beta_{x_2} < 1$, $\bar{x} = (x_1, x_2,)$.

218 Within the framework of fluid incompressibility in the unconfined aquifer, equation (13)
219 reduces further to

220

221
$$\frac{\Gamma(2 - \beta_{x_1})}{x_1^{1-\beta_{x_1}}} \left(\frac{\partial}{\partial x_1} \right)^{\beta_{x_1}} (Q_{x_1}(\bar{x}; t)) + \frac{\Gamma(2 - \beta_{x_2})}{x_2^{1-\beta_{x_2}}} \left(\frac{\partial}{\partial x_2} \right)^{\beta_{x_2}} (Q_{x_2}(\bar{x}; t)) - q_v = -S_y \frac{\Gamma(2 - \alpha)}{t^{1-\alpha}} \frac{\partial^\alpha h}{(\partial t)^\alpha}$$

222

223
$$\frac{\Gamma(2 - \beta_{x_1})}{\Gamma(2 - \alpha)} \frac{t^{1-\alpha}}{x_1^{1-\beta_{x_1}}} \left(\frac{\partial}{\partial x_1} \right)^{\beta_{x_1}} (Q_{x_1}(\bar{x}; t)) + \frac{\Gamma(2 - \beta_{x_2})}{\Gamma(2 - \alpha)} \frac{t^{1-\alpha}}{x_2^{1-\beta_{x_2}}} \left(\frac{\partial}{\partial x_2} \right)^{\beta_{x_2}} (Q_{x_2}(\bar{x}; t)) - \frac{t^{1-\alpha}}{\Gamma(2 - \alpha)} q_v$$

224
$$= -S_y \frac{\partial^\alpha h}{(\partial t)^\alpha}$$

225

(14)

226 for $0 < \alpha, \beta_{x_1}, \beta_{x_2} < 1$, $\bar{x} = (x_1, x_2,)$ as the time-space fractional continuity equation of transient
227 groundwater flow in an anisotropic unconfined aquifer with multi-fractional dimensions and in
228 fractional time.

229

Performing a dimensional analysis of equation (14) yields

$$\frac{L}{T^\alpha} = \frac{T^{1-\alpha}}{L^{1-\beta_{x_1}}} \frac{1}{L^{\beta_{x_1}}} \frac{L^2}{T} = \frac{T^{1-\alpha}}{L^{1-\beta_{x_2}}} \frac{1}{L^{\beta_{x_2}}} \frac{L^2}{T} = \frac{T^{1-\alpha}}{1} \frac{L}{T} = \frac{L}{T^\alpha} \quad (15)$$

230

where L denotes length and T denotes time. Also, α, β_{x_1} and β_{x_2} are respectively the fractional
231 powers in time and x_1 and x_2 spatial dimensions. In equation (15), starting from the left-hand-side
232 (LHS), the first term shows the final dimension of equation (14), the second term shows in detail
233 the dimensions of the individual components of the first term on the LHS of equation (14), the
234 third term shows in detail the dimensions of the individual components of the second term on the
235 LHS of equation (14), the fourth term shows in detail the dimensions of the individual components
236 of the third term on the LHS of equation (14), and the fifth and the last term shows in detail the
237 dimensions of the individual components on the right-hand-side (RHS) of equation (14). Hence,
238 the left-hand and right-hand sides of the continuity equation (14) for transient groundwater flow
239 in an unconfined aquifer in multi-fractional space and fractional time are consistent as shown in
240 equation (15).

241

For $n-1 < \alpha, \beta_{x_i} < n$ where n is any positive integer, as α and $\beta_{x_i} \rightarrow n$, the Caputo fractional
242 derivative of a function f(y) to order α or β_{x_i} ($i = 1, 2$) yields the standard n-th derivative of the
243 function f(y) (Podlubny, 1998). Then when α and $\beta_{x_i} \rightarrow 1$ ($i = 1, 2$), the continuity equation (14)

244 becomes the conventional continuity equation for transient groundwater flow in an unconfined
 245 aquifer:

$$-S_y \frac{\partial h}{\partial t} = \frac{\partial}{\partial x_1} (Q_{x_1}(\bar{x}; t)) + \frac{\partial}{\partial x_2} (Q_{x_2}(\bar{x}; t)) - q_v . \quad (16)$$

246 **3. Motion Equation (Specific Discharge Equation) in Fractional Multi-Dimensional**
 247 **Unconfined Aquifers**

248 Recently, Kavvas et al., (2017a, 2017b) derived a governing equation for water flux
 249 (specific discharge), q_{x_i} , ($i = 1, 2, 3$) in a saturated or unsaturated porous medium with fractional
 250 dimensions in the form,

$$q_i(\bar{x}, t) = -K_{s,x_i}(\bar{x}) \frac{\Gamma(2-\beta_{x_i})}{x_i^{1-\beta_{x_i}}} \frac{\partial^{\beta_{x_i}} h}{(\partial x_i)^{\beta_{x_i}}}, \quad i = 1, 2, 3; \quad \bar{x} = (x_1, x_2, x_3). \quad (17)$$

251 where $K_{s,x_i}(\bar{x})$ is the saturated hydraulic conductivity in the i -th spatial direction ($i=1,2,3$).
 252 Meanwhile, under the Dupuit approximation of essentially horizontal unconfined aquifer flow
 253 (water table slope very small) (Bear, 1979), referring to Figure 1, the discharge per unit width in
 254 the i -th direction ($i = 1, 2$) can be expressed as

255

$$256 Q_{x_i}(\bar{x}, t) = h q_i(\bar{x}, t), \quad i = 1, 2 \quad ; \quad \bar{x} = (x_1, x_2,). \quad (18)$$

257

258 Then combining equations (18) and (17) results in

259

$$260 Q_{x_i}(\bar{x}, t) = -K_{s,x_i}(\bar{x}) \frac{\Gamma(2-\beta_{x_i})}{x_i^{1-\beta_{x_i}}} h \frac{\partial^{\beta_{x_i}} h}{(\partial x_i)^{\beta_{x_i}}} \quad , \quad i = 1, 2; \quad \bar{x} = (x_1, x_2,) \quad (19)$$

261

262 as the governing equation of groundwater motion within an unconfined aquifer with a flat bottom
 263 confining layer. In equation (19) h is the unconfined aquifer thickness or the phreatic surface
 264 elevation above the bottom confining layer.

265 A dimensional analysis on equation (19) yields L^2/T for the units of both the left-hand-side
 266 (LHS) and the RHS of the equation, establishing its dimensional consistency.

267 Applying the above-mentioned result of Podlubny (1998) on the convergence of a fractional
 268 derivative to a corresponding integer derivative for $\beta_{x_i} \rightarrow 1$ ($i = 1, 2$) reduces the fractional motion
 269 equation (19) for unconfined groundwater flow to the conventional equation (Bear, 1979):

$$Q_{x_i}(\bar{x}, t) = -K_{s,x_i}(\bar{x})h \frac{\partial h(\bar{x}, t)}{\partial x_i}, i=1,2 \quad (20)$$

270 for the case of integer spatial dimensions. As such, the fractional motion equation (19) for
 271 unconfined groundwater flow in fractional spatial dimensions is consistent with the conventional
 272 motion equation for the integer spatial dimensions.

273 **4. The Complete Equation for Transient Unconfined Groundwater Flow in Multi-Fractional
 274 Space and Fractional Time**

275 Combining the fractional motion equation (19) of groundwater flow in an unconfined aquifer
 276 with the fractional continuity equation (14) of unconfined groundwater flow results in the equation,

277

$$278 S_y \frac{\partial^\alpha h}{(\partial t)^\alpha} = \frac{\Gamma(2-\beta_{x_1})}{x_1^{1-\beta_{x_1}}} \left(\frac{\partial}{\partial x_1} \right)^{\beta_{x_1}} \left(K_{s,x_1}(\bar{x}) \frac{t^{1-\alpha}}{x_1^{1-\beta_{x_1}}} \frac{\Gamma(2-\beta_{x_1})}{\Gamma(2-\alpha)} h \frac{\partial^{\beta_{x_1}} h}{(\partial x_1)^{\beta_{x_1}}} \right) + \\ 279 \frac{\Gamma(2-\beta_{x_2})}{x_2^{1-\beta_{x_2}}} \left(\frac{\partial}{\partial x_2} \right)^{\beta_{x_2}} \left(K_{s,x_2}(\bar{x}) \frac{t^{1-\alpha}}{x_2^{1-\beta_{x_2}}} \frac{\Gamma(2-\beta_{x_2})}{\Gamma(2-\alpha)} h \frac{\partial^{\beta_{x_2}} h}{(\partial x_2)^{\beta_{x_2}}} \right) + \frac{t^{1-\alpha}}{\Gamma(2-\alpha)} q_v \quad (21)$$

280

281 for $0 < \alpha, \beta_{x_1}, \beta_{x_2} < 1$, $\bar{x} = (x_1, x_2,)$ as the time-space fractional governing equation of transient
 282 unconfined groundwater flow in an anisotropic medium.

283 Performing a dimensional analysis of Equation (21) yields

$$\frac{L}{T^\alpha} = \frac{1}{L^{1-\beta_{x_1}}} \frac{1}{L^{\beta_{x_1}}} \frac{L}{T} \frac{T^{1-\alpha}}{L^{1-\beta_{x_1}}} L \frac{L}{L^{\beta_{x_1}}} = \frac{1}{L^{1-\beta_{x_2}}} \frac{1}{L^{\beta_{x_2}}} \frac{L}{T} \frac{T^{1-\alpha}}{L^{1-\beta_{x_2}}} \frac{L^2}{L^{\beta_{x_2}}} = \frac{T^{1-\alpha}}{1} \frac{L}{T} = \frac{L}{T^\alpha} \quad (22)$$

284 where L denotes length and T denotes time. Hence, the left-hand and right-hand sides of the
 285 governing equation (21) for transient groundwater flow in an unconfined aquifer in multi-
 286 fractional space and fractional time are consistent.

287 Specializing the above-discussed result of Podlubny (1998) to $n = 1$, for α and $\beta_{x_i} \rightarrow 1$ ($i =$
 288 1, 2) reduces the governing fractional equation (21) to the conventional governing equation for
 289 transient groundwater flow in an unconfined aquifer (Bear, 1979):

290 $S_y \frac{\partial h}{\partial t} = \frac{\partial}{\partial x_1} \left(K_{s,x_1}(\bar{x}) h \frac{\partial h(\bar{x},t)}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(K_{s,x_2}(\bar{x}) h \frac{\partial h(\bar{x},t)}{\partial x_2} \right) + q_v$ (23)

291

292 **5. Numerical application**

293

294 To demonstrate the skills of the proposed fractional governing equation of unconfined aquifer
 295 groundwater flow, two numerical applications are performed using the proposed fractional
 296 governing equation. The first application follows the physical setting of an example from Wang
 297 and Anderson (1995), as depicted in Figure 2. The numerical problem of seepage through a dam
 298 under a sudden change in the water surface elevation at the downstream section of the dam is
 299 modified based on seepage through a dam, Page 53 and Problem 4.4 (a), Page 89 in Wang and
 300 Anderson (1995), as shown in Figure 2. The water seepage through the dam's body may be
 301 interpreted as one-dimensional groundwater flow through an unconfined aquifer. The unconfined
 302 flow system locates the top boundary of the saturated zone in an earthen dam and the bottom of
 303 the dam rests on impermeable rock. For this example, the unconfined aquifer length L is 100 m.
 304 The initial water level in the upstream and downstream sections of the dam and through the dam's
 305 body is 16 m. Then immediately after the initial time, the water level at the downstream section of
 306 the dam is suddenly dropped to 11 m and remains as 11 m afterwards. The unconfined aquifer
 307 parameters are $S = 0.2$ for the specific yield and $K = 0.002$ m/min for the hydraulic conductivity,
 308 respectively. The analytical solution for this problem at the steady-state is:

309 $h = \sqrt{\frac{h_2^2 - h_1^2}{L} x + h_1^2}$ (24)

310 where h is the depth of the unconfined groundwater surface from the bottom layer; L is the aquifer
 311 length; x is the distance from the upstream location of the dam body, and h_1 and h_2 are as shown
 312 in Figure 2.

313 In Figures 3(a) and 3(b), the normalized groundwater head and normalized groundwater
 314 discharge per unit width at location $x=L/2$ through time under different fractional power values
 315 are shown. Meanwhile, Figure 3(c) shows the normalized groundwater head at the time instance
 316 $t=40,000$ min as a function of location throughout the dam's body, and the analytical solution of
 317 the standard governing equation of unconfined groundwater flow when $\beta_x = \alpha = 1$ at the steady
 318 state. The considered fractional derivative powers in space and time are $\beta_x = \alpha =$
 319 0.7, 0.8, 0.9, 1.0. As can be seen from Figure 3(a), the hydraulic head recession in time slows down

320 with the decrease of $\beta_x = \alpha$ from 1. The hydraulic heads in Figure 3(a) have heavier tails as orders
321 of time and space fractional derivative powers decrease from 1 towards 0.7. Furthermore,
322 normalized groundwater discharge per unit width in Figure 3(b) goes to 1 in a slower rate as
323 fractional derivative powers decrease from 1 towards 0.7. Meanwhile, Figure 3(c) shows that the
324 numerical solution of the governing fractional equation at $\beta_x = \alpha = 1.0$ and at a very long time
325 after the initial condition, matches perfectly the steady state analytical solution (24) of the standard
326 equation (23) with the specified initial/boundary conditions.

327 The second application deals with a transient unconfined groundwater flow from a hillslope
328 toward a stream (Figure 4). The upstream boundary plane separates the region of flow from the
329 adjacent hillslope that feeds the adjacent tributary system, therefore $\frac{\partial h}{\partial x} = 0$ (Freeze, 1978) at $x=0$.
330 The normalized initial groundwater head in the unconfined aquifer, and the normalized
331 groundwater head at time $t=60,000$ min through the length of the aquifer under different fractional
332 derivative powers are shown in Figure 5(a). The normalized groundwater head and normalized
333 groundwater discharge per unit width at $x=L/2$ through time under different fractional derivative
334 powers are demonstrated in Figures 5(b) and 5(c). As can be seen from Figures 5(b)-(c), the
335 hydraulic head and groundwater recession in time slows down with the decrease of $\beta_x =$
336 α from 1. The hydraulic heads and groundwater discharges in Figures 5(b)-(c) have heavier tails
337 as orders of time and space fractional derivative powers decrease from 1 towards 0.7.

338 6. Discussion

339 From the standard governing equation (23) of unconfined groundwater flow in integer time-
340 space the saturated hydraulic conductivity may be interpreted as a diffusion coefficient for the
341 nonlinear diffusion of groundwater in an unconfined aquifer. The basic difference between
342 confined and unconfined groundwater flow is that the former can be interpreted as a linear
343 diffusion of groundwater while the latter is a nonlinear diffusion of groundwater within an
344 aquifer. Similar to saturated hydraulic conductivities in equation (26) in Kavvas et al., (2017a)
345 for the fractional confined aquifer groundwater flow, the saturated hydraulic conductivities in
346 equation (21) above, which governs fractional unconfined aquifer groundwater flow, are
347 modulated by the ratios of fractional time to fractional space, $\frac{t^{1-\alpha}}{x_i^{1-\beta_x_i}}$, $i=1,2$. In other words, the
348 confined and unconfined groundwater diffusions in fractional time-space are modulated by the
349 above fractional time-space ratios.

350 Numerical application demonstrated that as the powers of the space and time fractional
351 derivatives decrease from 1, the recession rate of the nondimensional groundwater hydraulic
352 head slows down when compared to the case by the conventional governing equation (i.e., with
353 integer order derivatives). This behavior also indicates the modulation of the nonlinear diffusion
354 of the groundwater by the fractional powers of time and space.

355 As mentioned in the Introduction section, unconfined groundwater flow is the fundamental
356 component of the watershed runoff baseflow since it is the fundamental contributor to the
357 streamflow network within a watershed during dry periods. As such, the behavior of unconfined
358 groundwater flow is key to the physically-based understanding of the long memory in watershed
359 runoff. As seen from the numerical applications in Figures 3 and 5, the powers of the fractional
360 derivatives in time and space can modulate the speed of the groundwater discharge evolution.
361 Hence, they can modulate the memory of the unconfined aquifer flow, which, in turn, can modulate
362 the memory of the watershed baseflow. Meanwhile, the Caputo derivative, as defined in its special
363 form $D_0^{\beta_{x_i}} f(x_i)$ in space in this study, was shown by Kavvas and Ercan (2017) and Ercan and
364 Kavvas (2017) to be a nonlocal quantity where the effect of the boundary conditions on the
365 groundwater flow within the flow domain can have long spatial memories with the decrease in the
366 powers of the spatial fractional derivatives from unity. Similarly, it was shown by Kavvas et al.
367 (2017a) that the Caputo derivative in time, $D_0^{\alpha} f(t)$, as defined in this study, is nonlocal in time,
368 and can carry the effect of initial conditions on the groundwater flow for long times as the power
369 in the time fractional derivative decreases from 1. Therefore, the fractional governing equation of
370 unconfined groundwater flow in fractional time and multi-fractional space has the potential to
371 describe the long memory characteristics of baseflow within a watershed. This important topic
372 shall be explored in the near future.

373

374 7. Conclusion

375

376 A dimensionally-consistent fractional governing equation of transient unconfined aquifer
377 groundwater flow was derived within fractional differentiation framework. After developing a
378 fractional continuity equation, a previously-developed dimensionally consistent equation for water
379 flux in unsaturated/saturated porous media was combined with the Dupuit approximation to obtain
380 an equation for groundwater motion in multi-fractional space in unconfined aquifers. Combining

381 the fractional continuity and motion equations, the governing equation of transient unconfined
 382 aquifer groundwater flow in a multi-fractional medium in fractional time was then obtained. To
 383 demonstrate the skills of the proposed fractional governing equation of unconfined aquifer
 384 groundwater flow, two numerical applications were performed. As demonstrated in the numerical
 385 application results, the orders of the fractional space and time derivatives modulate the speed of
 386 groundwater discharge and groundwater flow evolution, slowing the process with decrease in the
 387 powers of the fractional derivatives from 1. It is also shown that the proposed dimensionally
 388 consistent fractional governing equations approach to the corresponding conventional equations
 389 as the fractional orders of the derivatives go to 1.

390

391 **Data availability.**

392 The data used in this article can be accessed by contacting the corresponding author.

393 **Appendix A. Numerical Solution for 1-dimensional case**

394 One-dimensional time-space fractional groundwater flow in the unconfined aquifer with no
 395 recharge or leakage can be written as:

$$396 S_y \frac{\partial^\alpha h}{(\partial t)^\alpha} = \frac{\Gamma(2-\beta)}{x^{1-\beta}} \left(\frac{\partial}{\partial x} \right)^\beta \left(K_s(\bar{X}) \frac{t^{1-\alpha}}{x^{1-\beta} \Gamma(2-\alpha)} h \frac{\partial^\beta h}{(\partial x)^\beta} \right) \quad (A1)$$

397

398 The fractional time and space derivatives are estimated in the same manner as that in Tu et al.
 399 (2018), where the Caputo fractional space and time derivatives in the fractional governing equation
 400 are estimated by the numerical algorithm in Odibat (2009) and the algorithm reported by Murio
 401 (2008), respectively. The Caputo fractional space derivative $D_x^\beta g(x)|_{x=L}$ at the location L for $m-1 <$
 402 $\beta \leq m$ ($m \leq N$) of a given space interval $[0, L]$ is estimated as:

$$D_x^\beta g(x)|_{x=L} \approx \frac{DL^{m-\beta}}{G(m+2-\beta)} \left\{ \left[(N-1)^{m-\beta+1} - (N-m+b-1)DL^{m-\beta} \right] g^{(m)}(0) + g^{(m)}(L) \right. \\ \left. + \sum_{i=1}^{N-1} \left[(N-i+1)^{m-\beta+1} - 2(N-i)^{m-\beta+1} + (N-i-1)^{m-\beta+1} \right] g^{(m)}(l_i) \right\} \quad (A2)$$

403 where N is the number of equally spaced subintervals on $[0, L]$; the subinterval length is $\Delta L=L/N$,
 404 and $l_i = i\Delta L$, for $i=0,1,2,\dots,N$.

405 The Caputo fractional time derivative $D_t^\alpha g(x, t) \Big|_{x=l_i, t=t_n}$ for $0 < \alpha \leq 1$ on a given time interval

406 $[0, T]$, which is divided into M equal subintervals with a time window of $\Delta t = T/M$ by using the

407 nodes $t_n = n\Delta t$, $n = 0, 1, 2, \dots, M$, can be approximated as:

$$412 D_t^\alpha g_i^n = \frac{\Delta t^{-\alpha}}{G(2-\alpha)} \sum_{k=1}^n \left[k^{1-\alpha} - (k-1)^{1-\alpha} \right] (g_i^{n-k+1} - g_i^{n-k}) \quad (\text{A3})$$

408 Then the 1-D governing equation in fractional time and space for Cartesian groundwater flow in
409 an unconfined aquifer can be discretized as:

410 For $n = 1$,

$$411 h_i^n = h_i^{n-1} + \frac{t_n^{1-\alpha}}{S_y \Delta t^{-\alpha}} \frac{G(2-b)}{l_i^{1-b}} G_i^{n-1} \quad (\text{A4})$$

412 For $n \geq 2$,

$$413 h_i^n = h_i^{n-1} + \frac{t_n^{1-\alpha}}{S_y \Delta t^{-\alpha}} \frac{G(2-b)}{l_i^{1-b}} G_i^{n-1} - \sum_{k=2}^n \left[k^{1-\alpha} - (k-1)^{1-\alpha} \right] (h_i^{n-k+1} - h_i^{n-k}) \quad (\text{A5})$$

414 where $G = \left(\frac{\partial}{\partial x} \right)^b \left[K_s(\bar{X}) \frac{G(2-b)}{x^{1-b}} h \frac{\partial^b h}{\partial x^b} \right]$ and the space and time fractional

415 derivatives in G are estimated as in Equations (A2) and (A3).

416 Competing interests.

417 The authors declare that they have no conflict of interest.

418 References

419 Atangana, A.: Drawdown in prolate spheroidal-spherical coordinates obtained via Green's
420 function and perturbation methods, Communications in Nonlinear Science and Numerical
421 Simulation, 19, 1259-1269, 2014.

422 Atangana, A. and Baleanu, D.: Modelling the advancement of the impurities and the melted
423 oxygen concentration within the scope of fractional calculus, International Journal of Non-
424 Linear Mechanics, 67, 278-284, 2014.

425 Atangana, A. and Bildik, N.: The use of fractional order derivative to predict the groundwater
426 flow, Mathematical Problems in Engineering, 543026, 2013.

425 Atangana, A. and Vermeulen, P.: Analytical solutions of a space-time fractional derivative of
426 groundwater flow equation, 381753, 2014.

427 Bear, J.: *Groundwater hydraulics*, McGraw, New York, 1979.

428 Bear, J. and Verruijt, A.: *Modeling Groundwater Flow and Pollution*, Reidel Pub. Co., Dordrecht,
429 Holland, 1987.

430 Beran, J.: Statistics for Long-Memory Processes, Vol. 61 of Monographs on Statistics and Applied
431 Probability, Chapman & Hall, New York, USA

432 Black, J. H., Barker, J. A., and Noy, D. J.: Crosshole investigations-the method, theory and analysis
433 of crosshole sinusoidal pressure tests in fissured rock, Stripa Proj., Int. Rep, 86-03, 1986.

434 Cloot, A. and Botha, J.: A generalised groundwater flow equation using the concept of non-integer
435 order derivatives, Water SA, 32, 1-7, 2006.

436 Diethelm K. The mean value theorems and a Nagumo-type uniqueness theorem for Caputo's
437 fractional calculus, Fract Calc Appl Anal; doi:10.2478/s13540-012-0022-3, 15(2): 304–13,
438 2012.

439 Ercan, A. and Kavvas, M. L.: Time–space fractional governing equations of one-dimensional
440 unsteady open channel flow process: Numerical solution and exploration, Hydrological
441 Processes, 31(16), 2961-2971, 2017.

442 Eltahir, E.A.B., El Nino and the natural variability in the flow of the Nile River, Water Resour.
443 Res. 32(1), 131-137, 1996.

444 Freeze, R. A. and Cherry, J. A.: *Groundwater*, Prentice-Hall, 1979.

445 Freeze, R. A.: Mathematical models of hillslope hydrology, Chap. 6 in *Hillslope Hydrology*, ed.
446 by Kirkby, M.J., John Wiley & Sons, Ltd, New York, 1978.

447 Hurst, H. E., Long term storage capacities of reservoirs, Trans. Am. Soc. Civil Engrs. 116, 776-
448 808, 1951.

449 Kavvas, M.L. and Ercan, A.: Time-Space Fractional Governing Equations of Unsteady Open
450 Channel Flow, Journal of Hydrologic Engineering, 22(2), 04016052, 2016.

451 Kavvas and A. Ercan: Closure to discussion on 'Time-Space Fractional Governing Equations of
452 Unsteady Open Channel Flow' by M.L. Kavvas and A. Ercan, J. of Hydrologic Engineering,
453 Vol. 22, No. 9, 2017.

454 Kavvas, M.L., Tu, T., Ercan, A., and Polzinelli, J.: Fractional Governing Equations of Transient
455 Groundwater Flow in Confined Aquifers with Multi-Fractional Dimensions in Fractional
456 Time, Earth Syst. Dynam., 8, 921-929, 2017a.

457 Kavvas, M. L., Ercan, A., and Polzinelli, J.: Governing equations of transient soil water flow and
458 soil water flux in multi - dimensional fractional anisotropic media and fractional time,
459 *Hydrol. Earth Syst. Sci.*, 21, 1547-1557, 2017b.

460 Khalil, R., Al Horani, M., Yousef, A., and Sababheh, M.: A new definition of fractional derivative,
461 *Journal of Computational and Applied Mathematics*, 264, 65-70, 2014.

462 Klemes, V., The Hurst phenomenon: a puzzle?, *Wat. Resour. Res.*, 10(4), 675-688, 1974.

463 Koutsoyiannis, D., The Hurst phenomenon and fractional Gaussian noise made easy, *Hydrol. Sci.*
464 *J.*, 47(4), 573-595, 2002.

465 Koutsoyiannis, D., Climate change, the Hurst phenomenon, and hydrological statistics, *Hydrol*
466 *Sci. J.*, 48(1), 3-24, 2003.

467 Koutsoyiannis, D., Hydrologic Persistence and The Hurst Phenomenon, Chp. 5 in *The Encyclopedia*
468 *of Water*, DOI: 10.1002/047147844X.sw434, 2005.

469 Mandelbrot, B.B., *The Fractal Geometry of Nature*, Freeman, New York, 1977.

470 Mandelbrot, B.B. and Wallis, J.R., Computer experiments with fractional Gaussian noises, Part 2:
471 Rescaled ranges and spectra, *Wat. Resour. Res.*, 5(1), 242-259, 1969.

472 Montanari, A., Rosso, R. and Taqqu, M.S., Fractionally differenced ARIMA models applied to
473 hydrologic time series, *Wat. Resour. Res.* 33(5), 1035-1044, 1997.

474 Li, M.-F., Ren, J.-R., and Zhu, T.: Series expansion in fractional calculus and fractional differential
475 equations, arXiv preprint arXiv:0910.4819, 2009.

476 Li, Z. and Zhang, Y.-K.: Quantifying fractal dynamics of groundwater systems with detrended
477 fluctuation analysis, *Journal of Hydrology*, 336, 139-146, 2007.

478 Murio DA. 2008. Implicit finite difference approximation for time fractional diffusion equations.
479 *Computers & Mathematics with Applications*, 56: 1138-1145.

480 Odibat ZM. 2009. Computational algorithms for computing the fractional derivatives of functions.
481 *Mathematics and Computers in Simulation*, 79: 2013-2020.

482 Odibat, Z. M. and Shawagfeh, N. T.: Generalized Taylor's formula, *Applied Mathematics and*
483 *Computation*, 186, 286-293, 2007.

484 Olsen, J.S., J. Mortensen, and A. S. Telyakovskiy: A two-sided fractional conservation of mass
485 equation, *Adv. Water Resour.*, 91, 117-121, doi: 10.1016/j.advwatres.2016.03.007; 2016.

486 Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, fractional
487 differential equations, to methods of their solution and some of their applications, Academic
488 press, 1998.

489 Radziejewski, M. and Kundzewicz, Z. W., Fractal analysis of flow of the river Warta, *J. Hydrol.*,
490 200, 280-294, 1997.

491 Sidle, R. C., Nilsson, B., Hansen, M., and Fredericia, J.: Spatially varying hydraulic and solute
492 transport characteristics of a fractured till determined by field tracer tests, Funen, Denmark,
493 *Water Resources Research*, 34, 2515-2527, 1998.

494 Sudicky, E., Cherry, J., and Frind, E.: Migration of contaminants in groundwater at a landfill: A
495 case study: 4. A natural-gradient dispersion test, *Journal of Hydrology*, 63, 81-108, 1983.

496 Tu, T., Ercan, A., and Kavvas, M. L.: Fractal Scaling Analysis of Groundwater Dynamics in
497 Confined Aquifers, *Earth Syst. Dynam. Discuss.*, 8, 931-949, 2017.

498 Tu, T., Ercan, A. and Levent Kavvas, M., 2018. Time-space fractional governing equations of
499 transient groundwater flow in confined aquifers: Numerical investigation. *Hydrological
500 processes*, 32(10): 1406-1419.

501 Usero, D.: Fractional Taylor series for Caputo fractional derivatives. Construction of numerical
502 schemes, URL <http://www.mat.ucm.es/deptos/ma/inv/prepub/new/2007-10.pdf>, 2007.

503 Van Tonder, G., Botha, J., Chiang, W.-H., Kunstmann, H., and Xu, Y.: Estimation of the
504 sustainable yields of boreholes in fractured rock formations, *Journal of Hydrology*, 241, 70-
505 90, 2001.

506 Vogel, R. M., Tsai, Y. and Limbrunner, J. F., The regional persistence and variability of annual
507 streamflow in the United States, *Wat. Resour. Res.*, 34(12), 3445-3459, 1998.

508 Wang, H. F. and Anderson, M. P.: *Introduction to groundwater modeling: finite difference and
509 finite element methods*, Academic Press, 1995.

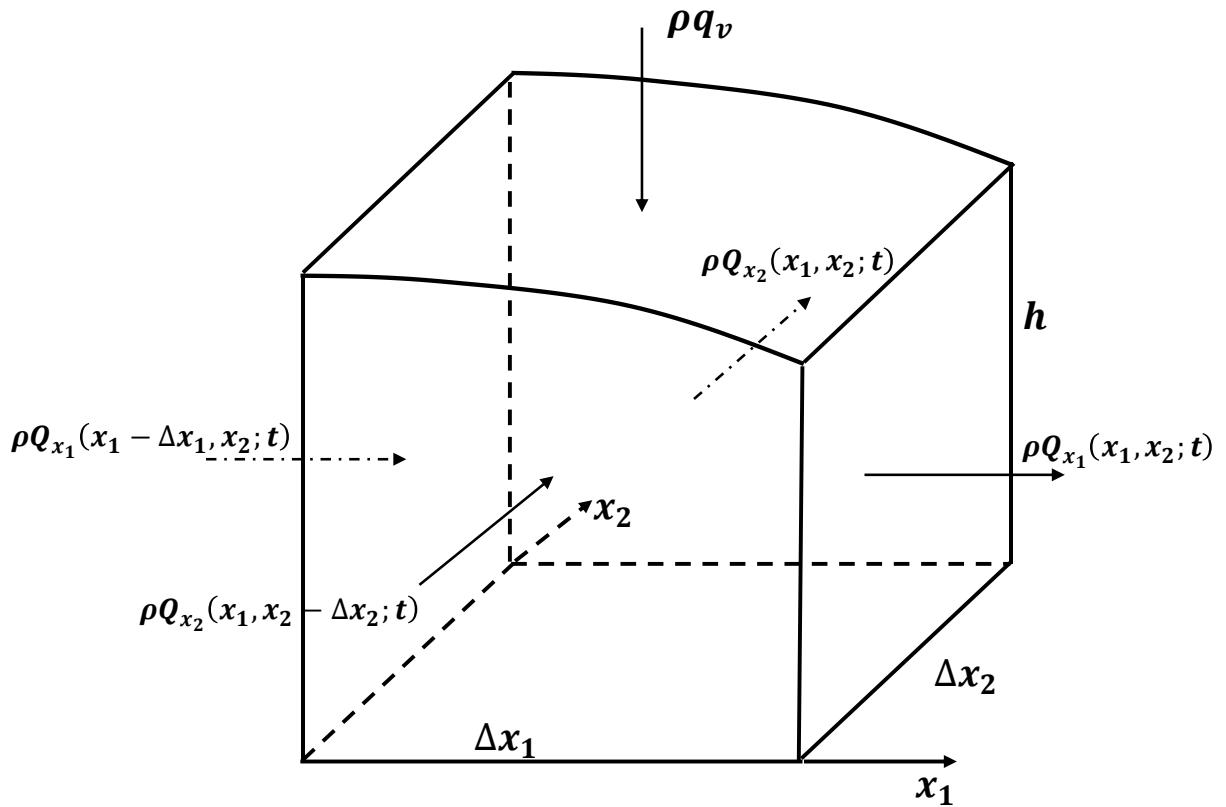
510 Wheatcraft, S. W. and Meerschaert, M. M.: Fractional conservation of mass, *Advances in Water
511 Resources*, 31, 1377-1381, 2008.

512 Yevjevich, V., Fluctuations of wet and dry years: Part 1: Research data assembly and mathematical
513 models, *Hydrology Papers*, Colorado State University, Ft. Collins, Colorado, 1963.

514 Yevjevich, V., *Stochastic Processes in Hydrology*, *Wat. Resour. Pub.*, Ft. Collins, Colorado, 1971.

515 Yu, X., Ghasemizadeh, R., Padilla, I. Y., Kaeli, D., and Alshawabkeh, A.: Patterns of temporal
516 scaling of groundwater level fluctuation, *Journal of Hydrology*, 536, 485-495, 2016.

517 Zhang, Y., Benson, D. A., and Reeves, D. M.: Time and space nonlocalities underlying fractional-
518 derivative models: Distinction and literature review of field applications, *Advances in Water
519 Resources*, 32, 561-581, 2009.
520
521



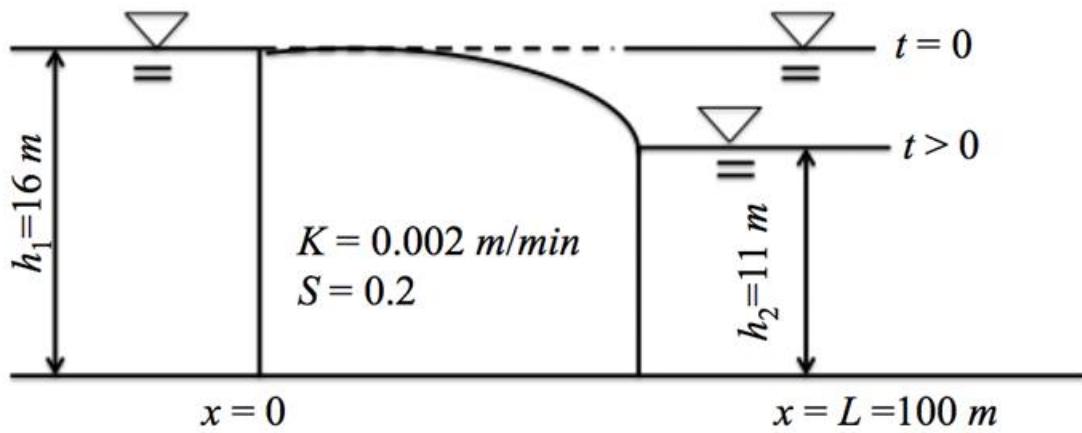
522

523 Figure 1. The mass flux through the control volume of an unconfined aquifer.

524

525

526



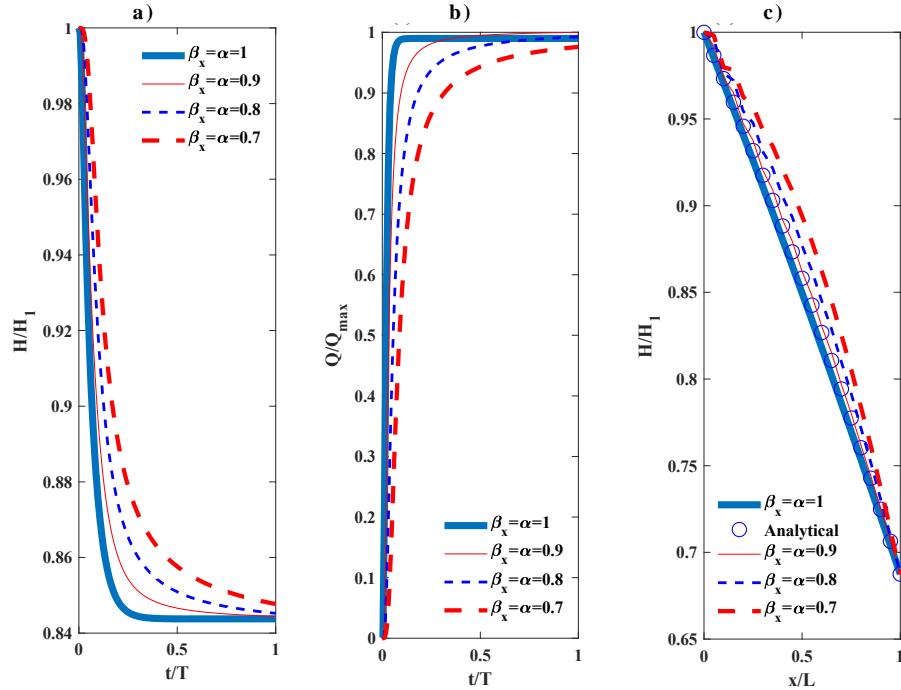
527

528 Figure 2. The sketch of numerical application 1: Water seepage through a dam's body as an
 529 unconfined groundwater flow

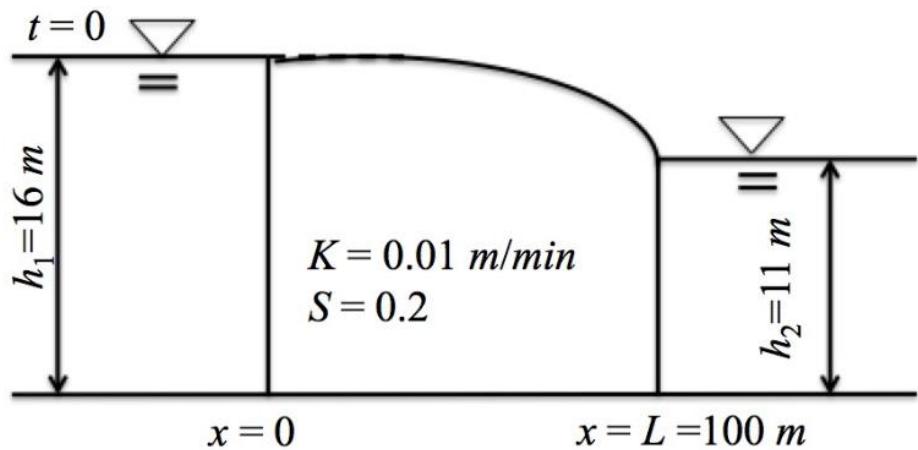
530

531

532

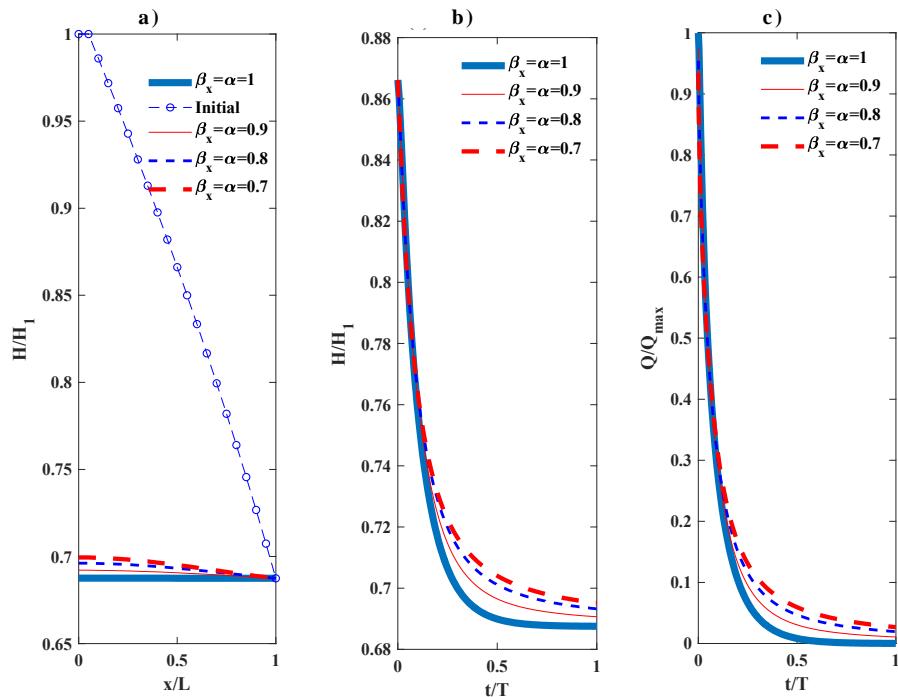


534 Figure 3. Results for numerical application 1: (a) The normalized groundwater head at $x=L/2$
 535 through time under different fractional derivative powers; (b) The normalized groundwater
 536 discharge per unit width at $x=L/2$ through time under different fractional derivative powers; t is
 537 time and the simulation time T is 120,000 min; (c) The normalized groundwater head at $t=40,000$
 538 min through length of the aquifer (through the body of the dam) and the analytical solution of the
 539 conventional governing equation of unconfined groundwater flow when $\beta_x = \alpha = 1$ at the steady
 540 state.



543
544
545
546

Figure 4. The sketch of numerical application 2: The downstream groundwater head is fixed at 11 m and the initial upstream groundwater head is 16 m.



548 Figure 5. Results for numerical application 2: (a) The normalized initial groundwater head in the
 549 unconfined aquifer, and the normalized groundwater head at time $t=60,000$ min through length of
 550 the aquifer under different fractional derivative powers; (b) The normalized groundwater head at
 551 $x=L/2$ through time under different fractional derivative powers; (c) The normalized groundwater
 552 discharge per unit width at $x=L/2$ through time under different fractional derivative powers; t is
 553 time and the simulation time T is 60,000 min.

554

555

556

557