
1 

 

Fractional governing equations of transient groundwater flow in unconfined 1 

aquifers with multi-fractional dimensions in fractional time 2 

 3 

M. Levent Kavvas1, Tongbi Tu2,3, Ali Ercan2, and James Polsinelli1 4 

1Hydrologic Research Laboratory, Department of Civil and Environmental Engineering, 5 

University of California, Davis, CA 95616, USA. 6 

2J. Amorocho Hydraulics Laboratory (JAHL), Department of Civil and Environmental 7 

Engineering, University of California - Davis, CA, 95616, USA 8 

3Now at Department of Environmental Science, Policy and Management, University of California, 9 

Berkeley, CA 94720. 10 

 11 

Correspondence to: M. Levent Kavvas (mlkavvas@ucdavis.edu)  12 

 13 

Abstract: In this study a dimensionally-consistent governing equation of transient unconfined 14 

groundwater flow in fractional time and multi-fractional space is developed. First, a fractional 15 

continuity equation for transient unconfined groundwater flow is developed in fractional time and 16 

space. For the equation of groundwater motion within a multi-fractional multi-dimensional 17 

unconfined aquifer, a previously-developed dimensionally consistent equation for water flux in 18 

unsaturated/saturated porous media is combined with the Dupuit approximation to obtain an 19 

equation for groundwater motion in multi-fractional space in unconfined aquifers. Combining the 20 

fractional continuity and groundwater motion equations, the fractional governing equation of 21 

transient unconfined aquifer flow is then obtained. Finally, two numerical applications to 22 

unconfined aquifer groundwater flow are presented to show the skills of the proposed fractional 23 

governing equation. As shown in one of the numerical applications, the newly-developed 24 

governing equation can produce heavy-tailed recession behavior in unconfined aquifer discharges. 25 

1. Introduction 26 
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 27 

Nearly 70 years ago in his hydrologic studies of the High Aswan Dam, Hurst (1951) has 28 

discovered that the flow time series of the Nile river demonstrated fluctuations whose rescaled 29 

range may not be proportional to the square root of the observation duration, but may be 30 

proportional to the duration raised to a power H (the so-called Hurst coefficient) that is larger than 31 

0.5 but less than 1. This finding, now called as the “Hurst phenomenon” implies that in such river 32 

flows the integral scale (the integral of the flow autocorrelation function with respect to the time 33 

lag, over the range from zero to infinity) may not exist, putting the process outside the Brownian 34 

domain of finite-memory processes where the integral scale is finite. Since the Hurst phenomenon 35 

amounts to the clustering of wet years with wet years and the dry years with the dry years, the so-36 

called “Joseph effect” in the Bible (Mandelbrot, 1977), it has important consequences on the 37 

planning and operation of water storage systems over long periods (Koutsoyiannis, 2005). Hurst 38 

phenomenon in hydrologic flow processes was later demonstrated convincingly by various 39 

researchers, including Eltahir (1996), Radziejewski and Kundzewicz (1997), Montanari et al. 40 

(1997), and Vogel et. al. (1998) among others. In order to model the Hurst phenomenon in river 41 

flows the fractional Gaussian noise (FGN), where the rescaled range for the time series of a flow 42 

process in a time interval [0, t] is proportional to tH for 0.5<H<1, was introduced by Mandelbrot 43 

and Wallis (1969). FGN model was later extended by Koutsoyiannis (2002) in order to model 44 

satisfactorily a range of time scales, including the conventional Brownian finite memory flow 45 

processes. Aside from the FGN models, physically-based models of the Hurst phenomenon were 46 

also developed by various authors, including Klemes (1974), Beran (1994) and Koutsoyiannis 47 

(2003). However, a physically-based model that explains the Hurst phenomenon explicitly in terms 48 

of the hydrologic process mechanisms is still missing. Yevjevich (1963, 1971) provided a plausible 49 

physical explanation for the Markovian structure of the annual river flows within a river basin by 50 

linking the annual evolution of the water storage in the basin to the exponential recession in 51 

baseflow of the basin runoff.  Meanwhile, baseflow in basin runoff is mainly due to unconfined 52 

aquifer flow to the neighbouring stream network of the basin. As shall be shown in a numerical 53 

example later in this paper, the conventional unconfined groundwater flow equation with integer 54 

powers does result in the hydraulic head of and the discharge from the aquifer to decay 55 

exponentially, that would result in the Markovian finite memory behaviour of the river outflow 56 

from the basin. Such exponentially decaying baseflow, while it can be explained by the mechanics 57 
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of the conventional unconfined groundwater flow governing equation with integer powers, may 58 

not produce the heavy tailed recession behaviour necessary for the long range dependence in river 59 

flows, the basic characteristic of the Hurst phenomenon, reported in annual river flow series in the 60 

above-mentioned studies. The conventional integer-power governing equations of the unconfined 61 

groundwater flow, having finite memory, are fundamentally in the Brownian domain, and may not 62 

model the heavy-tailed baseflow recession behaviour that would be necessary to model the Hurst 63 

phenomenon in annual river flows.  What is needed is a new structure for the governing equation 64 

of unconfined groundwater flow that can reproduce heavy tailed behaviour with time in the 65 

hydraulic head and aquifer discharge recession, that would then lead to heavy-tailed recession 66 

behaviour in the baseflow of the river basin. Furthermore, various researchers also reported long-67 

range dependence in groundwater level fluctuations (e.g., Li and Zhang, 2007; Yu et al., 2016; Tu 68 

et al., 2017; and the references therein). One possible way to reproduce heavy-tailed recession 69 

behavior in the hydraulic head and discharge of an unconfined aquifer is by means of a new 70 

governing equation of unconfined groundwater flow with fractional powers. Such behavior in an 71 

anisotropic confined groundwater aquifer with time and space fractional operators in its governing 72 

equation was recently demonstrated (Kavvas et al. 2017a, Tu et al. 2017). Accordingly, the 73 

reported study will follow a similar approach to develop a new governing equation for unconfined 74 

groundwater aquifers. 75 

Reporting  that conventional geometries cannot characterize groundwater flow in many 76 

fractured rock aquifers (Black et al., 1986), and the observed drawdown tends to be underestimated 77 

in early times and overestimated at later times by the conventional radial groundwater flow model 78 

(Van Tonder et al., 2001), Cloot and Botha (2006) developed a fractional governing equation for 79 

radial groundwater flow in integer time and fractional space in a uniform homogeneous aquifer. 80 

They used the Riemann-Liouville (RL) fractional derivative form (please see Podlubny, 1998 page 81 

62-77, for a comprehensive explanation of the RL fractional derivative) in their model formulation. 82 

Atangana and Bildik (2013), Atangana (2014),  and Atangana and Vermeulen (2014) then  83 

reformulated the fractional radial groundwater flow model of Cloot and Botha (2006) by the 84 

Caputo differentiation framework (to be detailed in the next section) , and reported better 85 

performance. Compared to the Riemann-Liouville derivative approach, the Caputo framework has 86 

a fundamental advantage of being able to accommodate physically-interpretable real-life initial 87 

and boundary conditions (Podlubny, 1998). In simple terms, a differential equation which is 88 

https://mail.google.com/mail/u/0/#m_2468033519592657254__ENREF_10
https://mail.google.com/mail/u/0/#m_2468033519592657254__ENREF_39
https://mail.google.com/mail/u/0/#m_2468033519592657254__ENREF_11
https://mail.google.com/mail/u/0/#m_2468033519592657254__ENREF_3
https://mail.google.com/mail/u/0/#m_2468033519592657254__ENREF_1
https://mail.google.com/mail/u/0/#m_2468033519592657254__ENREF_4
https://mail.google.com/mail/u/0/#m_2468033519592657254__ENREF_11
https://mail.google.com/mail/u/0/#m_2468033519592657254__ENREF_30
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based on Riemann-Liouville (RL) fractional derivative, requires the limit values of the RL 89 

fractional derivative for its initial and boundary values which have no known physical 90 

interpretation (Podlubny, 1998, page 78). Meanwhile, “Caputo derivatives take on the same form 91 

as for integer-order differential equations, i.e. contain the limit values of integer-order 92 

derivatives…” (Podlubny, 1998, page 79) incorporating the real world initial and boundary 93 

conditions into the solution of a fractional governing equation.  Atangana and Baleanu (2014) 94 

presented a new radial groundwater flow model in fractional time based on a new fractional 95 

derivative definition, "conformable derivative" (Khalil et al., 2014). Most recently, Su (2017) 96 

proposed a time-space fractional Boussinesq equation and he claimed this fractional equation is a 97 

general groundwater flow equation and can be applied to groundwater flow in both confined and 98 

unconfined aquifers. However, all of the aforementioned studies only presented the formulated 99 

fractional governing groundwater flow equations and no detailed derivations of these governing 100 

equations from the fundamental conservation principles were provided. 101 

Wheatcraft and Meerschaert (2008) derived the groundwater flow continuity equation in the 102 

fractional form by using the fractional Taylor series approximation. They further removed the 103 

linearity / piecewise linearity restriction for the flux and the infinitesimal control volume 104 

restriction. When developing the fractional continuity equation, the groundwater flow process was 105 

considered in fractional space but in integer time by Wheatcraft and Meerschaert (2008). They 106 

further assumed the same fractional power in every direction of the fractional porous media space. 107 

Furthermore, only the mass conservation was considered in their derivation, but not the fractional 108 

water flux equation. Mehdinejadiani et al. (2013) expanded the approach of Wheatcraft and 109 

Meerschaert (2008) to the derivation of a governing equation of groundwater flow in an 110 

unconfined aquifer in fractional space but in integer time. In their derivation, they used the 111 

conventional Darcy formulation for the water flux with integer spatial derivative while utilizing 112 

fractional spatial derivatives in their continuity equation.  113 

Olsen et al. (2016) pointed out that the derivations in Wheatcraft and Meerschaert (2008) and 114 

Mehdinejadiani et al. (2013) utilized the fractional Taylor series, as formulated by Odibat and 115 

Shawagfeh (2007), which utilized local Caputo derivatives. In order to expand the local Caputo 116 

derivatives in the above-mentioned studies, Olsen et al. (2016) utilized the fractional mean value 117 

theorem from Diethelm (2012) to develop a continuity equation of groundwater flow with left and 118 

right fractional nonlocal Caputo derivatives in fractional space but in integer time. Olsen et al. 119 

https://mail.google.com/mail/u/0/#m_2468033519592657254__ENREF_2
https://mail.google.com/mail/u/0/#m_2468033519592657254__ENREF_41
https://mail.google.com/mail/u/0/#m_2468033519592657254__ENREF_41
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(2016) did not address the water flux formulation in fractional space, and, hence, did not develop 120 

a complete governing equation of groundwater flow. They also did not address the multifractional 121 

spatial derivatives in order to address anisotropy within an aquifer. Around that time, Kavvas et 122 

al. (2017a) utilized the mean value formulation from Usero (2007), Odibat and Shawagfeh (2007) 123 

and Li et al. (2009) to derive a complete governing equation of transient groundwater flow in a 124 

confined, anisotropic aquifer with fractional time and multi-fractional space derivatives which 125 

addressed not only the continuity but also the water flux (motion) in fractional time-space and the 126 

effect of a sink/source term. By employing the above-mentioned fractional mean value 127 

formulations, Kavvas et al. (2017a) developed the governing equation of confined groundwater 128 

flow in fractional time-space in non-local form. 129 

 As mentioned above, unconfined groundwater flow is the fundamental component of the 130 

watershed runoff baseflow since it is the fundamental contributor to the network streamflow within 131 

a watershed during dry periods. As such, the behavior of unconfined groundwater flow is key to 132 

the physically-based understanding of the long memory in watershed runoff. Meanwhile, as will 133 

be seen in the following derivation of its governing equation, unconfined aquifer groundwater flow 134 

is uniquely different from the confined aquifer groundwater flow. The fundamental differences 135 

between the two aquifer flows is that while the flow in a confined aquifer is linear and 136 

compressible, the flow in an unconfined aquifer is nonlinear and incompressible due to the 137 

unconfined aquifer being phreatic, its top surface boundary being open to the atmosphere. 138 

Accordingly, hydrologists have developed unique governing equations of unconfined aquifer 139 

groundwater flow (Bear, 1979; Freeze and Cherry, 1979). Starting with the next section, first the 140 

continuity equation of transient unconfined groundwater flow within an anisotropic heterogeneous 141 

aquifer under a time-space varying sink/source will be developed in fractional time and fractional 142 

space. Then, this fractional continuity equation will be combined with a fractional groundwater 143 

motion equation to obtain a transient groundwater flow equation in fractional time-multifractional 144 

space within an anisotropic, heterogeneous unconfined aquifer.  145 

Analogous to the traditional governing groundwater flow  equations, as outlined by Freeze 146 

and Cherry (1979) and Bear (1979), the fractional  unconfined groundwater flow equations must 147 

have specific features (Kavvas et al., 2017a):  148 

i. In order for the governing equation to be prognostic, the form of the equation must be known 149 

completely from the outset.  150 
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ii. The fractional governing equations must be dimensionally consistent and be purely 151 

differential equations, containing only differential operators without difference operators.    152 

iii. As the fractional derivative powers go to integer values, the fractional unconfined 153 

groundwater flow equations must converge to the corresponding conventional integer-order 154 

governing equations.  155 

Within this framework, the governing equations of unconfined groundwater flow in fractional 156 

time and fractional space will be developed in the following. 157 

2. Derivation of the Continuity Equation for Transient Unconfined Groundwater Flow in a 158 

Heterogeneous Anisotropic Multi-Fractional Medium in Fractional Time 159 

To 𝛽-order the Caputo fractional derivative 𝐷𝑎
𝑘𝛽
𝑓(𝑥)  of a function f(x) may be defined as 160 

( Odibat and Shawagfeh, 2007; Podlubny, 1998; Usero, 2007, Li et al., 2009), 161 

 162 

𝐷𝑎
𝛽
𝑓(𝑥) =

1

𝛤(1−𝛽)
∫

𝑓`()

(𝑥−)𝛽

𝑥

𝑎
𝑑           0 < 𝛽 < 1,    𝑥 ≥ 𝑎    .           (1) 163 

where  represents a dummy variable in the equation.  164 

It was shown in Kavvas et al. (2017b) that one can obtain a 𝛽𝑥𝑖-order approximation (i=1,2) 165 

to a function 𝑓(𝑥𝑖) around 𝑥𝑖 - ∆𝑥𝑖 as  166 

 167 

𝑓(𝑥𝑖) = 𝑓(𝑥𝑖 − ∆𝑥𝑖) + 
(∆𝑥𝑖)

𝛽𝑥𝑖

𝛤(𝛽𝑥𝑖+1)
 𝐷

𝑥𝑖−∆𝑥𝑖

𝛽𝑥𝑖 𝑓(𝑥𝑖)     ; i=1,2. (2)  168 

In Equation (2), an analytical relationship between ∆𝑥𝑖 and (∆𝑥𝑖)
𝛽𝑥𝑖  (i=1,2) that will be universally 169 

applicable throughout the modelling domain is possible when the lower limit in the above Caputo 170 

derivative in equation (2) is taken as zero (that is, ∆𝑥𝑖 = 𝑥𝑖) for f(𝑥𝑖) =𝑥𝑖 (Kavvas et al. 2017b).  171 

Under the Dupuit approximation of horizontal flow streamlines (very small water table 172 

gradient) (Bear, 1979), the net mass flux through the control volume of an unconfined aquifer with 173 

a flat bottom confining layer, as depicted in Figure 1, that also has a sink/source mass flux 174 

𝜌𝑞𝑣∆𝑥1∆𝑥2, can be formulated as 175 

 176 
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[𝜌𝑄𝑥1(𝑥1, 𝑥2; 𝑡) − 𝜌𝑄𝑥1(𝑥1 − ∆𝑥1 , 𝑥2; 𝑡)]∆𝑥2 + [𝜌𝑄𝑥2(𝑥1, 𝑥2; 𝑡) − 𝜌𝑄𝑥2(𝑥1, 𝑥2 −177 

∆𝑥2; 𝑡)]∆𝑥1  −  𝜌𝑞𝑣∆𝑥1∆𝑥2                    (3) 178 

 179 

where 𝑄𝑥𝑖 is the discharge across a vertical plane of unit width in i-th direction, i = 1,2,  is the 180 

fluid density, and 𝑞𝑣 is the source/sink (recharge/leakage) per unit horizontal area. Then by 181 

combining equation (2) with equation (3) with ∆𝑥𝑖 =𝑥𝑖   (i=1,2), and expressing the resulting 182 

Caputo derivative 𝐷0
𝛽𝑥𝑖𝑓(𝑥𝑖) by  

𝜕
𝛽𝑥𝑖𝑓(𝑥𝑖)

(𝜕𝑥𝑖)
𝛽𝑥𝑖

 , (i=1,2) for convenience, yields the net mass flux 183 

through the control volume in Figure 1 to the orders of (∆𝑥1)
𝛽𝑥1   and   (∆𝑥2)

𝛽𝑥2 , as   184 

1

𝛤(𝛽𝑥1+1)
(

𝜕

𝜕𝑥1
)
𝛽𝑥1

(𝜌𝑄𝑥1(𝑥1, 𝑥2; 𝑡)) (∆𝑥1)
𝛽𝑥1∆𝑥2 +

1

𝛤(𝛽𝑥2+1)
(

𝜕

𝜕𝑥2
)
𝛽𝑥2

(𝜌𝑄𝑥2(𝑥1, 𝑥2; 𝑡)) ∆𝑥1 (∆𝑥2)
𝛽𝑥2 −  𝜌𝑞𝑣∆𝑥1∆𝑥2  

      (4)) 

  

where different powers for fractional space derivatives are utilized in different directions due to 185 

the anisotropy in the flow medium.  186 

 187 

Kavvas et al. (2017b) have shown that to 𝛽𝑥𝑖-order fractional increments in space in the i-th 188 

direction, i=1,2,  189 

(∆𝑥𝑖)
𝛽𝑥𝑖 =

𝛤(𝛽𝑥𝑖+1)𝛤(2−𝛽𝑥𝑖)

𝑥𝑖
1−𝛽𝑥𝑖

 ∆𝑥𝑖     ,  i=1,2.  

 

(5) 

Combining equations (5) and (4) yields for the net mass outflow through the control volume 190 

in Figure 1 as (to the order of (∆𝑥𝑖)
𝛽𝑥𝑖  , i=1,2),  191 

𝛤(2−𝛽𝑥1)

𝑥1
1−𝛽𝑥1

 (
𝜕

𝜕𝑥1
)
𝛽𝑥1

(𝜌𝑄𝑥1(𝑥̅; 𝑡)) ∆𝑥1∆𝑥2 +

 
𝛤(2−𝛽𝑥2)

𝑥2
1−𝛽𝑥2

(
𝜕

𝜕𝑥2
)
𝛽𝑥2

(𝜌𝑄𝑥2(𝑥̅; 𝑡)) ∆𝑥1∆𝑥2 −  𝜌𝑞𝑣∆𝑥1∆𝑥2,    𝑥̅  = (𝑥1 , 𝑥2).   

           (6)     

Denoting the water volume within the control volume in Figure 1 by Vw and using the concept 192 

of specific yield (effective porosity) Sy of a phreatic aquifer (Bear and Verruijt, 1987) 193 

𝑆𝑦 = 
∆𝑉𝑤

∆ℎ 

1

∆𝑥1∆𝑥2
  ,             (7) 194 
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where ∆𝑉𝑤 is the change in water volume in the control volume per change ∆ℎ in the hydraulic 195 

head (the elevation of the phreatic surface (water table) above the flat bottom of the aquifer ), the 196 

time rate of change of mass within the control volume in Figure 1 may be written as (Bear and 197 

Verruijt, 1987) 198 

𝑆𝑦(𝜌ℎ(𝑥̅;𝑡)− 𝜌ℎ(𝑥̅;𝑡−∆𝑡))

∆𝑡
 ∆𝑥1∆𝑥2              

(8)  

 

which can then be expressed in terms of the approximation (2) with respect to the time dimension 199 

as, 200 

 201 

𝑆𝑦

∆𝑡
[

∆𝑡𝛼

𝛤(𝛼+1)
 (

𝜕

𝜕𝑡
)
𝛼
(𝜌ℎ)] ∆𝑥1∆𝑥2            .   (9)  202 

  203 

To 𝛼-order fractional increments in time (Kavvas et al. 2017b) 204 

(∆𝑡)𝛼 =
𝛤(𝛼+1)𝛤(2−𝛼)

𝑡1−𝛼
 ∆𝑡      . (10) 

Substituting equation (10) into equation (9), one can obtain the time rate of change of mass in the 205 

control volume, as shown in Figure 1; 206 

 207 

𝑆𝑦
𝛤(2−𝛼)

𝑡1−𝛼
 (

𝜕

𝜕𝑡
)
𝛼

(𝜌ℎ) ∆𝑥1∆𝑥2 . (11) 

 208 

As the time rate of change of mass within the control volume, as shown in Figure 1, must be 209 

inversely proportional to the net mass flux passing through the control volume, one may combine 210 

equations (6) and (11) to obtain 211 

 212 

[
𝛤(2 − 𝛽𝑥1)

𝑥1
1−𝛽𝑥1

 (
𝜕

𝜕𝑥1
)
𝛽𝑥1

(𝜌𝑄𝑥1(𝑥̅; 𝑡)) + 
𝛤(2 − 𝛽𝑥2)

𝑥2
1−𝛽𝑥2

(
𝜕

𝜕𝑥2
)
𝛽𝑥2

(𝜌𝑄𝑥2(𝑥̅; 𝑡)) −  𝜌𝑞𝑣] ∆𝑥1∆𝑥2 = 213 

− 𝑆𝑦
𝛤(2−𝛼)

𝑡1−𝛼
 (

𝜕

𝜕𝑡
)
𝛼

(𝜌ℎ) ∆𝑥1∆𝑥2           (12)  214 

     215 

𝛤(2−𝛽𝑥1)

𝑥1
1−𝛽𝑥1

 (
𝜕

𝜕𝑥1
)
𝛽𝑥1

(𝜌𝑄𝑥1(𝑥̅; 𝑡)) + 
𝛤(2−𝛽𝑥2)

𝑥2
1−𝛽𝑥2

(
𝜕

𝜕𝑥2
)
𝛽𝑥2

(𝜌𝑄𝑥2(𝑥̅; 𝑡)) −  𝜌𝑞𝑣 = − 𝑆𝑦
𝛤(2−𝛼)

𝑡1−𝛼
 ( 𝜕
𝜕𝑡
)
𝛼
(𝜌ℎ)   (13) 216 
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for 0 < 𝛼, 𝛽
𝑥1
, 𝛽

𝑥2
< 1 , 𝑥̅ = (𝑥1 , 𝑥2, ). 217 

Within the framework of fluid incompressibility in the unconfined aquifer, equation (13) 218 

reduces further to 219 

 220 

𝛤(2 − 𝛽𝑥1)

𝑥1
1−𝛽𝑥1

 (
𝜕

𝜕𝑥1
)
𝛽𝑥1

(𝑄𝑥1(𝑥̅; 𝑡)) + 
𝛤(2 − 𝛽𝑥2)

𝑥2
1−𝛽𝑥2

(
𝜕

𝜕𝑥2
)
𝛽𝑥2

(𝑄𝑥2(𝑥̅; 𝑡)) − 𝑞𝑣 = − 𝑆𝑦
𝛤(2− 𝛼)

𝑡1−𝛼
 
𝜕𝛼ℎ

(𝜕𝑡)𝛼
 221 

 222 

𝛤(2 − 𝛽𝑥1)

𝛤(2 − 𝛼)
 
𝑡1−𝛼

𝑥1
1−𝛽𝑥1

(
𝜕

𝜕𝑥1
)
𝛽𝑥1

(𝑄𝑥1(𝑥̅; 𝑡)) + 
𝛤(2 − 𝛽𝑥2)

𝛤(2 − 𝛼)

𝑡1−𝛼

𝑥2
1−𝛽𝑥2

(
𝜕

𝜕𝑥2
)
𝛽𝑥2

(𝑄𝑥2(𝑥̅; 𝑡)) −
𝑡1−𝛼

𝛤(2 − 𝛼)
 𝑞𝑣223 

= − 𝑆𝑦  
𝜕𝛼ℎ

(𝜕𝑡)𝛼
 224 

                  (14) 225 

for 0 < 𝛼, 𝛽
𝑥1
, 𝛽

𝑥2
< 1, 𝑥̅ = (𝑥1 , 𝑥2, )  as the time-space fractional continuity equation of transient 226 

groundwater flow in an anisotropic unconfined aquifer with multi-fractional dimensions and in 227 

fractional time. 228 

Performing a dimensional analysis of equation (14) yields 229 

𝐿

𝑇𝛼
=

𝑇1−𝛼

 𝐿
1−𝛽𝑥1

1

𝐿
𝛽𝑥1

𝐿2

𝑇
= 

𝑇1−𝛼

 𝐿
1−𝛽𝑥2

1

𝐿
𝛽𝑥2

𝐿2

𝑇
=

𝑇1−𝛼

1

𝐿

𝑇
= 

𝐿

𝑇𝛼
  (15) 

where L denotes length and T denotes time. Also, 𝛼, 𝛽
𝑥1
𝑎𝑛𝑑 𝛽

𝑥2
 are respectively the fractional 230 

powers in time and x1 and x2 spatial dimensions. In equation (15), starting from the left-hand-side 231 

(LHS), the first term shows the final dimension of equation (14), the second term shows in detail 232 

the dimensions of the individual components of the first term on the LHS of equation (14), the 233 

third term shows in detail the dimensions of the individual components of the second term on the 234 

LHS of equation (14), the fourth term shows in detail the dimensions of the individual components 235 

of the third term on the LHS of equation (14), and the fifth and the last term shows in detail the 236 

dimensions of the individual components on the right-hand-side (RHS) of equation (14). Hence, 237 

the left-hand and right-hand sides of the continuity equation (14) for transient groundwater flow 238 

in an unconfined aquifer in multi-fractional space and fractional time are consistent as shown in 239 

equation (15). 240 

For 𝑛-1< 𝛼, 𝛽𝑥𝑖 < 𝑛 where n is any positive integer, as  𝛼 and 𝛽𝑥𝑖 → n, the Caputo fractional 241 

derivative of a function f(y) to order  𝛼 or 𝛽𝑥𝑖 (i = 1, 2) yields the standard n-th derivative of the 242 

function f(y) (Podlubny, 1998). Then when 𝛼 and 𝛽𝑥𝑖 → 1 (i = 1, 2), the continuity equation (14) 243 
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becomes the conventional continuity equation for transient groundwater flow in an unconfined 244 

aquifer:   245 

−𝑆𝑦
𝜕ℎ

𝜕𝑡
= 𝜕

𝜕𝑥1
(𝑄𝑥1(𝑥̅; 𝑡))+

𝜕

𝜕𝑥2
(𝑄𝑥2(𝑥̅; 𝑡)) −𝑞𝑣 . (16) 

3. Motion Equation (Specific Discharge Equation) in Fractional Multi-Dimensional 246 

Unconfined Aquifers 247 

Recently, Kavvas et al., (2017a, 2017b) derived a governing equation for water flux 248 

(specific discharge), 𝑞𝑥𝑖, (i = 1, 2, 3) in a saturated or unsaturated porous medium with fractional 249 

dimensions in the form, 250 

𝑞𝑖(𝑥̅, 𝑡) =  −𝐾𝑠,𝑥𝑖(𝑥̅)
𝛤(2−𝛽𝑥𝑖)

𝑥𝑖
1−𝛽𝑥𝑖

 
𝜕
𝛽𝑥𝑖ℎ

(𝜕𝑥𝑖)
𝛽𝑥𝑖

 , i = 1,2,3;   𝑥̅ = (𝑥1 , 𝑥2, 𝑥3 ). (17) 

where 𝐾𝑠,𝑥𝑖(𝑥̅) is the saturated hydraulic conductivity in the i-th spatial direction (i=1,2,3). 251 

Meanwhile, under the Dupuit approximation of essentially horizontal unconfined aquifer flow 252 

(water table slope very small) (Bear, 1979), referring to Figure 1, the discharge per unit width in 253 

the i-th direction (i = 1,2) can be expressed as  254 

 255 

𝑄𝑥𝑖(𝑥̅, 𝑡) = ℎ𝑞𝑖(𝑥̅, 𝑡),  i = 1,2      ;   𝑥̅ = (𝑥1 , 𝑥2, ).         (18)  256 

 257 

Then combining equations (18) and (17) results in  258 

 259 

𝑄𝑥𝑖(𝑥̅, 𝑡) =  −𝐾𝑠,𝑥𝑖(𝑥̅)
𝛤(2−𝛽𝑥𝑖)

𝑥𝑖
1−𝛽𝑥𝑖

ℎ
𝜕
𝛽𝑥𝑖ℎ

(𝜕𝑥𝑖)
𝛽𝑥𝑖

    , i = 1,2;  𝑥̅ = (𝑥1 , 𝑥2, )     (19) 260 

 261 

as the governing equation of groundwater motion within an unconfined aquifer with a flat bottom 262 

confining layer. In equation (19) h is the unconfined aquifer thickness or the phreatic surface 263 

elevation above the bottom confining layer. 264 

A dimensional analysis on equation (19) yields L2/T for the units of both the left-hand-side 265 

(LHS) and the RHS of the equation, establishing its dimensional consistency. 266 
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Applying the above-mentioned result of Podlubny (1998) on the convergence of a fractional 267 

derivative to a corresponding integer derivative for 𝛽𝑥𝑖  → 1 (i = 1, 2) reduces the fractional motion 268 

equation (19) for unconfined groundwater flow to the conventional equation (Bear, 1979): 269 

𝑄𝑥𝑖(𝑥̅, 𝑡) =  −𝐾𝑠,𝑥𝑖(𝑥̅)ℎ
𝜕ℎ(𝑥̅,𝑡)

𝜕𝑥𝑖
 , i= 1,2  (20) 

for the case of integer spatial dimensions. As such, the fractional motion equation (19) for 270 

unconfined groundwater flow in fractional spatial dimensions is consistent with the conventional 271 

motion equation for the integer spatial dimensions.     272 

4. The Complete Equation for Transient Unconfined Groundwater Flow in Multi-Fractional 273 

Space and Fractional Time 274 

Combining the fractional motion equation (19) of groundwater flow in an unconfined aquifer 275 

with the fractional continuity equation (14) of unconfined groundwater flow results in the equation, 276 

 277 

𝑆𝑦  
𝜕𝛼ℎ

(𝜕𝑡)𝛼
=

𝛤(2−𝛽𝑥1)

𝑥1
1−𝛽𝑥1

 (
𝜕

𝜕𝑥1
)
𝛽𝑥1

(𝐾𝑠,𝑥1(𝑥̅)
𝑡1−𝛼

𝑥1
1−𝛽𝑥1

𝛤(2−𝛽𝑥1)

𝛤(2−𝛼)
 ℎ

𝜕𝛽𝑥1ℎ

(𝜕𝑥1)
𝛽𝑥1

 ) +           278 

  
𝛤(2−𝛽𝑥2)

𝑥2
1−𝛽𝑥2

(
𝜕

𝜕𝑥2
)
𝛽𝑥2

(𝐾𝑠,𝑥2(𝑥̅)
𝑡1−𝛼

𝑥2
1−𝛽𝑥2

𝛤(2−𝛽𝑥2)

𝛤(2−𝛼)
ℎ

𝜕𝛽𝑥2ℎ

(𝜕𝑥2)
𝛽𝑥2

 ) +
𝑡1−𝛼

𝛤(2−𝛼)
 𝑞𝑣  (21)   279 

 280 

for 0 < 𝛼, 𝛽
𝑥1
, 𝛽

𝑥2
< 1, 𝑥̅ = (𝑥1 , 𝑥2, )  as the time-space fractional governing equation of transient 281 

unconfined groundwater flow in an anisotropic medium. 282 

Performing a dimensional analysis of Equation (21) yields  283 

𝐿

𝑇𝛼
=

1

 𝐿
1−𝛽𝑥1

1

𝐿
𝛽𝑥1

𝐿

𝑇

𝑇1−𝛼

𝐿
1−𝛽𝑥1

𝐿
𝐿

𝐿
𝛽𝑥1

= 
1

 𝐿
1−𝛽𝑥2

1

𝐿
𝛽𝑥2

𝐿

𝑇

𝑇1−𝛼

𝐿
1−𝛽𝑥2

𝐿2

𝐿
𝛽𝑥2

=
𝑇1−𝛼

1

𝐿

𝑇
= 

𝐿

𝑇𝛼
   (22) 

where L denotes length and T denotes time. Hence, the left-hand and right-hand sides of the 284 

governing equation (21) for transient groundwater flow in an unconfined aquifer in multi-285 

fractional space and fractional time are consistent. 286 

Specializing the above-discussed result of Podlubny (1998) to n = 1, for 𝛼 and 𝛽𝑥𝑖 → 1 ( i = 287 

1, 2) reduces the governing fractional equation (21) to the conventional governing equation for 288 

transient groundwater flow in an unconfined aquifer (Bear, 1979):   289 
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𝑆𝑦
𝜕ℎ

𝜕𝑡
=

𝜕

𝜕𝑥1
(𝐾𝑠,𝑥1(𝑥̅)ℎ

𝜕ℎ(𝑥̅,𝑡)

𝜕𝑥1
) +

𝜕

𝜕𝑥2
( 𝐾𝑠,𝑥2(𝑥̅)ℎ

𝜕ℎ(𝑥̅,𝑡)

𝜕𝑥2
 ) +𝑞𝑣    (23) 290 

 291 

5. Numerical application  292 

 293 
To demonstrate the skills of the proposed fractional governing equation of unconfined aquifer 294 

groundwater flow, two numerical applications are performed using the proposed fractional 295 

governing equation. The first application follows the physical setting of an example from Wang 296 

and Anderson (1995), as depicted in Figure 2. The numerical problem of seepage through a dam 297 

under a sudden change in the water surface elevation at the downstream section of the dam is 298 

modified based on seepage through a dam, Page 53 and Problem 4.4 (a), Page 89 in Wang and 299 

Anderson (1995), as shown in Figure 2. The water seepage through the dam’s body may be 300 

interpreted as one-dimensional groundwater flow through an unconfined aquifer. The unconfined 301 

flow system locates the top boundary of the saturated zone in an earthen dam and the bottom of 302 

the dam rests on impermeable rock. For this example, the unconfined aquifer length L is 100 m. 303 

The initial water level in the upstream and downstream sections of the dam and through the dam’s 304 

body is 16 m. Then immediately after the initial time, the water level at the downstream section of 305 

the dam is suddenly dropped to 11 m and remains as 11 m afterwards. The unconfined aquifer 306 

parameters are S = 0.2 for the specific yield and K=0.002 m/min for the hydraulic conductivity, 307 

respectively. The analytical solution for this problem at the steady-state is: 308 

ℎ = √ℎ2
2−ℎ1

2

𝐿
𝑥 + ℎ1

2                        (24) 309 

where h is the depth of the unconfined groundwater surface from the bottom layer; L is the aquifer 310 

length; x is the distance from the upstream location of the dam body, and h1 and h2 are as shown 311 

in Figure 2. 312 

In Figures 3(a) and 3(b), the normalized groundwater head and normalized groundwater 313 

discharge per unit width at location x=L/2 through time under different fractional power values 314 

are shown. Meanwhile, Figure 3(c) shows the normalized groundwater head at the time instance 315 

t=40,000 min as a function of location throughout the dam’s body, and the analytical solution of 316 

the standard governing equation of unconfined groundwater flow when 𝛽𝑥 = 𝛼 = 1 at the steady 317 

state. The considered fractional derivative powers in space and time are 𝛽𝑥 = 𝛼 =318 

0.7, 0.8, 0.9, 1.0. As can be seen from Figure 3(a), the hydraulic head recession in time slows down 319 
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with the decrease of 𝛽𝑥 = 𝛼 from 1. The hydraulic heads in Figure 3(a) have heavier tails as orders 320 

of time and space fractional derivative powers decrease from 1 towards 0.7. Furthermore, 321 

normalized groundwater discharge per unit width in Figure 3(b) goes to 1 in a slower rate as 322 

fractional derivative powers decrease from 1 towards 0.7. Meanwhile, Figure 3(c) shows that the 323 

numerical solution of the governing fractional equation at 𝛽𝑥 = 𝛼 = 1.0 and at a very long time 324 

after the initial condition, matches perfectly the steady state analytical solution (24) of the standard 325 

equation (23) with the specified initial/boundary conditions.    326 

The second application deals with a transient unconfined groundwater flow from a hillslope 327 

toward a stream (Figure 4). The upstream boundary plane separates the region of flow from the 328 

adjacent hillslope that feeds the adjacent tributary system, therefore 
𝜕ℎ

𝜕𝑥
= 0 (Freeze, 1978) at x=0. 329 

The normalized initial groundwater head in the unconfined aquifer, and the normalized 330 

groundwater head at time t=60,000 min through the length of the aquifer under different fractional 331 

derivative powers are shown in Figure 5(a). The normalized groundwater head and normalized 332 

groundwater discharge per unit width at x=L/2 through time under different fractional derivative 333 

powers are demonstrated in Figures 5(b) and 5(c).  As can be seen from Figures 5(b)-(c), the 334 

hydraulic head and groundwater discharge recession in time slows down with the decrease of 𝛽𝑥 =335 

𝛼 from 1. The hydraulic heads and groundwater discharges in Figures 5(b)-(c) have heavier tails 336 

as orders of time and space fractional derivative powers decrease from 1 towards 0.7.  337 

6. Discussion 338 

From the standard governing equation (23) of unconfined groundwater flow in integer time-339 

space the saturated hydraulic conductivity may be interpreted as a diffusion coefficient for the 340 

nonlinear diffusion of groundwater in an unconfined aquifer. The basic difference between 341 

confined and unconfined groundwater flow is that the former can be interpreted as a linear 342 

diffusion of groundwater while the latter is a nonlinear diffusion of groundwater within an 343 

aquifer. Similar to saturated hydraulic conductivities in equation (26) in Kavvas et al., (2017a) 344 

for the fractional confined aquifer groundwater flow, the saturated hydraulic conductivities in 345 

equation (21) above, which governs fractional unconfined aquifer groundwater flow, are 346 

modulated by the ratios of fractional time to fractional space,  
𝑡1−𝛼

𝑥𝑖
1−𝛽𝑥𝑖

  , i= 1,2. In other words, the 347 

confined and unconfined groundwater diffusions in fractional time-space are modulated by the 348 

above fractional time-space ratios.   349 
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Numerical application demonstrated that as the powers of the space and time fractional 350 

derivatives decrease from 1, the recession rate of the nondimensional groundwater hydraulic 351 

head slows down when compared to the case by the conventional governing equation (i.e., with 352 

integer order derivatives). This behavior also indicates the modulation of the nonlinear diffusion 353 

of the groundwater by the fractional powers of time and space.  354 

As mentioned in the Introduction section, unconfined groundwater flow is the fundamental 355 

component of the watershed runoff baseflow since it is the fundamental contributor to the 356 

streamflow network within a watershed during dry periods. As such, the behavior of unconfined 357 

groundwater flow is key to the physically-based understanding of the long memory in watershed 358 

runoff. As seen from the numerical applications in Figures 3 and 5, the powers of the fractional 359 

derivatives in time and space can modulate the speed of the groundwater discharge evolution. 360 

Hence, they can modulate the memory of the unconfined aquifer flow, which, in turn, can modulate 361 

the memory of the watershed baseflow. Meanwhile, the Caputo derivative, as defined in its special 362 

form 𝐷0
𝛽𝑥𝑖𝑓(𝑥𝑖) in space in this study, was shown by Kavvas and Ercan (2017) and Ercan and 363 

Kavvas (2017) to be a nonlocal quantity where the effect of the boundary conditions on the 364 

groundwater flow within the flow domain can have long spatial memories with the decrease in the 365 

powers of the spatial fractional derivatives from unity. Similarly, it was shown by Kavvas et al. 366 

(2017a) that the Caputo derivative in time,  𝐷0
𝛼𝑓(𝑡), as defined in this study, is nonlocal in time, 367 

and can carry the effect of initial conditions on the groundwater flow for long times as the power 368 

in the time fractional derivative decreases from 1. Therefore, the fractional governing equation of 369 

unconfined groundwater flow in fractional time and multi-fractional space has the potential to 370 

describe the long memory characteristics of baseflow within a watershed. This important topic 371 

shall be explored in the near future.  372 

   373 

7. Conclusion 374 

 375 

A dimensionally-consistent fractional governing equation of transient unconfined aquifer 376 

groundwater flow was derived within fractional differentiation framework. After developing a 377 

fractional continuity equation, a previously-developed dimensionally consistent equation for water 378 

flux in unsaturated/saturated porous media was combined with the Dupuit approximation to obtain 379 

an equation for groundwater motion in multi-fractional space in unconfined aquifers. Combining 380 
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the fractional continuity and motion equations, the governing equation of transient unconfined 381 

aquifer groundwater flow in a multi-fractional medium in fractional time was then obtained. To 382 

demonstrate the skills of the proposed fractional governing equation of unconfined aquifer 383 

groundwater flow, two numerical applications were performed. As demonstrated in the numerical 384 

application results, the orders of the fractional space and time derivatives modulate the speed of 385 

groundwater discharge and groundwater flow evolution, slowing the process with decrease in the 386 

powers of the fractional derivatives from 1. It is also shown that the proposed dimensionally 387 

consistent fractional governing equations approach to the corresponding conventional equations 388 

as the fractional orders of the derivatives go to 1. 389 

 390 

Data availability.  391 

The data used in this article can be accessed by contacting the corresponding author. 392 

Appendix A. Numerical Solution for 1-dimensional case 393 

One-dimensional time-space fractional groundwater flow in the unconfined aquifer with no 394 

recharge or leakage can be written as: 395 

𝑆𝑦  
𝜕𝛼ℎ

(𝜕𝑡)𝛼
=

𝛤(2−𝛽)

𝑥1−𝛽
 (

𝜕

𝜕𝑥
)
𝛽

(𝐾𝑠(𝑋̅)
𝑡1−𝛼

𝑥1−𝛽
𝛤(2−𝛽)

𝛤(2−𝛼)
 ℎ

𝜕𝛽ℎ

(𝜕𝑥)𝛽
 )                                                            (A1)   396 

 397 

The fractional time and space derivatives are estimated in the same manner as that in Tu et al. 398 

(2018), where the Caputo fractional space and time derivatives in the fractional governing equation 399 

are estimated by the numerical algorithm in Odibat (2009) and the algorithm reported by Murio 400 

(2008), respectively.  The Caputo fractional space derivative Dx
β
g(x)|

x=L
 at the location L for m-1 < 401 

β ≤ m ( mÎN ) of a given space interval [0, L] is estimated as:   402 

D
x

b g x( )
x=L

»
DLm-b

G m + 2 - b( )
N -1( )

m-b+1

- N - m + b -1( )DLm-bé
ëê

ù
ûú

g
m( )

0( ) + g
m( )

L( ){
+ N - i +1( )

m-b+1

- 2 N - i( )
m-b+1

+ N - i -1( )
m-b+1é

ëê
ù
ûú

g
m( )

l
i( )

i=1

N -1

å
ü
ý
þ

 
(A2) 

where N is the number of equally spaced subintervals on [0, L]; the subinterval length is ΔL=L/N, 403 

and li = iΔL, for i =0,1,2,…,N. 404 
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The Caputo fractional time derivative D
t

a g x,t( )
x=l

i
,t=t

n

 for 0 1   on a given time interval 405 

[0, T], which is divided into M equal subintervals with a time window of Δt = T/M by using the 406 

nodes ,  0,  1,  2,...,  ,nt n t n M=  =  can be approximated as: 407 

D
t

a g
i

n =
Dt-a

G 2 -a( )
k1-a - k -1( )

1-aé
ëê

ù
ûú

g
i

n-k+1 - g
i

n-k( )
k=1

n

å  (A3) 

Then the 1-D governing equation in fractional time and space for Cartesian groundwater flow in 408 

an unconfined aquifer can be discretized as: 409 

For n = 1, 410 

h
i

n = h
i

n-1 +
t

n

1-a

S
y
Dt-a

G 2 - b( )
l
i

1-b
G

i

n-1  (A4) 

For n ≥ 2, 411 

  

h
i

n = h
i

n-1 +
t

n

1-a

S
y
Dt-a

G 2 - b( )
l
i

1-b
G

i

n-1 - k1-a - k -1( )
1-aé

ëê
ù
ûú

h
i

n-k+1 - h
i

n-k( )
k=2

n

å  (A5) 

where 

  

G =
¶

¶x

æ

èç
ö

ø÷

b

K
s

X( )
G 2 - b( )

x1-b
h
¶b h

¶xb

é

ë
ê
ê

ù

û
ú
ú
 and the space and t ime fractional 412 

derivatives in G are estimated as in Equations (A2) and (A3).  413 
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 522 

Figure 1. The mass flux through the control volume of an unconfined aquifer. 523 
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 527 

Figure 2. The sketch of numerical application 1: Water seepage through a dam’s body as an 528 
unconfined groundwater flow 529 
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 533 
a )  

 

b )  

 

c )  

 

Figure 3. Results for numerical application 1: (a) The normalized groundwater head at x=L/2 534 
through time under different fractional derivative powers; (b) The normalized groundwater 535 
discharge per unit width at x=L/2 through time under different fractional derivative powers; t is 536 
time and the simulation time T is 120,000 min; (c) The normalized groundwater head at t=40,000 537 
min through length of the aquifer (through the body of the dam) and the analytical solution of the 538 
conventional governing equation of unconfined groundwater flow when 𝛽𝑥 = 𝛼 = 1 at the steady 539 
state. 540 
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 543 
Figure 4. The sketch of numerical application 2: The downstream groundwater head is fixed at 11 544 
m and the initial upstream groundwater head is 16 m. 545 
  546 
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 547 
a )  

 

b )  

 

c )  

 

Figure 5. Results for numerical application 2: (a) The normalized initial groundwater head in the 548 
unconfined aquifer, and the normalized groundwater head at time t=60,000 min through length of 549 
the aquifer under different fractional derivative powers; (b) The normalized groundwater head at 550 
x=L/2 through time under different fractional derivative powers; (c) The normalized groundwater 551 
discharge per unit width at x=L/2 through time under different fractional derivative powers; t is 552 
time and the simulation time T is 60,000 min. 553 
 554 
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