
Comment 1. We certainly realised that Reviewer #2 didn't 
like the example, but in contrast Reviewer #1 explicitly 
praised the accessibility of the paper. Our manuscript 
isn't very long and electronic journals don't 
intrinsically have bounds on space. We would certainly 
prefer to include the example though it's fundamentally a 
matter of editorial guidelines as to whether it is 
appropriate. We have cited appropriate literature that 
demonstrates how widespread the misunderstanding is.

Comment 2. We do agree with the reviewer that it is not 
_always_ appropriate to interpret an uncertain estimate 
as measurement with Gaussian error along the lines of our 
Equation 1. Indeed, we specifically make this point in 
reference to the estimates of forcing that are used in 
the paleoclimate and 20th century calculations. The 
reviewer's further comments here have been helpful in 
clarifying their objections and we have edited the paper 
in several places (documented below) to make our 
intentions more clear on this point.

However, we do firmly believe that our approach is 
entirely appropriate in the cases that we consider, for 
the reasons discussed in the paper and in our previous 
reply to them. It is simply not factually correct of the 
reviewer to claim that researchers have reported an error 
bar and nothing more for these estimates that we 
consider.

Specifically, the reviewer hasn't actually explained why 
they consider it incorrect to interpret the estimate of 
forced warming in the 20th century (0.77±0.08) as arising 
from Equation 1. We emphasise that the value of 0.77 is 
the (deterministic) value obtained from the temperature 
record (albeit based on a complex processing of many 
thousands of daily thermometer readings), whereas the 
quoted uncertainty of 0.08 is an independently-derived 
estimate of internal variability of the climate system 
(at one standard deviation of a Gaussian) on the 
appropriate time scale - with this uncertainty assumed by 
the cited authors to dominate other sources of error. 



Observational estimates of this nature have regularly 
been used to derive likelihoods in Bayesian analyses in 
exactly the manner we propose so we find it hard to 
believe that the reviewer really means to reject this 
approach so broadly. The fact that the estimate of the 
standard deviation of internal variability (and indeed 
the use of a Gaussian distribution) is somewhat 
subjective and relies on a combination of model 
calculations and expert judgement does not contradict or 
undermine this interpretation in any way. The critical 
points are that this internal variability is independent 
of the forced response, and the observational analysis 
only measures the sum of these two terms. Equation 1 
follows as a direct consequence. We have clarified that 
the "observational error" in Equation 1 is not 
necessarily a simple instrumental or sampling error but 
may include any source of discrepancy between the 
numerical value generated from the observational 
analysis, and the measurand that the researcher is 
interested in.

We note that while our manuscript was in review, another 
paper (Williamson and Sansom 2019) has been published in 
which two statisticians with substantial experience in 
climate science have used the same measurement equation 
(their equation 6) to interpret a published uncertain 
estimate of a climate parameter as giving rise to a 
likelihood with which they update a prior - with a 
uniform prior in the measurand being presented as the 
"reference prior" that replicates the original published 
result. The parameter they consider here is a complex 
function of temperatures and the true meaning of the 
uncertainty seems if anything a little less clear than in 
our examples, being calculated as the standard deviation 
of a series of highly correlated values obtained from 
multiple overlapping data sets. Nevertheless they simply 
assert that the uncertainty in the observation can be 
interpreted in this form and proceed accordingly. There 
is also the case of the IPCC (2007) reinterpreting a 
previously published result (which was generated from 
20th century warming via the "sampling the pdfs" method 



as described in our manuscript) in order to use a uniform 
prior for sensitivity. See their Box 10.2 Figure 1 and 
the accompanying caption. Since the paper's first author 
(Jonathan Gregory) was also an author on this IPCC 
chapter, it seems that he endorsed this reinterpretation 
of his previous research, though we have not discussed 
this directly with him.

In response to comment 2, we have made the following 
changes to the manuscript relating to these points (page 
and line numbering refers to the diff file):

p2 l20 
explaining the application of the measurement equation in 
clearer terms, that the "noise" may include a diverse 
range of uncertainties beyond those arising from pure 
instrumental error.

p7 l30
emphasising the relevance of the measurement model to 
Annan and Hargreaves 2013 wherein the temperature 
estimate was generated in this form

p11 l10 and l19
explaining more fully how the measurement equation 
relates directly to the temperature change estimate of 
Mauritsen and Pincus

As for the analysis of interannual variability, since 
Forster and Gregory already specifically invoked a 
uniform prior in lambda to justify their interpretation 
of their observational estimate as a pdf, the likelihood 
implied in their research is surely uncontentious in this 
case.

A few additional edits have been made in order to reduce 
the chance of misinterpretation, such as 

p5 l33 and p14 l30
Emphasis that the interpretation presented in this 
manuscript is our own and making no assertion of 



universal applicability or truth.

Comment 3: We disagree that different likelihood 
interpretations are "just as arbitrary and subjective" as 
the prior. In terms of the previously published work that 
we are reanalysing, the model that gives rise to the 
likelihood has generally been specified in some detail 
and has significant theoretical and practical basis, 
whereas the prior over the sensitivity parameter does 
not. While in an ideal world a Bayesian may present all 
assumptions on an equal standing at the outset, in 
reality the models are typically off-the-shelf choices 
that have been developed and tested in a variety of 
contexts outside of Bayesian analysis.

We aren't really sure what to make of suggestions that 
other probabilistic interpretations are possible. Our 
intention was to present a way of reconciling different 
calculations that have been made in a particular area of 
climate science, and interpret them in a simple Bayesian 
framework that we believe will be useful to others. 
Nothing in our work prevents other researchers from 
presenting different approaches if they choose but it 
seems outside the scope of this work. We have made 
additional edits to emphasise this more clearly (p5 l33 
and p14 l30). Note that we had already stated in the 
previous revision (p6 l4): "Thus, while we confidently 
believe our interpretation to be natural and appropriate 
in most cases, we do not claim it to be universally 
applicable."

Comment 4. We agree that the Cauchy prior has weaknesses, 
but are unaware of any prior that does not. As well as 
exploring the sensitivity of the results to the prior 
(with three or four different priors tested in each 
example) we explicitly suggest in the manuscript that 
researchers make their own choices. There is long and 
tedious history behind our particular choice of prior 
(which was picked deliberately to have very broad tails) 
and while we could explore an even larger range of priors 
in more detail, it would seem a distraction from the main 



purpose of the paper which is primarily to explain how 
existing analyses can be interpreted and presented in 
terms of a simple Bayesian framework.

Williamson, D. B., & Sansom, P. G. (2019). How are 
emergent constraints quantifying uncertainty and what do 
they leave behind? Bulletin of the American 
Meteorological Society, BAMS–D–19–0131.1–45. http://
doi.org/10.1175/BAMS-D-19-0131.1

Reviewer comments:

 Section 2. I commented on this as a major correction and 
the authors have not changed it and merely defended the 
choice to give an undergraduate statistics lesson in a 
peer reviewed journal article. If climate statistics is 
as bad as they claim in their defence then that is a sad 
state of affairs. However, it is my experience that many 
climate journals publish proper statistical analyses 
using Bayes or even more advanced theory. Examples can be 
found in the works of Berliner, Guttorp, Wilkinson and 
many more. If this paper must be published the reader’s 
time should not be wasted in the main text with this and 
it should go in the appendix. It is worth adding that the 
objection that everyone is misinterpreting things is 
quite funny given that the basic stats class everyone who 
uses confidence intervals must have taken at some point 
would have gone to great lengths to explain why they are 
not probabilities during that introduction.
     The “natural” approach to assume DT = \mu ± \sigma 
means that the true value is \mu measured with Gaussian 
random noise is not natural in general. I am not 
convinced by their handful of examples. I could spend a 
long time ranting about this, but to be brief: imposing 
infinitely many probability statements on a researcher 
that has reported an error bar is not justifiable, even 
if you really really want it to be. You can of course 
decide to proceed in a world where we imagine for the 



sake of argument that this is what is implied and go from 
there. But to say this is normally what is meant can’t be 
justified. When a numerical analyst reports an estimate 
with error, they very much understand that they are not 
invoking a measure. They might call it uncertainty, but 
they are talking about a bound on a numerical error (that 
can be derived due to the properties of the procedure 
etc). It is my experience that errors in observational 
products are very often dominated not by measurement 
error (which lends itself to the measurement error model 
in the paper if an author should choose), but by errors 
in assumptions and the methods used to bring the product 
together. The 1Sv error in the Rapid array observations 
for MOC is like this. Tiny observation error, but 
aggregating into a product requires assumptions which 
induce one and that error is not computed 
probabilistically. Global temperature must be similar. 
Sure, we might justify any observation having a Gaussian 
error, but a product?? Why? There was an opportunity to 
soften the paper’s tone instead of implicating anyone who 
reported an error with the infinite uncertainty 
specification of a Normal distribution and the authors 
could only bring themselves to go as far as a confidence 
that they are right in most cases. I cannot say I share 
their confidence.
     The investigation of assumed priors given assumed 
likelihoods and then looking at the impact of different 
priors is not uninformative for the community. The 
authors could go further and use different likelihood 
interpretations, as these are just as arbitrary and 
subjective. If the message is “ if you are Bayesian then 
think about your priors” then great. But I guess the 
message is more “everyone is acting like Bayesians with 
this model and these priors and that seems silly to us. 
Now everyone should be Bayesian and then justify their 
priors” (page 16 line 12). I am as Bayesian as they come 
and I think if researchers can be convinced that it is 
the only philosophically sound intellectual position, 
then they should be Bayesian and then they should think 
about their priors instead of using default priors. 
However, you have to first understand and accept the 



subjectivist view of uncertainty and to state that the 
measurement model represents a full joint probability 
distribution over the data given the parameters (for 
you). Many and arguably most would choose not to do this. 
I’ve mentioned alternative views of the measurement model 
above and there are many other intellectually defensible 
and more mainstream views of the meaning of uncertainty 
statements. The paper and conclusions could easily have 
been softened to say “under the subjective Bayesian view, 
this would mean this and that would mean that” without 
then adding “it is our experience that almost everyone 
does mean this”, and without even offering any of the 
alternative positions.
     If we are being truly subjective, it seems hard to 
imagine that any researcher could truly hold a Cauchy 
prior. The huge tails actually make them less natural for 
things we can think about, such as a temperature change, 
as they assign much more probability to huge physically 
impossible changes as a distribution like the normal. It 
would not be hard for most Cauchy priors to find implied 
subjective probability statements that no researcher 
could agree with just from the cdf of the prior 
predictive distribution. This would not be a problem for 
an objectivist, but of course it is against the message 
of this paper. Given the strong message the authors wish 
to impart regarding careful consideration of the 
implications of their prior, the prior predictive should 
have been explored in more detail.

In summary, the authors have barely moved an inch from 
the first edition and my view of the paper has done 
similar.



Bayesian deconstruction of climate sensitivity estimates using simple

models: implicit priors, and the confusion of the inverse.

James Annan and Julia Hargreaves
BlueSkiesResearch.org.uk
Settle, UK

Correspondence to: James Annan (jdannan@blueskiesresearch.org.uk)

February 21, 2020

Abstract.

Observational constraints on the equilibrium climate sensitivity have been generated in a variety of ways, but a number

of results have been calculated which appear to be based on somewhat informal heuristics. In this paper we demonstrate

that many of these estimates can be reinterpreted within the standard subjective Bayesian framework in which a prior over5

the uncertain parameters is updated through a likelihood arising from observational evidence. We consider cases drawn from

paleoclimate research, analyses of the historical warming record, and feedback analysis based on regression of annual radiation

balance observations on temperature. In each of these cases, the prior which was (under this new interpretation) implicitly used

exhibits some unconventional and possibly undesirable properties. We present alternative calculations which use the same

observational information to update a range of explicitly presented priors. Our calculations suggest that the heuristic methods10

do often generate reasonable results, in that they agree fairly well with the explicitly Bayesian approach using a reasonable

prior. However, we also find some significant differences and argue that the explicitly Bayesian approach is preferred, as it both

clarifies the rôle of the prior, and allows researchers to transparently test the sensitivity of their results to it.

1 Introduction

While numerous explicitly Bayesian analyses of the equilibrium climate sensitivity have been presented (e.g. Tol and De Vos,15

1998; Olson et al., 2012; Aldrin et al., 2012), many results have also been generated which appear to be based on more heuristic

methods. In this paper we examine several such estimates and demonstrate how they can be reinterpreted in the context of the

subjective Bayesian framework, revealing in each case an underlying prior which can be deemed to have been implicitly

used. That is to say, we present an explicitly Bayesian analysis which takes the same observational data together with the same

assumptions/model underlying the data-generating process, which (when used to update this implicit prior), precisely replicates20

the published result. In some cases these implicit priors exhibit rather unconventional properties, and we argue that they are

unlikely to have been chosen deliberately, and would probably not have been used if the authors had presented a transparently

Bayesian analysis. We rerun some of these analyses in a standard Bayesian framework, using the same observational evidence

1



to update a range of explicitly stated priors. While in many cases these results are broadly similar to the existing published

results, some differences will be apparent.

The paper is organised as follows. In Section 2 we introduce some concepts in Bayesian analysis which underpin our

presentation. In Section 3, we explore several calculations in which researchers have estimated the climate sensitivity via

direct calculation based on observationally-derived probability density functions, considering paleoclimate research (Annan5

and Hargreaves, 2006; Köhler et al., 2010; Rohling et al., 2012), the observational record of warming over the 20th century

warming (Gregory et al., 2002; Mauritsen and Pincus, 2017), and analyses of interannual variability (Forster and Gregory,

2006; Dessler and Forster, 2018) in turn. We present a Bayesian interpretation of these calculations, and give some alternate

analyses based on alternative, explicitly stated, priors. We argue that this latter approach is preferred, as it both clarifies the

rôle of the prior, and allows researchers to transparently test the sensitivity of their results to it. We conclude with a general10

discussion about our results.

2 Principles and methods

2.1 Confidence intervals, Bayesian probability and the “confusion of the inverse”

Let us assume we have a measuring process that produces an observational estimate xo of an unknown (but assumed constant)

parameter which takes the value xT , with an observational error ✏ that can be considered to take a specified error distribution,15

typically an unbiased Gaussian:

xo = xT + ✏ (1)

where ✏⇠N(0,�). For simplicity, we assume here � is known. This “measurement model” is fundamental to analysis of

observations in many scientific domains. For example, in climate science, analyses of observed global temperature anomalies

are commonly generated and presented in this form.
:::
We

:::::::::
emphasise

:::
that

:::
the

::::
error

::::
term

::
in

::::
this

:::::::
equation

::::
need

:::
not

::
be

:::::::
defined

:::::
solely20

::
in

:::::
terms

::
of

:
a
::::::
simple

::::::::::
instrumental

:::
or

:::::::
sampling

:::::
error

:::
but

::::
may

::::::
include

::::
any

:::
and

::
all

:::::::
sources

::
of

::::::::::
discrepancy

:::::::
between

:::
the

:::::::::
numerical

::::
value

:::::::::
generated

::::
from

::
an

::::::::::::
observational

:::::::
analysis,

:::
and

:::
the

::::::::::
measurand

:::
that

:::
the

:::::::::
researcher

::
is

::::::::
interested

:::
in.

:::::
Some

::::::::
examples

:::
will

:::
be

::::::::
discussed

::::
later

:::::
when

::
we

:::::::
present

::::::::::
applications

::
of

:::
our

:::::::::::
methodology.

:::
All

::::
that

:::
we

::::::
require

::
in

:::::
order

::
to

:::
use

:::
this

::::::::
equation

:
is
::
to
:::::::
assume

:::
that

:::
the

::::::::::
uncertainty

:::::::
inherent

::
in

:::
the

:::::::::
generation

:::
of

:::
the

:::::::::::
observational

::::::::
estimate

::
is

::::::::::
independent

::
of

:::
the

::::
true

:::::
value

::::::
which

::
is

:::::
being

::::::::
estimated,

::::
and

:::
that

:::
we

::::
have

:
a
:::::::::
statistical

:::::
model

:::
for

:
it
:::::
(such

::
as
:::::::::
Gaussian).

:
25

Following on from this measurement model, there is a simple syllogism (i.e. a logical argument
:
) that seems common in

many areas of scientific research, which runs as follows: since we know a priori that p(�2� < ✏< 2�)' 95%, we can also

write a posteriori that p(xo�2� < xT < xo+2�)' 95% once xo is known. For example, if � = 0.25 is given, and we observe

the value xo = 74.60 then the researcher may assert “there is ⇠ 95% probability that xT lies in the interval (74.10,75.10)” or

simply present a full probability density: “the pdf of xT is N(xo,�) =N(74.60,0.25)”.30

This syllogism is intuitively appealing but incorrect. It appears to arise from the misinterpretation of frequentist confidence

intervals, as being Bayesian credible intervals. We should note that calculating and presenting the interval xo ± 2� as a fre-
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quentist 95% confidence interval would be a valid procedure. That is to say, if we were to repeatedly take a new observation

xo according to Equation 1, with each observation having an independent observational error of standard deviation 0.25, and

generate the corresponding interval (xo � 0.5,xo +0.5) then approximately 95% of the intervals so generated would include

the true value xT . However, frequentist confidence intervals are not the same thing as Bayesian credible intervals. The latter

interpretation for an interval refers to a degree of belief that the particular interval that has been generated on a specific occa-5

sion does in fact include the parameter. Climate scientists are far from unique in this misinterpretation, which appears to be

widespread throughout the scientific community (Hoekstra et al., 2014). Because this misunderstanding is so deeply embedded

in scientific practice and discourse, we now discuss and explain it in some detail.

We start by noting that probabilistic statements concerning the true value xT demand the use of the Bayesian paradigm,

wherein the language and mathematics of probability may be applied to events that are not intrinsically random, but about10

which our knowledge is uncertain (Bernardo and Smith, 1994). The parameter xT here does not itself have a probability

distribution; it was assumed to take a fixed value. Therefore to even talk of “the pdf of xT ” in this manner is to commit a

category error. It is the researcher’s beliefs concerning xT that are uncertain, and this uncertainty is represented as their pdf for

xT .

Bayes’ Theorem is a simple consequence of the axioms of probability: the joint density p(xo,xT ) of two variables xo and15

xT can be decomposed in two different ways via

p(xo,xT ) = p(xT |xo)p(xo) = p(xo|xT )p(xT )

and thus

p(xT |xo) = p(xo|xT )p(xT )/p(xo). (2)

p(xT |xo) is our posterior density for the true value xT given the observational evidence xo. p(xT ) is the prior distribution for20

xT , which describes the researcher’s belief excluding the observational evidence. p(xo|xT ) is commonly termed the ‘likeli-

hood’ and is determined by the measurement model: for example, in the case of an unbiased Gaussian observational error, such

as in Equation 1, the functional form of p(xo|xT ) is given by

p(xo|xT ) =
1p
2⇡�

e
�(xo�xT )2

2�2 .

When the terms for xo and � are replaced in this function by their known numerical values, this function looks like it could be25

a probability distribution for p(xT |xo), but as Bayes’ Theorem (Equation 2) makes clear, it is not in general the posterior pdf,

instead being merely one term in its calculation. This is the critical point which underpins the analyses presented in this paper:

the distribution of the observation defined by measurement models such as Equation 1 directly defines the likelihood p(xo|xT )

and not the posterior pdf p(xT |xo).

The error in the syllogism is to interpret p(xo|xT ) as p(xT |xo): this is a common fallacy known as the “confusion of the30

inverse” which is closely related to the “prosecutor’s fallacy”, the latter term generally being used in discrete probability where

the phenomenon is more widely known and well studied. The fallacy is perhaps easiest to illustrate with discrete cases which
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compare P (A|B) to P (B|A) for a pair of events A and B. For example, the probability of a person suffering from a rare

disease (event A), given that they tested positive for it (event B), is in general different from (and often rather lower than than)

the probability that someone produces a positive test result, given that they are suffering from the disease. It has been known

for some time that medical doctors routinely commit this transposition error (Gigerenzer and Hoffrage, 1995). Additional

examples and discussion
:
of

::::
this

::::
type

::
of
:::::::::

fallacious
::::::::
reasoning

:
in relation to interval estimation can be found in Morey et al.5

(2016).

We now present a simple example in which the syllogism leads to poor results in a physically-based scenario with continuous

data. We take as given that the timing error of a hand-held stopwatch is ±0.25s at one standard deviation (Hetzler et al., 2008).

That is to say, the measured time to is related to the true time, tT , via to = tT + ✏ with ✏⇠N(0.0.25) (cf Equation 1). Let us

consider an experiment in which an adult male colleague holds a dense object (say, a stone) at head height while standing, and10

drops it while the experimenter times how long it takes for the stone to reach the ground.

An observed time of to = 0.60s could lead someone to say via the confusion of the inverse fallacy that the true time taken

is represented by the Gaussian pdf tT ⇠N(0.6,0.25) (albeit with an assumed truncation at zero which we ignore for conve-

nience). One implication of this pdf is that there is a 16% chance that the true time is less than 0.35s, and also a 16% chance that

it is more than 0.85s. Ignoring the negligible air resistance and using the simple equation of motion under gravity h=
1
2at

2,15

one would have no choice but to conclude from these values that the experimenter’s colleague has a 16% chance of being less

than 60cm tall, and also a 16% chance of being greater than 4.5m tall. For a typical adult male, neither of these cases seems

reasonable. We have obtained a measurement which is entirely unremarkable, with the observed time corresponding to a fall

of around 1.75m. And yet the commonplace interpretation of an imprecise measurement as directly giving rise to a probability

distribution for the measurand has lead to palpably ridiculous results. While in many cases the results will not be so silly, this20

simple example does demonstrate that the methodology cannot be sound. More pernicious cases are where the interpretation

is not so obviously silly and thus may be confidently presented, even though the methodology is still (as we have just shown)

invalid.

In order to make sensible use of this observation, we can instead perform a simple Bayesian updating procedure. The

distribution N(0.6,0.25) is actually correctly interpreted as the likelihood of the observed time p(to|tT ), which can be used25

to update a prior estimate. The distribution of adult male heights in the UK (in metres) is taken to be by N(1.75,0.07) and

we use this as our prior. The drop time t predicted from a height drop h is given by t=
p
2h/a where a= 9.8ms�2 is the

acceleration due to gravity. Due to the substantial observational uncertainty, the likelihood of the drop time is virtually flat

across the support of the prior, varying by less than 1% across the range of 1.60m to 1.90m. The posterior estimate obtained

through Bayes’ Theorem is easily calculated by direct numerical integration and still approximates to N(1.75,0.07) to two30

decimal places. The correct interpretation of the experiment is not, therefore, that the measurement shows there is a substantial

probability of the researcher breaking a height record, but rather that the measurement is so imprecise that it does not add any

significant information on top of what was already known.

While it is formally invalid, we must acknowledge that this syllogism does actually work rather well in many cases. In

particular, if the likelihood p(xo|xT ) is non-negligible over a sufficiently small neighbourhood of xo such that a prior can35
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reasonably be used which is close to uniform in this region of xo, then the true posterior calculated by a Bayesian analysis will

be close to that asserted by the syllogism. For example, if the Gaussian prior xT ⇠N(100,20) were to be used in the original

example, then when this is updated by the likelihood corresponding to the observation xo = 74.6 with uncertainty � = 0.25,

the correct posterior p(xT |xo) is actually given by N(74.6,0.25) to several significant digits. In the limiting case where an

unbounded uniform prior is used for xT , the syllogism is precisely correct.5

Thus in practice the syllogism can often be interpreted as Bayesian analysis in which a uniform prior has been implicitly used,

and in cases where this is reasonable it will generate perfectly acceptable results. Statements to this effect have occasionally

appeared in some papers where a non-Bayesian analysis has been presented as directly giving rise to a posterior pdf. It may

therefore seem that the terminology of ‘fallacy’ and ‘confusion’ is somewhat melodramatic: this convenient shortcut is often

harmless enough. However this cannot be simply asserted without proof: there are many examples of procedures for generating10

frequentist confidence intervals where the results cannot plausibly be interpreted as Bayesian credible intervals (Morey et al.,

2016). As well as concerns over the prior, it is also essential when taking this shortcut that the observational uncertainty �

is taken to be a constant which does not vary with the parameter of interest xT . This may be the case when we consider

uncertainties arising solely from an observational instrument, but is less clear when � includes a contribution from the system

under study. For example, if the uncertainty in an observed estimate of the forced temperature response in an analysis of climate15

change includes a contribution due to the internal variability of the climate system, then this internal variability could
::::
might

:
be

expected to vary with the parameters of the system. In this case,
::
an

:::::::
answer

::::::::
generated

:::
via the confusion of the inverse cannot

be rescued by
:::
the invocation of a uniform prior. However we do not explore this uncertainty in � further in this paper.

Some have attempted to retrospectively defend the use of this syllogism with the claim that the uniform prior is necessarily

the correct one to use, generally via the belief that this represents some sort of pure or maximal state of ignorance. However, it20

is well-established (and indeed is sometimes used as a specific point of criticism) that there is no such thing as pure ignorance

within the Bayesian framework. See Annan and Hargreaves (2011) for further discussion of this in the context of climate sci-

ence. As Morey et al. (2016) states
:::
Our

::::::::
objection

::
to

:::
the

:::::::::
widespread

::::::::::
application

::
of

:::
this

::::::::
procedure

::
is
:::::::
perhaps

::::
best

:::::::
summed

::
up

:::
by

::::::::::::::::
Morey et al. (2016)

:::
who

:::::
state: “Using confidence intervals as if they were credible intervals is an attempt to smuggle Bayesian

meaning into frequentist statistics, without proper consideration of a prior.” There is also a strand of Bayesianism which asserts25

more broadly that in any given experimental context there is a single preferred prior, typically one which maximises the influ-

ence of the likelihood in some well-defined manner. Jeffreys Prior is one common approach within this “objective Bayesian”

framework. However, it has the disadvantage that it assigns zero probability to events that the observations are uninformative

about. This ‘see no evil’ approach does have mathematical benefits but it is hard to accept as a robust method if the results of the

analysis are intended to be of practical use. In the real world, our inability to (currently) observe something cannot rationally30

be considered sufficient reason to rule it out. We do not consider “objective Bayesian” approaches further.

It is a fundamental assumption of this paper , which underpins the analyses presented in subsequent sections, that when

:::
that

::
in

:::
the

:::::
cases

:::::::::
presented

::::::
below,

:::::
where

:
researchers have presented observational estimates of temperature change �To in

the form �To = µ±� or in some equivalent manner, they are implicitly
:::::::
(perhaps

:::::::::
implicitly)

:
using a measurement model of

the form given in Equation 1 with µ representing the observational value obtained and � representing the expected magnitude35
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of observational uncertainty (assumed Gaussian throughout this paper, as is common in the literature). On this basis, the

temperature observation gives rise to a likelihood as described above, and does not directly generate a probability distribution

for �TT . We however note that authors have not always been entirely clear about the statistical framework of their work and it

is not always possible to discern their intentions precisely. Thus, while we confidently believe our interpretation to be natural

and appropriate in most
:::::
many cases, we do not claim it to be universally applicable.5

2.2 Priors for the climate sensitivity

Most probabilistic estimates of the equilibrium climate sensitivity which have explicitly presented a Bayesian framework, have

used a prior which is uniform in sensitivity S. There does not appear to be any principled basis for this choice, which has

been argued on the basis that it represented ‘ignorance’. One could just as easily (and erroneously) argue that a prior which

is uniform in feedback �= F2⇥/S was ignorant (here F2⇥ is the forcing arising from a doubling of CO2). In fact both of10

these improper priors can exhibit a pathology which causes problems with their use. In particular, if the likelihood is non-zero

at �= 0 (respectively, S = 0), then when the improper unbounded uniform prior on S (�) is used, the posterior will also be

improper and unbounded. In practical applications, this problem has generally been masked by the use of an upper bound on

the prior, but (while a lower bound of 0 may be defended on the basis of stability) the choice of upper bound is hard to justify.

The upper bound which appears to have been most commonly used for sensitivity is 10�C and we will adopt this choice here.15

We use a range of 0.37 – 10 for the uniform priors in both � and S, which ensures that their ranges are numerically identical

(although their units are of course different). As a third alternative prior for S, we will also use the positive half of a Cauchy

prior, with location 0 and scale parameter 5, ie p(S) = 2
5⇡(1+(S/5)2) , S > 0. An attractive feature of the Cauchy prior is that

it has a long tail which only decreases quadratically (hence it does not rule out high vales a priori) and moreover, its inverse

is also Cauchy so both S and � have broad support. The scale factor is the 50th percentile of the distribution hence the half-20

Cauchy prior for S has a 50% probability of exceeding 5�C. The scale factor of the corresponding implied prior in � is given

by 3.7/5 = 0.74Wm�2K�1.

3 Applications

We now consider three areas in which observational constraints have been used to estimate the equilibrium climate sensitivity.

Firstly, we consider paleoclimatic evidence, which relates to intervals during which the climate was reasonably stable over25

a long period of time and significantly different to the pre-industrial state. We then consider analyses of the observations of

the warming trend over the 20th Century (strictly, extending into the 21st and 19th century). Finally we consider analyses of

interannual variability.
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3.1 Paleoclimate

3.1.1 Observationally-derived PDFs

A common paradigm for estimating the equilibrium climate sensitivity S using paleoclimatic data is to consider an interval in

which the climate was reasonably stable and significantly different to the present, and analyse proxy data such as pollen grains

and isotopic ratios in sediment cores in order generate estimates of the forced global mean temperature anomaly �T caused5

by the forcing anomaly �F relative to the current (pre-industrial) climate. S can then be estimated via the equation

S = F2⇥ ⇥�T/�F (3)

where F2⇥ is the forcing due to a doubling of the atmospheric CO2 concentration. Examples of this approach include Annan

and Hargreaves (2006) and Rohling et al. (2012).

The interval which has been examined in most detail in this manner is probably the Last Glacial Maximum, 19–23ka (Mix10

et al., 2001) where the climate was reasonably stable (at least in the sense of gross evaluations such as global mean surface

air temperature on millennial time scales) and substantially different to the present day such that the signal to noise ratio in

estimates of forcing and temperature change are reasonably high.

The method adopted by Annan and Hargreaves (2006) and we believe many others (although this is not always documented

explicitly), which we term here ‘sampling the observational pdfs’, was to generate an ensemble of values of S by repeatedly15

drawing pairs of samples from pdfs which are deemed to represent estimates of the forcing and temperature anomalies, and

calculating for each pair the corresponding value of S using Equation 3. The ensemble of values for S so generated is then

considered as a representative sample from a probabilistic estimate of the truth.

Using values based broadly on those used in Annan and Hargreaves (2006); Köhler et al. (2010); Rohling et al. (2012);

Annan and Hargreaves (2013), we use here observational estimates of 5± 1.5�C for �T and 9± 2Wm�2 for �F (with the20

observational errors
::::::::::
uncertainties

::::
here

:
assumed to represent one standard deviation of a Gaussian), along with a fixed value

for F2⇥ of 3.7Wm�2. In the illustrative calculations presented here we ignore any issues relating to the non constancy of the

sensitivity S and how it might vary in relation to the background climate state and nature of the forcing, although we have

slightly inflated the uncertainties of the observational constraints in order to make some attempt to compensate for this. Thus

the numerical values generated here are not intended to be definitive but are still adequate to illustrate the different approaches.25

As mentioned in Section 2.1, we assume that published estimates for �T can be understood as representing likelihoods

p(�To|�TT ) — that is to say, the observational analysis provides an uncertain estimate of the true value of the form given

by Equation 1 with an a priori unbiased error of the specified value. The result
::::::
analysis

:
of Annan and Hargreaves (2013)

certainly fits this paradigm
::::::
follows

::::
this

::::::::
paradigm,

::::
with

::
in

::::
that

::::
case

::
the

::::::::
estimate

::
of

:::
the

:::::::::
uncertainty

:::::
being

::::::::
informed

::
by

::
a

:::::
series

::
of

::::::::
numerical

::::::::::
experiments

::
in

::::::
which

::
the

:::::::::
estimation

:::::::::
procedure

:::
was

:::::
tested

:::
on

:::::::
artificial

::::
data

:::
sets

::
in

:::::
order

::
to

:::::::
calibrate

:::
its

::::::::::
performance.30

For the forcing estimate, things are not so clear. We do not have direct proxy-based evidence for the forcing, which is typically

estimated based on a combination of modelling results and some rather subjective judgements (Köhler et al., 2010; Rohling

et al., 2012). Any uncertainty in the actual measurements involved, such as those of greenhouse gas concentrations in bubbles
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in ice cores, makes a negligible contribution to the overall uncertainty in total forcing. Therefore, we do not have a clear

measurement model of the form given in Equation 1 with which to define a likelihood for the forcing. Thus we take the stated

distribution to directly represent a prior estimate for the forcing anomaly. We do not claim that this is the only reasonable

approach to take here and other researchers might prefer to make different choices, in particular if they could clearly identify a

likelihood arising from observational data.5

When applied to the numerical estimates provided above, the pdf-sampling method of Annan and Hargreaves (2006) gener-

ates an ensemble for S with a median estimate of 2.1�C and a 5–95% range of 1.0 to 3.8�C. Figure 1 presents this result as the

cyan line, together with additional results which will be described below.

3.1.2 Bayesian interpretation and alternative priors

Now we present alternative calculations which take a more standard explicitly Bayesian approach. We start by writing the10

model in the form

�T = S⇥�F/3.7 (4)

or equivalently

�T =�F/� (5)

where �= S/3.7 is the feedback parameter. This formulation allows us to easily consider the forcing and feedback parameter15

as uncertain inputs (for which we can explicitly define prior distributions) to the model, which can then be updated by the

likelihood arising from the observed temperature change.

Although the method of sampling observational pdfs described in Section 3.1.1 was not presented in Bayesian terms, we

are now in a position to present a Bayesian interpretation of it. The distribution generated by sampling the pdfs is distributed

as independently Gaussian N(5,1.5) in �T and Gaussian N(9,2) in �F . We aim to choose a prior such that the Bayesian20

analysis will generate this as the posterior after updating by the likelihood for �T . This likelihood as described above is taken

to be the Gaussian N(5,1.5). Therefore, by rearrangement of Bayes’ Theorem, the desired prior must be uniform in �T and

independently Gaussian N(9,2) in �F . For numerical reasons we must impose bounds on the uniform prior for �T and we

set this range to be 0–20�C.

Using Equation 3, we can reparameterise this joint prior distribution over �T and �F into a distribution over S and �F ,25

and this is presented in Figure 2. Note that this prior cannot be represented as the product of independent distributions over S

and �F , as high S here is correlated with low �F and vice versa. The prior in S when viewed as a marginal distribution (i.e.,

after integrating over �F ) appears uniform over a significant range (roughly between S = 0.6 and S = 5) but within this range

it is associated with somewhat high values for �F , with the latter taking a mean value of about 9.5Wm�2 over this region.

The details of the shape of this joint prior does depend on the bounds placed on the uniform prior for �T , but this does not30

affect the posterior so long as the prior is broad enough to cover the neighbourhood of the observation. We think it is unlikely

that researchers would choose a joint prior of this form deliberately, and confirm that this certainly was not the case in Annan
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Figure 1. Prior and posterior estimates for the climate sensitivity arising from paleoclimatic evidence. Dashed lines show priors, solid lines

are posterior densities. Thick cyan line shows posterior estimate arising from the method of sampling observational pdfs, with corresponding

prior shown in Figure 2. Blue lines represent results using uniform prior in �, red is uniform in S, and magenta is half-Cauchy (scale = 5) in

S (and therefore also half-Cauchy (scale = 3.7/5) in �).

and Hargreaves (2006). In future analyses it would seem more appropriate to clearly state the priors which are used, and test

the sensitivity of the results to this choice.

In order to perform a more conventional Bayesian updating procedure using Equation 5, we must first select priors on the

model inputs.
::::
Since

:::
the

:::::::::
sensitivity

::
is

:
a
::::::::

property
::
of

:::
the

:::::::
climate

::::::
system,

::::::::
whereas

:::
the

::::::
forcing

::
is

:::::::
specific

::
to

:::
the

:::::::
interval

:::
we

:::
are

::::::::::
considering,

:::
we

:::::
define

::::
their

::::::
priors

::::::::::::
independently.

:
For the forcing �F , we retain the N(9,2) prior, having no plausible basis5

for trying anything different. For sensitivity, we test the three priors described in Section 2.2. The two uniform priors generate

rather different results. Using a prior which is uniform in S the posterior has a mean value for S of 2.2�C and a 5–95% range

of 1.0–4.2�C. When we change to uniform in � the median decreases to 1.5�C with a 5–95% range of 0.5–3.0�C. While these
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Figure 2. Implicit prior used in paleoclimate estimate. Contour plot shows joint prior in S and �F with marginal densities shown at top and

right respectively. Vertical and horizontal dashed lines drawn at S = 0.6, 5 and �F = 9.

results, which are shown in Figure 1, overlap substantially, broadening the upper bounds on the priors would result in the first

result increasing without limit and the second decreasing towards zero such that they would fully separate. We therefore see

that extreme choices for the prior on S (or �) can have significant influence on Bayesian estimation, which is perhaps not

surprising given the large uncertainties in the observational constraints used here. The median posterior value for S obtained

from the half-Cauchy prior is 2.1�C with a 5–95% range of 1.0–3.8�C, which coincidentally aligns very closely with the result5

obtained by the naive method of sampling observational pdfs (which is plotted as a thick line in Figure 1 in order to make

it more visible). We conclude in this case that the method of sampling pdfs has generated a result which is reasonable, but

alternative choices of prior could give noticeably different results.
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3.2 Estimates based on historical warming

3.2.1 Observationally-derived PDFs

Perhaps the most common approach to estimating S has been to use the instrumental record (Tol and De Vos, 1998; Gregory

et al., 2002; Olson et al., 2012; Aldrin et al., 2012). While a wide range of climate models have been utilised for this purpose, a

simple energy balance similar to that of Section 3.1 can be used so long as the radiative imbalance is accounted for. We follow5

the recent analysis of Mauritsen and Pincus (2017) but simplify their calculation by ignoring uncertainty in F2⇥, instead

adopting their mean value of 3.71Wm�2 (using all their uncertain numerical values otherwise). This simplification has very

little influence on the results. Mauritsen and Pincus (2017) present the basic energy balance in the form

S = F2⇥�T/(�F ��Q) (6)

where �Q represents the net planetary radiative imbalance and the other terms are as before.
::
We

:::::::::
emphasise

::::
that

::::
�T

::::
here10

:::::::::
specifically

:::::::
denotes

:::
the

::::::
forced

:::::::::::
temperature

::::::
change.

:
This equation is applied between two widely separated decadal-scale

intervals within the historical record, such that the signal to noise ratio
::
in

:::
the

::::::::::
temperature

::::::
change

:
(and hence precision in the

resulting estimate of S) is as large as possible, though it remains a significant source of uncertainty (Dessler et al., 2018).

Similar to Section 3.1.1, the method used by Mauritsen and Pincus (2017) is one of sampling observationally-derived pdfs for

all uncertain quantities on the right hand side of equation 6, and thereby generating an ensemble of values for S which was15

interpreted as a probability distribution.

3.2.2 Bayesian interpretation and alternative priors

As in section 3.1.2, we reorganise equation 6 in order to give �T as the prognostic variable, assigning priors to the terms on

the right hand side. We thus obtain

�T = (�F ��Q)⇥S/F2⇥ = (�F ��Q)/� (7)20

We adopt the distributions used by Mauritsen and Pincus (2017) for �F and �Q as priors for these variables, but interpret

their estimate for the temperature change �To as a likelihood p(�To|�T )⇠N(0.77,0.08) as arising from the measurement

model of Equation 1. This arises immediately from the paradigm of the underlying forced temperature response being noisily

observed due to
::::::::
observed

::::
total

::::::::::
temperature

::::::::
response

::::::::
consisting

:::
of

:::
the

:::::
forced

::::::::
response

:::::::
summed

::::::::
together

::::
with

:
a
:::::::::::
contribution

::::
from internal variability which can be assumed independent of the forced response .

::::
itself.

::
In
::::
this

::::
case,

:::
the

:::::::
analysis

::
of

::::::::
observed25

::::::::::
temperatures

:::::::::
generated

:
a
:::::::::::::

(deterministic)
:::::
value

:::::::::::::
�To = 0.77�C

::::
with

:::
the

::::::::::
uncertainty

:::::::
estimate

:::::
being

:::::::::
separately

:::::::
derived

::
as

:::
an

:::::::
estimate

::
for

:::
the

:::::
likely

::::::::::
contribution

::
of

:::::::
internal

::::::::
variability

::
to

::
a

:::::::::
temperature

:::::::
change

:::
over

::::
such

::
a
::::
time

::::::
interval

::::::::::::::::::::
(Lewis and Curry, 2014)

:
.
::::
True

:::::::::::
measurement

:::::
errors

::
in
:::
the

::::::::::
calculation

::
of

::::
�To:::

are
::::::::::
sufficiently

:::::
small

::::::
relative

::
to
::::

this
:::::::
internal

::::::::
variability

::::
that

::::
they

:::
can

:::
be

:::::
safely

:::::::
ignored.

Given the similarities between Equations 3 and 6, and also in the method used, it is no surprise to find that the implicit prior30

used here before updating with the temperature likelihood is qualitatively similar to that found in Section 3.1. This is shown
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Figure 3. Implicit prior used in 20th century estimate.

in Figure 3. Again the marginal prior over S appears uniform over a reasonable range (the details depend on the limits of the

uniform prior over �T ) but nevertheless it is actually correlated with the net forcing. Figure 4 shows the posterior result arising

from this prior, which matches the published result of Mauritsen and Pincus (2017) closely despite our minor simplification to

their calculation. The posterior median calculated here is 1.8�C with a 5–95% range of 1.1–4.5�C. As in Section 3.1, we make

no attempt to decompose the forcing estimate
::::
used

::::
here into prior and likelihood, especially as some of the largest uncertainties5

(e.g. that arising from aerosol forcing) are based on modelling calculations and expert judgments that cannot be transparently

traced to uncertainties in observational data.

Alternative priors and their resulting posteriors after Bayesian updating using Equation 7 are shown in Figure 4. As before,

we test the three priors presented in Section 2.2. The posterior median (and 5–95% range) for S arising from these are 2.1�C

(1.2–6.3�C) for uniform-S, 1.5�C (1.0–3.1�C) for uniform-� and 2.0�C (1.1–5.0�C) for the half-Cauchy prior respectively.10

Thus again the half-Cauchy prior produces a result which is intermediate between the other explicit choices, though this time it

12



0 2 4 6 8 10

0.0

0.5

1.0

1.5

Priors and posteriors for Bayesian estimate
 using 20th century data

Sensitivity

D
en

si
ty

Figure 4. Priors and posteriors in explicit Bayesian estimates using 20th century data. Dashed lines show priors, solid lines are posterior

densities. Thick cyan line shows posterior estimate arising from the method of sampling observational pdfs, with its implicit prior shown in

Figure 3. Blue lines represent results using uniform prior in �, red is uniform in S, and magenta is half-Cauchy (scale = 5) in S (and therefore

also half-Cauchy (scale = 3.7/5) in �).

has a somewhat longer tail than the pdf sampling method. The differences between these results, especially for the upper 95%

limit, are substantial and could significantly alter their interpretation and impact.

3.3 Estimates based on interannual variability

3.3.1 Observationally-derived PDFs

Finally, we consider a method which has been used to estimate the climate sensitivity via interannual variation in radiation5

balance and temperature (Forster and Gregory, 2006; Dessler and Forster, 2018). The basic premise of these analyses is that the
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feedback parameter can be estimated as the slope of the regression line of net radiation imbalance (based primarily on satellite

observations) against temperature anomalies, with data typically averaged on an annual time scale (though seasonal data may

also be used). There are questions as to whether this short-term variability provides an accurate estimate of long-term changes,

but this is beyond the scope of this manuscript (Dessler and Forster, 2018). The regression slope and its uncertainty naturally

translates into a Gaussian likelihood for the true feedback component, and has been commonly interpreted as a probability5

distribution for �. While this again appears
::
on

:::
the

::::
face

:::
of

:
it
:
to commit the fallacy of confusion of the inverse, the implicit

assumption of a uniform prior on �
:::
that

::::::::
underpins

::::
this

:::::::::::
interpretation

:
has been clearly acknowledged by authors working in

this area (e.g. see comments in Forster and Gregory (2006) and Forster (2016)). In this section we will use the observational

estimate of Forster and Gregory (2006) which is given by �o = 2.3± 0.7Wm�2K�1. We note that when uncertainty in the

forcing arising from a doubling of CO2 is ignored, there is a trivial transformation between � and S via S = F2⇥/�. Therefore10

a likelihood for � can be directly interpreted as an equivalent likelihood for S.

3.3.2 Bayesian interpretation and alternative priors

As noted by Forster and Gregory (2006), presenting what actually amounts to an observational likelihood for � as a posterior pdf

is equivalent to assuming a uniform prior in � (see also Annan and Hargreaves (2011)). Therefore the Bayesian interpretation

is already clear in this instance.15

In Figure 5 we present the results of calculations using our three alternative priors (albeit one of them coincides with the

method of sampling pdfs). The original result of Forster and Gregory (2006) (after transforming to S-space) is represented

by the blue lines, with red showing the result obtained for a uniform prior in S and magenta being a Cauchy prior. We note

that, for the uniform-S case, if the upper bound on the prior was raised, the posterior would also increase without limit due

to the pathological behaviour discussed in Section 3.1.2 and also by Annan and Hargreaves (2011). For the priors shown20

(with the uniform priors defined as U [0.37,10]) the 5–95% ranges of the posteriors are 1.1–3.2�C, 1.2–6.9�C and 1.2–5.2�C

for the uniform-�, uniform-S and Cauchy-S priors respectively. The uniform-� prior commonly adopted by analyses of this

type provides a strong tendency towards low values and the the contrast with uniform-S, especially for the upper bound, is

disconcerting.

4 Conclusions25

We have shown how various calculations which have presented probabilistic estimates of the equilibrium climate sensitivity S

can be reinterpreted within a standard Bayesian framework. Using this standard framework ensures a clear distinction between

the prior choices which must be made for model parameters and inputs, and the likelihood obtained from observations of the

system which is then used to update this prior in order to generate the posterior.

In many cases, the implied prior for S which
:::::::::
(according

::
to

:::
this

::::::::::::
interpretation)

:
underlies the published results appears some-30

what unnatural, having either a structural relationship with model inputs or a marginal distribution that may not be considered

reasonable. We have presented alternative calculations in which a range of simple priors are tested. As well as the commonly-
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Figure 5. Priors and posteriors over S in process-based feedback analysis. Dashed lines indicate priors, solid lines are posteriors. Thick cyan

line shows shows posterior estimate arising from the method of sampling observational pdfs, which coincides precisely with the blue line

which corresponds to the uniform prior in �. Red lines show results using uniform prior in S and magenta is half-Cauchy (scale = 5) in S.
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used uniform priors, we have shown that a Cauchy prior has some attractive features, in that it extend to high values (refuting

any suspicion that the results obtained were simply constrained by the prior), its reciprocal is also Cauchy (so both S and �

may have long tails). The half-Cauchy distribution used in this paper only requires a single scale parameter which determines

the width. However the choice of priors is always subjective and we make no assertion that this choice should be universally

adopted. Indeed there may be superior alternative choices that we have not considered.5

Our calculations suggest that the pdf sampling method can generate acceptable results in some cases, agreeing fairly well

with a fully Bayesian approach using reasonable priors. However, this is not always the case. We recommend that researchers

should present their analysis in an explicitly Bayesian manner as we have done here, as this allows the influence of the prior

and other uncertain inputs to be transparently tested.
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