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Abstract. Earth System Models (ESMs) are invaluable tools to study the climate system’s response to specific greenhouse

gas emission pathways. Large single-model initial-condition and multi-model ensembles are used to investigate the range of

possible responses and serve as input to climate impact and integrated assessment models. Thereby, climate signal uncertainty

is propagated along the uncertainty chain and its effect on interactions between humans and the Earth system can be quanti-

fied. However, generating both single-model initial-condition and multi-model ensembles is computationally expensive. In this5

study, we assess the feasibility of geographically-explicit climate model emulation, i.e., of statistically producing large ensem-

bles of land temperature field time series that closely resemble ESM runs at a negligible computational cost. For this purpose,

we develop a modular emulation framework which consists of (i) a global mean temperature module, (ii) a local temperature re-

sponse module, and (iii) a local residual temperature variability module. Based on this framework, MESMER, a Modular Earth

System Model Emulator with spatially Resolved output, is built. We first show that to successfully mimic single-model initial-10

condition ensembles of yearly temperature from 1870 to 2100 on grid-point to regional scales with MESMER, it is sufficient

to train on a single ESM run, but separate emulators need to be calibrated for individual ESMs given fundamental inter-model

differences. We then emulate 40 climate models of the Coupled Model Intercomparison Project Phase 5 (CMIP5) to create a

”superensemble”, i.e., a large ensemble which closely resembles a multi-model initial-condition ensemble. The thereby emerg-

ing ESM-specific emulator parameters provide essential insights on inter-model differences across a broad range of scales and15

characterize core properties of each ESM. Our results highlight that, for temperature at the spatio-temporal scales considered

here, it is likely more advantageous to invest computational resources into generating multi-model ensembles rather than large

single-model initial-condition ensembles. Such multi-model ensembles can be extended to superensembles with emulators like

the one presented here.
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1 Introduction

The range of simulated climate responses to external radiative forcing is affected by both internal variability and inter-model

differences (Hawkins and Sutton, 2009; Deser et al., 2012; Taylor et al., 2012). While inter-model uncertainty is typically

accounted for by considering simulations from several climate models (Meehl et al., 2007; Taylor et al., 2012; Eyring et al.,

2016), uncertainty due to internal climate variability is often quantified through running the same climate model a number of25

times with slightly different initial conditions (Deser et al., 2012; Fischer et al., 2013; Kay et al., 2015; Leduc et al., 2019).

As climate model ensembles are inherently expensive to run, there is an interest in approximating Earth System Model

(ESM) output by computationally cheap emulators. In the field of climate science, the term emulator is used for a variety

of statistical models which learn from existing runs of complex climate models to infer properties of runs which have not

been generated yet. This makes it possible to explore the phase space at a lower computational cost. ESM emulators target30

different aspects of the climate system. For example, some emulators focus on the impacts of sub-grid scale parameterizations

(Rougier et al., 2009; Williamson et al., 2013). Others target the effect of greenhouse gas emission scenarios on global mean

temperature (Meinshausen et al., 2011; Goodwin, 2016) or on regional mean climate fields (Santer et al., 1990; Tebaldi and

Arblaster, 2014; Tebaldi and Knutti, 2018). There are also emulators for regional-scale internal climate variability (Castruccio

and Genton, 2016; Alexeeff et al., 2018; Link et al., 2019). Recently, first attempts have been made to emulate the full dynamics35

of simple general circulation models (Scher, 2018; Scher and Messori, 2019).

In this study, the term emulator is used to refer to computationally cheap statistical tools which generate additional realiza-

tions of land temperature field time series for a specific greenhouse gas emission pathway at a yearly resolution. The presented

emulator thus produces realizations which closely resemble initial-condition ensemble members of the considered ESMs. In

the context of large multi-model ensembles, our computationally cheap emulator can be used to produce look-alikes of large40

initial-condition ensembles for every model within the multi-model ensemble resulting in a ”superensemble”, i.e., a large

ensemble which closely resembles a multi-model initial-condition ensemble.

To build this statistical temperature emulator, an overarching modular framework is proposed and put into context of previous

work in Sect. 2. The employed data and terminology is described in Sect. 3, and the specific implementation of the framework

is introduced in Sect. 4. To visualize the characteristics and capabilities of the emulator, detailed results are shown for four45

example ESMs in Sect. 5, before applying the emulator to the large CMIP5 (Coupled Model Intercomparison Project Phase

5, Taylor et al., 2012) multi-model ensemble containing 40 climate models in Sect. 6. In Sect. 7, the results are discussed and

finally, in Sect. 8, the conclusions and an outlook are provided.

2 A framework for end-to-end climate model emulation

We propose an additive framework for temperature emulation at the yearly scale for a specific greenhouse gas emission pathway50

which can be summarized as

Ts,t = f(T globt ) + ηs,t, (1)
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where the local temperature Ts,t at grid point s and time t is defined as a response to the global mean temperature T globt ,

indicated by the function f(), and a stochastic local residual temperature variability term ηs,t. Contributions from physical

feedbacks other than the ones captured within the global mean temperature signal are thus neglected. The assumption of an55

underlying additivity is in line with frequently employed approaches in uncertainty analysis in climate science (Hawkins and

Sutton, 2009) and in climate change detection and attribution studies (Allen and Stott, 2003).

Our framework requires three modules: a global mean temperature module, a module for the grid-point level temperature

response to the global mean temperature, and a local residual temperature variability module. In the following, we place

existing literature within these modules before discussing the connections to our emulator. As this study is primarily concerned60

with temperature, we focus solely on this variable in our literature review. However, several of the referred studies treat also

additional variables such as precipitation (e.g., Tebaldi and Arblaster, 2014; Seneviratne et al., 2016; Wartenburger et al., 2017)

or cloud cover (e.g., Osborn et al., 2016).

2.1 Global mean temperature module

Global mean temperature is often an output of computationally efficient simple energy-balance climate models (Meinshausen65

et al., 2011; Goodwin, 2016). While such models provide an estimate of the global mean temperature trend, they do not produce

interannual global mean temperature variability. To obtain an ensemble of global mean temperature variability, statistical

models which account for temporal autocorrelation can be used (Brown et al., 2015).

2.2 Local temperature response module

Pattern scaling is a frequently employed approach to relate local temperature to global mean temperature and is also used to70

emulate warming patterns across emission scenarios (Santer et al., 1990; Mitchell, 2003; Tebaldi and Arblaster, 2014). It was

originally introduced by Santer et al. (1990) and different implementations exist (Mitchell, 2003). Most often, temperature

fields are averaged over a late 21st century multi-decadal time period and the associated average global mean temperature is

obtained (Tebaldi and Arblaster, 2014). This pattern is then linearly interpolated to a desired global mean temperature. An

alternative is to extract the pattern from a transient simulation at the time when the simulation reaches the desired global mean75

temperature (Herger et al., 2015; Seneviratne et al., 2016; King et al., 2017). Other approaches include carrying out a linear

regression (Lynch et al., 2017) or fitting a linear mixed-effect model (Alexeeff et al., 2018) to global mean temperature at each

grid point individually. The most important assumption underlying pattern scaling is that local mean temperatures are linearly

related to global mean temperature and that this relationship is consistent across forcing scenarios. For surface temperature on

land this assumption is satisfactorily met (Mitchell, 2003; Tebaldi and Arblaster, 2014; Seneviratne et al., 2016; Wartenburger80

et al., 2017; Osborn et al., 2018). However, for strong mitigation scenarios and under strong aerosol forcing, pattern scaling

is less accurate (May, 2012; Levy et al., 2013). Additionally, it is assumed that external forcing and internal variability are

independent which may not always be true (Lopez et al., 2014).

More complex local response emulation methods are rare and often directly conditioned on CO2 concentration profiles

instead of global mean temperature (Castruccio et al., 2014; Holden and Edwards, 2010). For instance, it has been proposed to85
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employ past trajectories of atmospheric CO2 to model regional temperatures with an infinite distributed lag model to capture

non-linear behaviour in spatial patterns for regional-scale emulation (Castruccio et al., 2014) and within global space-time

models (Castruccio and Stein, 2013). Other authors use singular value decomposition to emulate decadal temperature fields

across scenarios while accounting for complex spatio-temporal feedbacks (Holden and Edwards, 2010; Holden et al., 2014).

While the focus is usually set on emulating the pattern associated with the global mean temperature trend, patterns associated90

with physical modes of variability such as the El Niño Southern Oscillation and the Pacific Decadal Oscillation can additionally

be derived (McKinnon and Deser, 2018).

2.3 Local residual temperature variability module

Several approaches exists to emulate local residual temperature variability based on observations and climate model simulations

(Castruccio and Stein, 2013; Osborn et al., 2016; McKinnon et al., 2017; Alexeeff et al., 2018; Link et al., 2019). Observations95

can be employed to avoid climate model biases but are limited by rather short observational records when deriving the local

temperature variability properties (Osborn et al., 2016; McKinnon et al., 2017; McKinnon and Deser, 2018). The simplest

approach is to detrend observed temperature time series and obtain additional realizations by shifting the starting date of the

time series (Osborn et al., 2016). More realizations have been generated by resampling spatial fields of detrended observed

local temperature variability in blocks of two years (McKinnon et al., 2017). The approach was later refined to explicitly100

account for physical modes of variability to further reduce temporal autocorrelation in the resampled fields (McKinnon and

Deser, 2018).

When employing ESMs instead, longer time series and multiple realizations are available to derive the statistical properties

of the local residual temperature variability. Several authors fit autoregressive (AR) models to a set of climate model runs

to account for temporal autocorrelation when emulating local residual temperature variability (Castruccio and Stein, 2013;105

Castruccio et al., 2014; Castruccio and Genton, 2016; Bao et al., 2016). Thereby, the spatial dependence in the innovation terms

of the AR models can be considered by parameterizing their covariance structure with a Matérn covariance function (Castruccio

and Stein, 2013; Castruccio and Genton, 2016; Bao et al., 2016). Alternatively, detrended ESM runs can be decomposed into

their principal components and their phases can be randomly perturbed to generate additional realizations of local residual

temperature variability (Link et al., 2019).110

All approaches listed so far rely on the assumption that local residual temperature variability is stationary in time which is

known not to be fulfilled everywhere. Olonscheck and Notz (2017) and references therein provide a comprehensive overview

on possible changes in temperature variability in the historical time period and the business-as-usual greenhouse gas emission

scenario for the large CMIP5 multi-model ensemble. They find that the strongest and most likely changes will occur over oceans

but also point out land regions where variability is projected to change in the future. During the historical time period, they115

identify only weak changes in the variability. To account for such temporal non-stationarities, it has been proposed to resample

detrended temperature fields of large single-model initial-condition ensembles within a certain window size around a global

mean temperature level (Alexeeff et al., 2018). To enlarge the number of fields to sample from, a method has additionally been

developed to stochastically emulate spatially non-stationary Gaussian fields with a LatticeKrig model (Nychka et al., 2018).
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Table 1. Terms used to refer to different climate model runs throughout this study.

Name Description Application Figures

Training run
Climate model run (1870 – 2100) used to calibrate the

emulator parameters

- emulator calibration

- emulator evaluation in terms of fitting the training run

3, 7, 8, 9, 10,

11, 12

Test run

Independent initial-condition ensemble member

(1870 – 2100) not used to calibrate the emulator

parameters

- emulator evaluation in terms of mimicking a climate model

initial-condition ensemble

4, 5, 6, 8, 9, 10,

11, 12

2.4 This study120

While most studies focus on one or two of the modules required to mimic an initial-condition ensemble, this study proposes a

framework which incorporates all three components. Since only 12 out of 40 CMIP5 models provide several initial-condition

members, it is essential to test to what extent an emulator trained on a single run is able to approximate both its training run

and additional independent initial-condition members. We thus emulate the full CMIP5 multi-model ensemble based on single

training runs and create a superensemble which accounts for inter-model uncertainty across all 40 climate models. To the best125

of our knowledge, this study is the first to implement an emulator which mimics an initial-condition ensemble based on a single

training run and applies it to such a large multi-model ensemble.

3 Data and terminology

3.1 Data sources and terminology

Runs from 40 CMIP5 climate models (Taylor et al., 2012) covering the historical time period (1870–2005) and the business-130

as-usual greenhouse gas emission scenario RCP8.5 (2006–2100, Riahi et al., 2011) are employed. To calibrate the emulator,

a single run per climate model is used. This run is referred to as the training run (Table 1). For 12 out of 40 CMIP5 climate

models more than one initial-condition member is available. These additional independent initial-condition ensemble members

are referred to as test runs (Table 1). A special focus is set on four ESMs with differing model genealogies (Knutti et al., 2013),

namely CanESM2, CESM1(CAM5), HadGEM2-ES, and MPI-ESM-LR. All climate models, the associated modeling groups,135

and the number of initial-condition members employed here are listed in Table A1.

Additionally, stratospheric aerosol optical depth is used as a proxy for volcanic activity during the historical time period.

This aerosol dataset was originally described by Sato et al. (1993) and later updated to cover the considered time period.

3.2 Data processing

Here, we focus on surface temperature anomaly at a yearly resolution. Temperature fields were bilinearly interpolated onto a140

2.5° x 2.5°grid resulting in 3043 land grid points for each climate model. Yearly mean temperatures were computed at each grid

5



point and the average over the reference period of 1870–1899 in the training run at the respective grid points was subtracted.

In the text, for simplicity reasons, we use the term ”temperature” when referring to ”yearly surface temperature anomaly”. For

the stratospheric aerosol optical depth, the globally averaged yearly time series is employed.

Whenever regional averages are shown, area-weighted means are referred to. The regions employed in this study are145

26 SREX land regions (Seneviratne et al., 2012) as well as global mean and global land mean (Fig. 1). While global mean

refers to the average across all grid points, global land mean refers to the average across all land grid points excluding Antarc-

tica.

ALA CGI

WNA
CNA ENA

CAM

AMZ
NEB

WSA
SSA

NEU

CEU

MED

SAH

WAF EAF

SAF

NAS

WAS
CAS TIB

EAS

SAS

SEA

NAU

SAU

SREX region abbreviations

Figure 1. Map of the SREX regions and their abbreviations. The considered land grid points are shown in grey.

4 Methods

4.1 Framework implementation150

4.1.1 General approach

We follow the framework introduced in Sect. 2 to emulate temperature fields at the yearly scale for a specific greenhouse gas

emission pathway. The chosen implementation is called MESMER, which stands for Modular Earth System Model Emulator

with spatially Resolved output, and is shown in Fig. 2. Detailed information for each individual module is provided in the

following sections. In short, the global mean temperature T globt is split into a trend and a variability term, both of which155

contribute linearly to the local temperature Ts,t. The residual local temperature variability ηs,t is modeled as an AR(1) process

with spatially correlated innovations.

To calibrate the emulator, a single run spanning 231 years (1870–2100) per model is used. For the calibration, the global

mean temperature trajectory and the associated land temperature fields are required.
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MESMER: 𝑇𝑇𝑠𝑠,𝑡𝑡 = 𝑓𝑓 𝑇𝑇𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + η𝑠𝑠,𝑡𝑡

Global mean temperature trend Global mean temperature variability
𝑇𝑇𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑣𝑣𝑣𝑣𝑣𝑣

Global mean temperature 𝑇𝑇𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 module

Local response 𝑇𝑇𝑠𝑠,𝑡𝑡
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟module

Local trends
𝑇𝑇𝑠𝑠,𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Local residual 
variability η𝑠𝑠,𝑡𝑡 module

Emulation
Local variability

𝑇𝑇𝑠𝑠,𝑡𝑡
𝑣𝑣𝑣𝑣𝑣𝑣

𝑇𝑇𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

Figure 2. Illustration of the emulation framework with the MESMER implementation.

4.1.2 Global mean temperature module160

In the global mean temperature module, additional realizations of global mean temperature time series T globt are generated. For

this purpose, T globt is separated into a trend T glob,trendt shared by all emulations and a variability term T glob,vart which varies

between individual emulations:

T globt = T glob,trendt +T glob,vart . (2)
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In T glob,trendt , smooth forcing T glob,smt and abrupt changes induced by volcanic eruptions T glob,volct are accounted for in an165

additive way:

T glob,trendt = T glob,smt +T glob,volct . (3)

First, T glob,smt is derived by locally weighted scatterplot smoothing (LOWESS) of T globt .

In a next step, T glob,volct is approximated as the linear response of the residuals of the smooth trend, i.e., T globt −T glob,smt ,

to stratospheric aerosol optical depth AODt with regression coefficients λ0 and λ1:170

T glob,volct = λ0 +λ1 ·AODt (4)

The time series of global mean temperature variability T glob,vart = T globt −T glob,trendt is modeled as an AR process of order

p with coefficients α0,...,αp such that

T glob,vart = α0 +

k=p∑
k=1

αk ·T glob,vart−k + εt with εt ∼N (0,σ), (5)

whereby εt is a white noise innovation term drawn from a Gaussian distribution with mean zero and standard deviation σ.175

In this study, the LOWESS smoothing window length is 50 years with weights decaying with increasing distance according

to a tricube weight function. The regression coefficients for the forced response to volcanic eruptions are obtained with the

ordinary least squares (OLS) algorithm. The coefficients of the AR process are fit by means of maximum likelihood and the

Bayesian Information Criterion (BIC) is employed to select its order p with the maximum considered order being eight.

4.1.3 Local temperature response module180

The local temperature response module translates the global mean temperature signal into a grid-point level response T resps,t .

Motivated by the pronounced linear scaling of regional land temperatures with global mean temperature (Seneviratne et al.,

2016; Wartenburger et al., 2017), the local response is expressed as

T resps,t = f(T globt ) = f(T glob,trendt ,T glob,vart ) = βtrends ·T glob,trendt +βints +βvars ·T glob,vart , (6)

with regression coefficients βtrends ,βints , and βvars whereby βints represents the intercept term. Hence, the response of the local185

mean temperature to T glob,trendt and T glob,vart are separately taken into account.

In this study, the linear regression coefficients are estimated with OLS at each grid point.

4.1.4 Local residual temperature variability module

The local residual temperature variability ηs,t refers to the spatio-temporally correlated residual variability which cannot be

accounted for through a response to T globt . This variability is assumed to be Gaussian in nature (see S1 for the results of190

a Shapiro-Wilk test for normality) and stationary in time which makes it possible to model the time series as local AR(1)
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processes with spatially correlated innovations (Humphrey and Gudmundsson, 2019). Hence, additional realizations of ηs,t are

generated stochastically according to

ηs,t = γ0,s + γ1,s · ηs,t−1 + νs,t with νs,t ∼N (0,Σν(r)), (7)

whereby γ0,s and γ1,s are the coefficients of the AR model and νs,t are spatially correlated innovations drawn from a multi-195

variate Gaussian with mean zero and covariance matrix Σν(r) (Cressie and Wikle, 2011).

For an AR(1) process, Σν(r) can be analytically derived from the covariance matrix of the residual variability Ση(r) with

Σν(r)i,j =
√

1− γ1,i ·
√

1− γ1,j ·Ση(r)i,j , (8)

whereby the indices i and j refer to spatial locations s (Cressie and Wikle, 2011).

To estimate Ση(r), the empirical covariance matrix Σ̃η is computed. However, Σ̃η is rank deficient because substantially200

fewer temperature field samples are available than there are land grid points. Thus, Σ̃η needs to be regularized to obtain a

robust estimate of the co-variations between the grid points. For this purpose, we employ localization, an approach which

is well established in the field of data assimilation (Carrassi et al., 2018). Localization retains anisotropy on regional scales

which is an important asset when stochastically modeling temperature variability since anisotropy is a prevalent feature due

to physical factors such as prevailing wind direction and geometry of mountainous terrain. To localize Σ̃η , it is point-wise205

multiplied with a smooth correlation function G(r) with exponentially vanishing correlations with distance:

Ση(r) = Σ̃η ◦G(r), (9)

whereby ◦ denotes the Hadamard product. Here, G(r) is the numerically efficient Gaspari-Cohn function (Gaspari and Cohn,

1999) which vanishes beyond two times the localization radius L:

G(r) =


1− 5

3
· r2 +

5

8
· r3 +

1

2
· r4− 1

4
· r5, if 0≤ r < 1,

4− 5 · r+
5

3
· r2 +

5

8
· r3− 1

2
· r4 +

1

12
· r5− 2

3
· r−1, if 1≤ r < 2,

0, if r ≥ 2,

(10)210

with r =
d

L
and d the geographical distance between two grid points.

In this study, the AR(1) coefficients are fit at each grid point by means of maximum likelihood. In our framework implemen-

tation, the obtained intercept terms γ0,s are effectively zero, as the local response module already contains an intercept term

(Eq.6). The localization radius to regularize Σ̃η is determined by cross-validation with a leave-one-out approach. Localization

radii between 1000 and 4750 km every 250 km are tested. Thereby, the empirical covariance matrix is estimated based on 230215

years and the likelihood to draw the field of the left-out year from the regularized matrix is computed. This process is repeated

until every year has been left out once for every localization radius. The respective log-likelihood values for each localization

radius are summed up across the left-out years and the radius which is associated with the maximum likelihood is chosen.
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4.2 Evaluating the emulator

The emulator’s performance is evaluated on the training run and - where available - on test runs. While the evaluation on the220

training run indicates how successfully this framework implementation captures the training run, the evaluation on the test runs

serves as a proxy for the emulator’s capability in mimicking true ESM initial-condition ensembles. For the evaluation, 1000

emulations are generated for each climate model.

4.2.1 Local trends verification

The local trends T trends,t are shared by all emulations and serve as an estimate of the externally forced response with225

T trends,t = βtrends ·T glob,trendt +βints . (11)

To evaluate how well the emulated local trends capture true climate model runs, the Pearson correlation of T trends,t with Ts,t

of the corresponding training run is computed. For climate models with test runs, the correlation coefficient is additionally

computed between T trends,t and each test run.

4.2.2 Local variability verification230

The local variability T vars,t is different in each emulation and corresponds to the internally generated natural variability:

T vars,t = βvars ·T glob,vart + ηs,t. (12)

To compare the emulated T vars,t to true climate model runs, an estimate for the local variability within the climate models

needs to be obtained. For this purpose, the emulated local trends T trends,t (Eq. 11) are subtracted from the climate model Ts,t.

To evaluate T vars,t , on the grid-point level, lag-1 temporal autocorrelations and standard deviations are considered. Addition-235

ally, spatial cross-correlations between grid points are verified. These quantities are computed for each individual emulation

as well as for all climate model runs. For each quantity, the Pearson correlation coefficient between each individual emulation

and the training run is calculated. Additionally, the correlation between each individual test run and the respective training run

is computed where test runs are available. These correlations between the climate model runs serve as benchmark values for

the correlations between the emulations and the training run.240

4.2.3 Regional-scale ensemble reliability verification

On regional scales, the emulated temperatures Ts,t (Eq. 1) are evaluated visually and quantitatively in terms of ensemble

reliability, i.e., the ability to capture the distribution of ESM runs with an ensemble of emulations (Weigel, 2012). For the

visual verification, regionally averaged emulated time series are compared to climate model runs for global land, Central

Europe (CEU), and Southern South America (SSA). In the quantitative verification, the emulator’s ability to reliably reproduce245

a set of ESM quantiles (5 %, 50 %, 95 %) is evaluated in all 27 land regions. Smooth time series of the emulated quantiles

are obtained based on the 1000 emulations and the percentage of time slots during which a climate model run is below these
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emulated quantiles is counted. This is done for the training run and – where available – also for the test runs. Additionally, the

counting is carried out for each individual emulation. The resulting deviations of the individual emulations from the emulated

quantiles can be compared to the deviation the climate model runs exhibit from the emulated quantiles. If the climate model250

run deviation lies within the 95 % interval spanned by the individual emulation deviations, the climate model run is considered

indistinguishable from individual emulations at this quantile.

5 Exploring emulator properties for four example ESMs

5.1 Calibration results

The parameters obtained from training the emulator on four example ESMs reveal distinct inter-ESM differences in every255

emulator module (Fig. 3). The global mean temperature trends diverge by 0.9 °C by the end of the 21st century. For each ESM,

T glob,vart is described by oscillating AR coefficients with the first lag being positive, but the AR process order and the standard

deviations of the innovations vary.

In the local response module (Eq. 6), the strongest warming rates, i.e., the largest βtrends terms, are found in the northern high

latitudes, but there are substantial differences in the βtrends patterns between emulators trained on different ESMs (Fig. 3). For260

example, the CESM1(CAM5) emulator exhibits less warming in the tropics than the others do. In all emulators, the intercept

term βints is generally small in magnitude and smooth in space. The βvars fields indicate that Alaska, Amazon, and Australia

frequently co-vary with global mean temperature variability. Only for HadGEM2-ES Central Asia emerges as a region of large

βvars values.

The local residual variability (Eq. 7) exhibits generally less memory in the northern high latitudes than in the tropics as265

indicated by the lag-1 autocorrelation coefficients (Fig. 3). The innovations are largest in magnitude in high latitude continental

climates such as North Asia and smallest in the tropics. However, also for these quantities the patterns differ between emulators

calibrated on different ESMs. The localization radii chosen to regularize the empirical spatial covariance matrix Σ̃η range from

1750 to 2750 km.

5.2 Example realizations270

Emulated temperature fields are visually indistinguishable from ESM test runs that were not used during training (Fig. 4).

All fields exhibit the strongest warming and variability in the northern high latitudes. In terms of variability, CESM1(CAM5),

HadGEM2-ES, and their emulations, show more patchy behaviour, i.e., locally more confined variability, than CanESM2 and

MPI-ESM-LR.

Time series of emulations and ESM test runs averaged over global land, CEU, and SSA highlight the emulators capability to275

reproduce regionally characteristic behaviour of the climate system (Fig. 5). These regions differ in terms of warming trend and

variability around this trend. The variability is smallest on the global scale since local anomalies tend to average out globally.

In CEU, the warming rate as well as the variability are larger than in SSA.
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Emulator calibration parameters

Figure 3. Emulator calibration parameters (rows) for four example ESMs (columns). (a) For the global mean temperature module T glob,trend
t

and the AR coefficients plus the standard deviation of the innovations of T glob,var
t are depicted. (b) For the local temperature response

module, the regression coefficients are shown. (c) For the local residual temperature variability module, the lag-1 AR coefficients, the

standard deviations of the innovations, and the localization radii are displayed.
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Figure 4. Temporal snapshots depicting temperature field realizations in 2100 (rows) for four example ESMs (columns). (a) One ESM field

from a test run and (b) two emulations (EMUs) are shown. The temperature on top of each map refers to the global land mean.

5.3 Emulator transferability between ESMs

Figure 6 shows explicitly what the results of Sects. 5.1 and 5.2 have already hinted at, namely that an ensemble of emulations280

generated by an emulator calibrated on a specific ESM is capturing unique properties of that ESM, which in turn are not

transferable to other ESMs. For example, the warming rate of the ensemble generated by the CESM1(CAM5) emulator is

inconsistent with all three other ESMs on the global land scale. As expected, differences are also found in the variability

around the trend which is, e.g., visibly smaller in SSA in the CESM1(CAM5) emulations than in the runs of the other ESMs.

The implications of these results are further discussed in Sect. 7.3.285
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6 Creating a CMIP5 superensemble

6.1 Calibration results

Figure 7 shows summary statistics of the calibrated parameters for each CMIP5 climate model highlighting inter-model differ-

ences in each emulator module. In the supplementary information, plots analogous to Fig. 3 are additionally provided for each

climate model for readers interested in the geographical patterns of the emulator parameters (Figs. S2 – S10).290

In the global mean temperature module (Eq. 2), T glob,trendt ranges between 3.4 and 6.3 °C at the end of the 21st century

(Fig. 7). For 45 % of the climate models, T glob,vart can be modeled as an AR(1) process. In the remaining ones either an AR(2)

or AR(3) process is chosen. All emulators contain oscillating positive and negative AR coefficients with the first coefficient

being positive, but they differ in the magnitude of the respective AR coefficients. The associated innovations vary in their

standard deviations by a factor of almost three (0.06–0.15 °C).295

In the local response module (Eq. 6), more than 80 % of the land grid points warm more quickly than the global mean, i.e.,

βtrends > 1, in 25 out of 40 emulators (Fig. 7). Overall, the spread in the βtrends terms differs substantially between emulators

trained on different climate models. The intercept terms βints cluster closely around zero in each emulator. The fraction of

outlier grid points deviating > 1 °C from 0, and hinting at sub-optimal local fits, exceeds 1 % in only one of the emulators. The

vast majority of land grid points are positively correlated with T glob,vart , i.e., βvars > 0, with the minimum fraction of positive300

correlations amounting to 82 % of the land grid points.

In the local residual variability module (Eq. 7), the year-to-year memory contribution γ1,s is overall generally small with

the 75% quantile lying below 0.25 for 34 out of 40 emulators (Fig. 7). Only the six models of the HadGEM and the MIROC

family tend to have systematically larger γ1,s. While the median of the standard deviations of the innovations is similar in all

calibrated emulators, the full ranges differ substantially, with the maximum between 1.3 and 2.5 °C. The selected localization305

radii vary between 1750 and 4750 km. Thereby 4750 km is a strong outlier with the second highest localization radii amounting

to 3500 km. Generally, climate models with a coarser native resolution are associated with larger localization radii (not shown).

6.2 Example realizations

Figure 8 demonstrates that the emulations nicely capture regional-scale trends and variability in the training and the test runs

of the CMIP5 ensemble. The histograms also highlight that the larger sample size of the emulations by a factor of 1000310

makes it possible to sample the temperature phase space better. The CMIP5 projections, and thus also the emulations, diverge

substantially towards the end of the 21st century in global land and SSA but agree rather well in CEU. At the end of the 21st

century, an inter-model spread of roughly 4°C is observed in global land with models spread out evenly across this space. In

SSA, on the other hand, the bulk of the models clusters within a space of 2 °C and a few outlier models cause the overall

CMIP5 spread of almost 6 °C.315
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Emulator calibration parameters

Figure 7. Emulator properties (rows) of the 40 CMIP5 climate models (columns). (a) For the global mean temperature module, T glob,trend
t

and the AR coefficients plus the standard deviation of the innovations of T glob,var
t are depicted. (b) For the local temperature response

module, the regression coefficients are shown. (c) For the local residual variability module, the lag-1 AR coefficients, the standard deviations

of the innovations, and the localization radii are displayed. Boxplots indicate the median (dark grey line), the interquartile range (grey box),

and the full range of values (grey whiskers).
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Figure 8. Regionally averaged time series as 2D histograms for 40 CMIP5 model training runs and 1000 emulations per model (top row)

and for 12 CMIP5 models with one test run and 1000 emulations per model (bottom row). For the CMIP5 model runs a colormap from pink

to yellow is employed and for the emulations a grey-scale is used. The regions are from left to right: global land, CEU, and SSA.

6.3 Quantitative verification

6.3.1 Local trends verification

Correlation between the emulated local trends and the true climate model runs is very high in both training and test runs

in all CMIP5 models, indicating that the forced trends are successfully extracted from each training run (Fig. 9). For the

climate model with test runs, these correlations are nearly identical for each individual test and the training runs. The smallest320

correlation coefficient is 0.90, the highest one 0.97.
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Local trends verification:
trend
s Tglob, trend
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Figure 9. Local trends verification for the CMIP5 models by means of Pearson correlation between the emulated local trends and the training

runs (grey bars). The example shows the associated 2D histogram for CESM1(CAM5). For the CMIP5 models with test runs, the correlation

between the emulated local trends and each individual test runs is indicated by a black cross. Since these correlations are nearly identical

for each test run of a specific climate model, the individual black crosses can visually not be distinguished from one another. For all climate

model with test runs, the number of available test runs is given in brackets after the model name.

6.3.2 Local variability verification

To evaluate the local variability at the grid-point level, lag-1 temporal autocorrelations and standard deviations are considered

(Fig. 10). The lag-1 temporal autocorrelation is a rather noisy parameter to estimate and the median correlations between

emulations and the training run lie between 0.67 and 0.92. Generally, the correlation of the lag-1 autocorrelations between test325

and training runs is smaller than the one between emulations and training runs, implying a tendency to overfit this parameter.

The correlation between the standard deviations of the emulations and the training run is never below 0.98. The correlation

between test and training runs is almost identical to the one between emulations and training runs. Thus, at the grid-point level

the emulations reliably reproduce the stochastic variability of climate model runs.

To evaluate the spatial cross-correlations between grid points, three geographical bands are considered (Fig. 11). At all spatial330

scales, cross-correlations between test and training runs are higher than correlations between emulations and training runs. This

is a direct consequence of the regularization which dampens covariances between grid points as a function of distance and is

thus inherent to the emulator’s design. In a radius of up to 2000 km, the emulators perform best and co-variations between

grid points are generally well reproduced. The medians of the correlations between the emulations and the training runs span

from 0.85 to 0.98. Plotting an individual example emulation against its associated training run clearly shows the dampening335

of the cross-correlations in the regularized emulations. Emulations of climate models with larger localization radii (Fig. 7)

have by design a larger correlation with their respective training runs (Fig. 11). In a radius between 2000 and 15000 km, the

emulators perform the least well since there, cross-correlations in the emulations are strongly dampened with the medians of

the correlations between emulations and training runs ranging from 0.17 to 0.82. For long-range distances beyond 15000 km,

medians lie between 0.20 and 0.93. For all distances beyond 2000 km, there are large inter-model differences in the ability340
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Lag-1 temporal autocorrelation Example
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Local variability verification of correlation of grid-point level metrics:
var
s Tglob, var

t + s, t and test runs vs. training runs

Figure 10. Local variability verification for the CMIP5 models (columns) by means of Pearson correlation of grid-point level lag-1 temporal

autocorrelations (top row) and standard deviations (bottom row) between the 1000 individual emulations and the training runs (boxplots).

The examples show the associated 2D histograms for a single emulation and the training run of CESM1(CAM5). For the CMIP5 models

with test runs, the correlation between the quantity in the training run and in each individual test run is indicated by a black cross. For all

climate model with test runs available, the number of test runs is given in brackets after the model name.

of the emulators to reproduce cross-correlations between grid points. Also correlations between spatial cross-correlations of

test and training runs are generally lower and exhibit more inter-model differences at distances beyond 2000 km highlighting

that it is more difficult to estimate far reaching spatial cross-correlation based on single ESM runs. Generally, the emulations

perform better and are more comparable to test runs at distances beyond 15000 km than between 2000 and 15000 km, which

is likely due to that fact that the global correlation pattern induced by the global mean temperature variability serves as a more345

important driver for the longest-range correlations.

6.3.3 Regional-scale emulation verification

When considering full emulations, i.e., the local trends plus the local variability, the median is successfully emulated but the

emulations are a bit underdispersive compared to the training run for the vast majority of CMIP5 models and SREX regions

(Fig 12). The emulations tend to be more reliable for climate models with larger localization radii (Fig. 7). In North Asia (NAS),350

the underdispersion is strongest for most models (Fig. 12). The only region where the emulations are fully reliable is global

land. The underdispersion on the SREX regional scales is related to the regularization which dampens covariances between
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Local variability verification of correlation of cross-correlations between grid points:
var
s Tglob, var

t + s, t and test runs vs. training runs

Figure 11. Local variability verification for the CMIP5 models (columns) by means of Pearson correlation of cross-correlations between

grid points in three geographical bands (rows) between the 1000 individual emulations and the training runs (boxplots). The geographical

bands cover distances below 2000 km, between 2000 – 15000 km, and beyond 15000 km. The examples show the associated 2D histograms

for a single emulation and the training run of CESM1(CAM5). For the CMIP5 models with test runs, the correlation between the quantity in

the training run and in each individual test run is indicated by a black cross. For all climate model with test runs available, the number of test

runs is given in brackets after the model name.

grid points as a function of distance between them and is thus inherent to the emulator’s design. The results are qualitatively

similar for the test runs but, as expected, the deviations from the emulated quantiles tend to be larger in magnitude than for

the training runs. For most climate models, the strongest deviations in the median of the test runs are observed in global land,355

Canada/Greenland/Iceland (CGI), and Southern Australia (SAU). Out of all climate models, the least optimal fit is obtained for

MIROC5 with the emulated median being systematically warmer than the training and especially the test run medians in many

regions.
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Regional-scale verification: deviation of climate model runs from emulated quantiles

Figure 12. Deviation of climate model runs from the emulated 5 % (left), 50 % (middle), and 95 % (right) quantile for CMIP5 models (rows)

and regions (columns). The emulated quantile is computed based on 1000 emulations per climate model. The deviation of the climate model

run from the emulated quantile is given in color. Red means that the emulated quantile is warmer than the quantile of the climate model run,

blue means that it is colder. The grey numbers indicate how many climate model run deviations lie outside of the 95 % interval spanned by

the deviations of single emulations from the emulated quantiles. If the climate model run lies outside this interval, it is no longer considered

indistinguishable from the emulations. The deviation from the training run is shown in the top panel, the average deviation across all available

test runs is shown in the bottom panel. The number of test runs averaged across is indicated in brackets behind the model name.
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7 Discussion

7.1 Emulator design choices and their implications360

7.1.1 Modular framework

A modular framework is chosen for the climate model emulation because of its manifold advantages. First, the calibrated

parameters of each emulator module can be used for climate model inter-comparison over a wide range of scales since they

can be readily visualized and easily interpreted (Sects. 5.1 and 6.1). Second, the modular framework renders it straightforward

to substitute each emulator module with approaches other than the ones chosen here. For example, alternative approaches for365

the global mean temperature trend (e.g., Meinshausen et al., 2011), for the local response module (e.g., Tebaldi and Arblaster,

2014; Alexeeff et al., 2018), or for the local residual temperature variability (e.g., Link et al., 2019) could be employed. Third,

if the modeling task were to change, additional predictors could easily be integrated. For example, precipitation emulation

would likely require human-induced aerosol emissions as an additional predictor in the local temperature response module

(Frieler et al., 2012).370

7.1.2 Emulating temperature trends

In this study, an estimate of T glob,trendt is retrieved with a simple statistical model from the training run (Sect. 4.1.2). However,

it could alternatively be considered to obtain T glob,trendt from a simple energy-balance model (Meinshausen et al., 2011). This

would open avenues towards emulating initial-condition ensembles across different T glob,trendt trajectories and thus different

emission scenario pathways.375

To translate T glob,trendt into a local temperature in the local response module, a linear approach is chosen (Sect. 4.1.3). The

thereby obtained regression coefficients βtrends represent well-known climate phenomena. The enhanced warming over land

compared to the global mean (Sutton et al., 2007; Hartmann et al., 2013) at many grid points is captured by βtrends > 1 (Figs. 3

and 7). The Arctic amplification (Serreze and Barry, 2011) manifests itself in the large βtrends values in northern high latitudes

(Fig. 3). The overall good performance in capturing local trends is in line with the pronounced linear scaling of regional land380

temperatures with global mean temperature (Seneviratne et al., 2016; Wartenburger et al., 2017) and the widely used linear

pattern scaling approaches (Mitchell, 2003; Tebaldi and Arblaster, 2014; Lynch et al., 2017; Osborn et al., 2018).

7.1.3 Emulating temperature variability

Spatially coherent local variability is introduced in two emulator modules, namely in the local response module as the local

response to T glob,vart (Sect. 4.1.3) and in the local residual variability module (Sect. 4.1.4). The local variability is an essential385

ingredient in mimicking initial-condition ensembles as visualized by comparing regionally averaged time series of our emula-

tions with simple pattern scaling results which contain no local variability module (Fig. S11). In this study, and all other studies

cited in the following paragraphs, the local temperature variability is assumed to be stationary in time which is not fulfilled

everywhere in the business-as-usual greenhouse gas emission scenario (see Sect. 2.3 and Olonscheck and Notz, 2017).

22



T glob,vart can be regarded as the globally aggregated signal of all physical modes of variability (Sect. 4.1.2), with the390

calibrated emulators accounting for memory of up to three years (Fig. 7). While the linear translation of T glob,vart to a grid-

point level temperature response is purely statistical in nature, physically meaningful patterns nevertheless emerge in the βvars

patterns. For example, for many climate models, βvars tends to resemble an El Niño Southern Oscillation pattern (Trenberth,

1997) with Amazon, Australia, and Alaska co-varying while the Southeastern USA exhibits the opposite temperature sign

(Figs. 3 and S2–10). Qualitatively similar results could alternatively be obtained by stochastically generating time series of395

major physical modes of variability and translating those to the grid-point level (McKinnon and Deser, 2018).

Local residual variability is modeled as an AR process with spatially correlated innovations (Sect. 4.1.4). While several

other authors have employed AR models with spatially correlated innovations too (Castruccio and Stein, 2013; Castruccio and

Genton, 2016; Bao et al., 2016), they all chose a parametric approach to model the covariance between grid points. However,

in this study, a non-parametric approach is employed which retains regional-scale anisotropy in the underlying data.400

7.2 The pros and cons of training on single climate model runs

We demonstrated that, for yearly temperature at grid-point to regional scales, training on a single run per climate model is

sufficient to learn key properties of the climate system of this climate model. Early results furthermore indicated that also

larger single-model initial-condition ensembles, in that case a 21-member CESM ensemble, can be successfully emulated

when training on a single ESM run (Beusch et al., 2018). Since a single run was submitted for the majority of climate models405

participating in CMIP5 for the emission pathway considered here, requiring only one run to train the emulator gives the

opportunity to emulate a much larger multi-model ensemble and thus to have the resulting superensemble account for more

inter-model uncertainty. Nevertheless, it is not possible to reproduce the characteristics of a true ESM at all spatial and temporal

scales when training on a single run. To obtain the best possible emulations to be used e.g., for uncertainty propagation in

climate impact or integrated assessment models, it is thus advisable to employ all available runs for training instead of just410

a single one for each climate model. When training on multiple runs, the parameters of the emulator can be estimated more

robustly, which, among other things, results in a larger localization radius and thus the ability to reproduce farther reaching

spatial cross-correlations between grid points.

7.3 Large single-model initial-condition vs. large multi-model ensembles

Our results highlight fundamental differences between large single-model initial-condition ensembles (Deser et al., 2012; Fis-415

cher et al., 2013; Kay et al., 2015; Leduc et al., 2019; Maher et al., 2019) and large multi-model ensembles (Meehl et al.,

2007; Taylor et al., 2012; Eyring et al., 2016). While multi-model ensembles are imperfect, with several ESMs exhibiting

dependencies (Knutti, 2010; Bishop and Abramowitz, 2013; Sanderson et al., 2015; Abramowitz et al., 2019), multi-model un-

certainty nevertheless clearly exceeds single-model initial-condition uncertainty at the yearly scale for temperature (Sect. 5.3).

ESMs contained within CMIP5 differ substantially across a broad range of scales and thus sample different phase spaces in420

projections which renders it necessary to train an emulator on each climate model to approximate the CMIP5 ensemble. A

single-model initial-condition ensemble, on the other hand, can be successfully mimicked on grid-point to regional scales by
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training on a single ESM run (Sects. 5 and 6). While this lies beyond the scope of this study, the developed emulator could

additionally serve as a novel tool to address the challenge of inter-model dependencies. Differences between climate models

could be quantified in terms of their emulator parameters and subsequently, a subset of models with sufficiently divergent pa-425

rameters could be selected to base projections on. Additionally, observations could be used to constrain the emulated ensemble

by providing validation measures for the emulator parameters.

8 Conclusions and outlook

We introduce a modular framework for climate model emulation of yearly land temperatures and present a specific, compu-

tationally cheap implementation called MESMER, which can create plausible temperature field time series within seconds430

based on a single climate model training run. Our emulator consists of (i) a global mean temperature module, (ii) a local

temperature response module, and (iii) a local residual temperature variability module. The global mean temperature module

contains a global mean temperature trend which is shared by all emulations and a global mean temperature variability term

which is modeled as an AR process and varies between individual emulations. The local response module is linear in nature

and consists of a separate response to the global mean temperature trend and the global mean temperature variability. The local435

residual variability module generates spatio-temporally correlated fields by means of locally fit AR(1) processes with spatially

correlated innovations.

Since emulators approximate complex ESMs in a simplified manner, they are not able to accurately reproduce all spatio-

temporal ESM characteristics. The emulator presented here, e.g., dampens co-variations between grid points as a function

of distance in the local residual variability module due to regularization. Thus, our emulator reliably reproduces climate440

model variability at the grid-point level, but the emulations are increasingly underdispersive for larger regional averages and

intermediate-range spatial teleconnections cannot be accounted for. This caveat could be addressed by further improving the

local residual variability module implementation with a focus on such teleconnections. Alternatively, training on several ESM

runs would increase the robustness of the estimated parameters and make it possible to reproduce farther-reaching teleconnec-

tions within the current emulator setup. Nevertheless, calibrating our emulator on a single training run is sufficient to generate445

emulations which are visually indistinguishable from true ESM runs.

Inherent inter-ESM differences in warming trends and spatio-temporal variability make it necessary to calibrate a separate

emulator for each one of the 40 considered CMIP5 models. The resulting emulations successfully approximate the training

run for each climate model on grid-point to regional scales. For CMIP5 models with more than one initial-condition ensemble

member, it was furthermore demonstrated that the ensemble of emulations is generally able to mimic true climate model450

initial-condition ensembles at these scales. Hence, we argue that to sample climate signal uncertainty for yearly temperature at

grid-point to regional scales, it is more advantageous to invest computational resources into generating multi-model ensembles

rather than large single-model ensembles, since the latter can be readily approximated by our emulator.

Superensembles such as the one generated in this study, which contains 1000 emulations per climate model, are expected to

be particularly helpful in regions with large interannual variability. There, the very sparse sampling of the temperature phase455
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space by the CMIP5 ensemble may result in biased conclusions when solely employing the CMIP5 ensemble as an input to

impact or integrated assessment models which estimate the effect of climate signal uncertainty on their quantity of interest.

The emulator is designed to be flexible enough to emulate whatever climate model run it is provided with. Hence, it is not part

of the emulator’s tasks to judge the realism of individual climate models. Instead, the choice of considered ESMs will depend

on the scope of different applications. For example, results from emergent constraints analyses (e.g., Hall and Qu, 2006; Eyring460

et al., 2019) could be combined with the implementation of an emulator to derive a superensemble based on an observationally-

constrained set of ESMs. On the other hand, the emulator parameters could themselves be used as potential constraints that

can also be derived from observations. Additionally, the emulator parameters can be regarded as an ESM-specific ”model ID”

which provides an interesting avenue for climate model inter-comparison across a wide range of scales. Inter-model differences

can be readily visualized for every emulator module resulting in comprehensible scale-dependent insights into the underlying465

properties of each climate model. Future work could focus on extending the emulator to simultaneously generate multivariate

output. Furthermore, it would be interesting to investigate how transferable an emulator trained on a specific greenhouse gas

emission scenario is to other emission pathways and which modules would need to be modified to account for inter-scenario

differences.

In conclusion, in this study we have presented a novel ESM emulator called MESMER that can be trained to represent470

separate ESMs based on single realizations of the respective ESMs, and which has been shown to be able to emulate and expand

multi-model ensembles such as CMIP5. We expect that the developed emulator can serve as training ground for investigating

the phase space of multi-model ensembles in new applications, e.g. related to the derivation of emissions scenarios or the

assessment of impacts under different emissions pathways.

Data availability. The employed CMIP5 data are available from the public CMIP archive at https://esgf-node.llnl.gov/projects/esgf-llnl/.475

The stratospheric aerosol optical depth data are provided by NASA and available at https://data.giss.nasa.gov/modelforce/strataer/.
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Table A1. List of the 40 employed CMIP5 models, the modeling groups providing them, and the number of initial-condition ensemble

members used.

Model Modeling Center (or Group) Runs

ACCESS1.0 Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), Australia 1

ACCESS1.3 Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology (BOM), Australia 1

BCC-CSM1.1(m) Beijing Climate Center, China Meteorological Administration 1

BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration 1

BNU-ESM College of Global Change and Earth System Science, Beijing Normal University 1

CanESM2 Canadian Centre for Climate Modeling and Analysis 5

CCSM4 National Center for Atmospheric Research 6

CESM1(BGC) Community Earth System Model Contributors 1

CESM1(CAM5) Community Earth System Model Contributors 3

CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici 1

CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici 1

CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici 1

CNRM-CM5 Centre National de Recherches Météorologiques / Centre Européen de Recherche et Formation Avancée en Calcul Scientifique 5

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland Climate Change Centre of Excellence 10

EC-EARTH EC-EARTH consortium 6

FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS,Tsinghua University 1

FIO-ESM The First Institute of Oceanography, SOA, China 3

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory 1

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory 1

GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory 1

GISS-E2-H-CC NASA Goddard Institute for Space Studies 1

GISS-E2-H NASA Goddard Institute for Space Studies 1

GISS-E2-R-CC NASA Goddard Institute for Space Studies 1

GISS-E2-R NASA Goddard Institute for Space Studies 2

HadGEM2-AO National Institute of Meteorological Research/Korea Meteorological Administration 1

HadGEM2-CC Met Office Hadley Centre 1

HadGEM2-ES Met Office Hadley Centre (additional realizations contributed by Instituto Nacional de Pesquisas Espaciais) 4

INM-CM4 Institute for Numerical Mathematics 1

IPSL-CM5A-LR Institut Pierre-Simon Laplace 4

IPSL-CM5A-MR Institut Pierre-Simon Laplace 1

IPSL-CM5B-LR Institut Pierre-Simon Laplace 1

MIROC5
Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology
3

MIROC-ESM-

CHEM

Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National

Institute for Environmental Studies
1

MIROC-ESM
Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Institute (The University of Tokyo), and National

Institute for Environmental Studies
1

MPI-ESM-LR Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) 3

MPI-ESM-MR Max-Planck-Institut für Meteorologie (Max Planck Institute for Meteorology) 1

MRI-CGCM3 Meteorological Research Institute 1

MRI-ESM1 Meteorological Research Institute 1

NorESM1-ME Norwegian Climate Centre 1

NorESM1-M Norwegian Climate Centre 1
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