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Abstract. In eastern Africa droughts can cause crop failure and lead to food insecurity. With increasing temperatures, there

is an a priori assumption that droughts are becoming more severe, however, the link between droughts and climate change is

not sufficiently understood. In the current study we investigate trends in long-term agricultural drought and the influence of

increasing temperatures and precipitation deficits.

Using a combination of models and observational datasets, we studied trends, spanning the period from 1900 (to represent the5

pre-industrial era) to 2018, for six regions in eastern Africa in four drought-related annually averaged variables — soil moisture,

precipitation, temperature and, as a measure of evaporative demand, potential evapotranspiration (PET). In standardized soil

moisture data, we found no discernible trends. Precipitation was found to have a stronger influence on soil moisture variability

than temperature or PET, especially in the drier, or water-limited, study regions. The error margins on precipitation-trend

estimates are however large and no clear trend is evident. We find significant positive trends in local temperatures. However,10

the influence of these on soil moisture annual trends appears limited. The trends in PET are predominantly positive, but we do

not find strong relations between PET and soil moisture trends. Nevertheless, the PET-trend results can still be of interest for

irrigation purposes because it is PET that determines the maximum evaporation rate.

We conclude that, until now, the impact of increasing local temperatures on agricultural drought in eastern Africa is limited

and we recommend that any soil moisture analysis be supplemented by an analysis of precipitation deficit.15
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1 Introduction

In eastern Africa, drought has occurred throughout known history and the phenomenon has incurred significant impacts on the

agricultural sector and the economy, particularly thorough threats to food security. It is therefore important to examine the role

of anthropogenic climate change in drought, particularly in the face of the large-scale droughts of 2010/11, 2014 and 2015 in

Ethiopia, and the 2016/17 drought in Somalia, Kenya, parts of Ethiopia and surrounding countries, which have recently raised5

the spectre of climate change as a risk multiplier in the region.

Droughts are triggered and maintained by a number of factors and their interactions, including meteorological forcings and

variability, soil and vegetation feedbacks and human factors such as agricultural practices and management choices, including

irrigation and grazing density (van Loon et al., 2016). Accordingly there are several definitions of drought in common use

(Wilhite and Glantz, 1985): meteorological drought (precipitation deficit), hydrological drought (low streamflow), agricultural10

drought (low soil moisture) and socioeconomic drought (including supply and demand). This complexity of droughts poses

challenges for their attribution. It is not straightforward to disentangle these interacting factors, but over a long time period it

may be possible that a signal can be detected.

Previous attribution studies for eastern Africa have mainly focussed on meteorological drought drivers (precipitation deficit),

with recent studies finding little or no change in the risk of low-precipitation periods due to anthropogenic climate change (e.g.,15

Philip et al., 2018a; Uhe et al., 2018). Some weather stations in eastern Africa have recorded a decrease in precipitation in recent

years, however climate models generally project an increase in mean precipitation but give conflicting results for the probability

of very dry rainy seasons (e.g. Shongwe et al., 2011). The reasons for the recent observed decrease in precipitation thus remains

unclear, but the trend is within the large observed natural variability in the region, at least for the historical and current climate.

However, precipitation only covers one aspect of drought — that of the supply side of the water balance. The demand side20

is represented by actual evapotranspiration (ET), which is a function of moisture availability and evaporative demand. With

increasing temperatures, there is an a priori assumption that rising evaporative demand will increase the demand side of the

water balance and, all else equal, droughts will become more severe. However, this assumption is not based on analyses, which

motivates an objective study.

In the current study we wish to align our drought definition as closely as possible with the major impact of drought —25

the threat to food security. Across eastern Africa, the quality and quantity of food production for domestic consumption is

intimately linked to agricultural conditions. We therefore use the agricultural definition of drought — low soil moisture —

because soil moisture is a better indicator of crop health than precipitation alone and embodies the net effect of the supply

and demand side of the water balance, in regions without irrigation. Whilst short term single-season drought episodes can be

severe, we choose to analyse changes in drought on annual rather than sub-annual time scales because the worst crises in food30

security in this region have occurred with multiple season droughts (Funk et al., 2015). We will also investigate the influence

of the main meteorological drivers of soil moisture trends, i.e. precipitation and temperature.

Ideally, we would study the influence of temperature on soil moisture via evapotranspiration (ET), however observational

records are very limited in time and space and as the spatial decorrelation lengths of evapotranspiration are short their infor-
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mational value is limited. We therefore analyse evaporative demand, which is also referred to as “potential evapotranspiration”

PET. PET is the amount of evaporation that would occur if an unlimited supply of water were available, which is calculable

or available for both observations and model simulations and is a function of temperature, humidity, solar radiation and wind

speed.

We investigate evaporative demand as a means to study the influence of temperature on soil moisture, however, for regions5

that are irrigated or where irrigation is being considered, evaporative demand itself can be regarded as more relevant than soil

moisture as a measure of drought tendency.

Whilst attribution studies specifically for the east African region have not previously used soil moisture or PET to explore

drought, PET has been used in various attribution or trend studies outside our region of study, to explore for example, the

influence of climate change on the hydrological cycle in China (e.g. Yin et al., 2010; Li et al., 2014; Fan and Thomas, 2018),10

trends and variability at sites in West Africa Obada et al. (2017) and compound events of low precipitation and high PET in

Europe Manning et al. (2018).

Summarizing, the objectives of this study are to (i) consider the attribution question “do increasing global temperatures

contribute to drier soils and thus exacerbate the risk of agricultural drought (low soil moisture) in eastern Africa?” and (ii)

to investigate if global-warming driven trends in precipitation or local temperature via PET explain any emerging trend in15

agricultural drought. Our approach to attribution comprises the following steps: (1) Definition of the study variables and

explanation of the study regions, (2) Description of observational data and detection of trends in observations (3) Model

evaluation including description of the models, (4) Attribution of trends in models, (5) Synthesis of the results. Assessments

will be based on both observations and climate and hydrological model output on the annual time scale. We will illustrate the

method using examples of recent droughts in eastern Africa.20

The outline of the remainder of the paper is as follows: In Section 2 the chosen study regions are presented followed by

a description of the datasets used in the study. In Section 3 we describe the stepwise approach to attribution used in this

paper, including assumptions and decisions made and illustrative examples. In Section 4, the results are synthesized per region.

Finally, the discussion and conclusions are presented in Sections 5 and 6.

2 Study variables, region and datasets25

In this section, we present the chosen study variables and study regions in eastern Africa and the datasets used to provide the

variables to be analysed. Brief descriptions of the projects from which the datasets originate are provided in the supplement.

2.1 Study variables and region

We analyse four different variables: soil moisture, precipitation, temperature, and PET. We average these variables over six

regions, as trend analyses of time series of regionally averaged quantities are more robust than the same analyses for point30

locations. This is especially true for precipitation, which shows small-scale spatial variability if the time period is not long
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Table 1. The six study regions. See also Fig. 1

Region Long name Latitude Longitude Seasonal precipitation peak(s) Primary livelihood zone

WE West Ethiopia 7�N-14�N 34�E-38�E Aug agropastoral/mixed land

EE East Ethiopia 8�N-13�N 38�E-43�E Apr, Jul/Aug pastoral

NS
North Somalia/Somaliland

region and East Ethiopia
5�N-12�N 43�E-52�E Apr/May, Oct pastoral

NK North Kenya 2�N-4.5�N 34�E-41�E Apr, Oct/Nov pastoral

CK Central Kenya 1.5�S-1.5�N 35�E-38.5�E Apr, Nov agropastoral/mixed land

SS South Somalia 2�S-5�N 41�E-48�E Apr/May, Oct/Nov pastoral/agropastoral
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Figure 1. Left: annual mean precipitation [mm/day] and the six study regions. Note that only land values are used. Right: livelihood zones

after Pricope et al. (2013), which were also used to define the study regions.

enough to sufficiently sample the distribution from multiple precipitation events. It is however necessary to select homogeneous

zones, so that the signals present are not averaged out.

The focus of the study is on eastern Africa — Ethiopia, Kenya and Somalia (including the Somaliland region). We selected

six regions based on precipitation zones, in which the annual mean precipitation and seasonal cycle are homogeneous (Fig. 1a),

livelihood zones (see Fig. 1b) and discussions with local experts from Kenya Meteorological Department and the National5

Meteorological Agency (NMA) of Ethiopia and the Famine Early Warning Systems Network (FEWS NET). The regions are

shown in Fig. 1 and listed in Table 1. Data is annually and spatially averaged over the study regions.
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2.2 Datasets

For the four study variables, we use as many datasets as readily available over the study area, provided that (i) the data are

sufficiently complete over a time period long enough to be used for trend calculations and (ii) the model data pass the validation

tests (see Sect. 3). For this purpose, we decided to use time series of 35 years and longer. As the focus of this paper is on annual

time scales, using monthly data is sufficient. The observational and model datasets used in this study are shown in Fig. 2 and5

listed in tables 2 and 3 below. For brief descriptions of the projects from which these data originate, please see the Supplement.

Note that we use the data as it is available without applying any additional bias correction. Some of the data has undergone

bias correction within project of origin, as described in the Supplement.

For observations of precipitation and daily mean near-surface temperature, we use gridded observational data sets and

reanalyses.10

For soil moisture and PET, no direct observations meeting the above criteria exist. Instead, we use observational estimates

of soil moisture and PET resulting from various combinations of observational forcing data and models (see Fig. 2a).

Concerning soil moisture, observational series are few and generally too short to use for trend analysis and they do not

correlate well with reanalysis or model data over eastern Africa (McNally et al., 2016). It is therefore important to use multiple

observationally forced model estimates to span the large uncertainties from inter-dataset differences. There being no a priori15

reason to favour one soil moisture dataset over another, we treat all resulting soil moisture datasets equally. For all soil moisture

data sets, observed and modelled, we use the topmost layer (see Fig. 2 for the depth of the topmost layer) provided by each

dataset and scale each time series to have a standard deviation of 1 in order to make comparisons in trends possible. An

exception to this is weather@home where the available soil moisture variable is an integrated measure of all four layers of soil

moisture in the model, including the deep soil.20

PET is a function of temperature, humidity, solar radiation and wind speed, and as such is not a directly observable variable.

Observational estimates of PET used here originate from reanalysis data sets or reanalysis-driven impact models. For both

observed and modelled PET, there are various ways of parametrizing PET, ranging from simple temperature or radiation-based

schemes to sophisticated schemes based on all the aforementioned components. Whilst the Penman-Monteith scheme is often

considered superior (e.g. Hobbins et al., 2016), one is often constrained from using a Penman-Monteith parameterization due25

either to the lack of accurate or reliable input data or because the choice of PET parameterization within a given hydrological

model setting is already prescribed, as in the ISIMIP ensemble. We thus chose to use a variety of PET parameterizations and

input datasets in order to cover the range of possible PET values and trends in PET. The PET scheme used by each data set is

noted in Fig. 2.

Concerning model data sets, most simulations stem from the ISIMIP project, which provides output of the variables under30

investigation for four different impact models driven by four different GCMs. These simulations are complemented by other

readily available model runs with different (but compatible) framings.

With the datasets we use we cover a wide range of different factors that influence PET and soil moisture. The different

factors include meteorological forcing, model choice, RCP scenario for the greenhouse gas concentration trajectory, PET
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Figure 2. Datasets used in this paper. Top: observational precipitation (prcp) and near-surface temperature (temp) datasets, bottom: models.

Listed under PET is the PET scheme (T: Priestley-Taylor, M: Penman-Monteith, H: Hamon, B: Bulk formula) and, under SM, is the depth

of the top soil moisture layer available (RD: depends on rooting depth (0.1-1.5m for WaterGAP2); IL: integrated over all layers). Shading

indicates an experiment with either multiple input datasets or multiple hydrological models. The number of resulting hydrological model

simulations are indicated by horizontal lines on the right side of the figure.

scheme, number of soil layers and depth of topsoil layer, dynamic vegetation modelling (LPJmL only) and transient versus

time slice runs (see next section on ‘Methods’).

3 Methods

In this section we describe first the method we use for detection and attribution of trends in the four variables, including model

validation and the synthesis of observational and model results. Furthermore, in subsection 3.2 we describe the assumptions5
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Table 2. Observational data used in this study.

Observational

dataset

Full name Time period

used

Spatial reso-

lution (�lat x
�lon)

Reference(s)

Observatational/reanalysis data set

CenTrends (prcp) Centennial Trends data set 1900–2014 0.1x0.1 Funk et al. (2015)

CRU TS4 (temp) CRU TS4.01 1901–2019 0.5x0.5 Harris et al. (2014)

Berkeley (temp) Berkeley Earth 1750–2019 1.0x1.0 Rohde et al. (2013b, a)

ERA-I ERA-Interim 1979–2019 0.5x0.5 Dee et al. (2011)

Observation-driven hydro/impact model

LPJmL-WFDEI

(soil moisture)

Lund-Potsdam-Jena managed Land -

WATCH-Forcing-Data-ERA-Interim

1971–2010 0.5 x 0.5 Bondeau et al. (2007); Rost et al.

(2008); Schaphoff et al. (2013);

Weedon et al. (2014)

PCRGLOB-

WFDEI (soil

moisture)

PCRaster GLOBal Water Balance

model - WATCH-Forcing-Data-ERA-

Interim

1971–2010 0.5 x 0.5 Sutanudjaja et al. (2018); Weedon

et al. (2014)

CLM-ERA-I (soil

moisture, PET)

Community Land Model version 4 -

ERA-Interim

1979–2016 0.5 x 0.5 Oleson et al. (2010)

CLM-WFDEI

(soil moisture,

PET)

Community Land Model version 4 -

WATCH-Forcing-Data-ERA-Interim

1979–2013 0.5 x 0.5 Lawrence et al. (2011); Weedon

et al. (2014)

FLDAS (soil

moisture)

Famine Early Warning Systems Net-

work (FEWS NET) Land Data Assimi-

lation System

1981–2018 0.1 x 0.1 McNally et al. (2017)

MERRA Ref-ET

(PET)

Modern-Era Retrospective analysis for

Research and Applications Reference

Evapotranspiration

1980–2018 0.125 x 0.125 Hobbins et al. (2018)
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Table 3. Model data used in this study.

Model dataset Full name Time period

used

Spatial reso-

lution (�lat x
�lon)

Reference(s)

GCM/RCM

GFDL GFDL-ESM2M, Geophysical Fluid

Dynamics Laboratory - Earth System

Model 2M

1861–2018 2.02x2.5 Dunne et al. (2012, 2013)

HadGEM HadGEM2-ES, Hadley Centre Global

Environmental Model version 2-ES

1859–2018 1.25x1.88 Collins et al. (2011); Jones et al.

(2011)

IPSL IPSL-CM5A-LR, Institut Pierre Simon

Laplace - CM5A-LR

1850–2018 1.89x3.75 Dufresne et al. (2013)

MIROC MIROC5, Model for Interdisciplinary

Research on Climate - version 5

1850–2018 1.4x1.4 Watanabe et al. (2010)

EC-Earth EC-Earth 2.3 1850–2018 1.12x1.125 Hazeleger et al. (2012)

w@h (temp, prcp,

soil moisture)

Weather@home 2005–2016 and

counterfactual

climate

0.11x0.11 Massey et al. (2015); Guillod et al.

(2017)

Hydro/impact models

H08 (soil mois-

ture, PET)

H08 1861–2018 0.5x0.5 Hanasaki et al. (2008a, b)

LPJmL (soil

moisture, PET)

Lund-Potsdam-Jena managed Land

model

1861–2018 0.5x0.5 Bondeau et al. (2007); Rost et al.

(2008); Schaphoff et al. (2013)

PCRGLOB (soil

moisture, PET)

PCRGLOB-WB, PCRaster GLOBal

Water Balance model

1861–2018 0.5x0.5 Sutanudjaja et al. (2018)

WaterGAP2 (soil

moisture, PET)

Water Global Analysis and Progress

Model version 2

1861–2018 0.5x0.5 Müller Schmied et al. (2016)
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and decisions that are made concerning the data/model setup and in subsection 3.3 we provide an example of how the method

is applied to real data.

3.1 Detection and attribution of trends

We use a multi-method, multi-model approach to address attribution. We use global mean surface temperature (GMST) as a

measure for anthropogenic climate change for calculating trends. We calculate trends for all variables, regions and datasets5

and synthesize results into one overarching attribution statement for each of the four variables in each of the six regions. We

use this method, following the approach applied in earlier studies on drought in eastern Africa (e.g., Philip et al., 2018a; Uhe

et al., 2018) and other drought- and heat-attribution studies (e.g., Philip et al., 2018b; van Oldenborgh et al., 2018; Kew et al.,

2019; Sippel et al., 2016), which represents the current state of the art in extreme event attribution. The method is extensively

explained in van Oldenborgh et al. (2019), Philip et al. (2019), van Oldenborgh et al. (2018) and van der Wiel et al. (2017).

In this study, for transient model runs and observational time series, we statistically model (i.e., fit) the dependency of annual

means of the different variables on GMST, (the model GMST for models, and GISTEMP surface temperature GMST (Hansen

et al., 2010) for observations and reanalyses) as follows:5

After inspection of whether a Gaussian or a General Pareto Distribution fits the observational or reanalysis data best, we use

the following distributions:

– for soil moisture: a Gaussian distribution that scales with GMST, focussing on low values,

– for precipitation: a General Pareto Distribution (GPD) that scales to GMST, analyzing low extremes

– for temperature: a Gaussian distribution that shifts with GMST, focussing on high values, and10

– for PET: a Gaussian distribution that scales with GMST, focussing on high values.

When the distribution is shifted, a linear trend ↵ is fitted by making the location parameter µ dependent on GMST as

µ= µ0 +↵T, (1)

with ↵ in [units of the study variable]/K. When the distribution is scaled,

µ = µ0 exp(↵T/µ0), (2)15

� = �0 exp(↵T/µ0), (3)

which keeps the ratio of the location and scale parameter �/µ invariant. In each case, the fitted distribution is evaluated twice:

once for the year 1900 and once for the year 2018. Confidence intervals (CI) are estimated using a non-parametric bootstrapping

procedure. This allows us to calculate the return period of an event as if it would have happened in the year 1900 or in the

year 2018. To obtain a first-order approximation of the percentage change between the two reference years, ↵ is multiplied20

by 100% times the change in GMST and divided by µ0 (for the shift fit this is exact). Note that for some variables — e.g.,

precipitation — it is appropriate to scale rather than shift the distribution with GMST (see van Oldenborgh et al., 2019; Philip
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et al., 2019, for an explanation). For the very large weather@home ensemble simulations of actual and counterfactual climates,

it is not necessary to use a fitting routine as the large amount of data permits a direct estimation of the trend. This also provides

an opportunity to check the assumptions made in the fitting, notably that the values follow an extreme-value distribution and25

that the distribution shifts or scales with the smoothed GMST. We calculate trends for the time series of spatially and annually

averaged data of all four variables and all six regions for all datasets by dividing the difference in the variable between the two

ensembles by the difference in GMST.

Figures 3 and 4 present the methods applied to transient series and time slices respectively. For reference and to aid inter-

pretation of the return-period diagrams, the magnitude of a hypothetical event with a 20-year return period in the year 2018 or30

in the current climate is shown as a horizontal line or square. Reading the return period at which this line crosses the fit for the

reference year 1900 shows how frequent an event with a 20-year return period in today’s climate would have been then.

We only use results from model runs if they pass two different validation tests — a qualitative test on the seasonal cycle and

a stronger test on variability. For soil moisture, due to the difficulties in obtaining reliable soil moisture measurements (e.g., Liu

and Mishra, 2017) and the differences between the observational (reanalysis) datasets, we cannot assume that observational or

reanalysis data are more accurate than model data. Therefore we simply use the soil moisture model data if the model input —

PET and precipitation — passed the validation tests.5

We perform only a qualitative validation of the seasonal cycle. For each region, each variable, and each model we check that

the seasonal cycle resembles that of at least one of the observational datasets, in both the number and the timing of peaks. If

the seasonal cycle is very different, we do not use the time series for that specific combination. This is the case for the original

GCM precipitation in region NK for weather@home and in regions NK and CK for MIROC (the seasonal cycle is improved

in the adjusted dataset, so we still use the time series in soil moisture) and for temperature in region SS for EC-Earth (we do10

not have adjusted data to check so we do not use this model-region combination for soil moisture or PET).

The second validation test is on the model variability in precipitation and PET (variability relative to the mean for variables

that scale with GMST). If the model variability of a specific variable in a specific region is outside the range of variability

calculated from observations or reanalyses, we do not use that specific dataset for that specific region and variable. For tem-

perature, we relax the validation criteria on variability as it became clear during the analysis that the trend in soil moisture15

does not depend strongly on temperature and the trend in temperature agrees between models and observations. In two of the

regions a strict validation resulted in only two driving GCMs. Trends from the resulting time series that passed the validation

tests are shown in Section 4 and in the figures in the Supplementary Information.

Using the large weather@home ensemble (which requires no fitting), we check the assumption that precipitation and soil

moisture scale with GMST and temperature shifts with GMST. For PET, we assume that the distribution scales with GMST. In20

the weather@home ensemble, dry extremes show less change than intermediate dry extremes, which supports our assumption

that scaling with GMST is appropriate (except for the higher return values, where the uncertainties are large). For soil moisture

it is very difficult to distinguish between scaling and shifting from the weather@home ensemble because the trend is small.

For temperature the weather@home ensembles indicate that the highest temperatures are increasing slower than the lower

temperatures. This implies that the variability decreases with GMST, however no consistent signal in the observations or other

10
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Figure 3. Illustrative examples of the fitting method for each variable, for selected study regions. (a) FLDAS soil moisture (Gauss fit, low

extremes, region WE); (b) CenTrends precipitation (GPD fit, low extremes, region CK); (c) Berkeley temperature anomaly (Gauss fit, high

extremes, region NK); (d) MERRA PET (Gauss fit, high extremes, region NS). Top of each panel: annually averaged data (stars) against

GMST and fit lines - the location parameter µ (thick), µ±� and µ± 2� (thin lines, Gaussian fits) and the 6 and 40 year return values (thin

lines, GPD fit). Vertical bars indicate the 95% confidence interval on the location parameter µ at the two reference years 2018 and 1900. The

magenta square illustrates the magnitude of an event constructed to have a 20-year return period in 2018 (not included in the fit). Bottom

of each panel: return period diagrams for the fitted distribution and 95% confidence intervals, for reference years 2018 (red lines) and 1900

(blue lines). The annually averaged data is plotted twice, shifted or scaled with smoothed global mean temperature up to 2018 and down to

1900. The magenta line illustrates the magnitude of a hypothetical event with a 20-year return period in 2018.

models is evident (we see a small increase in variability with time for Berkeley, a small decrease for CRU and no consistency

between the models). This does not affect the trend much, which is evaluated for the centre of the distribution.
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Figure 4. Illustrative examples of the weather@home time slice model runs. Left: annual mean precipitation in region WK. Right: annual

mean temperature in region CK. The red markers are for the present day climate and the blue markers are for the climate in pre-industrial

times. The magenta line illustrates the magnitude of a hypothetical event with a 20-year return period in the present day climate.

Trends are presented as change in a variable per degree of GMST warming. We show trends rather than probability ratios,5

which conveniently results in finite ranges in confidence intervals for all variables. This is not the case for the probability ratio,

where, for example, strong trends in temperature imply that mild extremes of the 2018 climate (e.g., a 1-in-20-year event)

would have had a chance of almost zero around 1900, resulting in very large probability ratios and extensive extrapolation of

the fit beyond the length of the dataset.

We synthesize the trends of all data that passes the validation tests in the following manner, see also Fig. 5. The observational10

(reanalysis) estimates are based on the same natural variability: the historical weather. They also cover similar time periods.

The uncertainties due to natural variability (denoted as solid blue in the synthesis figures) are therefore highly correlated.

We approximate these correlations by assuming the natural variability to be completely correlated, and compute the mean

and uncertainties as the average of the different observational estimates. The spread of the estimates is a measure of the

representation uncertainty in the observational estimate and is added as an independent uncertainty to the natural variability15

(black outline boxes). This results in a consolidated value for the observations (reanalyses) drawn in dark blue.

In contrast, model estimates have more uncorrelated natural variability: totally uncorrelated for coupled models; and largely

uncorrelated for SST-forced models (the predictability of annual mean precipitation given perfect SSTs is low in eastern

Africa). We approximate these correlations by taking the natural variability to be uncorrelated. The spread of model results can

be compared by the spread expected by the natural variability by computing the �2/dof statistic. If this is greater than one,20

there is a noticeable model spread, which is added in quadrature to the natural variability. This is denoted by the white boxes in

Fig. 5. The bright red bar indicates the total uncertainty of the models, consisting of a weighted mean using the (uncorrelated)

uncertainties due to natural variability plus an independent common model spread added to the uncertainty in the weighted

mean.

Finally, observations and models are combined into a single result in two ways. Firstly, we neglect model uncertainties25

beyond the model spread and compute the weighted average of models and observations: this is indicated by the magenta bar.

However, we know that models in general struggle to represent the climate of eastern Africa, so the model uncertainty is larger
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than the model spread. Therefore, secondly, we use the more conservative estimate of an unweighted average of observations

and models, indicated by the white box around the magenta bar. This gives more weight to the observations.

3.2 Assumptions and decisions30

We made the following assumptions and decisions about the data and model set-up in addition to completing the model

evaluation to attain data of sufficient quality.

1. As was shown by Funk et al. (2015), the CenTrends precipitation dataset includes many different sources of precipitation

data and more stations than most other datasets. We therefore assume for precipitation that the CenTrends dataset is

superior to other datasets over our region of study. We therefore only use the CenTrends dataset for observations of

precipitation.

2. In general we use the longest time series of data available. We make exceptions in the starting year if necessary, based5

on visual inspection of abrupt changes due to data limitations toward the beginning of the time series.

(a) We use Berkeley from 1900 and in region SS from 1920.

(b) We use CRU starting from 1940 instead of 1901 in regions NK, CK and SS.

3. We do not know of a realistic soil moisture dataset that covers a long-enough time period to calculate trends. Therefore we

do not select simulations based on evaluation criteria other than selecting runs based on PET and precipitation evaluation10

in the input variables.

4. As models do not share a consistent set of soil moisture levels, we take the top level of each model, assuming that this is

the most comparable level across models. We checked for LPJmL — the only selected ISIMIP hydrological model that

has more than one level available for soil moisture — that the variability does not change by much when integrating over

multiple levels instead of using level 1.15

5. Within the ISIMIP project, variables required by the hydrological models, including temperature and precipitation, were

bias corrected and the adjusted data was used to calculate PET and to drive the hydrological models to output soil

moisture. In the synthesis, however, we present results for temperature and precipitation based on the unadjusted data,

on principle that this better spans the range of model uncertainty in temperature and precipitation. The bias correction

applied in ISIMIP aims to conserve the original trend. In accordance, we find little change in trend for most time series,20

see Section 5.

6. Instead of PET, RefET(reference evapotranspiration) was available for the MERRA dataset. RefET can be converted to

potential evapotranspiration by multiplying its value to a reference crop coefficient. We assume using RefET instead of

PET does not influence the overall conclusions and we do not convert RefET into PET.
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7. We focus on the historical time-frame. Therefore the trends in different RCP and socio-economic scenarios will be25

relatively similar to each other. The forcing data is the same for the years 1860–2005 and only differs for the most recent

years, from 2006 onwards. In general, however, using different scenarios can be seen as an advantage, as a greater range

of scenario uncertainty will be spanned.

(a) We use RCP6.0 in ISIMIP as this choice resulted in the largest number of simulations and RCP8.5 in EC-Earth as

this was the only scenario available.30

(b) The socio-economic scenario selected in ISIMIP model runs is historical, for 1860–2005 and 2005soc for 2006–

present, except for H08 for which historical was not available for years 1860–2005 and we instead use 2005soc for

those years as well as years 2006–present. For the WFDEI experiments, 2005soc was not available. Instead we use

varsoc for the years 2006–2018 and historical before 2006.

8. Trends are calculated or extrapolated using all data up to 2018 and between the pre-industrial era (1900) and the present5

(2018). Weather@home is an exception where trends are calculated between two stationary climates of the present

and the pre-industrial era. Differences in trends can arise due to different time periods and lengths of datasets, which

are generally shorter for observations and reanalyses than for model simulations. However, we consider the use of all

available observational and reanalysis data and different model framings to lead to a more complete and robust attribution

statement.10

9. We analyse Jan–Dec annual means. Based on the seasonal cycles of precipitation and temperature, for all regions except

for region WE (which has a single rainy season) we could also have chosen to analyse Jul–Jun annual means instead.

The influence of this choice on the trends is low (see also Sect. 3.3).

10. For consistency in the method, we fit the variability as a constant over time for all data. In both observed time series and

simulations we see very little or no trend in variability up to 2018.15

11. If for observational data a Gaussian fit is the best fit, we also fit model data to a Gaussian, even if a GPD is a better fit for

that data. In doing this we avoid erroneous comparisons between the variable mean and variable extreme. We checked

for model runs in which this disparity occurs, but found that in most cases the trend calculated from fitting model data

to a GPD was not very different from the trend calculated from fitting model data to a Gaussian.

3.3 Illustrative examples20

In this section we show an example to illustrate the method of detection of trends in precipitation data, as people often initially

experience droughts as reduced or failed rainy seasons. For this purpose, we calculated return periods and risk ratios of recent

droughts defined as low-precipitation events on the annual time scale, see Table 4. Note that the risk ratios are calculated from

CenTrends alone and are not synthesized values based on a multi-model analysis. The synthesis of observations with models

follows in the next section. We choose events based on the Emergency Events Database (EM-DAT) — an extensive global25
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database of the occurrence and effects incurred from extreme weather events, and the time series calculated from CenTrends

(up to December 2014 only, which excludes the recent droughts of 2015 and 2016/2017). For the northern three study regions

we choose the year 2009, in which the first rainy season failed (in region WE, where there is only one peak in precipitation,

the whole season had slightly lower precipitation amounts). For the southern three study regions we choose the year 2005, in

which the second rainy season failed. Additionally, we also investigate the well-known 2010/2011 drought for the regions NK30

and SS. As this drought occurred over the latter part of 2010 and the first part of 2011 (the second part of 2011 was in fact very

wet), we define the annual period of this specific 2010/2011 analysis to be Jul–Jun.

The results show, for instance for region WE, that in CenTrends the trend in precipitation between 1900 and 2018 is -0.09

mm/day/K (95% confidence interval (CI) -0.51 to 0.14 mm/day/K). With a change in GMST of 1.07 K and a mean precipitation

in 1900 of 3.2 mm/day this is similar to a change of 3%. This means that if an event with the same precipitation amount as

in the year 2009 had happened again in 2018 it would have been a one in 30 (95% CI 2 to 400) year event in 2018, whereas

in 1900 it would have been a one in 80 (95% CI 30 to 1400) year event, corresponding to a probability ratio of 2.5 (95% CI5

0.2 to 380). A return period that decreases in time indicates that such extreme droughts are becoming slightly more common,

however, in this example we see large uncertainties consistent with no change. Note that the trend and probability ratio are

not significantly different from zero at p < 0.05. The results for all regions are summarized in Table 4. We note that the trends

calculated for the Jan–Dec events and for the Jul–Jun events in regions NK and SS respectively are not significantly different.

This supports the decision to analyze Jan–Dec annual extremes only.10

4 Synthesis results

In this section, to illustrate the synthesis method, intermediate synthesis figures, which not only show the overall synthesis but

also the results for individual models, are presented for the region SS for each of the four variables. See the caption of Fig. 5

for more information. The intermediate synthesis figures of all six regions can be found in the Supplementary Information.

Table 5 and Fig. 6 summarize all final synthesized findings. Using both the intermediate and final synthesis results we first5

draw conclusions based on different GCMs and hydrological models and then turn to conclusions per variable.

First we look for consistent behaviour in the trends from individual GCMs across the four variables. Some general conclu-

sions about the different GCMs are as follows: (i) for GCM-driven model runs with stronger positive trends in temperature,

there is a tendency that the positive trends in PET are also stronger and vice versa; (ii) the uncertainty in precipitation trends is

high compared to the trend magnitudes. This is one of the reasons why a clear relation with soil moisture trends is not evident;10

(iii) no clear relation between local temperature trends and soil moisture trends is evident.

Looking at the different hydrological models we conclude that the trend in PCR-GLOBWB PET, which uses the Hamon PET

scheme that depends only on temperature, is generally higher than the trend in in EC-Earth PET, which uses the more-complex

Penman-Monteith PET scheme that additionally depends on humidity, wind and radiation. Using this more complex scheme

can influence the trend in soil moisture, especially in wetter regions.15
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Table 4. Trends, return periods and probability ratios of equivalent events in the year 2018 and 1900 for three recent drought events registered

in the EM-dat database (2005, 2009 and 2010/2011), based on annual average precipitation (mm/day) from the CenTrends dataset. 95 %

confidence intervals are given between brackets. For each study region impacted by the events, the annual precipitation for the event year

(Prcp, used to define the event magnitude) and the 1900–2014 climatological precipitation average (ClimPrcp) is given. The asterisk (*)

denotes that Jul–Jun is taken instead of Jan–Dec to define a year.

Region
Event

year
Prcp

ClimPrcp

1900-2014

Trend

[mm/dy/K]

Return period

in 2018

Return

period in

1900

Probability

ratio

WE 2009 2.94 3.38
-0.09

(-0.51 to 0.14)

30

(2 to 400)

80

(30 to 1400)

2.5

(0.2 to 380)

EE 2009 1.49 1.84
-0.03

(-0.35 to 0.07)

40

(3 to 340)

50

(25 to 560)

1.4

(0.4 to 70)

NS 2009 0.42 0.63
0.07

(-0.08 to 0.12)

80

(4 to 300)

10

(5 to 46)

0.13

(0.03 to 6.7)

NK 2005 0.77 1.10
-0.07

(-0.26 to 0.12)

5

(2 to 30)

10

(5 to 22)

1.9

(0.3 to 6.5)

CK 2005 1.75 2.39
0.04

(-0.55 to 0.43)

29

(3 to 200)

22

(12 to 63)

0.77

(0.11 to 14)

SS 2005 0.74 1.09
0.03

(-0.12 to 0.22)

29

(4 to 470)

17

(6 to 47)

0.61

(0.02 to 7.80)

WK
2010/

2011*
0.51 1.10

0.16

(-0.30 to 0.27)

650

(10 to 20000)

130

(53 to 2200)

0.21

(0.03 to 64)

SS
2010/

2011*
0.53 1.09

0.02

(-0.31 to 0.21)

300

(12 to 40000)

230

(90 to 8100)

0.77

(0.03 to 80)

Table 5. Summary of synthesis results for each region and study variable. Note that ‘0’ means no significant change and a ‘+’ sign indicates

a positive trend, where in soil moisture this means a change towards a wetter soil. The uncertainties associated with each result are depicted

in Fig. 6

Region Soil moisture Precipitation Temperature PET

WE 0/+ 0/+ + +

EE 0 0 + +

NS 0/+ + + +

NK 0/+ 0/+ + 0/+

CK 0/+ 0 + 0/+

SS 0/+ 0/- + +
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Figure 5. Illustrative examples of the synthesized values of trends per degree GMST rise for soil moisture (top left), PET (top right),

precipitation (bottom left) and temperature (bottom right) for region SS. Black bars are the average trends, colored boxes denote the 95%

CI. Blue represents observations and reanalyses, red represents models and magenta the weighted synthesis. Coloured bars denote natural

variability, white boxes also take representativity / model errors into account if applicable (see Sect. 3). In the synthesis, the magenta bar

denotes the weighted average of observations and models and the white box denotes the unweighted average. Soil moisture trends are based

on standardized data, the other trends are absolute trends.

The analyses of the individual model runs, stratifying by GCM or hydrological model, do not lead to a clear conclusion on

the relation between the trends in precipitation, temperature, PET and soil moisture. We therefore turn to the analysis of the

synthesized values, see Table 5 and Fig. 6 for a summary of the outcome and Fig. 5 and Figs. S1 to S6 in the Supplementary

Information for synthesis diagrams. The table gives a concluding interpretation of the synthesized results shown in Fig. 6.
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Figure 6. Summary of the synthesized values for soil moisture, PET, precipitation and temperature in the six regions. The magenta bars

denote the weighted averages of observations and models and the white boxes denote the unweighted averages.

For soil moisture we find no significant synthesized trends: there is practically no change in region EE and no trend to a20

small positive non-significant trend in regions WE, NS, NK, CK and SS.

For precipitation, regions WE and NK show a positive but non-significant trend, in region NS there is a small positive trend,

regions EE and CK show no trend and region SS a negative non-significant trend.
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As expected from global climate change, the local annually averaged temperatures all have a significant positive trend, with

best estimates between 1.0�and 1.3�per degree of GMST increase. Related to this, trends in PET are also positive in four

of the six regions but lower than for temperature and generally with larger confidence intervals. The regions NK and CK

are the exceptions. Although weighted averages show positive trends, models show tendencies opposite to observations. This

incompatibility renders the results uncertain.5

We can identify the following relationships between different variables: (i) Precipitation trends have a (small) influence on

soil moisture trends in regions WE, NS and NK; (ii) in regions WE, EE, NS, NK and CK, temperature and PET have no

discernible influence on soil moisture trends; (iii) in region SS, the non-significant negative trend in precipitation does not lead

to lower soil moisture and neither do the trends in temperature or PET.

5 Discussion

In this section, we discuss the interpretation of our results in the light of how choices and assumptions made may have influ-

enced the outcome and we compare previous studies on similar topics.

We study drought trends on annual as opposed to sub-annual time scales, as long-term drought presents a greater risk for

food security. We define the annual period to be from January to December. This definition is a natural choice for each of our5

study regions, where the single or dual seasonal cycle peaks in precipitation (rainy seasons) and temperature do not extend

beyond December into the next year. The Jan–Dec definition has the consequence that multi-season droughts out of phase with

this period do not appear extreme in the observational time series used here, whilst they would appear extreme in a Jul–Jun

series. For example, in the well-documented 2010/2011 drought event in eastern Africa, only the second rainy season in 2010

and first rainy season of 2011 were exceptionally dry. This choice however does not affect the resulting annual trends, which10

are similar for both the Jan–Dec and Jul–Jun annual definition.

On the annual time scale, we do not see strong explanatory relationships between the trends in the four studied variables.

To gain insight in the relationships between the variables, we additionally looked at correlations on a sub-annual time scale.

Simple correlations between monthly precipitation, temperature, PET and soil moisture (not shown) support the conclusions

of Manning et al. (2018) on the influence of precipitation and PET on soil moisture at dry sites in Europe. They found that at15

water-limited sites the influence of precipitation on soil moisture is much larger than the influence of temperature, via PET, on

soil moisture. In our study, we find the same for the driest regions and the driest months in the wetter regions, and for the more

temperature-based PET schemes.

Looking at seasonal cycles — monthly means averaged over recent decades — a comparison between seasonal cycles of

the different variables shows that the seasonal cycle of soil moisture is similar to that of precipitation in all six study regions.20

In contrast, the inverse seasonal cycle of temperature is not similar to that of soil moisture. Whether the PET seasonal cycle

reflects elements of the soil moisture cycle or not depends on the PET scheme used: temperature- or radiation-based schemes

show a seasonal cycle that is similar to that of temperature, whereas more advanced schemes reflect a mixture between the

seasonal cycles of precipitation and temperature.
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We thus conclude that the influence of precipitation on soil moisture is higher than that of temperature or PET. This is25

supported by the synthesized results that show negligible or no trends in soil moisture and precipitation whereas the trends in

temperature and PET are strongly positive.

If temperature has, via PET, an influence on trends in soil moisture, we expect to see that the positive trend in temperature

is coupled to a drying trend in soil moisture. As we average over the annual scale, we may miss parts of the season when

this effect is strongest. Therefore we selected a region and period outside the rainy season, in which the seasonal peak in30

temperature corresponds to a dip in soil moisture (region CK, months Feb–Mar), to inspect sub-annual trends (not shown).

Even then, we find that there is no negative trend in soil moisture accompanying the positive temperature trends.

While improving the data with respect to some characteristics, an additional uncertainty arises from the bias correction of the

GCM data prior to use in the hydrological model. The bias correction in ISIMIP was set up to preserve the long-term trend, but

it also decreases the daily variability by truncating extreme high values (e.g., in precipitation) (Hempel et al., 2013). The most

important element for our analysis is that it also increases the daily variability by removing excessive drizzle, which is often

present in GCM precipitation data. Prudhomme et al. (2014) noted that such a statistical bias correction can influence the signal

of runoff changes but that the effect generally remains smaller than the uncertainty from GCMs and global impact models. By

far the largest difference we found in our analysis between trends in original and bias-corrected data was for temperature for5

IPSL in region NK: we found 1.9 K/K (95% CI 1.8 to 2.1 K/K) for the original trend and 1.4 K/K (95% CI 1.3 to 1.5 K/K) for

the trend in bias-corrected data. All other differences were smaller and non-significant.

A study by Rowell et al. (2015) discussed the possibility that climate model precipitation trends in East Africa are influ-

enced by inability of the models to represent key physical processes reliably. In attribution studies on drought, especially for

this region, it is therefore high priority to extend model evaluation techniques to assess models’ representation of key physical10

processes. The approach taken in this paper has been to apply simple evaluation techniques on the seasonal cycle and frequency

distributions of readily available data and that results from models passing validation tests represent the status of our current

knowledge. Rainy seasons in this region are governed by large-scale processes, such as the shifting of the ITCZ and ENSO

dynamics. The ability of a model to capture the seasonal cycle in precipitation and temperature thus provides some assurance

that large-scale physical processes are reasonably well described by the model. We see the tests we perform as a minimum re-15

quirement for model validation. However, to improve the performance of models and to understand the discrepancies between

models and observations, a much more thorough investigation into the models’ representation of physical processes and feed-

backs is required, such as demonstrated by James et al. (2018) and encouraged by the IMPALA (Improving Model Processes

for African Climate) project (https://futureclimateafrica.org/project/impala/).

It is still unknown how vegetation will respond to substantial increases of CO2 concentration. Two counteracting effects20

— physiological (restriction of stomatal openings leading to decreased evapotranspiration) and structural (increased leaf area

leading to more stomata and increased evapotranspiration) responses — are expected, but their net effect is unknown (e.g.

Wada et al., 2013). So-called ‘dynamic vegetation models’ include these CO2 effects and there are indications that these

models show a weaker response of drought to climate change (Wada et al., 2013; Prudhomme et al., 2014). In this study our

selection of hydrological models is restricted by the variables we require, however, out of the four ISIMIP hydrological models25
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that match our criteria, one (LPJmL) uses dynamic vegetation modeling. The soil moisture response to increasing GMST in

LPJmL simulations is mid-range amongst the ISIMIP results. The PET response for LPJmL simulations is, however, somewhat

on the low side of the ISIMIP results. It has not been verified if this behaviour is linked to dynamic vegetation modelling, but

with confidence intervals generally overlapping with the synthesized model outcome, there is no exceptional difference.

The approach taken in this paper towards uncertainty has been to30

– Perform a multi-model and multi-observation analysis that summarises what we know at the present moment, using

readily available data and methods.

– Apply simple evaluation techniques to readily available data, treating datasets that satisfy evaluation criteria equally and

rejecting the others.

– Communicate uncertainties from synthesis. A simple ‘yes’ or ‘no’ is not appropriate in this analysis where there is no

clear significant positive or negative trend. Rather, the uncertainties (confidence intervals) and their origin (e.g. natural

variability or model spread) are given.

In the long term, a trend in PET only has meaning for crop growth if there is water available for evaporation. Much of eastern

Africa is in a water-limited evaporation regime. In the case that irrigation would be locally applied, more water would become5

available for evaporation, shifting the situation away from a water-limited regime and towards an energy limited regime. A

trend in PET seen in our analyses (especially if the analysis using different schemes produces a robust PET trend) could then

signify a trend in real evaporation and would therefore be accompanied by an increase in irrigation water demand. Note that

irrigation is not accounted for by the models or reanalysis datasets used here.

Previous studies have shown that both the PET scheme and the input data used for calculation of PET can have a large influ-10

ence on PET values (Trambauer et al., 2014; Wartenburger et al., 2018). We confirm this using the CLM-ERA-PT (Priestley-

Taylor), CLM-WFDEI-PT and CLM-ERA-PM (Penman-Monteith) datasets (not shown). In our study regions, PET values are

consistently higher when using PM then when using PT. The differences in trends in PET using ERA or WFDEI input or using

PT or PM input are sometimes significant. However, comparing study regions, there is no consistency in the difference; in four

out of the six regions the PM data shows a higher trend than the PT data and in four out of the six regions WFDEI data shows15

a higher trend than the ERA data.

There is some evidence that warm spells are increasing in length, particularly in Ethiopia and northern Somalia/Somaliland

region (Gebrechorkos et al., 2019), as is the number of consecutive dry days in some parts of eastern Africa, which may have

an impact on drought length and increase the rapidity of onset and the intensity of drought (Trenberth et al., 2014). However,

the overall impact on crops and food security during long-duration droughts on annual timescales is probably insensitive to20

this.

It is possible that increasing temperatures have a negative impact on food security during droughts in ways that are be-

yond the scope of this study, e.g., decreased immunity of livestock, or increased water demand for cooling and water supply

(Gebrechorkos et al., 2019, and references therein). In addition, in regions suffering from recent meteorological drought,
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non-meteorological factors such as increasing population and land-use changes also play a role in worsening the declining25

vegetation conditions, even after precipitation returns to normal (Pricope et al., 2013).

6 Conclusions

In this first multi-model, multi-method attribution study using several drought estimates in eastern Africa, we address the recur-

ring question on whether increasing global temperatures exacerbate drought. Previous attribution studies for the eastern Africa

region have examined drought from a meteorological perspective (precipitation deficit) and have found no clear trends above30

the noise of natural variability. In this study, we examined trends in eastern African drought from an agricultural perspective

(soil moisture) as well as the meteorological perspective (precipitation, temperature and PET) for six regions in eastern Africa.

We also investigate whether global-warming driven trends in these meteorological variables can be seen to contribute to trends

towards drier soils. In this section, we draw conclusions for each variable in turn and make recommendations.

Out of the four studied variables, soil moisture is most closely related to food security via crop health. In standardized soil

moisture data, we found no discernible trends. The uncertainties in trends from model runs were found to be large and there

are no long observational runs available. This emphasizes that the use of an ensemble of models is imperative. Due to the large5

uncertainties in both soil moisture observations and simulations, we conclude that soil moisture cannot be relied upon on its

own as a drought indicator and it is therefore important to examine other drought indicators as well. Besides, soil moisture also

has a physical lower limit: once the soil is dry it will remain dry. In water limited regions an analysis of precipitation is thus a

helpful addition.

Precipitation was found to have a stronger influence than temperature or PET on soil moisture variability, especially in the10

drier study regions (the significant positive trend in temperature is not reflected by a decrease in soil moisture). However, the

confidence intervals on precipitation trend estimations are large and no clear trend is evident.

As expected from the increase in global temperatures, we find significant positive trends in local temperatures in all six

regions. The synthesized trend is between 1.0 and 1.3 times the trend in GMST, which corresponds to a local temperature rise

of 1.1 to 1.4 degrees from pre-industrial times to 2018. However, the influence of this on annual soil moisture trends appears15

limited.

PET has a more direct link via evaporation to soil moisture than temperature. The trends in PET are predominantly positive,

although in the regions NK and CK the uncertainty in this trend is large. This generally agrees with the positive trends in

temperature. Similar to the results for temperature, we do not find strong relations between PET and soil moisture trends.

Nevertheless, the results can still be of interest, especially in irrigated regions. Due to large differences in results from different20

hydrological model runs, we recommend that PET attribution analyses be carried out using an ensemble of hydrological

models. These should use various (observational) input datasets and driving GCMs and cover various PET schemes, in order

to be representative of the uncertainty surrounding all valid approaches and not bias results towards a particular method.

Whilst it may be preferable to use soil moisture as a drought indicator, observations and simulations of precipitation are

more reliable in this region (Coughlan de Perez et al., 2019). Precipitation has a large influence on agricultural droughts and is25
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therefore appropriate to use in attribution studies in eastern Africa, supplementing the analysis of soil moisture. The outcome

of previous studies that have focussed on precipitation deficits only (e.g., Philip et al., 2018a; Uhe et al., 2018) are thus still

relevant and compare well with our results, that no consistent significant trends on droughts are found.

Finally, communication of the uncertainties in the analyses of soil moisture, precipitation, temperature and PET (and any

drought indicators) to policy makers, the media and other stakeholders is crucial. Without insight into the uncertainties in30

synthesized trends in the different drought indicators, conclusions become meaningless and results can easily be misinterpreted.

Data availability. Almost all time series used in the analysis are available for download under https://climexp.knmi.nl/EastAfrica_timeseries.
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