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Abstract.  Climate change affects water availability for soil, and groundwater extraction influences 10 

water redistribution by altering water demand, both of which significantly affect soil moisture. 11 

Quantifying their relative contribution to the changes in soil moisture will further our understanding of 12 

the mechanisms underlying the global water cycle. In this study, two groups of simulations were 13 

conducted with and without groundwater (GW) extraction (estimated based on local water supply and 14 

demand) from 1979–2010 using the land surface model CAS-LSM with four global meteorological 15 

forcing datasets (GSWP3, PRINCETON, CRU-NCEP, and WFDEI). To investigate the contribution of 16 

climate change and GW extraction, a trajectory-based method was used. Comparing the simulated results 17 

with the in-situ dataset of the International Soil Moisture Network (ISMN) and the satellite-based soil 18 

moisture product of the European Space Agency’s Climate Change Initiative (ESA-CCI) indicated that 19 

the CAS-LSM reasonably reproduced the distribution of soil moisture, and well matched the temporal 20 

changes. Globally, our results suggested a significant decreasing trend in surface soil moisture (0-10cm, 21 

0.98 e−4 mm3 mm−3 yr−1) over the 32-year period tested. The drying trends were mainly observed in arid 22 

regions such as the tropical desert regions in North Africa and the Arabian Peninsula. While the wetting 23 

trends were primarily in tropical forested areas in South America and Northeast Asia. Climate change 24 

contributed 101.2% and 90.7% to global drying and wetting trends of surface soil moisture, respectively, 25 

while GW extraction accounted for −1.2% and 9.3%, respectively. In deep soil, GW extraction 26 

contributed 1.37% and −3.21% to the drying and wetting trends, respectively. The weak influence of GW 27 

extraction may be because this activity occurs in limited areas. GW extraction contributed more than 35% 28 
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to the change in surface soil moisture in wetting areas where GW overexploitation occurs. GW is mainly 29 

extracted for irrigation to alleviate soil water stress in semiarid regions that receive limited precipitation, 30 

thereby slowing the drying trend and accelerating the wetting trend of surface soil. However, GW 31 

exploitation weakens the hydraulic connection between soil and aquifer, leading to deeper soils drying 32 

up. Overall, climate change dominated the soil moisture trends, but the effect of GW extraction cannot 33 

be ignored.  34 

1. Introduction 35 

Soil moisture plays a critical role in controlling the exchange of water, energy, and carbon between the 36 

land–vegetation–water–atmosphere system (Seneviratne et al., 2010; van den Hurk et al., 2011). Soil 37 

drying could increase the possibility of agricultural drought and fire (Dai et al., 2011), and affects plant 38 

transpiration, photosynthesis, microbial activity, and a number of biogeochemical processes. Significant 39 

decreasing trends in soil moisture can lead to water scarcity, threatening water supply and associated 40 

food production (Döll et al., 2009; Wisser et al., 2010; Albergel et al., 2012; Wada et al., 2013; Dai, 2013; 41 

Zhan et al., 2016). Soil moisture trends are affected by both climate (e.g., precipitation and temperature) 42 

and human activities (e.g., groundwater (GW) extraction). Climate change can affect water availability 43 

for soil (Dai, 2013; Wentz et al., 2007; Feng, 2016), and human activities influence the soil water content 44 

through altering the surface water flux of soil (Min et al., 2011; Douville et al., 2013; Feng, 2016). GW 45 

extraction, such as for irrigation, also has been shown to affect local soil moisture. However, it remains 46 

unclear which of these factors exerts more influence owing to the complex interactions involved. 47 

Therefore, quantifying the contribution of climate change and GW extraction to soil moisture trends will 48 

improve our understanding of how human activities affect soil water content and will help to determine 49 

the mechanisms underlying the global water cycle. 50 

Traditionally, trends in soil moisture have been studied using ground-based observations (Robock et 51 

al., 2005), which provide a direct record of soil moisture and are used as reference measurements for 52 

calibrating other methods for measuring soil moisture (Yin et al., 2018). Since they are limited in space, 53 

require significant manpower for sampling (Seneviratne et al., 2010), and cannot always represent larger 54 
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scales, remote sensing methods (e.g., passive and active microwave remote sensing) that provide global 55 

coverage and excellent temporal sampling of soil moisture are widely used (Albergel et al., 2013). 56 

Nevertheless, the accuracy of these measurements depends on the retrieval approach strongly, and 57 

determining the contribution of climate and human activities is not easy. As a result, recent studies have 58 

mostly relied on model estimates (Wei et al., 2008; Zhan et al., 2016). 59 

Land surface models (LSMs) can be used to calculate soil moisture trends at regional or global scales 60 

(Li et al.,2011; Jia et al., 2018). Different LSMs have been developed to simulate soil moisture as a 61 

function of meteorological input variables and soil and vegetation parameters over a few decades (e.g., 62 

Kowalczyk et al., 2006; Lawrence et al., 2011; Best et al., 2011). Much previous research has focused 63 

on the effect of climate change on soil moisture using comprehensive LSMs forced with realistic forcing 64 

data (Berg et al., 2003; Guo et al., 2006; Wei et al., 2008; Wang and Zeng, 2011). For the global average, 65 

precipitation had a dominant effect on the variability of soil moisture at interannual to decadal time scales; 66 

however, temperature was the main cause of the long‐term trend in soil moisture. Increased soil drying 67 

in the transitional regions was primarily caused by global warming, which is illustrated by regression 68 

analysis and LSMs (Cheng and Huang, 2016). Since 1950, rising temperatures have contributed 45% to 69 

of the total soil moisture reduction (Cai et al., 2009). In semiarid regions, precipitation and temperature 70 

are equally important to the simulations of soil hydrological variables (Wang and Zeng, 2011). Jia et al. 71 

(2018) found that precipitation controlled the direction of soil moisture changes using remote sensing 72 

data ESA-CCI and modeling of soil moisture by Community Land Model 4.5(CLM4.5) in China. 73 

Recently, researchers have focused on incorporating human activity into the hydrological processes of 74 

LSMs to assess the influence of anthropogenic activities on hydrological variable simulations. For 75 

example, irrigation has been shown to affect soil water content through increased local 76 

evapotranspiration and decreased temperatures near the surface (Yu et al., 2014; Zou et al., 2014). GW 77 

over-extraction lowers GW tables, reduces total terrestrial water storage, weakens hydraulic connections 78 

between aquifers and rivers, and may decrease lake area (Coe and Foley, 2001). Wada et al. (2013) 79 

reported that human water consumption is one of the more important mechanisms intensifying 80 

hydrological drought. GW exploitation caused drying in deep soil layers and wetting in upper layers, 81 

lowering the water table and rapidly reducing terrestrial water storage with severe levels of GW 82 

consumption (Zeng et al., 2016a, 2016b, 2017; Xie et al., 2018). 83 
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Thus, to our knowledge, the influence of anthropogenic activities (GW extraction) on soil moisture 84 

has not been explicitly quantified. Therefore, the main purpose of our study was to assess the relative 85 

contribution of GW extraction and climate change to soil moisture trends. To address this issue, the 86 

historical land simulations of the Land Surface, Snow and Soil moisture Model Intercomparison Project 87 

(LS3MIP) were employed (van den Hurk et al., 2016). Four global meteorological forcing datasets 88 

covering the 20th century were used with the land surface model for the Chinese Academy of Sciences 89 

(CAS-LSM), which considers human water regulation (HWR) and the movement of frost and thaw fronts 90 

(Xie et al., 2018). We compared the simulations with in-situ observations and the ESA CCI satellite-91 

based product to validate the capacity of the CAS-LSM to simulate soil moisture trends. Furthermore, 92 

we investigated the interannual variation and trends in simulated soil moisture. Finally, the response of 93 

soil moisture temporal variability to climate change and GW extraction was investigated, which can 94 

further our understanding of the relationship between soil moisture and climate.  95 

Section 2 discribes the model used in this study, and describes the experimental designs, in-situ 96 

observations, and satellite-based data. Then Sect. 3 evaluates the soil moisture simulations in comparison 97 

with in-situ observations and satellite-based data. Also, the contributions of climate and GW extraction 98 

to soil moisture are discussed, while Sect. 4 outlines our conclusions. 99 

2. Model, data, and experimental design 100 

2.1 Description of CAS-LSM  101 

Xie et al. (2018) incorporated GW lateral flow (GLF), Human Water Regulation (HWR), and the changes 102 

in the depth of frost and thaw fronts into CLM4.5 (Oleson, 2013) to develop the high-resolution CAS-103 

LSM. For a detailed description of the physical processes within the CAS-LSM, see Xie et al. (2018). In 104 

the present study, only the HWR module was activated. Owing to the coarse resolution (0.9° × 1.25°) of 105 

the experiment, it is not possible to describe the water intake of the river, that is, the surface water. 106 

Therefore, only GW extraction was considered in our study. Here, only the processes associated with 107 

soil water are briefly described below. 108 

The following equation represents the total water balance of the hydrological system: 109 

∆𝑊 + ∆𝑊 + ∆𝑊 + ∆𝑊 + ∆𝑊 = 𝑞 + 𝑞 + 𝑞 + 𝑞 − 𝐸𝑇 , , − 𝑞 −110 

𝑞 −𝑞 − 𝑞 − 𝑞 ∆𝑡                                                     Eq. (1) 111 
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where the left side denotes the change in canopy water, surface water, snow water, soil water, and ice 112 

and water in the unconfined aquifer in turn. 𝑞  is rainfall, 𝑞  is snow, and 𝑞  and 𝑞  represent 113 

the rate of surface and GW water use respectively, some of which will return to the soil. 𝑞  is surface 114 

runoff, 𝑞  is runoff from surface water storage. 𝑞  and 𝑞  are liquid and solid runoff, 115 

respectively, from glaciers, wetlands, and lakes. 𝑞  is subsurface drainage and 𝐸𝑇 , ,  116 

is evapotranspiration from vegetation, ground, and human water use. ∆𝑡 is the time step(s).  117 

2.2 Experimental setup 118 

In this study, GSWP3 (Kim et al., 2016), WFDEI (Haddeland et al., 2011; Weedon at al., 2014), CRU-119 

NCEP (Viovy and Ciais, 2009), and PRINCETON (Sheffield et al., 2006) were used to run the offline 120 

model. The fields included were air temperature, wind speed, specific humidity, solar radiation, and 121 

precipitation. The GSWP3 is based on a dynamical downscaling of the 20th century reanalysis project 122 

(Compo et al., 2011), covering the entire 20th century and some of the 21st century (1901–2012) at 0.5° 123 

spatial resolution and 3-h intervals. The WATCH forcing data (WFD) are based on the ECMWF-ERA-124 

40 reanalysis data, and were also at 0.5° resolution and 3-h intervals, ceasing in 2001. A subsequent 125 

project, EMBARCE, provided the WFDEI, which consisted of 3-h-interval ECMWF ERA-Interim 126 

reanalysis data interpolated to 0.5° spatial resolution (1979–2014). Thus, there are offsets for some 127 

variables in the overlap period with the WFD. The CRU-NCEP provided 6-h-interval data at 0.5° 128 

horizontal spatial resolution (1901–2010). The PRINCETON is based on 6-h-interval surface climate 129 

data from the NCEP-NCAR reanalysis. These data are available at 0.5° resolution and 3-h intervals. The 130 

version used in this study is from 1901–2012 with a real-time extension based on satellite precipitation 131 

and weather model analysis fields. General information about these datasets is summarized in Table 1. 132 

Four forcing datasets were bilinearly interpolated to construct a field to a uniform 0.9° × 1.25° to ensure 133 

that every simulation had the same soil and vegetation parameters. 134 

We replaced the land cover data with the new generation of “land-use harmonization” (LUH2), which 135 

builds on past work from CMIP5 (Hurtt et al., 2011). In addition, monthly irrigation datasets (Zeng et al., 136 

2016b) were used for land model runs, which were developed based on the Food and Agriculture 137 

Organization of the United Nations (FAO) global water information system and the Global Map of 138 

Irrigation Areas, version 5.0 (GMIA5; Siebert et al., 2005). Industrial and domestic water use were also 139 

included and were calculated by the fractions of the total GW water consumption for agricultural, 140 
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industrial, and domestic water use provided by the FAO. Besides, the changes of the annual GW pumping 141 

rate are assumed to vary linearly with population growth and socio-economic development as evidenced 142 

by many previous work (Omole 2013; Wu et al. 2014; Zou et al. 2015). The resulting global spatial 143 

patterns of GW extraction from 1979 to 2010 is shown in Fig. 2. Notice the GW exploitation hot spots 144 

like Europe, southern Iran, the North China Plain, the central United States, northern India and Pakistan 145 

are consistent with previous studies (Rodell et al., 2009; Wada et al., 2010). 146 

Two sets of numerical experiments were conducted using the default CLM4.5 (hereafter referred to as 147 

CTL) and using the CAS-LSM with the HWR module activated (hereafter referred to as NEW). Thus, 148 

CTL and NEW contained four simulations, CTL-GSWP3, CTL-CRUNCEP, CTL-PRINCETON, and 149 

CTL-WFDEI (prefixed with NEW- for the NEW model). The CTL runs did not include GW extraction, 150 

while the NEW runs did include it. Therefore, the difference between the NEW and CTL models would 151 

provide a measure of the effect of GW extraction. Simulation spin up followed the TRENDY protocol 152 

(http://dgvm.ceh.ac.uk/node/9) by recycling the climate mean and variability from 20 years (1901–1920) 153 

of the meteorological forcing. Land use and CO2 concentration were set to constant at the 1850 level 154 

during spin up. All simulations were conducted with horizontal spacing of 0.9° × 1.25°. However, there 155 

were differences among the four forcing datasets; therefore, the simulation period covers between 1901 156 

and 2010 at a time step of 30 min. Considering that the ESA CCI was available from 1979–2010, our 157 

evaluation focused on the same time interval. 158 

2.3 In-situ soil moisture and satellite-based data 159 

To evaluate the capability of the CAS-LSM to simulate soil moisture variation, we retrieved in-situ soil 160 

moisture data from the International Soil Moisture Network (ISMN) (Robock et al., 2000; Dorigo et al., 161 

2011; Dorigo et al., 2013). The ISMN is based on in-situ measurements from different regional 162 

monitoring projects. For our study, we used data from Africa, Asia, Europe, Australia, and North 163 

America networks. Stations with >75% of the observational data missing during the evaluation period 164 

were excluded. After which a subset of 225 stations remained (Fig. 2). There were only three dominant 165 

contiguous areas in the world (the central USA, the North China Plain, and northern India) with severe 166 

levels of GW extraction (Zeng et al., 2016b). Therefore, we focused on validating the ability of the model 167 

to accurately represent the soil moisture in these three areas. Further site information is presented in 168 

Table 2. 169 
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The European Space Agency's Climate Change Initiative (ESA CCI) involves remote sensing projects 170 

to monitor global key climate variables with feedback effects on climate change. Soil moisture was then 171 

included in 2010. There are three ESA CCI soil moisture products available based on the two types of 172 

sensors employed by the project: active microwave remote sensing, passive microwave remote sensing, 173 

and a combined product of both active and passive data. The active product was obtained using the SCAT 174 

scatterometer and the METOP-A satellite-equipped C-band scatterometer using the algorithm proposed 175 

by Wagner et al. (1999). The passive product includes observation data from four satellites, namely the 176 

tropical rainfall measuring mission microwave imager, the scanning multichannel microwave radiometer, 177 

the specific sensor microwave imager, and the advanced microwave scanning radiometer-Earth 178 

observing system. In the present study, we used the combined product (version 3.2), which covers 38 179 

years from 1978–2016 at a daily temporal resolution. 180 

2.4 Analysis method 181 

Taylor’s skill score (S) (Taylor, 2001) was used to quantitatively evaluate the spatial correlation of 182 

modeled soil moisture against the observations with standard deviations as follows: 183 

 𝑆 =  
(   )

(   / ) (   )
   Eq. (2) 184 

where 𝜎  is the ratio of the standard deviation of the simulations to the observations, 𝑅 is the spatial 185 

correlation coefficient between the simulation and observation, and 𝑅  is the maximum possible spatial 186 

correlation coefficient. As the model variance approaches the observed variance (i.e., as 𝜎 → 1) and 187 

as 𝑅 → 𝑅  , the skill approaches 1. Thus, a higher value of S indicates a better model performance, and 188 

S = 1 when the simulation and observation data are identical. 189 

All simulated datasets were converted to annual means by averaging for the growing season (March–190 

October) before the trend analysis. Precipitation and temperature were treated the same as soil moisture. 191 

Trends were calculated using the nonparametric Mann-Kendall test and the Theil-Sen median slope (Sen, 192 

1968) was used to delineate the trends. 193 

To quantify the contribution of the climate and GW extraction to the trends in soil moisture, we used 194 

a trajectory method (Feng et al., 2014). The “trajectory” refers to studying the change of GW extraction 195 

that occur within a certain period of time for a given grid or region. We can study the effect on soil 196 

moisture due to GW extraction in this way. Soil moisture in the CTL experiment represented the effect 197 
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of climate on soil moisture trends and served as a reference for isolating the contribution of GW 198 

extraction. The contributions were calculated with area weight summarization as follows: 199 

 𝐶𝑜𝑛 , = × 100%  Eq. (3) 200 

 𝐶𝑜𝑛 , = (1 − 𝐶𝑜𝑛 , )  × 100%     Eq. (4) 201 

where 𝐶𝑜𝑛 ,  and 𝐶𝑜𝑛 ,  are the global contributions of GW extraction and climate, 202 

respectively; 𝑅  is the area ratio of GW extraction in the drying or wetting areas; 𝑇  and 𝑇  are 203 

the drying or wetting soil moisture trends in the GW and non-GW extraction regions, respectively; and 204 

𝑇 is the soil moisture trend in the global drying or wetting zones. 205 

Contributions of climate and GW extraction to certain grids were calculated as follows: 206 

 𝐶𝑜𝑛 , =  
(   )

× 100%                Eq. (5) 207 

 𝐶𝑜𝑛 , = (1 − 𝐶𝑜𝑛 , )  × 100%             Eq. (6) 208 

where 𝐶𝑜𝑛 ,  and 𝐶𝑜𝑛 ,  are the contributions of GW extraction and climate to each grid, 209 

respectively; 𝑇  and 𝑇  are the soil moisture trends at each grid in the NEW and CTL experiments, 210 

respectively.  211 

3. Results 212 

3.1 Validation 213 

First, we compared the spatial distribution of simulated soil moisture with the ESA CCI product. Figure 214 

1a, c, e, g shows the linear correlation coefficients between the ESA-CCI and the simulated top-10-cm 215 

soil moisture from 1979-2010. The top-10-cm soil moisture is a weighted average of the first four soil 216 

layer thicknesses (1.75, 2.76, 4.55, and 7.5 cm; the weights are 0.175, 0.276, 0.455, and 0.094, 217 

respectively). The correlations between the simulated and ESA CCI data were significantly positive in 218 

most areas (r > 0.6). Modeled results were more accurate in humid and temperature zones especially in 219 

India and Southeast Asia (r > 0.9). Results revealed that the interannual variability of soil moisture cannot 220 

be well captured in northern high-latitude areas (no correlation or negative correlations). This is partly 221 

due to the limited ability of remote sensing technique in detecting soil moisture in frozen soils or under 222 

snow cover.  223 
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Figure 1b, d, f, h shows the differences between NEW-simulations and ESA CCI data. Soil moisture 224 

from all forcing datasets presented similar broad patterns. ESA-CCI had lower soil moisture compared 225 

with the simulated results from Europe and the eastern USA. While Fig. 1f shows the results from CRU-226 

NCEP are drier than those from the other three at high latitudes in the northern hemisphere. The 227 

simulation results in WFD were wetter overall, and the PRINCETON drier in South America and Central 228 

Africa. However, overall, the results from PRINCETON and GSWP3 simulation were closer. Soil 229 

moisture from NEW was 0.06% to 0.09% higher than that from CTL. The area represented by NEW is 230 

irrigated; thus, the top 10 cm of soil is wetter in NEW than in CTL. However, the increase in soil moisture 231 

was slight (about 0.001 to 0.2 mm3 mm−3). The differences between NEW and CTL indicate that GW 232 

extraction caused a significant increase in top-10-cm soil moisture in the central USA, the North China 233 

Plain, and North India. The three areas with severe levels of GW extraction (Fig. 2).  234 

Figure 3 presents Taylor diagrams comparing the four NEW experiments with the in-situ ISMN 235 

observations over the eight subregions (see Table 2 for site details). Figure 3 clearly shows that the model 236 

can generally capture the changes in soil moisture in these regions (with high correlation and close to 1). 237 

However, the performance of the model decreases as the soil depth increases. Results suggest that the 238 

standard deviation ratios at most stations in Africa, Australia, Europe, and North America were close to 239 

1, while those for India, Mongolia, China, and Former Soviet Union countries deviated from 1. Moreover, 240 

the different forcing datasets did not perform similarly. GSWP performed relatively poorly in deep soil 241 

in Europe, while PRINCETON provided a good estimation for Mongolia. CRUNCEP performed poorly 242 

in China and Mongolia. In general, GSWP and WFDEI performed well, except for Europe and Mongolia. 243 

Three areas (the central USA, North China Plain, and northern India) with severe levels of GW 244 

exploitation were used as key areas for validation. The ground observations of soil moisture in the three 245 

regions were retrieved from the ISMN. The usable stations were as follows: seven sites on the North 246 

China Plain from 1981–1999, 15 sites in Colorado of central US from 2003–2010, and one site in Kanpur 247 

of northern India from 2011–2012. The regional soil moisture from observations and simulations were 248 

averaged from all stations and corresponding grid points. Before the comparison, hourly values from all 249 

stations were converted into a monthly time series. The soil layer depths in the CAS-LSM did not match 250 

those from the ground observations, and the depths of soil moisture observations varied among the three 251 

regions. Therefore, we used different methods to match the soil depth of observations to the 252 

corresponding soil layer of simulations for the different areas (Table 2).  253 
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We evaluated the performance of each forcing dataset over the three regions using Taylor’s skill scores, 254 

as shown in Fig. 4 (left panel). As Fig. 4a shows, the individual forcing datasets show a varying ability 255 

to capture the soil moisture distribution. In the 0–10 cm soil layer, WFD performed well and had the 256 

highest skill scores (S = 0.86). Generally, all meteorological forcing datasets performed consistently well 257 

for the North China Plain in both the near-surface and deeper soil layers. Performance was also evaluated 258 

using a Taylor diagram as shown in Fig. 4d–f. GSWP captured the temporal variability of observed soil 259 

moisture with higher correlations than the other datasets. Correlations tended to cluster around 0.7, with 260 

the exception of CRUNCEP. Then, the correlations between observations and simulations decreased with 261 

soil depth. The radial distance from the origin represents the standard deviation of simulations relative 262 

to the standard deviation of observations. CRU-NCEP exhibited much higher (σsim/σobs >1) variation than 263 

that of the in-situ observations.  264 

In the central US, WFD performed better with a higher skill score, and CRU-NCEP had the lowest 265 

score. Correlations between the simulated 5-cm soil moisture and observations (Fig. 4e) were all lower 266 

than 0.5. This may be because the offline runs do not consider the strong interaction between land and 267 

atmosphere. All simulations resulted in lower standard deviations than those for observations at 50 cm 268 

soil depth. This indicates that the true variability in soil moisture cannot be well reconstructed in this 269 

layer using the four forcing datasets tested herein. Errors were also associated with the varying degrees 270 

of mismatch between the soil layers of the observations and the model. 271 

Owing to the limitations of the observational data in Kanpur, only three sets of data were compared in 272 

that area. Based on the skill scores, WFD and PRINCETON performed well at both 10 cm and 25 cm 273 

soil depths, and WFD performed better in deeper soil. The results of a correlation analysis indicated that 274 

the simulations from three meteorological forcing datasets (GSWP3, PRINCETON, and WFD) were able 275 

to capture the variation in soil moisture (Fig. 4f). Notably, the correlation was higher (>0.9 at North India) 276 

when considering the GW extraction, which was not obvious in the other two areas (Fig. 4f). This is 277 

because, according to FAO statistics, about 91% of GW extraction was to supply irrigation in India, 278 

whereas 64% and 38% of GW extraction was used by agriculture in China and the USA, respectively 279 

(Zeng et al., 2016b). Figure 4f shows that the relative standard deviations decreased as soil depth 280 

increased, which indicates relatively large errors of fluctuation in the deeper soil layers. Overall, WFDEI 281 

provided a better simulation with a higher correlation and a relative standard deviation close to 1.  282 
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3.2 Trends in soil moisture 283 

Owing to the uncertainty in meteorological forcing, especially regarding precipitation, which had large 284 

differences between different forcing datasets (Table 3), the ensemble average approach was used here. 285 

Figure 5 presents the trends in surface soil moisture (0–10 cm), deep soil moisture (200–300 cm), 286 

precipitation, temperature, and GW extraction from 1979–2010 from the NEW experiment. Globally, 287 

results suggested a significant decreasing trend in surface and deep-soil moisture (−0.98 e−4 and −0.24 288 

e−4 mm3 mm−3 yr−1, respectively; p < 0.05) over the 32-year period, but the soil moisture trend from 289 

PRINCETON was not significant (Table 3). There was a consistent significant warming trend (about 290 

0.016°C yr−1; p < 0.05) and a non-significant decreasing precipitation trend (p > 0.05). Furthermore, the 291 

drying of the surface soil moisture slowed when considering the HWR. The global surface soil moisture 292 

decreased at a rate of −0.99 e−4 mm3 mm−3 yr−1 without GW extraction. Conversely, the deep soil dried 293 

(−0.21 e−4 mm3 mm−3 yr−1 in CTL) owing to the rapid lowering of the water table following GW 294 

extraction, and the hydraulic connection between the soil and aquifer weakened. More specifically, GW 295 

extraction slowed the drying of surface soils in drying areas and increased the wetting trend in wetting 296 

areas. The trend in 1.3% of GW extraction areas changed from drying to wetting, with an average GW 297 

extraction rate of 171 mm yr−1. The opposite effect was observed in the deeper soil layers. 298 

Figure 6 shows the spatial distribution of soil moisture trends from 1979–2010 obtained from 299 

simulations of surface- and deep-soil moisture and ESA CCI. As the depth of the soil increased, the 300 

proportion of apparent dryness increased. For the surface soil, the drying trends were mainly found in 301 

North Africa, Central Asia, Southwestern USA, Southeast Australia. The wetting trends were primarily 302 

in northern South America, northwest Africa, and northeast Asia. This result is consistent with those of 303 

previous studies on satellite-based data (Feng, 2015; Dorigo et al., 2012). The trend in the deep soil was 304 

consistent with that in the surface layer in most areas, except for Central Asia. Regions with a drying 305 

trend always coincided with statistically significant increasing temperature. Many of the strong drying 306 

trends occurred over regions that already have relatively low soil moisture. Drying trends were the most 307 

prominent in the Sahel in northern Africa. This could be explained by deficits in precipitation during the 308 

1970s and 1980s (Hulme, 1992; Ľ Hôte et al., 2002). The majority of north Asia exhibited wetting trends 309 

with non-significant increasing temperature. Wetting trends were found in the central US, India, and 310 

North China Plain, but there were no significant changes. 311 
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We further evaluated the ratios of drying/wetting trends for surface and deep soil in different climate 312 

regions using the Köppen-Geiger climate classification (Kottek et al., 2006). A brief description of the 313 

climate classification is as follows: the first letter refers to the climate types: tropical (A), arid (B), 314 

temperate (C), and cold (D). The second letter indicates the precipitation conditions: rainforest (f), 315 

monsoon (m), and savannah (s) in tropical and desert (W) and steppe (S) in arid, dry summer (s), dry 316 

winter (w), and without dry season (f) in temperate and cold climates. The third letter refers to hot (h) 317 

and cold (k) in arid and hot summer (a), warm summer (b), cold summer (c), and very cold summer (d) 318 

in temperate and cold climates. At the same time, we used the climate regions defined by Feng et al. 319 

(2015), the first climate letter labelled Arid was the arid regions, the second letter “f” was the humid 320 

regions and the other regions were the transitional regions. As Figure 7a shows, some arid regions became 321 

significantly drier (16.9%) or wetter (9.8%); as did some humid regions (9.8% drier, 9.5% wetter) and 322 

transitional regions (12.8% drier, 5.4% wetter). The area of increasing wetness in the Af subregion, which 323 

is characterized by tropical rainforests, comprised 22% of its total area. The Dfd subregion is 324 

characterized by areas without a dry season and 42.6% of this region rapidly became wetter (about 1.2 325 

e−3 mm3 mm−3 yr−1). Conversely, 21.5% of the BWh subregion, which is characterized by hot deserts, 326 

was drying. In the Ds and Dw subregions, which have a hot summer or winter in a year, 30–40% was 327 

drying out with a moisture decreasing rate more than −1.2 e−3 mm3 mm−3 yr−1. These results indicate 328 

that the drying trends were mainly in arid regions, while the wetting trends were primarily in humid 329 

regions. Figure 7b shows that there are proportionally more significant changes in the deeper soil layers. 330 

However, the changes are not as great as those in the surface soil. In arid regions (BW and BS subregions), 331 

the proportion of apparent drying exceeded 40%. In humid regions (Cfc, Dfc, and Dfd subregions), 30–332 

71% of these areas were significantly wetting. The climatic zone differences in deep soil changes were 333 

basically consistent with those in the topsoil, except in Dwc and Dwd regions. 334 

3.3 Contribution of climate change and GW extraction to soil moisture trends 335 

The trend in soil moisture was basically consistent with climate change, but the role of GW extraction 336 

was not negligible. Then we quantified the relative contribution of climate and GW intake to the soil 337 

moisture trends using the trajectory approach [Eqs. (2)–(3)]. Results showed that −1.2% of the significant 338 

drying trends in the surface soil originated from GW extraction. Thus, the contribution of climate was 339 

101.2%. Regarding the wetting trends, the contribution was 9.3% for GW extraction, with climate 340 
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contributing 90.7%. In deep soil, GW extraction contributed 1.37% and −3.21% to the drying and wetting 341 

trends, respectively. This indicates that GW extraction only weakly contributes to global wetting and 342 

drying trends. This is mainly due to the limited regions of GW extraction. The contribution of GW 343 

extraction to surface soil moisture trends is presented in Fig. 8a. In the drying regions, GW extraction 344 

and climate change accounted for −19.91% and 119.91%, respectively. Notably, the negative 345 

contribution is because that the surface soil moisture is decreasing, while GW extraction slows down the 346 

reduction trend (but still decreasing), 𝑇  − 𝑇  in Eqs. (5) is positive, but 𝑇  is negative. In the 347 

wetting regions, the contributions were 11.55% and 88.45%, respectively. GW exploitation is mainly 348 

used for irrigation to increase moisture in the surface soil, which slows the drying of the surface soil, 349 

promoting wetting. Figure 8b shows the contribution of GW extraction in the deeper soil layers. GW 350 

extraction positively contributed to the drying trends (109.7%) and negatively contributed to the wetting 351 

trends (−5.48%). This indirectly reflects that GW exploitation weakens the hydraulic connection between 352 

soil and aquifers. In summary, GW is exploited to provide irrigation, which alleviates water stress in the 353 

surface soil, and the deep soil dries due to the loss of hydraulic connection. 354 

As shown in Fig. 8, the contribution of GW extraction mainly occurs in northern Africa, the North 355 

China Plain, and central US. Thus, the three regions were selected for further evaluation. Figure 9 further 356 

shows the relative contributions to soil moisture trends in three subregions. Contributions of GW 357 

extraction to surface soil moisture wetting and drying trends were evident on the North China Plain 358 

(drying, up to −62.39%; wetting, 77.74%), northern India (drying, up to −13.56%; wetting, 72.1%), and 359 

central US (drying, −57.42%; wetting, 38.51%). For deep soil, the contribution of GW extraction was: 360 

North China Plain (drying, 15.12%; wetting, −18.16%), northern India (drying, 56.54%; wetting, 2.07%), 361 

and central USA (drying, 23.8%; wetting, −20%). GW extraction can increase the water content of the 362 

surface soil, and thus leads to increased moisture in both humid and arid regions. The results revealed 363 

that GW extraction contributes more to the soil moisture trends in typical exploitation areas than in the 364 

regions without GW extraction. Climate change dominated the soil moisture trends, while the 365 

contribution of GW extraction at the regional scale was much greater than that at the global scale, 366 

especially in the areas with GW overexploitation. 367 
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4. Conclusions and discussion 368 

In the present study, we quantified the relative contribution of climate and GW extraction to soil moisture 369 

trends using a LSM (CAS-LSM) that considers HWR based on four global meteorological forcing 370 

datasets. Comparing the simulations, the in-situ observational datasets, and the satellite-based ESA-CCI 371 

surface products demonstrated that the CAS-LSM is able to reliably represent soil moisture trends.  372 

The main conclusions of this study are as follows. First, all four forcing data resulted in similar patterns 373 

of surface soil moisture, and have higher soil moisture than ESA-CCI. Results at the regional scale (Fig. 374 

4) indicated that the uncertainty of the forcing data affected the simulated soil moisture. Therefore, the 375 

ensemble average results were used to reduce the uncertainty caused by the forcing data. Second, our 376 

results show a significant decreasing trend in surface and deep soil moisture over the 32-year period 377 

investigated. For the surface soil, GW extraction slowed the drying trend in drying areas and increased 378 

the wetting trend in wetting areas. This is because GW extraction is mainly used for irrigation as effective 379 

water input into the topsoil. While has opposite effect on deep soil when the hydrological connection 380 

between the aquifer and deep soil was weakened due to the extraction severely. Third, climate contributed 381 

101.2% and 90.7% to global drying and wetting trends of surface soil moisture, while GW extraction had 382 

a relative weak effect on soil moisture (−1.2% and 9.3% for global drying and wetting, respectively). For 383 

deep soil, GW extraction contributed 1.37% and −3.21% to the drying and wetting trends. This is because 384 

there are limited areas that exploit GW. Regionally, GW extraction contributed more in regions with high 385 

water demand for irrigation, production, and human consumption. In typical water-use areas, including 386 

the North China Plain, Central US, and North India, GW extraction contributed more to the soil moisture 387 

trends than in the regions almost without GW extraction. In summary, climate change dominates the soil 388 

moisture trends, while GW extraction accelerates or decelerates soil moisture trends under climate 389 

change. 390 

Our study demonstrated the effect of GW extraction on soil moisture. Future research should focus on 391 

developing strategies to adapt to climate change. At the same time, the effect of GW exploitation on 392 

regional soil moisture cannot be ignored. Over-exploitation weakens the hydraulic connection between 393 

soil and aquifer, which may affect root growth and development. Furthermore, GW extraction also 394 

impact atmosphere. Zeng et al. (2016b) found that the cooling caused by GW extraction in northern India 395 

weakened the Indian monsoon and its water vapor transport and the precipitation decreased. Therefore, 396 
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the development and utilization of water resources must consider the local ecological and atmospheric 397 

environment.  398 

The mismatch of soil layers between the simulations and observations may affect the evaluation results. 399 

Also, our results indicate that it is necessary to consider human activities in LSMs, and improved 400 

descriptions of hydrological processes in LSMs are required. For example, GW extraction is assumed to 401 

be occur in the area it is consumed in. Moreover, meteorological forcing data can introduce uncertainty 402 

for simulation results. The precipitation data used in our study showed significant differences. The WFD 403 

precipitation evidently decreased (1.96 mm yr−1), and the GSWP precipitation slightly decreased (0.16 404 

mm yr−1), while for CRU-NCEP and PRINCETON, precipitation slightly increased. Temperature varied 405 

similarly for all four forcing datasets (slightly increasing). The ensemble averaging method used in this 406 

study is not the optimum choice. However, considering that the purpose of this study was to explore the 407 

contribution of GW extraction to soil moisture trends, this simple averaging approach was reasonable. It 408 

is necessary to use a more appropriate averaging method to minimize the uncertainty caused by the 409 

forcing data in future work. 410 

Future studies should focus on two aspects. First, GW extraction should be improved to reflect realistic 411 

levels of water consumption. The GW extraction scheme used in this study is a simple bottom-up 412 

representation, the irrigation demand is the water required to bring the soil moisture to saturation at each 413 

time step, which describes an extreme water requirement and significantly overestimates the actual 414 

irrigation water demand. Next work will focus on a more realistic definition of irrigation water demand, 415 

such as the demand based on the difference between the potential evapotranspiration and available water. 416 

Thus, simulations using the improved model would more accurately reflect hydrological effects and 417 

enhance water resource management. Second, since only the effect of HWR was discussed in this study, 418 

other human activities could also be considered. For instance, the association between soil moisture and 419 

land-cover change can be evaluated. Changes in land-surface cover affect the hydrothermal properties of 420 

the surface soil, which further affects soil moisture. 421 
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 Tables 643 

Table 1. General information of the meteorological forcing datasets 644 

Data Spatial Interval Time period Source 

GSWP 0.5° 3-hourly 1901–2012 [Kim et al., 2016] 

WFD/WFDEI 0.5° 3-hourly 1901–2000/1979–2014 
[Haddeland et al., 2011; Weedon 

at al., 2014] 

CRU-NCEP 0.5° 6-hourly 1901–2010 [Viovy and Ciais, 2009] 

[Sheffield et al., 2006] PRINCETON 0.5° 3-hourly 1901–2012 

  645 

  646 
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Table 2. Details for the stations used in this study. 647 

Continent Network name Country 
Number of 

sites used 
Depths (m) 

Corresponding 

 simulated soil 

layer 

References 

Africa AMMA-CATCH 
Benin, 

Niger 
4 0.05;0.2,0.4 3,5,6 

 

Cappelaere et al. (2009); de Rosnay et 

al. (2009); Mougin et al. (2009);  

Pellarin et al. (2009)  

Australia OZNET Australia 8 
0–0.3;0.3–0.6; 

0.6–0.9 
1–5;6–7;7 Smith et al. (2012) 

Europe 

SMOSMANIA, 

ORACLE, 

SWEX_POLAND 

France, 

Poland 
20 

0.05;0.1; 

0.2;0.3 
3;4;5;6 

Albergel et al. (2008); Calvet et al. 

(2008);  

https://bdoh.irstea.fr/ORACLE/ 

Marczewski et al. (2010) 

North America SNOTEL, SCAN US 82 0.05;0.2;0.5 3;5;6–7 

 http://www.wcc.nrcs.usda.gov/snow/  

   

http://www.wcc.nrcs.usda.gov/scan/   

Asia IIT_KANPUR India 1 
0.1;0.25; 

0.5;0.8 
4;5;6–7;7 http://www.iitk.ac.in/ 

Asia CHINA China 40 
0–0.1;0.1–0.2; 

0.2–0.3;0.3–0.5 
1–3;4;5;7 Robock et al. (2000) 
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Asia MONGOLIA Mongolia 28 
0–0.1,0.1–0.2, 

0.2–0.3 
1–3;4;5 Robock et al. (2000) 

Asia 
RUSWET-

GRASS 

Former  

Soviet 

Union 

30 0–0.1,0–1 1–3;1–8 Robock et al.(2000) 

 648 

  649 
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Table 3. Trends in NEW simulated surface soil moisture and precipitation and 650 

temperature of forcing data. * = p < 0.05.  651 

NEW SM (m3m−3yr−1) Pre (mmyr−1) Tem (°C yr−1) 

GSWP *−0.89e−4 −0.16 *0.017 

CRU-NCEP *−0.97e−4 −0.27 *0.017 

PRINCETON −0.65e−4 −0.008 *0.017 

WFD *−0.15e−3 *−1.96 *0.019 
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  653 
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Figures 654 

 655 

 656 

Figure 1. Correlation coefficients (a, c, e, g) and differences of spatial patterns (b, d, f, h) of the ESA CCI soil 657 

moisture and the corresponding simulated top 10 cm soil moisture from 1979–2010. Gray pixels indicate no 658 

correlation and negative correlation.  659 

  660 
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661 

Figure 2. Distribution of soil moisture stations and three subregions. Seven stations on the North China Plain, 15 662 

in central US, and one in Kanpur of North India). The background is the groundwater (GW) extraction rate. 663 

  664 
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 665 

Figure 3. Taylor diagrams illustrating the comparisons among GSWP, CRUNCEP, PRINCETON, WFDEI, and in-666 

situ observation data. 667 
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  668 

Figure 4. Taylor’s skill scores and Taylor diagrams illustrating the comparisons among GSWP, CRUNCEP, 669 

PRINCETON, WFDEI, and in-situ observations. (a, d) North China Plain; (b, e) Colorado of Central US; (c, f) North 670 

India. The azimuthal angle represents the correlation coefficient, and radial distance is the standard deviation 671 

normalized to observations.  672 
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 673 

Figure 5. Annual mean of (a) surface soil moisture, (b) deep soil moisture, (c) precipitation, and (d) temperature 674 

averaged globally from 1979–2010. * = p < 0.05. 675 
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 677 

 678 

Figure 6. The spatial distribution of linear trends for (a) simulated surface soil moisture (m3 m−3 yr−1) and (b) surface 679 

soil moisture from ESA CCI (m3 m−3 yr−1), (c) simulated deep soil moisture (m3 m−3 yr−1), (d) groundwater extraction 680 

(mm yr−1), (e) precipitation (mm yr−1), (f)temperature (°C yr−1). The shaded areas represent grids with statistically 681 

significant trends (p < 0.05). 682 
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 684 

Figure 7. Statistics of the soil moisture trends. (a, b) The ratio of surface and deep soil moisture to wet and dry for 685 

28 Köppen-Geiger climate types. For each type, the left bar is the drying ratio and the right bar is the wetting ratio.  686 
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 688 

 689 

 690 

Figure 8. The relative contribution of groundwater extraction to (a) surface and (b) deep soil moisture trends (%).  691 

  692 
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 693 

Figure 9. The relative contribution of GW extraction to regional (a) surface, (b) deep soil moisture trends (%). North 694 

China Plain (34°–40° N, 110°–120° E), northern India (23°–33° N, 68°–78° E), central US (33°–42° N, 97°–105° 695 

W).  696 


