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Abstract. Climate change, rising CO2 concentration, and land use and land cover change (LULCC) 

are primary driving forces for terrestrial gross primary productivity (GPP), but their impacts on the 

temporal changes in GPP are confounded. In this study, the effects of the three main factors on the 

interannual variation (IAV) and seasonal cycle amplitude (SCA) of GPP in China were investigated 

using 12 terrestrial biosphere models from the Multi-scale Synthesis and Terrestrial Model 35 

Intercomparison Project. The simulated ensemble mean value of China’s GPP between 1981 and 2010, 

driven by common climate forcing, LULCC, and CO2 data, was found to be 7.4±1.8 Pg C yr−1. In 

general, climate was the dominant control factor of the annual trends, IAV, and seasonality of China’s 

GPP. The overall rising CO2 led to enhanced plant photosynthesis, thus increasing annual mean and 
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IAV of China’s total GPP, especially in northeastern and southern China where vegetation is dense. 

LULCC decreased the IAV of China’s total GPP by ~7%, whereas rising CO2 induced an increase of 

8%. Compared to climate change and elevated CO2, LULCC showed less contributions to GPP’s 

temporal variation and its impact acted locally, mainly in southwestern China. Furthermore, this study 

also examined subregional contributions to the temporal changes in China’s total GPP. Southern and 5 

southeastern China showed higher contributions to China’s annual GPP, whereas southwestern and 

central parts of China explained larger fractions of the IAV in China’s GPP. 

Keywords: land-use and land-cover change, MsTMIP, terrestrial biosphere models, gross primary 

productivity, interannual variation. 

1. Introduction 10 

Terrestrial ecosystems can function as a major sink in the global carbon cycle, potentially 

offsetting a significant amount of anthropogenic carbon emissions (Le Quéré et al., 2017). Gross 

primary productivity (GPP) is the major driver of terrestrial ecosystem carbon storage and plays a key 

role in terrestrial carbon cycle (Yuan et al., 2010; Mao et al., 2012; Piao et al., 2013; Anav et al., 2015; 

Zhou et al., 2016; Ito et al., 2017). Therefore, understanding the spatial-temporal patterns of terrestrial 15 

ecosystem GPP has been a research focus in quantifying the global carbon cycle (Anav et al., 2015; 

Zhou et al., 2016; Chen et al., 2017). However, GPP is susceptible to CO2 concentration and human 

interference (primarily land use and land cover change (hereafter LULCC)) besides climate change 

(Friedlingstein et al., 2010; Ciais et al., 2013; Li et al., 2015), which complicates the quantification of 

the impacts. 20 

Atmospheric CO2 concentration has increased by ~40% from 1750 to 2011 (IPCC, 2013). Several 

studies have examined the effect of rising CO2 concentration on global terrestrial carbon uptake (Piao 

et al., 2013; Schimel et al., 2014; Ito et al., 2016). Schimel et al. (2014) found that up to 60% of the 

present-day terrestrial sinks was caused by increasing atmospheric CO2. Simulations from a coupled 

earth system indicated that CO2 fertilization increased the global net primary productivity ~2.3 Pg C 25 

yr−1 between 1850 and 2005 (Devaraju et al., 2016). It suggests that the CO2 effect on land carbon 

storage may be a key potential negative feedback to future climate (Schimel et al., 2014). However, 

the extent to which CO2 fertilization is responsible for current and future terrestrial carbon storage is 

still unclear (Zaehle et al., 2010; IPCC, 2013). 

Anthropogenic LULCC also has a large effect on terrestrial carbon cycles, including the “net 30 

effect” of CO2 sources (e.g., deforestation, logging, harvesting, and other direct human activities) and 

CO2 sinks (e.g., afforestation and vegetation regrowth following land disturbance) (Brovkin et al., 
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2004; Boysen et al., 2014; Pongratz et al., 2014; Houghton et al., 2017). IPCC (2013) pointed out that 

LULCC-associated CO2 emissions have contributed ~180 ± 80 Pg C to cumulative anthropogenic CO2 

emissions (one third of total anthropogenic CO2 emissions) since 1750. As indicated by Le Quéré et 

al. (2017), CO2 emissions from LULCC at the global scale have remained relatively constant, at around 

1.3±0.7 Pg C yr−1, over the past half-century. However, regional CO2 emissions showed different 5 

characteristics (Houghton et al., 2017).  

During the past decades, China has experienced tremendous LULCC as a result of continued 

population growth and intensified human development against a broad background of climate change 

(Piao et al., 2009; Liu and Tian, 2010; Xiao et al., 2015; Li et al., 2015; Zhang et al., 2016). These 

massive LULCCs have made a significant contribution to regional and global carbon sinks during the 10 

past few decades (Guo et al., 2013; Fang et al., 2014; Xiao et al., 2015; Li et al., 2015). Hence, studies 

on the impacts of LULCC on GPP in China have important theoretical and practical value for 

understanding the temporal-spatial patterns of terrestrial carbon cycle and forecasting their response 

to future global and regional changes and human activities (Tian et al., 2011a, 2011b).  

However, few studies have adequately explored the impacts of climate change, atmospheric CO2 15 

concentration, and LULCC to interannual and seasonal variations of GPP in China (Piao et al., 2013; 

Yao et al., 2018). These studies mainly focused on the climatic driver (temperature, precipitation, and 

solar radiation) of GPP interannual variations (Yao et al., 2018) and responses of GPP to climate 

variations and atmospheric CO2 concentration (Piao et al., 2013). But the quantitative contributions of 

these three factors on GPP in China are still unclear, which urgently needs to be addressed. Although 20 

continuous improvements have been achieved for the development of terrestrial biosphere models 

(TBMs) alongside our deepening understanding of terrestrial carbon cycle process, currents TBMs still 

have large uncertainties in GPP simulation (Piao et al., 2013; Devaraju et al., 2016; Ito et al., 2016). 

Multi-model ensemble simulation has been an effective method to reduce the uncertainties induced by 

TBMs (Schwalm et al., 2015; Liu et al., 2016). Therefore, in the present study, twelve progress-based 25 

TBMs from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) 

(Huntzinger et al., 2013; Wei et al., 2014a) were used to investigate the effects of climate change, 

increasing CO2 concentration and LULCC on the interannual variation and seasonal cycle of GPP in 

China. The goals of this work were to: (1) investigate the interannual and seasonal variations of GPP 

in China between 1981 and 2010, (2) quantify the individual influences of climate change, CO2 30 

concentration, and LULCC, and (3) examine the relative contributions of major sub-regions to China’s 

total GPP. 



4 
 

2. Materials and methods 

2.1 Model description and experimental design 

Twelve TBMs that participated in the MsTMIP were used in this study: CLM4, CLM4VIC, 

DLEM, GTEC, ISAM, LPJ-wsl, ORCHIDEE-LSCE, SiB3-JPL, SiB3CASA, TEM6, VEGAS2.1, and 

VISIT (Huntzinger et al., 2013; Wei et al., 2014a, 2014b). These model simulations all followed the 5 

same experimental design. Three sensitivity model simulations were used in this study: SG1, driven 

by time-varying climate data; SG2, considering the effect of LULCC based on SG1; and SG3, similar 

to SG2, but using time-varying atmospheric CO2 concentration. In this way, these three experiments 

can be used to assess the relative contributions of climate change, LULCC, and rising CO2 

concentration to temporal changes in GPP (Section 1 of the supplemental materials). All the simulated 10 

results have a spatial resolution of 0.5° × 0.5° and are available at 

https://doi.org/10.3334/ORNLDAAC/1225 (Huntzinger et al., 2018). More detailed descriptions of the 

experimental design and forcing data sets can be found in the supplemental materials and Huntzinger 

et al. (2013) and Wei et al. (2014a, 2014b). The simulated monthly GPP from these 12 models for the 

period of 1981–2010 was used in this work. The mean values calculated from these models (hereafter 15 

‘ENSEMBLE’) were also calculated. 

2.2 Evaluation data 

This study used an observation-driven global monthly gridded GPP product derived from 

FLUXNET measurements by statistical upscaling with the machine-learning algorithm, model tree 

ensembles (Jung et al., 2009, 2011) (hereafter referred to as MTE). The MTE statistical model 20 

consisting of a set of regression trees was firstly trained using site-level explanatory variables and GPP 

estimations from eddy flux tower measurements. These explanatory variables covered climate and 

biophysical variables such as vegetation types, temperature, precipitation, radiation, and satellite-

derived fraction of absorbed photosynthetic active radiation. Then the MTE GPP product was 

generated through applying the trained regression trees for global upscaling using gridded data sets of 25 

the same explanatory variables. It has a spatial resolution of 0.5° × 0.5° and is available between 1982 

and 2011. The uncertainty of the MTE data is ~46 g C m−2 yr−1 (5%), which was calculated using the 

standard deviation of the 25 model tree ensembles (Jung et al., 2011). 

2.3 Analysis method 

The land area of China was divided into nine regions (Fig. 1a) through the consideration of their 30 

climate characteristics, plant vegetation types, and geopolitical boundaries (Piao et al., 2009, 2010). 
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For the whole of China and each sub-region, interannual variations (IAV), seasonal cycle amplitude 

(SCA), and GPP trends were analyzed and compared across MsTMIP models and MTE data. The IAV 

of GPP was defined using the standard deviations of each region’s detrended annual time-series data. 

The SCA of GPP was defined as the difference between the largest and smallest values, indicating the 

maximum range of oscillation between peak and trough within a calendar year (Ito et al., 2016).  5 

The nonparametric Mann-Kendall method was used to determine the statistical significance of 

trends in Chinese and regional GPP (area-weighted), where the Sen median slope (Sen, 1968) was 

considered as the trend value in this paper. Trend analysis was based on annual values averaged from 

monthly values. The relative contribution of each sub-region to the IAV and SCA of China’s GPP was 

also calculated based on the method proposed by Ahlström et al. (2015) and Chen et al. (2017). Please 10 

see the supplemental material for more information.  

3. Results 

3.1 Spatial patterns of GPP over China 

In general, the spatial distributions of GPP from MsTMIP models (SG3) agreed well with the 

MTE (Fig. 2), with spatial correlation coefficients for most models higher than 0.9. The highest GPP 15 

values were observed in southeastern (R7) and southern China (R8) due to the wet climate and high 

solar radiation, and the smallest GPP values were mainly in arid regions of China (e.g., northwestern 

China, R3) and the Tibetan Plateau (R6) due to adverse conditions for plant photosynthetic activities. 

But the 12 models still have some differences in the spatial variations of GPP. VISIT showed a lower 

spatial correlation with the MTE (0.88) due to its higher GPP in R7 and lower values in R1. Compared 20 

to the MTE, three models (DLEM, TEM6, and VEGAS2.1) produced lower GPP in R1, and 

VEGAS2.1 produced higher GPP in R3 and the western parts of R6. The multi-model ensemble mean 

(ENSEMBLE) showed the highest spatial correlation with the MTE, suggesting that the ensemble 

mean best captured MTE spatial variability.  

Figure 3 shows the annual mean GPP over China and each sub-region. The twelve models’ 25 

estimates of total China GPP were found to diverge, ranging from 4.9 (DLEM) to 10.5 (GTEC) Pg C 

yr−1 (Fig. 3a), with a standard deviation of 1.8 Pg C yr−1. The total China GPP from multi-model 

ensemble mean was 7.4 Pg C yr−1, which was slightly higher than the MTE (7.0 Pg C yr−1, Fig. 3a). 

The regional sum of GPP in southwestern China from the ENSEMBLE (Fig. 3b) was the highest 

among all nine regions (1.5 Pg C yr−1, R9), followed by southeastern China (1.3 Pg C yr−1, R7) and 30 

southern China (1.0 Pg C yr−1, R8). These top three regions together contributed about 50% of China’s 

GPP (Fig. 3c). However, southern China (R8) showed the highest GPP estimates per unit area, at > 
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2000 g C m−2 yr−1 (Fig. 3d). The relative contributions of each region to total China GPP from the 

MTE showed results similar to the MsTMIP. To understand more thoroughly the underlying 

mechanisms of GPP changes during 1981–2010, the effects of LULCC and atmospheric CO2 

concentration on GPP changes were quantified based on the ensemble mean of the 12 MsTMIP models 

(Table 1). In general, LULCC (SG2, 7.1 Pg C yr−1) decreased annual mean GPP by ~0.2 Pg C yr−1 (3% 5 

of SG1) compared to SG1 (6.9 Pg C yr−1). In contrast, elevated atmospheric CO2 increased GPP by 

~0.7 Pg C yr−1 (10% of SG1), although this response varied among different sub-regions (Table 1a). 

These results suggested that rising atmospheric CO2 concentration seems to have a greater effect on 

annual mean GPP over China than LULCC. 

3.2 Interannual variations and trends 10 

During 1981−2010, the MTE estimates suggested that the IAV of China’s GPP was 0.157 Pg C 

yr−1, but the multi-model ensemble mean values of MsTMIP for the three simulations all showed a 

slight underestimation (Table 1b). Compared to SG1 (0.099 Pg C yr−1), LULCC decreased the IAV by 

~0.007 Pg C yr−1 (7% of SG1), whereas rising CO2 (SG3) led to an increase (~0.008 Pg C yr−1, 8% of 

SG1). The GPP from SG3 with consideration of LULCC and elevated CO2 increased from 7.1 Pg C 15 

yr−1 in 1981 to 7.6 Pg C yr−1 in 2010, with a significant temporal trend of 0.02 Pg C yr−2 (p < 0.05). 

The annual mean GPP values from SG3 exhibited significant increasing trends between 1981–2010 

over all regions except for Inner Mongolia (R2, Fig. 4c), with the highest rates of increase over the 

Tibetan Plateau (R6, Fig. 4g) and southeastern China (R7, Fig. 4h), which were both more than 3.0 Tg 

C yr−2 (p < 0.05, 1 Tg C = 0.001 Pg C). Compared to SG1 (red line) with prescribed land cover, 20 

LULCC (blue line) decreased GPP trends over all regions, which was mainly related to land conversion 

including forest-to-crop and shrub-to-crop (Tao et al., 2013). On the contrary, elevated CO2 

concentration significantly increased plant growth and thus led to more strongly increasing GPP trends 

(SG3, purple line). Compared to the SG3 simulations of MsTMIP, the MTE estimates appeared to 

show similar interannual variations (Table 1b). Figure S1 shows the spatial patterns of the correlation 25 

coefficients between annual GPP from MsTMIP and MTE. It is found that, compared to SG1 and SG2, 

SG3 captures the interannual variations in GPP of MTE best, with significantly positive correlations 

over most areas of China, except over the west of R2 and parts of R5 and R1. The highest correlations 

mainly occur over the middle of R2 and northeast of R6. In addition, SG3 has the same trends in GPP 

(significantly increasing) with MTE for R3, R4, R5, R6, R8, and R9 (Figs. 4d, e, f, g, i, j), except some 30 

differences in the magnitude. For example, the SG3 is found to show weaker increasing trend (2.0 Tg 

C yr−2) for R4 and larger one for R6 than the MTE (4.3 Tg C yr−2). For R2 (Fig. 4c), SG1 and SG2 

show significant decreasing trend while those for SG3 and MTE are not significant. Similar increasing 
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trend can be found for SG3 and MTE over R7 (Fig. 4h) except that the trend of SG3 is significant. 

Large differences in the trend of GPP can be observed over R1 (Fig. 4b): SG3 shows significant 

increasing trend while the GPP of MTE is decreasing. However, the mean values and IAV of GPP 

over R1 are close between SG3 and MTE (Table 1a). For the whole China (Fig. 4a), the trend in GPP 

from the MsTMIP is lower than that of the MTE due to large discrepancies between 1999 and 2002. 5 

To further validate the trends in GPP from MsTMIP, we compare their spatial distributions with that 

from MTE (Fig. S2). Compared to SG1 (Fig. S2a), LULCC lead to a decrease in annual mean GPP 

(e.g., many areas with stronger negative trend, Fig. S2b). In contrast, rising atmospheric CO2 

concentration significantly strengthens the ascending trend in GPP by increasing the rate of 

photosynthesis (Fig. S2c). Moreover, SG3 capture the trend in GPP of MTE better than SG1 and SG2, 10 

with significantly increasing trends over most areas of China and decreasing trends over the east of 

R2. However, some discrepancies between SG3 and MTE can be observed over R1, east parts of R7 

and R9. We then compared them with another GPP product from Yao et al. (2018) (hereafter YAO, 

Fig. 4a in that paper). It is found that SG3 from MsTMIP shows similar trends with YAO over R1 and 

east parts of R7. In contrast, MTE shows the same increasing trends with YAO over east parts of R9. 15 

It suggests that both model simulations from MsTMIP and MTE GPP product shows certain 

uncertainties in the GPP trend over some areas of China, which needs more observations to evaluate 

the GPP trend in future work. 

Figure 5 shows the regional contributions to the IAV of China’s GPP for the three MsTMIP 

simulations (SG1, SG2, and SG3). The ensemble mean GPP of SG3 over R9 was found to explain the 20 

largest fraction (17%) of the IAV for China’s GPP, followed by R5 (15%) and R4 (14%). In contrast, 

the contributions of southeastern and southern China (R7, R8) to the IAV of China’s overall GPP were 

relatively lower (4% and 11%), even with higher contributions to China’s annual mean GPP (Fig. 3c). 

The relative contributions of each sub-region to the IAV of China’s GPP from the ENSEMBLE agreed 

well with the MTE (within one standard deviation), except for a slight overestimation over 25 

southwestern China and an underestimation over R5. The contributions from R4, R5, and R9 were all 

high for all three MsMTIP simulations and MTE, except for a few differences in magnitude. Note the 

significant uncertainties with large standard deviations among the estimated relative contributions of 

each sub-region from the twelve MsTMIP models, especially over R4 and R9. Compared to SG1, SG2 

and SG3 showed similar contributions for each sub-region, suggesting that rising atmospheric CO2 30 

and LULCC have little effect on the relative contribution of each region to the IAV of China’s GPP. 

However, they modulated the magnitude of the IAV and the annual mean values of China and regional 

GPP (Table 1). 
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3.3 Seasonal variations and regional contributions 

Figure 6 shows the seasonal variations in GPP of overall China and each sub-region from the 

MsTMIP and MTE. In general, the MsTMIP ensemble mean showed seasonal cycles similar to the 

MTE data over China and all sub-regions, with strong correlations (r > 0.97), except for R4 (Fig. 6e), 

where large discrepancies in summer (July and August) could be observed. SG1 and SG2 showed 5 

almost the same seasonal variations except for a few differences in summer over R9 (Fig. 6j), 

suggesting that LULCC had few effects on seasonal GPP variation in China. In contrast, elevated CO2 

concentrations produced higher GPP during the growing season through enhancing plant growth rate 

and thus modulated seasonal GPP variations. Table 1c shows that human activities (e.g., LULCC and 

elevated CO2 concentration) exerted influences on the SCA of GPP. The difference between the SG2 10 

and SG3 was mainly caused by raising atmospheric CO2 concentrations, whereas LULCC led to a 

small discrepancy between the SG1 and SG2. For example, compared to SG1, LULCC decreased the 

SCA by only ~0.3 Pg C yr−1 (3% of SG1), whereas elevated CO2 produced an increase of 1.5 Pg C 

yr−1 (14% of SG1). Meanwhile, the SCAs of China’s GPP (11.1−12.3 Pg C yr−1, Table 1c) from 

ENSEMBLE were detected with only slight underestimation compared to the MTE data (13.6 Pg C 15 

yr−1).  

Next, the regional contributions to the seasonality of China’s GPP were examined for MsTMIP 

(SG1, SG2, and SG3) and MTE (Fig. 7). The ensemble mean GPP of SG3 (Fig. 7c) over R1 explained 

the largest fraction (20%) of the seasonality of China’s GPP, followed by R6 (16%), and R9 (15%). 

This could be explained because the GPP in these regions had strong seasonal cycles (Figs. 6b, 6g, and 20 

6j). In contrast, the contributions of R7 and R8 to the seasonal cycle of China’s GPP were relatively 

low (3% and 8% respectively). The relative regional contributions to the seasonal dynamics of China’s 

GPP from MsTMIP agreed well with MTE (within one standard deviation). The contributions from 

R4, R5, and R9 were all high for all three MsTMIP simulations and MTE, except for a few differences 

in magnitude. Note the significant uncertainties, with large standard deviations, in R3 and R4 among 25 

the estimated relative regional contributions from the 12 MsTMIP models. Compared to SG1, SG2 

and SG3 showed similar contributions for each sub-region, suggesting that atmospheric CO2 and 

LULCC had little effect on the relative subregional contributions to the seasonal cycle of China’s GPP. 

4. Discussion 

4.1 Understanding the contribution of LULCC 30 

The TBMs used in this study relied on LULCC data by combining a static satellite-based land 

cover product (Jung et al., 2006) with time-varying land use harmonization version 1 (LUH1) data 
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(Hurtt et al., 2011). Based on this dataset, time series of different vegetation cover types over China 

and the nine sub-regions were developed and are presented in Fig. 8 (solid lines). Crop areas showed 

a persistent increase during the past three decades (from 13% to 18%), whereas forest areas were 

shrinking (from 25% to 20%). Grassland areas showed a slight increase in the 1990s and then changed 

little during the past two decades. These changes induced a decrease in the mean values of China’s 5 

GPP (Table 1a). LULCC in China showed significant spatial variations. For example, changes in 

grassland occurred mostly in Inner Mongolia (R2, Fig. 8c). Cropland expansion was widely distributed 

across China, but at different rates in each sub-region. As for forest land, the largest loss occurred over 

northern China (Fig. 8e) and parts of southern China (Figs. 8f, 8h, 8i, and 8j).  

LULCC in China from the LUH1 product used in this study showed some differences from 10 

previous studies. For example, Liu and Tian (2010) reconstructed an LULCC dataset for China using 

high resolution satellite and historical survey data and found that LULCC in China during 1980–2005 

was characterized by shrinking cropland and expanding urban and forest areas. Chen (2007) also 

reported a similar trend of shrinking cropland in China during 1977–2003 and attributed it to 

urbanization. Several studies have reported an increase in forest area after 1980 (Fang et al., 2001; 15 

Houghton and Hackler, 2003; Song and Deng, 2017), which was mainly due to new plantings to protect 

the environment (Wang et al., 2004). To assess the reliability of LULCC data used in this study, we 

compared them with the China Land Use/Cover Dataset (CLUD) (Liu, et al., 2003, 2005, 2010, 2014; 

Kuang et al., 2016), which was generated using two satellite datasets: the LandsatTM/ETM+ and HJ-

1A/1B images from the China Centre for Resources Satellite Data and Application 20 

(http://www.cresda.com/). The CLUD is a national high-resolution database (1 km) and contains the 

longest time-series dataset available for LULCC in China (Kuang et al., 2016). Its classification system 

includes six classes (woodland, cultivated land, grassland, water bodies, built-up land and unused land) 

and 25 subclasses (Liu et al., 2005; Zhang et al., 2014). The accuracy assessments for the CLUD have 

been addressed in previous studies (Liu et al., 2003, 2005, 2010, 2014; Kuang et al., 2013, 2016). 25 

Based on the CLUD, the maps of main vegetation types in 1990, 1995, 2000, and 2010 were used here 

and their temporal changes in China and nine sub-regions are shown in Fig. 8 (dashed lines with dots). 

It is noted that CLUD is not available before 1990. In general, the LULCC data used in the MsTMIP 

agree well with the CLUD between 1990 and 2005, except some discrepancies in 2010. Compared to 

that in 2000, the CLUD showed a slight increase in forest (from 20% to 22%) and shrinking cropland 30 

(from 31% to 21%) and grassland (from 20% to 14%) in 2010 for the whole China. The decrease in 

cropland was mainly from R1 (Fig. 8b), R4 (Fig. 8e), R5 (Fig. 8f) and R7 (Fig. 8h), while the changes 

in grassland occurred mostly in R2 (Fig. 8c), R3 (Fig. 8d), and R6 (Fig. 8g). 
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The uncertainties in the LULCC dataset could influence its contribution to terrestrial carbon 

fluxes. For example, the MTE GPP product shows a significantly increasing trend after 2005 over R4 

(Fig. 4e), R5 (Fig. 4f) and R7 (Fig. 4h) while some underestimations can be found for model simulated 

GPP. This may be related with the discrepancies in the LULCC data sets over these areas. In upcoming 

revisions to LUH1, the new LUH2 product (http://luh.umd.edu/data.shtml) includes updated inputs, 5 

higher spatial resolution, more detailed land use transitions, and the addition of important agricultural 

management layers. Moreover, forest cover gross transitions are now constrained by remote-sensing 

information and have generally been re-estimated. Therefore, future studies are expected to compare 

the potential effect on GPP with the new product. 

4.2 Uncertainties in simulating GPP in China 10 

Despite growing efforts to quantify GPP, current TBM simulations still have large uncertainties. 

Each TBM has different parameterizations, which led to its own bias, and the ensemble mean of multi-

model simulations may reduce the bias in GPP (Ito et al., 2016; Chen et al., 2017). Therefore, this 

study did not focus on comparisons among the 12 model simulations. 

The multi-model mean of the twelve MsTMIP models (SG3) for total China GPP was 7.4 Pg C 15 

yr−1, which was slightly higher than the MTE estimate (7.0 Pg C yr−1). The results in this study also 

showed some differences with previous studies. For example, China GPP estimates based on the Eddy-

Covariance Light Use Efficiency model were 5.38 (Yuan et al., 2010), 5.55 (Cai et al., 2010), and 6.04 

Pg C yr−1 (Li et al., 2010) respectively, which were more than 20% lower than in this study. Yao et al. 

(2018) developed a new GPP product for China with higher spatial resolution (0.1°) based on a 20 

machine-learning algorithm using more eddy flux observations than the MTE. They found that the 

annual GPP of China was 6.62 ± 0.23 Pg C yr−1 during 1982–2015. In contrast, the ensemble mean of 

nine TBMs produced a higher estimate of 7.85 Pg C yr−1 (Yao et al., 2018). In addition, two newly 

published studies also generated high estimates of total annual GPP: 7.85 Pg C yr−1 for 2001–2010 by 

multiple regression (Zhu et al., 2014) and 7.81 Pg C yr−1 for 2000–2015 using support vector 25 

regression (Ichii et al., 2017). Unlike the discrepancies in the magnitude of annual mean China GPP, 

the trend in this study is very similar to that of Yao et al. (2018), with a positive value of 0.02 Pg C 

yr−2 (p < 0.05). 

In this study, MsTMIP and MTE were found to show some discrepancies in the IAV and trends 

of GPP. For example, the trend of MsTMIP is about twice of that derived from the MTE data (Fig. 4). 30 

The reason for the differences can be explained through the following two aspects. First of all, 

uncertainties in meteorological forcing dataset, model structure and parameterization can lead to large 

biases in simulating the spatial-temporal patterns of GPP although this could be reduced by ensemble 
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simulations from MsTMIP. Secondly, although data-oriented GPP product (e.g. the MTE) has been 

used as the reference data to evaluate the TBM simulations (Piao et al., 2012, 2013; Jia et al., 2018; 

Yao et al., 2018), previous studies found that MTE data may underestimate the IAV and trends (Jung 

et al., 2011; Piao et al., 2013). It may be due to the potential biases caused by “spatial gradients 

extrapolation to temporal interannual gradients” (Reichstein et al., 2007; Jung et al., 2009; Piao et al., 5 

2013; Yao et al., 2018), and leaving out some cumulative effects like soil moisture (Jung et al., 2007). 

In addition, most of the stations used by the MTE data only had short measurements period (Yao et 

al., 2018), which may affect the estimations of long-term temporal variations in GPP (e.g., IAV, trend). 

It is noted that the latest version of the MTE data agreed with TBM simulations well (Jung et al., 2017), 

which will be compared with the GPP estimations over China from MsTMIP in our future work. 10 

5. Conclusions 

In this study, a multi-model analysis using twelve MsTMIP-based models was used to investigate 

the relative contributions of climate change and anthropogenic activities to interannual and seasonal 

variations in China’s GPP. In addition, this study examined subregional contributions to temporal 

changes in China’s total GPP. Ensemble simulations from MsTMIP were compared with an 15 

independent upscaling GPP product (Jung et al., 2011) and with flux tower-based GPP observations 

in China.  

The simulated GPP for China from the 12 MsTMIP models, driven by common climate forcing, 

LULCC, and CO2 data, was 7.4±1.8 Pg C yr−1, which agreed well with independent MTE data set (7.1 

Pg C yr−1). In general, climate was the dominant control factor for the trends, interannual variation, 20 

and seasonality of China’s GPP. When only constrained by climatic driver, mean annual GPP over 

China from 1981 to 2010 is 6.9±1.7 Pg C yr−1, with a trend of 0.0036 Pg C yr−2. The overall rise in 

CO2 enhanced plant photosynthesis and thus increased total China GPP, with increasing annual mean 

and interannual variability, especially in northeastern and southern China where vegetation is dense. 

LULCC decreased the IAV of China’s total GPP by ~7%, whereas rising CO2 induced an increase of 25 

8%. Our research examined the joint effects of the three factors and their quantitative contributions to 

the interannual variations and seasonal cycles of GPP. Given the important role of GPP in regulating 

terrestrial carbon cycling, this work is expected to help us better understand the interactions of the 

carbon cycle, climate change, and human activity. Furthermore, it will also be interesting for the policy 

makers to make public decisions on how to achieve the balance between the optimized economy and 30 

minimized carbon loss.  
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Note that existing model estimates of GPP from state-of-the-art TBMs vary widely and still have 

large uncertainties driven by biases in environmental driver data and unrealistic assumptions in model 

parameterizations and parameters (Friedlingstein et al., 2006; Huntzinger et al., 2012). The multi-

model ensemble strategy is a means to address model structural uncertainty by synthesizing outcomes 

from multiple models representing different parameterizations of underlying biogeophysical and 5 

biogeochemical processes, and has been demonstrated to offer better predictability (Hagedorn et al., 

2005). However, there are some missing factors that are not considered in this study. One is that the 

interaction between LULCC and elevated CO2 was not completely separated in this study. For example, 

deforestation under the background of raising CO2 induces higher emissions because CO2 fertilization 

leads to an increase in terrestrial carbon storage, but higher CO2 concentrations also cause a stronger 10 

regrowth (Houghton et al., 2012). Moreover, the uncertainty in LULCC data sets remains a serious 

challenge today. More satellite data with higher spatial resolution are expected to reduce this 

uncertainty. 
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Tables 

Table 1. China and regional GPP from the MTE and the ensemble mean of the twelve MsTMIP models 

for three configurations (SG1, SG2, and SG3): (a) mean values (MEAN), (b) interannual variability 

(IAV), (c) seasonal-cycle amplitude (SCA). 

(a) MEAN (unit Pg C yr−1) 5 

 SG1 SG2 SG3 MTE 

China 6.9 6.7 7.4 7.0 

R1 0.8 0.8 0.9 0.8 

R2 0.4 0.4 0.4 0.4 

R3 0.3 0.3 0.3 0.3 

R4 0.7 0.7 0.8 0.7 

R5 0.8 0.7 0.8 0.7 

R6 0.5 0.4 0.5 0.5 

R7 1.2 1.2 1.3 1.2 

R8 1.0 0.9 1.0 1.0 

R9 1.5 1.4 1.5 1.4 

 

(b) IAV (unit Pg C yr−1) 

 SG1 SG2 SG3 MTE 

China 0.099 0.092 0.105 0.157 

R1 0.030 0.033 0.030 0.029 

R2 0.024 0.021 0.023 0.025 

R3 0.010 0.012 0.010 0.015 

R4 0.030 0.029 0.033 0.048 

R5 0.025 0.022 0.024 0.020 

R6 0.018 0.016 0.018 0.014 

R7 0.034 0.032 0.033 0.025 

R8 0.030 0.031 0.031 0.019 

R9 0.031 0.029 0.032 0.029 

 

(c) SCA (unit Pg C yr−1) 

 SG1 SG2 SG3 MTE 

China 11.1 10.8 12.3 13.6 
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R1 2.3 2.2 2.6 2.8 

R2 1.1 1.0 1.2 1.3 

R3 0.7 0.7 0.8 1.1 

R4 1.4 1.4 1.6 2.2 

R5 0.9 0.9 1.1 1.2 

R6 1.2 1.0 1.2 1.1 

R7 1.3 1.3 1.5 1.5 

R8 0.8 0.8 0.9 1.0 

R9 1.8 1.7 1.9 2.2 
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Figures 

 
Figure 1. Spatial distributions of (a) nine sub-regions (R1−R9) in China; and (b) present plant 

functional types (PFT) used in SG1 simulations. R1: northeastern China (Heilongjiang, Jilin, Liaoning); 

R2: Inner Mongolia; R3: northwestern China (Gansu, Ningxia, Xinjiang); R4: northern China (Beijing, 5 

Hebei, Henan, Shandong, Shanxi, Shaanxi, Tianjin); R5: central China (Hubei, Hunan); R6: Tibetan 

Plateau (Qinghai, Tibet); R7: southeastern China (Anhui, Fujian, Jiangsu, Jiangxi, Shanghai, Taiwan, 

Zhejiang); R8: southern China (Guangdong, Guangxi, Hainan, Hong Kong, Macao); and R9: 

southwestern China (Guizhou, Sichuan, Yunnan, Chongqing). SNICE is snow and ice, BARE is bare 

soil.   10 
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Figure 2. Average annual terrestrial ecosystem gross primary production (GPP) over China from the 

MTE (1982–2010) and MsTMIP (1981–2010). r is the spatial correlation coefficient with the MTE, 

and ENSEMBLE is the ensemble mean of the twelve MsTMIP models. 
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Figure 3. Annual mean GPP from (a) China and (b) each sub-region; (c) regional contributions to 

China GPP; (d) annual mean GPP per unit square meters. Horizontal lines at top, middle, bottom in 

the boxplots represent the maximum, ensemble mean, and minimum of multi-model simulations 

respectively, whereas the box indicates one standard deviation. All the results in this figure are 5 

averaged for the period of 1981–2010 for the MsTMIP SG3 simulation and 1982–2010 for the MTE. 

Regional abbreviations used on the x-axes are defined in Fig. 1a.  
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Figure 4. Interannual variations in GPP of China and each sub-region from the MTE (black) and the 

ensemble mean of the 12 MsTMIP models: SG1 (blue), SG2 (red), SG3 (purple). The anomalies of 

GPP were calculated as the difference between annual GPP and the long-term mean between 1981 and 

2010 (MTE is 1982-2010). The numbers located at the top of each figure indicate the linear trends of 5 

SG1 (blue), SG2 (red), SG3 (purple), and MTE (black) with units of Tg C yr–2 (1 Tg C=0.001 Pg C). 
* and ** indicate the trend is significant with p < 0.1 and p < 0.05 respectively.  
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Figure 5. The relative contributions of each sub-region to the interannual variability (IAV) of China’s 

GPP. Boxplots indicate the distributions of the 12 MsTMIP models. Horizontal lines at top, middle, 

and bottom in the boxplots represent the maximum, ensemble mean, and minimum of multi-model 

simulations respectively, whereas the box indicates one standard deviation. All the results in this figure 5 

are averaged between 1981–2010 for the MsTMIP models and 1982–2010 for the MTE.  
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Figure 6. Seasonal variations in GPP of China and each sub-region from the ensemble mean of the 

twelve MsTMIP models for the three simulations (SG1, SG2, and SG3) and the MTE. All the results 

in this figure are averaged between 1981–2010 for the MsTMIP and 1982–2010 for the MTE.  
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Figure 7. The same as Fig. 5, but for the regional contributions to the seasonality of China’s GPP. 
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Figure 8. Interannual changes of vegetation types over China and nine sub-regions between 1981 and 

2010 from the MsTMIP (solid lines) and the China Land Use/Cover Dataset (dashed lines with dots). 

Other includes SNICE (snow and ice), water, and bare soil.   


