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Abstract. TS1Climate change, rising CO2 concentration, and land use and land cover change (LULCC) are
primary driving forces for terrestrial gross primary productivity (GPP), but their impacts on the temporal changes
in GPP are uncertainCE3 . In this study, the effects of the three main factors on the interannual variation (IAV)
and seasonal cycle amplitude (SCA) of GPP in China were investigated using 12 terrestrial biosphere models
from the Multi-scale Synthesis and Terrestrial Model Intercomparison Project. The simulated ensemble mean
value of China’s GPP between 1981 and 2010, driven by common climate forcing, LULCC and CO2 data, was
found to be 7.4±1.8 Pg C yr−1. In general, climate was the dominant control factor of the annual trends, IAV and
seasonality of China’s GPP. The overall rising CO2 led to enhanced plant photosynthesis, thus increasing annual
mean and IAV of China’s total GPP, especially in northeastern and southern China, where vegetation is dense.
LULCC decreased the IAV of China’s total GPP by ∼ 7 %, whereas rising CO2 induced an increase of 8 %.
Compared to climate change and elevated CO2, LULCC showed less contributions to GPP’s temporal variation,
and its impact acted locally, mainly in southwestern China. Furthermore, this study also examined subregional
contributions to the temporal changes in China’s total GPP. Southern and southeastern China showed higher
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contributions to China’s annual GPP, whereas southwestern and central parts of China explained larger fractions
of the IAV in China’s GPP.

1 Introduction

Terrestrial ecosystems can function as a major sink in
the global carbon cycle, potentially offsetting a significant
amount of anthropogenic carbon emissions (Le Quéré et al.,
2018TS2 ). Gross primary productivity (GPP) is the major5

driver of terrestrial ecosystem carbon storage and plays a key
role in terrestrial carbon cycle (Yuan et al., 2010; Mao et al.,
2012; Piao et al., 2013; Anav et al., 2015; Zhou et al., 2016;
Ito et al., 2017). Therefore, understanding the spatiotemporal
patterns of terrestrial ecosystem GPP has been a research fo-10

cus in quantifying the global carbon cycle (Anav et al., 2015;
Zhou et al., 2016; Chen et al., 2017). However, GPP is sus-
ceptible to CO2 concentration and human interference (pri-
marily land use and land cover change, hereafter LULCC)
besides climate change (Friedlingstein et al., 2010; Ciais et15

al., 2013; Li et al., 2015), which complicates the quantifica-
tion of the impacts.

Atmospheric CO2 concentration has increased by ∼ 40 %
from 1750 to 2011 (IPCC, 2013). Several studies have exam-
ined the effect of rising CO2 concentration on global terres-20

trial carbon uptake (Piao et al., 2013; Schimel et al., 2014;
Ito et al., 2016). Schimel et al. (2014) found that up to 60 %
of the present-day terrestrial sinks was caused by increas-
ing atmospheric CO2. Simulations from a coupled earth sys-
tem indicated that CO2 fertilization increased the global net25

primary productivity by ∼ 2.3 Pg C yr−1 between 1850 and
2005 (Devaraju et al., 2016). It suggests that the CO2 effect
on land carbon storage may be a key potential negative feed-
back to future climate (Schimel et al., 2014). However, the
extent to which CO2 fertilization is responsible for current30

and future terrestrial carbon storage is still unclear (Zaehle et
al., 2010; IPCC, 2013).

Anthropogenic LULCC also has a large effect on terres-
trial carbon cycles, including the “net effect” of CO2 sources
(e.g., deforestation, logging, harvesting, and other direct hu-35

man activities) and CO2 sinks (e.g., afforestation and vege-
tation regrowth following land disturbance) (Brovkin et al.,
2004; Boysen et al., 2014; Pongratz et al., 2014; Houghton
et al., 2017TS3 ). IPCC (2013) pointed out that LULCC-
associated CO2 emissions have contributed ∼ 180± 80 Pg C40

to cumulative anthropogenic CO2 emissions (one-third of to-
tal anthropogenic CO2 emissions) since 1750. As indicated
by Le Quéré et al. (2018TS4 ), CO2 emissions from LULCC
at the global scale have remained relatively constant, at
around 1.3± 0.7 Pg C yr−1, over the past half-century. How-45

ever, regional CO2 emissions showed different characteris-
tics (Houghton et al., 2017TS5 ).

During the past decades, China has experienced tremen-
dous LULCC as a result of continued population growth and
intensified human development against a broad background 50

of climate change (Piao et al., 2009; Liu and Tian, 2010;
Xiao et al., 2015; Li et al., 2015; Zhang et al., 2016). These
massive LULCCs have made a significant contribution to re-
gional and global carbon sinks during the past few decades
(Guo et al., 2013; Fang et al., 2014; Xiao et al., 2015; Li et 55

al., 2015). Hence, studies on the impacts of LULCC on GPP
in China have important theoretical and practical value for
understanding the spatiotemporal patterns of terrestrial car-
bon cycle and forecasting their response to future global and
regional changes and human activities (Tian et al., 2011a, b). 60

However, few studies have adequately explored the im-
pacts of climate change, atmospheric CO2 concentration, and
LULCC to interannual and seasonal variations of GPP in
China (Piao et al., 2013; Yao et al., 2018). These studies
mainly focused on the climatic driver (temperature, precip- 65

itation, and solar radiation) of GPP interannual variations
(Yao et al., 2018) and responses of GPP to climate varia-
tions and atmospheric CO2 concentration (Piao et al., 2013).
But the quantitative contributions of these three factors to
GPP in China are still unclear, which urgently needs to be 70

addressed. Although continuous improvements have been
achieved for the development of terrestrial biosphere mod-
els (TBMs) alongside our deepening understanding of ter-
restrial carbon cycle process, current TBMs still have large
uncertainties in GPP simulation (Piao et al., 2013; Devaraju 75

et al., 2016; Ito et al., 2016). Multi-model ensemble simula-
tion has been an effective method to reduce the uncertainties
induced by TBMs (Schwalm et al., 2015; Liu et al., 2016).
Therefore, in the present study, 12 progress-based TBMs
from the Multi-scale Synthesis and Terrestrial Model Inter- 80

comparison Project (MsTMIP) (Huntzinger et al., 2013; Wei
et al., 2014a) were used to investigate the effects of climate
change, increasing CO2 concentration and LULCC on the in-
terannual variation and seasonal cycle of GPP in China. The
goals of this work were to (1) investigate the interannual and 85

seasonal variations of GPP in China between 1981 and 2010,
(2) quantify the individual influences of climate change, CO2
concentration, and LULCC, and (3) examine the relative con-
tributions of major subregions to China’s total GPP.

2 Materials and methods 90

2.1 Model description and experimental design

Twelve TBMs that participated in the MsTMIP were used in
this study: CLM4, CLM4VIC, DLEM, GTEC, ISAM, LPJ-
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wsl, ORCHIDEE-LSCE, SiB3-JPL, SiB3CASA, TEM6,
VEGAS2.1 and VISIT (Huntzinger et al., 2013; Wei et al.,
2014a, b). These model simulations all followed the same ex-
perimental design. Three sensitivity model simulations were
used in this study: SG1, driven by time-varying climate data;5

SG2, considering the effect of LULCC based on SG1; and
SG3, similar to SG2, but using time-varying atmospheric
CO2 concentration. In this way, these three experiments can
be used to assess the relative contributions of climate change,
LULCC and rising CO2 concentration to temporal changes10

in GPP (Sect. S1 of the Supplement). All the simulated re-
sults have a spatial resolution of 0.5◦×0.5◦ and are available
at https://doi.org/10.3334/ORNLDAAC/1225 (Huntzinger et
al., 2018). More detailed descriptions of the experimental de-
sign and forcing datasets can be found in the Supplement and15

Huntzinger et al. (2013) and Wei et al. (2014a, b). The sim-
ulated monthly GPP from these 12 models for the period of
1981–2010 was used in this work. The mean values calcu-
lated from these models (hereafter “ENSEMBLE”) were also
calculated.20

2.2 Evaluation data

This study used an observation-driven global monthly grid-
ded GPP product derived from FLUXNET measurements
by statistical upscaling with the machine-learning algorithm,
model tree ensembles (Jung et al., 2009, 2011) (hereafter re-25

ferred to as MTEs). The MTE statistical model consisting
of a set of regression trees was first trained using site-level
explanatory variables and GPP estimations from eddy flux
tower measurements. These explanatory variables covered
climate and biophysical variables such as vegetation types,30

temperature, precipitation, radiation, and satellite-derived
fraction of absorbed photosynthetic active radiation. Then
the MTE GPP product was generated through applying the
trained regression trees for global upscaling using gridded
datasets of the same explanatory variables. It has a spatial35

resolution of 0.5◦× 0.5◦ and is available between 1982 and
2011. The uncertainty of the MTE data is ∼ 46 g C m−2 yr−1

(5 %), which was calculated using the standard deviation of
the 25 model tree ensembles (Jung et al., 2011).

2.3 Analysis method40

The land area of China was divided into nine regions (Fig. 1a)
through a consideration of their climate characteristics, plant
vegetation types and geopolitical boundaries (Piao et al.,
2009, 2010). For the whole of China and each subregion, in-
terannual variations (IAVs), seasonal cycle amplitude (SCA)45

and GPP trends were analyzed and compared across MsT-
MIP models and MTE data. The IAV of GPP was defined
using the standard deviations of each region’s detrended an-
nual time-series data. The SCA of GPP was defined as the
difference between the largest and smallest values, indicating50

Figure 1. Spatial distributions of (a) nine subregions (R1–R9) in
China; and (b) present plant functional types (PFTs) used in SG1
simulations. R1: northeastern China (Heilongjiang, Jilin, Liaon-
ing); R2: Inner Mongolia; R3: northwestern China (Gansu, Ningxia,
Xinjiang); R4: northern China (Beijing, Hebei, Henan, Shandong,
Shanxi, Shaanxi, Tianjin); R5: central China (Hubei, Hunan); R6:
Tibetan Plateau (Qinghai, Tibet); R7: southeastern China (Anhui,
Fujian, Jiangsu, Jiangxi, Shanghai, Taiwan, Zhejiang); R8: south-
ern China (Guangdong, Guangxi, Hainan, Hong Kong, Macao); and
R9: southwestern China (Guizhou, Sichuan, Yunnan, Chongqing).
SNICE is snow and ice; BARE is bare soil.CE4

the maximum range of oscillation between peak and trough
within a calendar year (Ito et al., 2016).

The nonparametric Mann–Kendall method was used to de-
termine the statistical significance of trends in Chinese and
regional GPP (area-weighted), where the Sen median slope 55

(Sen, 1968) was considered as the trend value in this paper.
Trend analysis was based on annual values averaged from
monthly values. The relative contribution of each subregion
to the IAV and SCA of China’s GPP was also calculated
based on the method proposed by Ahlström et al. (2015) and 60

Chen et al. (2017). Please see the Supplement for more in-
formation.

3 Results

3.1 Spatial patterns of GPP over China

In general, the spatial distributions of GPP from MsTMIP 65

models (SG3) agreed well with the MTE (Fig. 2), with spa-
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Figure 2. Average annual terrestrial ecosystem gross primary production (GPP) over ChinaCE5 from the MTE (1982–2010) and MsTMIP
(1981–2010). r is the spatial correlation coefficient with the MTE, and ENSEMBLE is the ensemble mean of the 12 MsTMIP models.

tial correlation coefficients for most models higher than 0.9.
The highest GPP values were observed in southeastern (R7)
and southern China (R8) due to the wet climate and high
solar radiation, and the smallest GPP values were mainly
in arid regions of China (e.g., northwestern China, R3) and5

the Tibetan Plateau (R6) due to adverse conditions for plant
photosynthetic activities. But the 12 models still have some
differences in the spatial variations of GPP. VISIT showed
a lower spatial correlation with the MTE (0.88) due to its
higher GPP in R7 and lower values in R1. Compared to the10

MTE, three models (DLEM, TEM6, and VEGAS2.1) pro-
duced lower GPP in R1, and VEGAS2.1 produced higher
GPP in R3 and the western parts of R6. The multi-model en-
semble mean (ENSEMBLE) showed the highest spatial cor-
relation with the MTE, suggesting that the ensemble mean15

best captured MTE spatial variability.
Figure 3 shows the annual mean GPP over China and

each subregion. The 12 models’ estimates of total China

GPP were found to diverge, ranging from 4.9 (DLEM) to
10.5 (GTEC) Pg C yr−1 (Fig. 3a), with a standard deviation 20

of 1.8 Pg C yr−1. The total China GPP from the multi-model
ensemble mean was 7.4 Pg C yr−1, which was slightly higher
than the MTE (7.0 Pg C yr−1, Fig. 3a). The regional sum of
GPP in southwestern China from the ENSEMBLE (Fig. 3b)
was the highest among all nine regions (1.5 Pg C yr−1, R9), 25

followed by southeastern China (1.3 Pg C yr−1, R7) and
southern China (1.0 Pg C yr−1, R8). These top three regions
together contributed about 50 % of China’s GPP (Fig. 3c).
However, southern China (R8) showed the highest GPP es-
timates per unit area, at > 2000 g C m−2 yr−1 (Fig. 3d). The 30

relative contributions of each region to total China GPP from
the MTE showed results similar to the MsTMIP. To under-
stand more thoroughly the underlying mechanisms of GPP
changes during 1981–2010, the effects of LULCC and at-
mospheric CO2 concentration on GPP changes were quanti- 35

fied based on the ensemble mean of the 12 MsTMIP mod-
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Figure 3. Annual mean GPP from (a) China and (b) each subre-
gion; (c) regional contributions to China GPP; (d) annual mean GPP
per unit square meters. Horizontal lines at top, middle and bottom
in the boxplots represent the maximum, ensemble mean, and mini-
mum of multi-model simulations, respectively, whereas the box in-
dicates 1 standard deviation. All the results in this figure are aver-
aged for the period of 1981–2010 for the MsTMIP SG3 simulation
and 1982–2010 for the MTE. Regional abbreviations used on the x

axes are defined in Fig. 1a.

els (Table 1). In general, LULCC (SG2, 7.1 Pg C yr−1) de-
creased annual mean GPP by ∼ 0.2 Pg C yr−1 (3 % of SG1)
compared to SG1 (6.9 Pg C yr−1). In contrast, elevated at-
mospheric CO2 increased GPP by ∼ 0.7 Pg C yr−1 (10 % of
SG1), although this response varied among different subre-5

gions (Table 1a). These results suggested that rising atmo-
spheric CO2 concentration seems to have a greater effect on
annual mean GPP over China than LULCC.

3.2 Interannual variations and trends

During 1981–2010, the MTE estimates suggested that the10

IAV of China’s GPP was 0.157 Pg C yr−1, but the multi-
model ensemble mean values of MsTMIP for the three
simulations all showed a slight underestimation (Table 1b).
Compared to SG1 (0.099 Pg C yr−1), LULCC decreased the
IAV by ∼ 0.007 Pg C yr−1 (7 % of SG1), whereas rising15

CO2 (SG3) led to an increase (∼ 0.008 Pg C yr−1, 8 % of
SG1). The GPP from SG3 with a consideration of LULCC
and elevated CO2 increased from 7.1 Pg C yr−1 in 1981 to
7.6 Pg C yr−1 in 2010, with a significant temporal trend of
0.02 Pg C yr−2 (p < 0.05). The annual mean GPP values20

from SG3 exhibited significant increasing trends between
1981–2010 over all regions except for Inner Mongolia (R2,

Table 1. China and regional GPP from the MTE and the ensem-
ble mean of the 12 MsTMIP models for three configurations (SG1,
SG2 and SG3): (a) mean values (MEAN), (b) interannual variabil-
ity (IAV), (c) seasonal-cycle amplitude (SCA).

(a) MEAN (unit Pg C yr−1)
SG1 SG2 SG3 MTE

China 6.9 6.7 7.4 7.0
R1 0.8 0.8 0.9 0.8
R2 0.4 0.4 0.4 0.4
R3 0.3 0.3 0.3 0.3
R4 0.7 0.7 0.8 0.7
R5 0.8 0.7 0.8 0.7
R6 0.5 0.4 0.5 0.5
R7 1.2 1.2 1.3 1.2
R8 1.0 0.9 1.0 1.0
R9 1.5 1.4 1.5 1.4

(b) IAV (unit Pg C yr−1)

SG1 SG2 SG3 MTE

China 0.099 0.092 0.105 0.157
R1 0.030 0.033 0.030 0.029
R2 0.024 0.021 0.023 0.025
R3 0.010 0.012 0.010 0.015
R4 0.030 0.029 0.033 0.048
R5 0.025 0.022 0.024 0.020
R6 0.018 0.016 0.018 0.014
R7 0.034 0.032 0.033 0.025
R8 0.030 0.031 0.031 0.019
R9 0.031 0.029 0.032 0.029

(c) SCA (unit Pg C yr−1)

SG1 SG2 SG3 MTE

China 11.1 10.8 12.3 13.6
R1 2.3 2.2 2.6 2.8
R2 1.1 1.0 1.2 1.3
R3 0.7 0.7 0.8 1.1
R4 1.4 1.4 1.6 2.2
R5 0.9 0.9 1.1 1.2
R6 1.2 1.0 1.2 1.1
R7 1.3 1.3 1.5 1.5
R8 0.8 0.8 0.9 1.0
R9 1.8 1.7 1.9 2.2

Fig. 4c), with the highest rates of increase over the Ti-
betan Plateau (R6, Fig. 4g) and southeastern China (R7,
Fig. 4h), which were both more than 3.0 Tg C yr−2 (p < 0.05, 25

1 Tg C= 0.001 Pg C). Compared to SG1 (red line) with pre-
scribed land cover, LULCC (blue line) decreased GPP trends
over all regions, which was mainly related to land conver-
sion including forest-to-crop and shrub-to-crop (Tao et al.,
2013). On the contrary, elevated CO2 concentration signifi- 30

cantly increased plant growth and thus led to more strongly
increasing GPP trends (SG3, purple line). Compared to the
SG3 simulations of MsTMIP, the MTE estimates appeared to

www.earth-syst-dynam.net/11/1/2020/ Earth Syst. Dynam., 11, 1–15, 2020
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Figure 4. Interannual variations in GPP of China and each subregion from the MTE (black) and the ensemble mean of the 12 MsTMIP
models: SG1 (blue), SG2 (red), SG3 (purple). The anomalies of GPP were calculated as the difference between annual GPP and the long-
term mean between 1981 and 2010 (MTE is 1982–2010). The numbers located at the top of each figure indicate the linear trends of SG1
(blue), SG2 (red), SG3 (purple) and MTE (black) with units of Tg C yr−2 (1 Tg C= 0.001 Pg C). Single (∗) and double (∗∗) asterisks indicate
that the trend is significant with p < 0.1 and p < 0.05, respectively.

show similar interannual variations (Table 1b). Figure S1 in
the Supplement shows the spatial patterns of the correlation
coefficients between annual GPP from MsTMIP and MTE.
It is found that, compared to SG1 and SG2, SG3 captures
the interannual variations in GPP of MTE best, with signifi-5

cantly positive correlations over most areas of China, except
over the west of R2 and parts of R5 and R1. The highest cor-
relations mainly occur over the middle of R2 and northeast
of R6. In addition, SG3 has the same trends in GPP (signif-
icantly increasing) with MTE for R3, R4, R5, R6, R8, and10

R9 (Fig. 4d, e, f, g, i, j), except for some differences in the
magnitude. For example, the SG3 is found to show a weaker

increasing trend (2.0 Tg C yr−2) for R4 and a larger one for
R6 than the MTE (4.3 Tg C yr−2). For R2 (Fig. 4c), SG1 and
SG2 show a significant decreasing trend, while trends for 15

SG3 and MTE are not significant. A similar increasing trend
can be found for SG3 and MTE over R7 (Fig. 4h) except that
the trend of SG3 is significant. Large differences in the trend
of GPP can be observed over R1 (Fig. 4b): SG3 shows a sig-
nificant increasing trend, while the GPP of MTE is decreas- 20

ing. However, the mean values and IAV of GPP over R1 are
close in SG3 and MTE (Table 1a). For all of China (Fig. 4a),
the trend in GPP from the MsTMIP is lower than that of the
MTE due to large discrepancies between 1999 and 2002. To

Earth Syst. Dynam., 11, 1–15, 2020 www.earth-syst-dynam.net/11/1/2020/
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further validate the trends in GPP from MsTMIP, we com-
pare their spatial distributions with that from MTE (Fig. S2).
Compared to SG1 (Fig. S2a), LULCC leads to a decrease
in annual mean GPP (e.g., many areas with stronger negative
trend; Fig. S2b). In contrast, rising atmospheric CO2 concen-5

tration significantly strengthens the ascending trend in GPP
by increasing the rate of photosynthesis (Fig. S2c). More-
over, SG3 captures the trend in GPP of MTE better than SG1
and SG2, with significantly increasing trends over most areas
of China and decreasing trends over the east of R2. However,10

some discrepancies between SG3 and MTE can be observed
over R1, east parts of R7 and R9. We then compared them
with another GPP product from Yao et al. (2018) (hereafter
YAO, Fig. 4a in that paper). It is found that SG3 from MsT-
MIP shows similar trends with YAO over R1 and east parts of15

R7. In contrast, MTE shows the same increasing trends with
YAO over east parts of R9. It suggests that both model sim-
ulations from MsTMIP and the MTE GPP product show cer-
tain uncertainties in the GPP trend over some areas of China,
which needs more observations to evaluate the GPP trend in20

future work.
Figure 5 shows the regional contributions to the IAV of

China’s GPP for the three MsTMIP simulations (SG1, SG2
and SG3). The ensemble mean GPP of SG3 over R9 was
found to explain the largest fraction (17 %) of the IAV for25

China’s GPP, followed by R5 (15 %) and R4 (14 %). In con-
trast, the contributions of southeastern and southern China
(R7, R8) to the IAV of China’s overall GPP were relatively
lower (4 % and 11 %), even with higher contributions to
China’s annual mean GPP (Fig. 3c). The relative contribu-30

tions of each subregion to the IAV of China’s GPP from the
ENSEMBLE agreed well with the MTE (within 1 standard
deviation), except for a slight overestimation over southwest-
ern China and an underestimation over R5. The contributions
from R4, R5 and R9 were all high for all three MsMTIP sim-35

ulations and MTE, except for a few differences in magni-
tude. Note the significant uncertainties with large standard
deviations among the estimated relative contributions of each
subregion from the 12 MsTMIP models, especially over R4
and R9. Compared to SG1, SG2 and SG3 showed similar40

contributions for each subregion, suggesting that rising at-
mospheric CO2 and LULCC have little effect on the rela-
tive contribution of each region to the IAV of China’s GPP.
However, they modulated the magnitude of the IAV and the
annual mean values of China and regional GPP (Table 1).45

3.3 Seasonal variations and regional contributions

Figure 6 shows the seasonal variations in GPP of over all
of China and each subregion from the MsTMIP and MTE.
In general, the MsTMIP ensemble mean showed seasonal
cycles similar to the MTE data over China and all sub-50

regions, with strong correlations (r > 0.97), except for R4
(Fig. 6e), where large discrepancies in summer (July and
August) could be observed. SG1 and SG2 showed almost

Figure 5. The relative contributions of each subregion to the inter-
annual variability (IAV) of China’s GPP. Boxplots indicate the dis-
tributions of the 12 MsTMIP models. Horizontal lines at top, middle
and bottom in the boxplots represent the maximum, ensemble mean
and minimum of multi-model simulations, respectively, whereas the
box indicates 1 standard deviation. All the results in this figure are
averaged between 1981–2010 for the MsTMIP models and 1982–
2010 for the MTE.

the same seasonal variations except for a few differences in
summer over R9 (Fig. 6j), suggesting that LULCC had few 55

effects on seasonal GPP variation in China. In contrast, el-
evated CO2 concentrations produced higher GPP during the
growing season through enhancing the plant growth rate and
thus modulated seasonal GPP variations. Table 1c shows that
human activities (e.g., LULCC and elevated CO2 concen- 60

tration) exerted influences on the SCA of GPP. The differ-
ence between the SG2 and SG3 was mainly caused by ris-
ing atmospheric CO2 concentrations, whereas LULCC led
to a small discrepancy between the SG1 and SG2. For ex-
ample, compared to SG1, LULCC decreased the SCA by 65

only ∼ 0.3 Pg C yr−1 (3 % of SG1), whereas elevated CO2
produced an increase of 1.5 Pg C yr−1 (14 % of SG1). Mean-
while, the SCAs of China’s GPP (11.1–12.3 Pg C yr−1, Ta-
ble 1c) from ENSEMBLE were detected with only a slight
underestimation compared to the MTE data (13.6 Pg C yr−1). 70

Next, the regional contributions to the seasonality of
China’s GPP were examined for MsTMIP (SG1, SG2 and
SG3) and MTE (Fig. 7). The ensemble mean GPP of SG3
(Fig. 7c) over R1 explained the largest fraction (20 %) of the
seasonality of China’s GPP, followed by R6 (16 %) and R9 75

www.earth-syst-dynam.net/11/1/2020/ Earth Syst. Dynam., 11, 1–15, 2020
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Figure 6. Seasonal variations in GPP of China and each subregion from the ensemble mean of the 12 MsTMIP models for the three
simulations (SG1, SG2 and SG3) and the MTE. All the results in this figure are averaged between 1981–2010 for the MsTMIP and 1982–
2010 for the MTE.

(15 %). This could be explained because the GPP in these
regions had strong seasonal cycles (Fig. 6b, g and j). In con-
trast, the contributions of R7 and R8 to the seasonal cycle of
China’s GPP were relatively low (3 % and 8 %, respectively).
The relative regional contributions to the seasonal dynam-5

ics of China’s GPP from MsTMIP agreed well with MTE
(within 1 standard deviation). The contributions from R4, R5
and R9 were all high for all three MsTMIP simulations and
MTE, except for a few differences in magnitude. Note the
significant uncertainties, with large standard deviations, in10

R3 and R4 among the estimated relative regional contribu-
tions from the 12 MsTMIP models. Compared to SG1, SG2
and SG3 showed similar contributions for each subregion,

suggesting that atmospheric CO2 and LULCC had little ef-
fect on the relative subregional contributions to the seasonal 15

cycle of China’s GPP.

4 Discussion

4.1 Understanding the contribution of LULCC

The TBMs used in this study relied on LULCC data by com-
bining a static satellite-based land cover product (Jung et al., 20

2006) with time-varying land use harmonization version 1
(LUH1) data (Hurtt et al., 2011). Based on this dataset, time
series of different vegetation cover types over China and the

Earth Syst. Dynam., 11, 1–15, 2020 www.earth-syst-dynam.net/11/1/2020/



B. Jia et al.: Impacts of land use change and elevated CO2 on the interannual variations and seasonal... 9

Figure 7. The same as Fig. 5, but for the regional contributions to
the seasonality of China’s GPP.

nine subregions were developed and are presented in Fig. 8
(solid lines). Crop areas showed a persistent increase during
the past 3 decades (from 13 % to 18 %), whereas forest areas
were shrinking (from 25 % to 20 %). Grassland areas showed
a slight increase in the 1990s and then changed little during5

the past 2 decades. These changes induced a decrease in the
mean values of China’s GPP (Table 1a). LULCC in China
showed significant spatial variations. For example, changes
in grassland occurred mostly in Inner Mongolia (R2, Fig. 8c).
Cropland expansion was widely distributed across China, but10

at different rates in each subregion. As for forest land, the
largest loss occurred over northern China (Fig. 8e) and parts
of southern China (Fig. 8f, h, i and j).

LULCC in China from the LUH1 product used in this
study showed some differences from previous studies. For15

example, Liu and Tian (2010) reconstructed an LULCC
dataset for China using high-resolution satellite and histor-
ical survey data and found that LULCC in China during
1980–2005 was characterized by shrinking cropland and ex-
panding urban and forest areas. Chen (2007) also reported20

a similar trend of shrinking cropland in China during 1977–
2003 and attributed it to urbanization. Several studies have
reported an increase in forest area after 1980 (Fang et al.,
2001; Houghton and Hackler, 2003; Song and Deng, 2017),
which was mainly due to new plantings to protect the en-25

vironment (Wang et al., 2004). To assess the reliability of
LULCC data used in this study, we compared them with the

China Land Use/Cover Dataset (CLUD) (Liu, et al., 2003,
2005, 2010, 2014; Kuang et al., 2016), which was generated
using two satellite datasets: the LandsatTM/ETM+ and HJ- 30

1A/1B images from the China Centre for Resources Satel-
lite Data and Application (http://www.cresda.com/TS7 ). The
CLUD is a national high-resolution database (1 km) and con-
tains the longest time-series dataset available for LULCC in
China (Kuang et al., 2016). Its classification system includes 35

6 classes (woodland, cultivated land, grassland, water bodies,
built-up land and unused land) and 25 subclasses (Liu et al.,
2005; Zhang et al., 2014). The accuracy assessments for the
CLUD have been addressed in previous studies (Liu et al.,
2003, 2005, 2010, 2014; Kuang et al., 2013, 2016). Based on 40

the CLUD, the maps of main vegetation types in 1990, 1995,
2000 and 2010 were used here, and their temporal changes in
China and nine subregions are shown in Fig. 8 (dashed lines
with dots). It is noted that CLUD is not available before 1990.
In general, the LULCC data used in the MsTMIP agree well 45

with the CLUD between 1990 and 2005, except for some
discrepancies in 2010. Compared to that in 2000, the CLUD
showed a slight increase in forest (from 20 % to 22 %) and
shrinking cropland (from 31 % to 21 %) and grassland (from
20 % to 14 %) in 2010 for all of China. The decrease in crop- 50

land was mainly from R1 (Fig. 8b), R4 (Fig. 8e), R5 (Fig. 8f)
and R7 (Fig. 8h), while the changes in grassland occurred
mostly in R2 (Fig. 8c), R3 (Fig. 8d) and R6 (Fig. 8g).

The uncertainties in the LULCC dataset could influence
its contribution to terrestrial carbon fluxes. For example, 55

the MTE GPP product shows a significantly increasing
trend after 2005 over R4 (Fig. 4e), R5 (Fig. 4f) and R7
(Fig. 4h), while some underestimations can be found for
model-simulated GPP. This may be related with the discrep-
ancies in the LULCC datasets over these areas. In upcom- 60

ing revisions to LUH1, the new LUH2 product (http://luh.
umd.edu/data.shtmlTS8 ) will include updated inputs, higher
spatial resolution, more detailed land use transitions and
the addition of important agricultural management layers.
Moreover, forest cover gross transitions are now constrained 65

by remote-sensing information and have generally been re-
estimated. Therefore, future studies are expected to compare
the potential effect on GPP with the new product.

4.2 Uncertainties in simulating GPP in China

Despite growing efforts to quantify GPP, current TBM sim- 70

ulations still have large uncertainties. Each TBM has differ-
ent parameterizations, which leads to its own bias, and the
ensemble mean of multi-model simulations may reduce the
bias in GPP (Ito et al., 2016; Chen et al., 2017). Therefore,
this study did not focus on comparisons among the 12 model 75

simulations.
The multi-model mean of the 12 MsTMIP models (SG3)

for all of China GPP was 7.4 Pg C yr−1, which was slightly
higher than the MTE estimate (7.0 Pg C yr−1). The results in
this study also showed some differences with previous stud- 80
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Figure 8. Interannual changes of vegetation types over China and nine subregions between 1981 and 2010 from the MsTMIP (solid lines)
and the China Land Use/Cover Dataset (dashed lines with dots). Other includes SNICE (snow and ice), water and bare soil.

ies. For example, China GPP estimates based on the Eddy-
Covariance Light Use Efficiency model were 5.38 (Yuan et
al., 2010), 5.55 (Cai et al., 2014TS9 ) and 6.04 Pg C yr−1 (Li et
al., 2010TS10 ), respectively, which was more than 20 % lower
than in this study. Yao et al. (2018) developed a new GPP5

product for China with higher spatial resolution (0.1◦) based
on a machine-learning algorithm using more eddy flux ob-
servations than the MTE. They found that the annual GPP of
China was 6.62± 0.23 Pg C yr−1 during 1982–2015. In con-
trast, the ensemble mean of nine TBMs produced a higher10

estimate of 7.85 Pg C yr−1 (Yao et al., 2018). In addition, two
newly published studies also generated high estimates of to-
tal annual GPP: 7.85 Pg C yr−1 for 2001–2010 by multiple
regression (Zhu et al., 2014) and 7.81 Pg C yr−1 for 2000–
2015 using support vector regression (Ichii et al., 2017). Un-15

like the discrepancies in the magnitude of annual mean China
GPP, the trend in this study is very similar to that of Yao et
al. (2018), with a positive value of 0.02 Pg C yr−2 (p < 0.05).

In this study, MsTMIP and MTE were found to show some
discrepancies in the IAV and trends of GPP. For example, 20

the trend of MsTMIP is about twice that derived from the
MTE data (Fig. 4). The reason for the differences can be ex-
plained through the following two aspects. First of all, un-
certainties in meteorological forcing dataset, model structure
and parameterization can lead to large biases in simulating 25

the spatiotemporal patterns of GPP, although this could be
reduced by ensemble simulations from MsTMIP. Secondly,
although a data-oriented GPP product (e.g., the MTE) has
been used as the reference data to evaluate the TBM simu-
lations (Piao et al., 2012, 2013; Jia et al., 2018; Yao et al., 30

2018), previous studies found that MTE data may underesti-
mate the IAV and trends (Jung et al., 2011; Piao et al., 2013).
It may be due to the potential biases caused by “spatial gradi-
ents extrapolation to temporal interannual gradients (Reich-
stein et al., 2007; Jung et al., 2009; Piao et al., 2013; Yao et 35

al., 2018), and leaving out some cumulative effects like soil

Earth Syst. Dynam., 11, 1–15, 2020 www.earth-syst-dynam.net/11/1/2020/

Pro_Jia
Cross-Out

Pro_Jia
Inserted Text
It is revised to be "(Jung et al., 2011; Piao et al., 2013; Yao et al., 2018)"

Pro_Jia
Cross-Out

Pro_Jia
Inserted Text
It is revised to be " Yao et al. (2018) pointed out that it may be due to the potential biases caused by “spatial gradients extrapolation to temporal interannual gradients" (Reichstein et al., 2007; Jung et al., 2009; Piao et al., 2013),"



B. Jia et al.: Impacts of land use change and elevated CO2 on the interannual variations and seasonal... 11

moisture (Jung et al., 2007). In addition, most of the stations
used by the MTE data only had a short measurement period
(Yao et al., 2018), which may affect the estimations of long-
term temporal variations in GPP (e.g., IAV, trend). It is noted
that the latest version of the MTE data agreed well with TBM5

simulations (Jung et al., 2017), which will be compared with
the GPP estimations over China from MsTMIP in our future
work.

5 Conclusions

In this study, a multi-model analysis using 12 MsTMIP-10

based models was used to investigate the relative contribu-
tions of climate change and anthropogenic activities to in-
terannual and seasonal variations in China’s GPP. In addi-
tion, this study examined subregional contributions to tempo-
ral changes in China’s total GPP. Ensemble simulations from15

MsTMIP were compared with an independent upscaling GPP
product (Jung et al., 2011) and with flux-tower-based GPP
observations in China.

The simulated GPP for China from the 12 MsTMIP mod-
els, driven by common climate forcing, LULCC, and CO220

data, was 7.4± 1.8 Pg C yr−1, which agreed well with in-
dependent MTE dataset (7.1 Pg C yr−1). In general, climate
was the dominant control factor for the trends, interannual
variation and seasonality of China’s GPP. When only con-
strained by climatic driver, mean annual GPP over China25

from 1981 to 2010 is 6.9± 1.7 Pg C yr−1, with a trend of
0.0036 Pg C yr−2. The overall rise in CO2 enhanced plant
photosynthesis and thus increased total China GPP, with
increasing annual mean and interannual variability, espe-
cially in northeastern and southern China, where vegetation30

is dense. LULCC decreased the IAV of China’s total GPP by
∼ 7 %, whereas rising CO2 induced an increase of 8 %. Our
research examined the joint effects of the three factors and
their quantitative contributions to the interannual variations
and seasonal cycles of GPP. Given the important role of GPP35

in regulating terrestrial carbon cycling, this work is expected
to help us better understand the interactions of the carbon cy-
cle, climate change and human activity. Furthermore, it will
also be interesting for policy makers to make public deci-
sions on how to achieve the balance between an optimized40

economy and minimized carbon loss.
Note that existing model estimates of GPP from state-of-

the-art TBMs vary widely and still have large uncertainties
driven by biases in environmental driver data and unrealis-
tic assumptions in model parameterizations and parameters45

(Friedlingstein et al., 2006; Huntzinger et al., 2012). The
multi-model ensemble strategy is a means to address model
structural uncertainty by synthesizing outcomes from mul-
tiple models representing different parameterizations of un-
derlying biogeophysical and biogeochemical processes, and50

it has been demonstrated to offer better predictability (Hage-
dorn et al., 2005). However, there are some missing factors

that are not considered in this study. One is that the interac-
tion between LULCC and elevated CO2 was not completely
separated in this study. For example, deforestation against the 55

background of rising CO2 induces higher emissions because
CO2 fertilization leads to an increase in terrestrial carbon
storage, but higher CO2 concentrations also cause a stronger
regrowth (Houghton et al., 2012). Moreover, the uncertainty
in LULCC datasets remains a serious challenge today. More 60

satellite data with higher spatial resolution are expected to
reduce this uncertainty.
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