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Abstract.

Observational constraints on the equilibrium climate sensitivity have been generated in a variety of ways, but a number

of results have been calculated which appear to be based on somewhat informal heuristics. In this paper we demonstrate

that many of these estimates can be reinterpreted within the standard subjective Bayesian framework in which a prior over5

the uncertain parameters is updated through a likelihood arising from observational evidence. We consider cases drawn from

paleoclimate research, analyses of the historical warming record, and feedback analysis based on regression of annual radiation

balance observations on temperature. In each of these cases, the prior which was (under this new interpretation) implicitly used

exhibits some unconventional and possibly undesirable properties. We present alternative calculations which use the same

observational information to update a range of explicitly presented priors. Our calculations suggest that the heuristic methods10

do often generate reasonable results, in that they agree fairly well with the explicitly Bayesian approach using a reasonable

prior. However, we also find some significant differences and argue that the explicitly Bayesian approach is preferred, as it both

clarifies the rôle of the prior, and allows researchers to transparently test the sensitivity of their results to it.

1 Introduction

While numerous explicitly Bayesian analyses of the equilibrium climate sensitivity have been presented (e.g. Tol and De Vos,15

1998; Olson et al., 2012; Aldrin et al., 2012), many results have also been generated which appear to be based on more heuristic

methods. In this paper we examine several such estimates and demonstrate how they can be reinterpreted in the context of the

subjective Bayesian framework, revealing in each case an underlying prior which can be deemed to have been implicitly

used. That is to say, we present an explicitly Bayesian analysis which takes the same observational data together with the same

assumptions/model underlying the data-generating process, which (when used to update this implicit prior), precisely replicates20

the published result. In some cases these implicit priors exhibit rather unconventional properties, and we argue that they are

unlikely to have been chosen deliberately, and would probably not have been used if the authors had presented a transparently

Bayesian analysis. We rerun some of these analyses in a standard Bayesian framework, using the same observational evidence
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to update a range of explicitly stated priors. While in many cases these results are broadly similar to the existing published

results, some differences will be apparent.

The paper is organised as follows. In Section 2 we introduce some concepts in Bayesian analysis which underpin our

presentation. In Section 3, we explore several calculations in which researchers have estimated the climate sensitivity via

direct calculation based on observationally-derived probability density functions, considering paleoclimate research (Annan5

and Hargreaves, 2006; Köhler et al., 2010; Rohling et al., 2012), the observational record of warming over the 20th century

warming (Gregory et al., 2002; Mauritsen and Pincus, 2017), and analyses of interannual variability (Forster and Gregory,

2006; Dessler and Forster, 2018) in turn. We present a Bayesian interpretation of these calculations, and give some alternate

analyses based on alternative, explicitly stated, priors. We argue that this latter approach is preferred, as it both clarifies the

rôle of the prior, and allows researchers to transparently test the sensitivity of their results to it. We conclude with a general10

discussion about our results.

2 Principles and methods

2.1 Confidence intervals, Bayesian probability and the “confusion of the inverse”

Let us assume we have a measuring process that produces an observational estimate xo of an unknown (but assumed constant)

parameter which takes the value xT , with an observational error ε that can be considered to take a specified error distribution,15

typically an unbiased Gaussian:

xo = xT + ε (1)

where ε∼N(0,σ). For simplicity, we assume here σ is known. This “measurement model” is fundamental to analysis of

observations in many scientific domains. For example, in climate science, analyses of observed global temperature anomalies

are commonly generated and presented in this form.20

Following on from this measurement model, there is a simple syllogism (i.e. a logical argument that seems common in many

areas of scientific research, which runs as follows: since we know a priori that p(−2σ < ε < 2σ)' 95%, we can also write

a posteriori that p(xo− 2σ < xT < xo + 2σ)' 95% once xo is known. For example, if σ = 0.25 is given, and we observe

the value xo = 74.60 then the researcher may assert “there is ∼ 95% probability that xT lies in the interval (74.10,75.10)” or

simply present a full probability density: “the pdf of xT is N(xo,σ) =N(74.60,0.25)”.25

This syllogism is intuitively appealing but incorrect. It appears to arise from the misinterpretation of frequentist confidence

intervals, as being Bayesian credible intervals. We should note that calculating and presenting the interval xo± 2σ as a fre-

quentist 95% confidence interval would be a valid procedure. That is to say, if we were to repeatedly take a new observation

xo according to Equation 1, with each observation having an independent observational error of standard deviation 0.25, and

generate the corresponding interval (xo− 0.5,xo + 0.5) then approximately 95% of the intervals so generated would include30

the true value xT . However, frequentist confidence intervals are not the same thing as Bayesian credible intervals. The latter

interpretation for an interval refers to a degree of belief that the particular interval that has been generated on a specific occa-
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sion does in fact include the parameter. Climate scientists are far from unique in this misinterpretation, which appears to be

widespread throughout the scientific community (Hoekstra et al., 2014). Because this misunderstanding is so deeply embedded

in scientific practice and discourse, we now discuss and explain it in some detail.

We start by noting that probabilistic statements concerning the true value xT demand the use of the Bayesian paradigm,

wherein the language and mathematics of probability may be applied to events that are not intrinsically random, but about5

which our knowledge is uncertain (Bernardo and Smith, 1994). The parameter xT here does not itself have a probability

distribution; it was assumed to take a fixed value. Therefore to even talk of “the pdf of xT ” in this manner is to commit a

category error. It is the researcher’s beliefs concerning xT that are uncertain, and this uncertainty is represented as their pdf for

xT .

Bayes’ Theorem is a simple consequence of the axioms of probability: the joint density p(xo,xT ) of two variables xo and10

xT can be decomposed in two different ways via

p(xo,xT ) = p(xT |xo)p(xo) = p(xo|xT )p(xT )

and thus

p(xT |xo) = p(xo|xT )p(xT )/p(xo). (2)

p(xT |xo) is our posterior density for the true value xT given the observational evidence xo. p(xT ) is the prior distribution for15

xT , which describes the researcher’s belief excluding the observational evidence. p(xo|xT ) is commonly termed the ‘likeli-

hood’ and is determined by the measurement model: for example, in the case of an unbiased Gaussian observational error, such

as in Equation 1, the functional form of p(xo|xT ) is given by

p(xo|xT ) =
1√
2πσ

e
−(xo−xT )2

2σ2 .

When the terms for xo and σ are replaced in this function by their known numerical values, this function looks like it could be20

a probability distribution for p(xT |xo), but as Bayes’ Theorem (Equation 2) makes clear, it is not in general the posterior pdf,

instead being merely one term in its calculation. This is the critical point which underpins the analyses presented in this paper:

the distribution of the observation defined by measurement models such as Equation 1 directly defines the likelihood p(xo|xT )

and not the posterior pdf p(xT |xo).

The error in the syllogism is to interpret p(xo|xT ) as p(xT |xo): this is a common fallacy known as the “confusion of the25

inverse” which is closely related to the “prosecutor’s fallacy”, the latter term generally being used in discrete probability where

the phenomenon is more widely known and well studied. The fallacy is perhaps easiest to illustrate with discrete cases which

compare P (A|B) to P (B|A) for a pair of events A and B. For example, the probability of a person suffering from a rare

disease (event A), given that they tested positive for it (event B), is in general different from (and often rather lower than than)

the probability that someone produces a positive test result, given that they are suffering from the disease. It has been known30

for some time that medical doctors routinely commit this transposition error (Gigerenzer and Hoffrage, 1995). Additional

examples and discussion in relation to interval estimation can be found in Morey et al. (2016).
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We now present a simple example in which the syllogism leads to poor results in a physically-based scenario with continuous

data. We take as given that the timing error of a hand-held stopwatch is ±0.25s at one standard deviation (Hetzler et al., 2008).

That is to say, the measured time to is related to the true time, tT , via to = tT + ε with ε∼N(0.0.25) (cf Equation 1). Let us

consider an experiment in which an adult male colleague holds a dense object (say, a stone) at head height while standing, and

drops it while the experimenter times how long it takes for the stone to reach the ground.5

An observed time of to = 0.60s could lead someone to say via the confusion of the inverse fallacy that the true time taken

is represented by the Gaussian pdf tT ∼N(0.6,0.25) (albeit with an assumed truncation at zero which we ignore for conve-

nience). One implication of this pdf is that there is a 16% chance that the true time is less than 0.35s, and also a 16% chance that

it is more than 0.85s. Ignoring the negligible air resistance and using the simple equation of motion under gravity h= 1
2at

2,

one would have no choice but to conclude from these values that the experimenter’s colleague has a 16% chance of being less10

than 60cm tall, and also a 16% chance of being greater than 4.5m tall. For a typical adult male, neither of these cases seems

reasonable. We have obtained a measurement which is entirely unremarkable, with the observed time corresponding to a fall

of around 1.75m. And yet the commonplace interpretation of an imprecise measurement as directly giving rise to a probability

distribution for the measurand has lead to palpably ridiculous results. While in many cases the results will not be so silly, this

simple example does demonstrate that the methodology cannot be sound. More pernicious cases are where the interpretation15

is not so obviously silly and thus may be confidently presented, even though the methodology is still (as we have just shown)

invalid.

In order to make sensible use of this observation, we can instead perform a simple Bayesian updating procedure. The

distribution N(0.6,0.25) is actually correctly interpreted as the likelihood of the observed time p(to|tT ), which can be used

to update a prior estimate. The distribution of adult male heights in the UK (in metres) is taken to be by N(1.75,0.07) and20

we use this as our prior. The drop time t predicted from a height drop h is given by t=
√

2h/a where a= 9.8ms−2 is the

acceleration due to gravity. Due to the substantial observational uncertainty, the likelihood of the drop time is virtually flat

across the support of the prior, varying by less than 1% across the range of 1.60m to 1.90m. The posterior estimate obtained

through Bayes’ Theorem is easily calculated by direct numerical integration and still approximates to N(1.75,0.07) to two

decimal places. The correct interpretation of the experiment is not, therefore, that the measurement shows there is a substantial25

probability of the researcher breaking a height record, but rather that the measurement is so imprecise that it does not add any

significant information on top of what was already known.

While it is formally invalid, we must acknowledge that this syllogism does actually work rather well in many cases. In

particular, if the likelihood p(xo|xT ) is non-negligible over a sufficiently small neighbourhood of xo such that a prior can

reasonably be used which is close to uniform in this region of xo, then the true posterior calculated by a Bayesian analysis will30

be close to that asserted by the syllogism. For example, if the Gaussian prior xT ∼N(100,20) were to be used in the original

example, then when this is updated by the likelihood corresponding to the observation xo = 74.6 with uncertainty σ = 0.25,

the correct posterior p(xT |xo) is actually given by N(74.6,0.25) to several significant digits. In the limiting case where an

unbounded uniform prior is used for xT , the syllogism is precisely correct.
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Thus in practice the syllogism can often be interpreted as Bayesian analysis in which a uniform prior has been implicitly used,

and in cases where this is reasonable it will generate perfectly acceptable results. Statements to this effect have occasionally

appeared in some papers where a non-Bayesian analysis has been presented as directly giving rise to a posterior pdf. It may

therefore seem that the terminology of ‘fallacy’ and ‘confusion’ is somewhat melodramatic: this convenient shortcut is often

harmless enough. However this cannot be simply asserted without proof: there are many examples of procedures for generating5

frequentist confidence intervals where the results cannot plausibly be interpreted as Bayesian credible intervals (Morey et al.,

2016). As well as concerns over the prior, it is also essential when taking this shortcut that the observational uncertainty σ

is taken to be a constant which does not vary with the parameter of interest xT . This may be the case when we consider

uncertainties arising solely from an observational instrument, but is less clear when σ includes a contribution from the system

under study. For example, if the uncertainty in an observed estimate of the forced temperature response in an analysis of10

climate change includes a contribution due to the internal variability of the climate system, then this internal variability could

be expected to vary with the parameters of the system. In this case, the confusion of the inverse cannot be rescued by invocation

of a uniform prior. However we do not explore this uncertainty in σ further in this paper.

Some have attempted to retrospectively defend the use of this syllogism with the claim that the uniform prior is necessarily

the correct one to use, generally via the belief that this represents some sort of pure or maximal state of ignorance. How-15

ever, it is well-established (and indeed is sometimes used as a specific point of criticism) that there is no such thing as pure

ignorance within the Bayesian framework. See Annan and Hargreaves (2011) for further discussion of this in the context of

climate science. As Morey et al. (2016) states: “Using confidence intervals as if they were credible intervals is an attempt

to smuggle Bayesian meaning into frequentist statistics, without proper consideration of a prior.” There is also a strand of

Bayesianism which asserts more broadly that in any given experimental context there is a single preferred prior, typically one20

which maximises the influence of the likelihood in some well-defined manner. Jeffreys Prior is one common approach within

this “objective Bayesian” framework. However, it has the disadvantage that it assigns zero probability to events that the obser-

vations are uninformative about. This ‘see no evil’ approach does have mathematical benefits but it is hard to accept as a robust

method if the results of the analysis are intended to be of practical use. In the real world, our inability to (currently) observe

something cannot rationally be considered sufficient reason to rule it out. We do not consider “objective Bayesian” approaches25

further.

It is a fundamental assumption of this paper, which underpins the analyses presented in subsequent sections, that when

researchers have presented observational estimates of temperature change ∆To in the form ∆To = µ±σ or in some equivalent

manner, they are implicitly using a measurement model of the form given in Equation 1 with µ representing the observational

value obtained and σ representing the expected magnitude of observational uncertainty (assumed Gaussian throughout this30

paper, as is common in the literature). On this basis, the temperature observation gives rise to a likelihood as described above,

and does not directly generate a probability distribution for ∆TT . We however note that authors have not always been entirely

clear about the statistical framework of their work and it is not always possible to discern their intentions precisely. Thus,

while we confidently believe our interpretation to be natural and appropriate in most cases, we do not claim it to be universally

applicable.35
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2.2 Priors for the climate sensitivity

Most probabilistic estimates of the equilibrium climate sensitivity which have explicitly presented a Bayesian framework, have

used a prior which is uniform in sensitivity S. There does not appear to be any principled basis for this choice, which has

been argued on the basis that it represented ‘ignorance’. One could just as easily (and erroneously) argue that a prior which

is uniform in feedback λ= F2×/S was ignorant (here F2× is the forcing arising from a doubling of CO2). In fact both of5

these improper priors can exhibit a pathology which causes problems with their use. In particular, if the likelihood is non-zero

at λ= 0 (respectively, S = 0), then when the improper unbounded uniform prior on S (λ) is used, the posterior will also be

improper and unbounded. In practical applications, this problem has generally been masked by the use of an upper bound on

the prior, but (while a lower bound of 0 may be defended on the basis of stability) the choice of upper bound is hard to justify.

The upper bound which appears to have been most commonly used for sensitivity is 10◦C and we will adopt this choice here.10

We use a range of 0.37 – 10 for the uniform priors in both λ and S, which ensures that their ranges are numerically identical

(although their units are of course different). As a third alternative prior for S, we will also use the positive half of a Cauchy

prior, with location 0 and scale parameter 5, ie p(S) = 2
5π(1+(S/5)2) , S > 0. An attractive feature of the Cauchy prior is that

it has a long tail which only decreases quadratically (hence it does not rule out high vales a priori) and moreover, its inverse

is also Cauchy so both S and λ have broad support. The scale factor is the 50th percentile of the distribution hence the half-15

Cauchy prior for S has a 50% probability of exceeding 5◦C. The scale factor of the corresponding implied prior in λ is given

by 3.7/5 = 0.74Wm−2K−1.

3 Applications

We now consider three areas in which observational constraints have been used to estimate the equilibrium climate sensitivity.

Firstly, we consider paleoclimatic evidence, which relates to intervals during which the climate was reasonably stable over20

a long period of time and significantly different to the pre-industrial state. We then consider analyses of the observations of

the warming trend over the 20th Century (strictly, extending into the 21st and 19th century). Finally we consider analyses of

interannual variability.

3.1 Paleoclimate

3.1.1 Observationally-derived PDFs25

A common paradigm for estimating the equilibrium climate sensitivity S using paleoclimatic data is to consider an interval in

which the climate was reasonably stable and significantly different to the present, and analyse proxy data such as pollen grains

and isotopic ratios in sediment cores in order generate estimates of the forced global mean temperature anomaly ∆T caused

by the forcing anomaly ∆F relative to the current (pre-industrial) climate. S can then be estimated via the equation

S = F2××∆T/∆F (3)30
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where F2× is the forcing due to a doubling of the atmospheric CO2 concentration. Examples of this approach include Annan

and Hargreaves (2006) and Rohling et al. (2012).

The interval which has been examined in most detail in this manner is probably the Last Glacial Maximum, 19–23ka (Mix

et al., 2001) where the climate was reasonably stable (at least in the sense of gross evaluations such as global mean surface

air temperature on millennial time scales) and substantially different to the present day such that the signal to noise ratio in5

estimates of forcing and temperature change are reasonably high.

The method adopted by Annan and Hargreaves (2006) and we believe many others (although this is not always documented

explicitly), which we term here ‘sampling the observational pdfs’, was to generate an ensemble of values of S by repeatedly

drawing pairs of samples from pdfs which are deemed to represent estimates of the forcing and temperature anomalies, and

calculating for each pair the corresponding value of S using Equation 3. The ensemble of values for S so generated is then10

considered as a representative sample from a probabilistic estimate of the truth.

Using values based broadly on those used in Annan and Hargreaves (2006); Köhler et al. (2010); Rohling et al. (2012);

Annan and Hargreaves (2013), we use here observational estimates of 5± 1.5◦C for ∆T and 9± 2Wm−2 for ∆F (with the

observational errors assumed to represent one standard deviation of a Gaussian), along with a fixed value for F2× of 3.7Wm−2.

In the illustrative calculations presented here we ignore any issues relating to the non constancy of the sensitivity S and how15

it might vary in relation to the background climate state and nature of the forcing, although we have slightly inflated the

uncertainties of the observational constraints in order to make some attempt to compensate for this. Thus the numerical values

generated here are not intended to be definitive but are still adequate to illustrate the different approaches.

As mentioned in Section 2.1, we assume that published estimates for ∆T can be understood as representing likelihoods

p(∆To|∆TT ) — that is to say, the observational analysis provides an uncertain estimate of the true value of the form given by20

Equation 1 with an a priori unbiased error of the specified value. The result of Annan and Hargreaves (2013) certainly fits this

paradigm. For the forcing estimate, things are not so clear. We do not have direct proxy-based evidence for the forcing, which

is typically estimated based on a combination of modelling results and some rather subjective judgements (Köhler et al., 2010;

Rohling et al., 2012). Any uncertainty in the actual measurements involved, such as those of greenhouse gas concentrations in

bubbles in ice cores, makes a negligible contribution to the overall uncertainty in total forcing. Therefore, we do not have a25

clear measurement model of the form given in Equation 1 with which to define a likelihood for the forcing. Thus we take the

stated distribution to directly represent a prior estimate for the forcing anomaly. We do not claim that this is the only reasonable

approach to take here and other researchers might prefer to make different choices, in particular if they could clearly identify a

likelihood arising from observational data.

When applied to the numerical estimates provided above, the pdf-sampling method of Annan and Hargreaves (2006) gener-30

ates an ensemble for S with a median estimate of 2.1◦C and a 5–95% range of 1.0 to 3.8◦C. Figure 1 presents this result as the

cyan line, together with additional results which will be described below.
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3.1.2 Bayesian interpretation and alternative priors

Now we present alternative calculations which take a more standard explicitly Bayesian approach. We start by writing the

model in the form

∆T = S×∆F/3.7 (4)

or equivalently5

∆T = ∆F/λ (5)

where λ= S/3.7 is the feedback parameter. This formulation allows us to easily consider the forcing and feedback parameter

as uncertain inputs (for which we can explicitly define prior distributions) to the model, which can then be updated by the

likelihood arising from the observed temperature change.

Although the method of sampling observational pdfs described in Section 3.1.1 was not presented in Bayesian terms, we10

are now in a position to present a Bayesian interpretation of it. The distribution generated by sampling the pdfs is distributed

as independently Gaussian N(5,1.5) in ∆T and Gaussian N(9,2) in ∆F . We aim to choose a prior such that the Bayesian

analysis will generate this as the posterior after updating by the likelihood for ∆T . This likelihood as described above is taken

to be the Gaussian N(5,1.5). Therefore, by rearrangement of Bayes’ Theorem, the desired prior must be uniform in ∆T and

independently Gaussian N(9,2) in ∆F . For numerical reasons we must impose bounds on the uniform prior for ∆T and we15

set this range to be 0–20◦C.

Using Equation 3, we can reparameterise this joint prior distribution over ∆T and ∆F into a distribution over S and ∆F ,

and this is presented in Figure 2. Note that this prior cannot be represented as the product of independent distributions over S

and ∆F , as high S here is correlated with low ∆F and vice versa. The prior in S when viewed as a marginal distribution (i.e.,

after integrating over ∆F ) appears uniform over a significant range (roughly between S = 0.6 and S = 5) but within this range20

it is associated with somewhat high values for ∆F , with the latter taking a mean value of about 9.5Wm−2 over this region.

The details of the shape of this joint prior does depend on the bounds placed on the uniform prior for ∆T , but this does not

affect the posterior so long as the prior is broad enough to cover the neighbourhood of the observation. We think it is unlikely

that researchers would choose a joint prior of this form deliberately, and confirm that this certainly was not the case in Annan

and Hargreaves (2006). In future analyses it would seem more appropriate to clearly state the priors which are used, and test25

the sensitivity of the results to this choice.

In order to perform a more conventional Bayesian updating procedure using Equation 5, we must first select priors on the

model inputs. For the forcing ∆F , we retain the N(9,2) prior, having no plausible basis for trying anything different. For

sensitivity, we test the three priors described in Section 2.2. The two uniform priors generate rather different results. Using a

prior which is uniform in S the posterior has a mean value for S of 2.2◦C and a 5–95% range of 1.0–4.2◦C. When we change30

to uniform in λ the median decreases to 1.5◦C with a 5–95% range of 0.5–3.0◦C. While these results, which are shown in

Figure 1, overlap substantially, broadening the upper bounds on the priors would result in the first result increasing without

limit and the second decreasing towards zero such that they would fully separate. We therefore see that extreme choices for
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Figure 1. Prior and posterior estimates for the climate sensitivity arising from paleoclimatic evidence. Dashed lines show priors, solid lines

are posterior densities. Thick cyan line shows posterior estimate arising from the method of sampling observational pdfs, with corresponding

prior shown in Figure 2. Blue lines represent results using uniform prior in λ, red is uniform in S, and magenta is half-Cauchy (scale = 5) in

S (and therefore also half-Cauchy (scale = 3.7/5) in λ).
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Figure 2. Implicit prior used in paleoclimate estimate. Contour plot shows joint prior in S and ∆F with marginal densities shown at top and

right respectively. Vertical and horizontal dashed lines drawn at S = 0.6, 5 and ∆F = 9.

the prior on S (or λ) can have significant influence on Bayesian estimation, which is perhaps not surprising given the large

uncertainties in the observational constraints used here. The median posterior value for S obtained from the half-Cauchy prior

is 2.1◦C with a 5–95% range of 1.0–3.8◦C, which coincidentally aligns very closely with the result obtained by the naive

method of sampling observational pdfs (which is plotted as a thick line in Figure 1 in order to make it more visible). We

conclude in this case that the method of sampling pdfs has generated a result which is reasonable, but alternative choices of5

prior could give noticeably different results.
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3.2 Estimates based on historical warming

3.2.1 Observationally-derived PDFs

Perhaps the most common approach to estimating S has been to use the instrumental record (Tol and De Vos, 1998; Gregory

et al., 2002; Olson et al., 2012; Aldrin et al., 2012). While a wide range of climate models have been utilised for this purpose, a

simple energy balance similar to that of Section 3.1 can be used so long as the radiative imbalance is accounted for. We follow5

the recent analysis of Mauritsen and Pincus (2017) but simplify their calculation by ignoring uncertainty in F2×, instead

adopting their mean value of 3.71Wm−2 (using all their uncertain numerical values otherwise). This simplification has very

little influence on the results. Mauritsen and Pincus (2017) present the basic energy balance in the form

S = F2×∆T/(∆F −∆Q) (6)

where ∆Q represents the net planetary radiative imbalance and the other terms are as before. This equation is applied between10

two widely separated decadal-scale intervals within the historical record, such that the signal to noise ratio (and hence precision

in the resulting estimate of S) is as large as possible, though it remains a significant source of uncertainty (Dessler et al., 2018).

Similar to Section 3.1.1, the method used by Mauritsen and Pincus (2017) is one of sampling observationally-derived pdfs for

all uncertain quantities on the right hand side of equation 6, and thereby generating an ensemble of values for S which was

interpreted as a probability distribution.15

3.2.2 Bayesian interpretation and alternative priors

As in section 3.1.2, we reorganise equation 6 in order to give ∆T as the prognostic variable, assigning priors to the terms on

the right hand side. We thus obtain

∆T = (∆F −∆Q)×S/F2× = (∆F −∆Q)/λ (7)

We adopt the distributions used by Mauritsen and Pincus (2017) for ∆F and ∆Q as priors for these variables, but interpret20

their estimate for the temperature change ∆To as a likelihood p(∆To|∆T )∼N(0.77,0.08) as arising from the measurement

model of Equation 1. This arises immediately from the paradigm of the underlying forced temperature response being noisily

observed due to internal variability which can be assumed independent of the forced response. Given the similarities between

Equations 3 and 6, and also in the method used, it is no surprise to find that the implicit prior used here before updating with

the temperature likelihood is qualitatively similar to that found in Section 3.1. This is shown in Figure 3. Again the marginal25

prior over S appears uniform over a reasonable range (the details depend on the limits of the uniform prior over ∆T ) but

nevertheless it is actually correlated with the net forcing. Figure 4 shows the posterior result arising from this prior, which

matches the published result of Mauritsen and Pincus (2017) closely despite our minor simplification to their calculation.

The posterior median calculated here is 1.8◦C with a 5–95% range of 1.1–4.5◦C. As in Section 3.1, we make no attempt to

decompose the forcing estimate into prior and likelihood, especially as some of the largest uncertainties (e.g. that arising from30
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Figure 3. Implicit prior used in 20th century estimate.

aerosol forcing) are based on modelling calculations and expert judgments that cannot be transparently traced to uncertainties

in observational data.

Alternative priors and their resulting posteriors after Bayesian updating using Equation 7 are shown in Figure 4. As before,

we test the three priors presented in Section 2.2. The posterior median (and 5–95% range) for S arising from these are 2.1◦C

(1.2–6.3◦C) for uniform-S, 1.5◦C (1.0–3.1◦C) for uniform-λ and 2.0◦C (1.1–5.0◦C) for the half-Cauchy prior respectively.5

Thus again the half-Cauchy prior produces a result which is intermediate between the other explicit choices, though this time it

has a somewhat longer tail than the pdf sampling method. The differences between these results, especially for the upper 95%

limit, are substantial and could significantly alter their interpretation and impact.
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Figure 4. Priors and posteriors in explicit Bayesian estimates using 20th century data. Dashed lines show priors, solid lines are posterior

densities. Thick cyan line shows posterior estimate arising from the method of sampling observational pdfs, with its implicit prior shown in

Figure 3. Blue lines represent results using uniform prior in λ, red is uniform in S, and magenta is half-Cauchy (scale = 5) in S (and therefore

also half-Cauchy (scale = 3.7/5) in λ).
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3.3 Estimates based on interannual variability

3.3.1 Observationally-derived PDFs

Finally, we consider a method which has been used to estimate the climate sensitivity via interannual variation in radiation

balance and temperature (Forster and Gregory, 2006; Dessler and Forster, 2018). The basic premise of these analyses is that the

feedback parameter can be estimated as the slope of the regression line of net radiation imbalance (based primarily on satellite5

observations) against temperature anomalies, with data typically averaged on an annual time scale (though seasonal data may

also be used). There are questions as to whether this short-term variability provides an accurate estimate of long-term changes,

but this is beyond the scope of this manuscript (Dessler and Forster, 2018). The regression slope and its uncertainty naturally

translates into a Gaussian likelihood for the true feedback component, and has been commonly interpreted as a probability

distribution for λ. While this again appears to commit the fallacy of confusion of the inverse, the implicit assumption of a10

uniform prior on λ has been clearly acknowledged by authors working in this area (e.g. see comments in Forster and Gregory

(2006) and Forster (2016)). In this section we will use the observational estimate of Forster and Gregory (2006) which is given

by λo = 2.3± 0.7Wm−2K−1. We note that when uncertainty in the forcing arising from a doubling of CO2 is ignored, there

is a trivial transformation between λ and S via S = F2×/λ. Therefore a likelihood for λ can be directly interpreted as an

equivalent likelihood for S.15

3.3.2 Bayesian interpretation and alternative priors

As noted by Forster and Gregory (2006), presenting what actually amounts to an observational likelihood for λ as a posterior pdf

is equivalent to assuming a uniform prior in λ (see also Annan and Hargreaves (2011)). Therefore the Bayesian interpretation

is already clear in this instance.

In Figure 5 we present the results of calculations using our three alternative priors (albeit one of them coincides with the20

method of sampling pdfs). The original result of Forster and Gregory (2006) (after transforming to S-space) is represented

by the blue lines, with red showing the result obtained for a uniform prior in S and magenta being a Cauchy prior. We note

that, for the uniform-S case, if the upper bound on the prior was raised, the posterior would also increase without limit due

to the pathological behaviour discussed in Section 3.1.2 and also by Annan and Hargreaves (2011). For the priors shown

(with the uniform priors defined as U [0.37,10]) the 5–95% ranges of the posteriors are 1.1–3.2◦C, 1.2–6.9◦C and 1.2–5.2◦C25

for the uniform-λ, uniform-S and Cauchy-S priors respectively. The uniform-λ prior commonly adopted by analyses of this

type provides a strong tendency towards low values and the the contrast with uniform-S, especially for the upper bound, is

disconcerting.

4 Conclusions

We have shown how various calculations which have presented probabilistic estimates of the equilibrium climate sensitivity S30

can be reinterpreted within a standard Bayesian framework. Using this standard framework ensures a clear distinction between
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Figure 5. Priors and posteriors over S in process-based feedback analysis. Dashed lines indicate priors, solid lines are posteriors. Thick cyan

line shows shows posterior estimate arising from the method of sampling observational pdfs, which coincides precisely with the blue line

which corresponds to the uniform prior in λ. Red lines show results using uniform prior in S and magenta is half-Cauchy (scale = 5) in S.
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the prior choices which must be made for model parameters and inputs, and the likelihood obtained from observations of the

system which is then used to update this prior in order to generate the posterior.

In many cases, the implied prior for S which underlies the published results appears somewhat unnatural, having either a

structural relationship with model inputs or a marginal distribution that may not be considered reasonable. We have presented

alternative calculations in which a range of simple priors are tested. As well as the commonly-used uniform priors, we have5

shown that a Cauchy prior has some attractive features, in that it extend to high values (refuting any suspicion that the results

obtained were simply constrained by the prior), its reciprocal is also Cauchy (so both S and λ may have long tails). The half-

Cauchy distribution used in this paper only requires a single scale parameter which determines the width. However the choice

of priors is always subjective and we make no assertion that this choice should be universally adopted. Indeed there may be

superior alternative choices that we have not considered.10

Our calculations suggest that the pdf sampling method can generate acceptable results in some cases, agreeing fairly well

with a fully Bayesian approach using reasonable priors. However, this is not always the case. We recommend that researchers

should present their analysis in an explicitly Bayesian manner as we have done here, as this allows the influence of the prior

and other uncertain inputs to be transparently tested.
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