
Major revision 2 comments 
Comments from Referees 
 

The authors have improved the manuscript and the logic is clearer. In general, the 
interpretation in the result section is still weak. There are still some issues that 
the authors may consider addressing or clarifying in the manuscript before I can 
recommend it for publication on ESD. 

1. The novelty of this research, as highlighted by the authors, is the usage of 
multiple methods and models to investigate the impact of precipitation and 
temperatures on drought trends in EA. According to tables 2 and 3, 
observational/reanalysis and model data have different spatial resolutions, have 
they been resampled to the same resolution or used directly in the analysis? 
Also, the resolution of model data, e.g. GFDL (2.02°*2.5°), the extent of one region 
NK (2°N-4.5°N, and 34°E-41°E), it means probably only 6 grids are used to study 
the trends in variables in this region, whether the global-scale model simulation 
data is applicable to detect changes over small regions divided in table 1 / Figure 
1. For trends derived from datasets with different resolutions, how were they 
eventually synthesized? 

Response:  

We indeed use all data as it comes with no resampling. The precipitation and 
temperature data from GFDL thus has a low resolution and indeed the smaller regions 
are only represented by a few grid cells. As long as the decorrelation length of the 
drought phenomenon is larger than the grid size of the model, the model can (if 
validation tests are passed) describe the phenomenon. Compared to other higher 
resolution models however, the results from low-resolution GCMs do not consistently 
stand out and also do overlap with observational uncertainty.  

Any data set can potentially be used individually to give (albeit unrobust) attribution 
results. We attempt to synthesize a range of outcomes that can result from individual 
analyses based on data sets with different properties to arrive at a robust result, i.e., 
with a representative confidence interval. 



Changes: We added "resampling or downscaling" to the sentence "Note that we use the 
data as it is available without applying any additional bias correction, resampling or 
downscaling."  

Furthermore we added "The results from low resolution GCMs do not consistently stand 
out compared to higher resolution models and also do overlap with observational 
uncertainty." to the results section."  

2. About datasets in section 2.2, the authors selected 35yrs or longer, multiple 
datasets spanning different lengths of years were used, e.g. observation Berkeley 
from 1750-2019, CenTrends from 1900-2014, GCM MIROC from 1850-2018, for 
trend analysis, 5-10 years more or less may not largely influence the final trend, 
however, if it were a 50-100-year difference, could the trend be biased simply 
because of the different temporal coverage? 

Response: 

Note that in Section 3.2 (Assumptions and decisions), 

- we explain (point 8) that "Differences in trends can arise due to different time 
periods and lengths of datasets, which are generally shorter for observations and 
reanalyses than for model simulations. However, we consider the use of all 
available observational and reanalysis data and different model framings to lead 
to a more complete and robust attribution statement." 

- we specify that we use Berkeley from 1920 in region SS and from 1900 in all 
other regions. Thanks to the reviewer's comment we see now that this adjusted 
start date was not carried over to Table 2. 

The model data sets (Table 3) have very similar time spans (except weather@home), 
where we should realise that most GMST rise occurs in the second half of the 20th 
century, so starting in 1850 or 1900 does not make a big difference. Some of the 
observational series e.g. ERA-I (1979-2018) miss the early part of the GMST rise, but 
due to the necessity of using observations we do not want to exclude these series even 
though they are shorter. We extrapolate trends from these observational series 
backwards in time but not without consequence: the extrapolation makes the 
uncertainty of the trend larger. We added this to assumption 8. 

Looking at the 6 regions, ERA-I temperature data does not show a systematic 
difference: the trend is sometimes larger and sometimes smaller than for the Berkeley 
data set. 



Changes: 

The "time period used" for Berkeley Earth given in table 2 has been changed from 
1750-2019 to 1900-2018. Also for CRU-TS4 and ERA-I the end date has been changed 
from 2019 to 2018. 

Assumption 8: "Differences in trends can arise due to different time periods and lengths 
of datasets, which are generally shorter for observations and reanalyses than for model 
simulations. Extrapolation between the first half of the 20th century and pre-industrial 
does not make a big difference, as most GMST rise occurs in the second half of the 
20th century. For shorter observational series the difference is larger. However, we 
consider the use of all available observational and reanalysis data and different model 
framings to lead to a more complete and robust attribution statement." 

 

3. GCM simulated precipitation data have poor accuracy compared to 
temperature. Apparently, in Figure 5, observations (CenTrends) suggested an 
increasing trend in precipitation over region SS, and four GCM models suggested 
declining trends, in the end, the synthesized trend was declining. Similar in 
Figure S1 for EE and S4 for NK. This seems that the synthesized trend is largely 
influenced by less reliable model simulation instead of the observed trend. The 
authors may consider justifying this in the discussion section. 

Response and changes:  

Part of the reviewer's remarks probably concern the best estimate of the trend from 
CenTrends and GCM models. It is however extremely important not to rely on the best 
estimate as the  uncertainties are large. The CenTrends confidence interval spans zero, 
with a substantial fraction of the interval on both the negative and positive side, i.e. 
although the best estimate lies on the positive side, the observational results clearly 
encompass 'no change'. We would say that only two of the four GCMs the reviewer 
mentions suggest declining trends whereas the other two GCM results span zero, with 
one weighted more towards the positive side and the other to the negative. The final 
synthesized result for region SS is communicated as a negative non-significant trend. 

We would furthermore like to emphasize that first all model results are combined (into 
the dark red bar in the synthesis figures) and all observational results are combined 
(into the dark blue bar in the synthesis figures). Only afterwards the dark bars are 
combined (with weighting dependent on the uncertainties of these bars). So all models 



together and all observations together contribute to the synthesized value with one 
estimate (including uncertainty estimates).  

On this topic we add: "Firstly, we compute the weighted average of the synthesized 
values for models and observations, neglecting model uncertainties beyond the model 
spread: this is indicated by the magenta bar. ... we also use the more conservative 
estimate of an unweighted average of the synthesized values for  observations and 
models" 

We furthermore assume that the reviewer means Figure S1 for WE (not EE). We agree 
that from the text it is not clear that models and observations do not always fully agree 
on the trend, although it is clear from the figures.  

To clarify this in the text as well, we add to the synthesis results section: 

"The more the magenta bar is centered in the white box, the better the models agree 
with observations and the more we trust our attribution statement" 

And 

 "For precipitation, regions WE and NK show a positive but non-significant trend, 
although in region WE models and observations only partially overlap. In region NS 
there is a small positive trend, regions EE and CK show no trend (for EE only with 
partial overlap of models and observations), and region SS a negative, non-significant 
trend." 

4. As mentioned earlier, the results section seems weak, the authors did point out 
the regional differences of trends in four variables, additional interpretations may 
need to be added regarding the regional differences, for example, from the 
perspective of regional climate etc. 

Response: 

We acknowledge that an interpretation from a regional climate perspective is missing. 
The division of the region into smaller subregions was necessary as we only want to 
study changes over a homogeneous region. The results do not change our motivation 
for this decision. However, taking all uncertainties into account, the differences between 
the regions are very small and not clearly related to the regional climate, so we cannot 
draw conclusions based on the different regional climates.  

Changes: 



We added to the end of the results section that "While it would be desirable to link the 
overall findings to differences in regional climate, the differences in the synthesized 
results between regions are too small relative to confidence intervals to be able to say 
anything meaningful. It was nevertheless necessary to divide the study area into 
homogeneous regions, so that extremes experienced within each region are 
representative for that region and inhomogeneity is not influencing the location of the 
occurrence of extremes." 

5. The authors selected soil moisture because it is a better indicator of crop 
health than precipitation to study agricultural drought, in conclusion, it’s 
concluded that soil moisture can not be relied upon due to the large uncertainties 
in both observations and simulations and precipitation should be included given 
more reliable simulations and observations. This can be confusing and 
contradictory. As the authors concluded, previous studies using precipitation 
and this study using soil moisture all detected no consistent trends on droughts. 
This implies that drought in the study area is not getting worse with increasing 
temperature and precipitation deficit from the perspective of both meteorology 
and agriculture. The authors may need to rewrite this properly. 

Response: Thank you for bringing these sources of potential confusion to our attention.  

Soil moisture is indeed more indicative of crop health than precipitation in the study of 
agricultural drought but we also know that precipitation records are longer and more 
widespread than soil moisture measurements. If there had been a strong trend in soil 
moisture our conclusion would have been based on this trend. However, as we see no 
trend in soil moisture emerging from natural variability, we can not make more robust 
statement on trends in drought based on soil moisture. After concluding this, we argue 
that in that case, we can also rely on results obtained from using the longer precipitation 
records.  

Perhaps there is also confusion over the chronological order in which this study 
developed. Previous trend studies for this part of Africa indeed do not agree on the sign 
of the trend in precipitation.  However, although there is disagreement in reported 
results, the disagreement lies within observational uncertainty, according to Philip et al., 
2018a. We referred to this as detecting no consistent trend on (meteorological) drought. 
Motivated by reports of a cluster of recent droughts and the request to understand if, 
despite no evident trend in precipitation, increasing temperatures could be exacerbating 
drought, we investigated if more insight can be gained by additionally examining the 
variables PET and soil moisture that are more closely related to crop health than 



precipitation. We were aware that precipitation measurements are the most reliable, but 
it is in our opinion still worth investigating if soil moisture and PET show a signal. 

Changes: 

In the introduction we add: "In this study, we aim to understand if, despite no evident 
trend in precipitation, increasing temperatures could be exacerbating drought." 

In the conclusion we change the relevant text to:  

"Due to the large uncertainties in both soil moisture observations and simulations, we 
find no trend emerging from natural variability." 
And: 
"We conclude that, although soil moisture is the prefered indicator of agricultural 
drought, we recommend that any soil moisture analysis be supplemented with 
precipitation analysis due to the superior reliability of precipitation measurements and 
the large influence of precipitation on drought in this region. Besides, soil moisture also 
has a physical lower limit: once the soil is dry it will remain dry. In water-limited regions 
an analysis of precipitation is thus a helpful addition". 

6. The discussion section is hard to read, please consider revising. 

Response:  
 
We revised the discussions section as follows: 

- We shortened some paragraphs and deleted subjects that distracted the reader 
from the main results. 

- We added information and moved text from other sections to the discussions 
section where we or the reviewer thought this was helpful. 

- We reordered the discussions section to improve the flow. 
- We revised some wordy interpretation. 

 
Changes: 
For the new discussions section see the revised manuscript. 
  

 

Some minor revisions are suggested as follows: 

1. Page 2 Line 3, particularly “thorough” or “through” threats to food security? 



Response: Fixed the typo. 

 

2. The author did mention that the study period was from the pre-industrial era to 
2018 in abstract, but it’s hard to tell the study period from the datasets or 
introduction sections. 

Response: Thank  you for pointing to this, we will add the years 1900 and 2018 to the 
introduction as well.  

Changes:  

P3 L18-19. "Assessments will be based on both observations and climate and 
hydrological model output on the annual time scale, between the years 1900 (to 
represent the pre-industrial era) and 2018." 

3. Some one-sentence paragraphs can be considered to combine with the others 
based on the logic. 

Response: We have worked throughout the paper to eliminate these, and to sharpen 
(and simplify) the writing in general.  

Changes: 

4. Tables 2, 3, and 4 seem outside of the right sections. 

Response: 

We assume that the layout of tables, such as these, are adjusted according to the 
journal's requirements during the typesetting stage. 

Changes: 

5. In section 3.2, more convincing references should be included to justify those 
assumptions and decisions, for example, the authors assumed that using RefET 
doesn’t influence the overall conclusion, does this mean that the crop 
coefficients are the same across different regions, if not, PET may vary stronger 
than RefET. 

Response: 



Firstly, we acknowledge that, locally, strong long term trends in land cover could 
enhance or counteract the reported trends, however this was not the focus of our study. 
We focus on climate-induced changes rather than land cover-induced changes. Our 
conclusions are therefore valid for the chosen large study regions, under the condition 
that there are no strong changes in land use or soil physical conditions in time. 
Secondly, we remark that in the context of this paper, we don’t convert reference ET to 
PET, nor would we convert reference ET to crop ET using crop coefficients, because it 
would not be relevant to our research purposes. This study neither needs nor uses crop 
coefficients as we are only interested in evaporative demand in its purest sense—i.e., 
as the atmospheric control driving upward moisture flux in the land-atmosphere system. 
One would use crop coefficients to mediate reference ET towards an estimation of crop 
evaporation, a value that would then not be a measure of evaporative demand but 
would instead approach actual evapotranspiration (ET). Even if we were to want to 
apply crop coefficients to our estimate of reference ET, any crop coefficients we used 
would be (i) so inaccurate as to be meaningless at the large spatial scales of our 
analysis, and (ii) different for each of the different metrics of E0 that we use. Further, 
many hydrologists would start from the perspective of the differences between PET and 
ET0 being predicated mostly on the surface assumptions involved (open water for PET, 
a reference crop for reference ET) to argue that assumption #6 in the text mis-states the 
relationship between PET and reference ET. 
 
A few words on the mix of metrics that we use for evaporative demand (Hamon, 
Priestley-Taylor, Penman-Monteith). First, even though we have used the abbreviation 
"PET," we are not actually using PET; instead, we use evaporative demand (E0), which 
is the name for the concept of (i) the theoretical thirst of the atmosphere, or (ii) the 
energy limit on evaporation, or (iii) the amount of water that would evaporate were there 
enough water to meet the need--they're all conceptually the same in the context of this 
paper. Second, E0 is an umbrella term that has three specific definitions: 

1. potential ET (PET), which is the original, defined by Penman in 1948 
as evaporation from an open-water surface or well-watered grass (depending on one’s 
reading of Penman (1948)); 

2. reference ET (ET0), which is defined as the water evaporating from a 
specific, well-defined crop surface (the reference crop)--and is what we've used to 
estimate Eo; 

3. and pan evaporation, which is a physical observation of evaporation 
from the small open-water surface in a pan. 
Third, as each of these three E0 definitions assumes (or observes) evaporation from a 
surface at a variety of spatial scales, and has a variety of parameterizations (in the case 
of PET and ET0) or instruments (in the case of pan evaporation) that all make different 



assumptions about which drivers are important (temperature; temperature and radiation; 
and temperature, radiation, wind speed, and humidity in Hamon, Priestley-Taylor, and 
Penman-Monteith, respectively), it is no surprise that they all yield different values of E0. 
In the case of PET and ET0, an inexhaustive list of parameterizations includes 
Thornthwaite, Blaney-Criddle, Hamon, Hargreaves-Samani, Turc, Makkink, Penman, 
Priestley-Taylor, and Penman-Monteith. Of these, we use Hamon, Priestley-Taylor, and 
Penman-Monteith. Penman and Blaney-Criddle are described as both PET and ET0, 
depending on whom you’re reading: this is clumsy writing. Penman-Monteith can be 
both PET and ET0, depending on which parameter values one is using: this is a flexible 
equation. In the face of all of these uncertainties, the ensemble of models, drivers, and 
E0 parameterizations employed in this study is a proven technique for estimating the 
overall effect of evaporative demand--in this case, on drought. In fact, this 
convergence-of-evidence approach is the backbone of operational drought monitoring. 
To sum up: we do not use crop coefficients nor do we need to; and we should not have 
stated that we’re concluding on PET, but have instead now defined E0 as above and 
used the abbreviation “E0” where we previously had “PET” and the term “evaporative 
demand” where we previously used “potential evaporation” (or “potential 
evapotranspiration”). 
 

Changes: 

We added the following text in the introduction: 

"Ideally, we would study the influence of temperature on soil moisture via ET, however 
observational records are very limited in time and space and, as the spatial 
decorrelation lengths of ET are short, their informational value is limited. We therefore 
analyse evaporative demand (E0); sometimes also referred to as “potential 
evapotranspiration,'” or PET, although this is strictly only one metric of E0. E 0 is the 
amount of evaporation that would occur under prevailing meteorological conditions, if an 
unlimited supply of water were available; in that sense, E0 measures the thirst of the 
atmosphere. E0 is calculable as a function of temperature, humidity, solar radiation, and 
wind speed. We use a variety of common parameterizations of E0 that includes both 
potential evapotranspiration and reference evapotranspiration and that ranges in 
physical representation and complexity from simple estimates based solely on 
temperature (the Hamon equation), through estimates that also include solar radiation 
as a driver (the Priestley-Taylor equation), to ultimately, fully physical estimates that 
further include humidity and wind speed as drivers (the Penman-Monteith equation). All 
necessary drivers are available for both observations and model simulations. In this 



manner, we bracket the complexity in E0 parameterizations in a 
convergence-of-evidence approach familiar to the drought-monitoring community. 

 
We investigate E0 as a means to study the influence of temperature on soil moisture, 
however, for regions that are irrigated or where irrigation is being considered, E0 itself 
can be regarded as more relevant than soil moisture as a measure of drought 
tendency." 

We added an assumption to the list in section 3.2: 

"In using our variety of E0 metrics, we do not convert reference evapotranspiration (such 
as that drawn from the MERRA-2 dataset (Hobbins et al., 2018) to PET, nor do we use 
crop coefficients to convert reference evapotranspiration to crop evapotranspiration 
because doing so would not be relevant to the research purposes. Our study is only 
interested in evaporative demand in its purest sense - i.e., as the atmospheric control 
driving upward moisture flux in the land-atmosphere system. In any case, crop 
coefficients we used would be (i) so inaccurate as to be meaningless at the large spatial 
scales of our analysis, and (ii) different for each of the different metrics of E0 that we 
use. The ensemble of E0 values generated by our variety of E0 metrics will ensure that 
significant trends generated are robust." 
 
And we changed PET into E0 throughout the paper.  

6. Line 24-28 in the conclusion section should be placed in discussion sections. 

Response: We agree that these lines are written in a way that belongs more to the 
discussion. One of our conclusions is, however, that precipitation should still be 
considered a good drought indicator in this region, so we will add a sentence to that 
effect in the conclusions.  

Changes: We moved lines 24-28 from the conclusions to the discussion. To the 
conclusions we added "Soil moisture is the prefered indicator of agricultural drought, 
however we recommend that any soil moisture analysis be supplemented with 
precipitation analysis due to the superior reliability of precipitation measurements and 
the large influence of precipitation on drought in this region". 

7. Units of trends in four variables should be added in Figures 5 and 6 and 
S1-DS6 in the Supplement figures. 



Response: trends are in [units of the study variable]/K, so we add for precipitation and 
PET [mm/day/K], for Temperature [K/K] and for soil moisture [/K]. 

Changes: we added the units to the paper 

8. Please consider revising some wordy interpretation， e.g. page 13, We 
therefore assume for ... We therefore..... and the discussion section is so lengthy 
that readers can easily get lost. 

Response: We agree the text was sometimes too wordy and the discussions section 
contained information that could easily distract the reader from the main results. We 
revised wordy interpretation throughout the whole manuscript, and rearranged the 
discussions section. 

Changes: see revised manuscript. 
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Abstract. In eastern
::::::
Eastern Africa droughts can cause crop failure and lead to food insecurity. With increasing temperatures,

there is an a priori
:
a

:::::
priori assumption that droughts are becoming more severe, however,

:
.
::::::::
However, the link between droughts

and climate change is not sufficiently understood. In the current study
::::
Here

:
we investigate trends in long-term agricultural

drought and the influence of increasing temperatures and precipitation deficits.

Using a combination of models and observational datasets, we studied trends, spanning the period from 1900 (to represent5

the
::::::::::
approximate

:
pre-industrial era

::::::::
conditions) to 2018, for six regions in eastern

::::::
Eastern

:
Africa in four drought-related an-

nually averaged variables — soil moisture, precipitation, temperature and, as a measure of evaporative demand , potential

evapotranspiration (PET
::::::::::
evaporative

::::::
demand

:::
(E0). In standardized soil moisture data, we found no discernible trends. Precipitation

was found to have a stronger
:::
The

:::::::
strongest

:
influence on soil moisture variability than temperature or PET

::::
was

::::
from

::::::::::
precipitation,

especially in the drier, or water-limited, study regions. The
:
;
::::::::::
temperature

::::
and

::
E0:::

did
::::

not
::::::::::
demonstrate

::::::
strong

:::::::
relations

::
to

::::
soil10

:::::::
moisture.

:::::::::
However,

:::
the error margins on precipitation-trend estimates are however large and no clear trend is evident. We find

:
,
:::::::
whereas significant positive trends

::::
were

::::::::
observed in local temperatures. However, the influence of these on soil moisture

annual trends appears limited. The trends in PET
::
E0:are predominantly positive, but we do not find strong relations between

PET
::
E0:and soil moisture trends. Nevertheless, the PET-trend

:::::::
E0-trend results can still be of interest for irrigation purposes

because it is PET
::
E0:that determines the maximum evaporation rate.15

We conclude that, until now, the impact of increasing local temperatures on agricultural drought in eastern
::::::
Eastern

:
Africa is

limited and we recommend that any soil moisture analysis be supplemented by an analysis of precipitation deficit.

1



Copyright statement. TEXT

1 Introduction

In eastern
::::::
Eastern

:
Africa, drought has occurred throughout known history and the phenomenon has incurred

::::
with significant

impacts on the agricultural sector and the economy, particularly thorough
::::::
through

:
threats to food security. It is therefore

important to examine the role of anthropogenic climate change in drought, particularly in the face of the large-scale droughts5

of 2010/11, 2014 and 2015 in Ethiopia, and the 2016/17 drought in Somalia, Kenya,
:::
and parts of Ethiopia and surrounding

countries, which have recently raised the spectre of climate change as a risk multiplier in the region.

Droughts are triggered and maintained by a number of factors and their interactions, including meteorological forcings and

variability, soil and vegetation feedbacks
:
, and human factors such as agricultural practices and management choices, including

irrigation and grazing density (van Loon et al., 2016). Accordingly,
:
there are several definitions of drought in common use10

(Wilhite and Glantz, 1985): meteorological drought (precipitation deficit), hydrological drought (low streamflow), agricultural

drought (low soil moisture) and socioeconomic drought (including
::::
water

:
supply and demand). This complexity of droughts

poses challenges for their attribution. It is not straightforward to disentangle these interacting factors, but over a long time

period
:::
long

:::::::
periods it may be possible that a signal can be detected

:
to

:::::
detect

::
a
::::::
climate

::::::
change

::::::
signal.

Previous attribution studies for eastern
::::::
Eastern Africa have mainly focussed on meteorological drought drivers (precipitation15

deficit), with recent studies finding little or no change in the risk of low-precipitation periods due to anthropogenic climate

change (e.g., Philip et al., 2018a; Uhe et al., 2018). Some weather stations in eastern
::::::
Eastern

:
Africa have recorded a decrease

in precipitation in recent years, however climate models generally project an increase in mean precipitation but give conflicting

results for the probability of very dry rainy seasons (e.g. Shongwe et al., 2011)
:::::::::::::::::::::::
(e.g., Shongwe et al., 2011) . The reasons for

the recent observed decrease in precipitation thus remains
:::::
remain

:
unclear, but the trend is within the large observed natural20

variability in the region, at least for the historical and current climate.

However, precipitation only covers one aspect of drought — that of the supply side of the water balance. The demand side

is represented by actual evapotranspiration (ET), which is a function of moisture availability and evaporative demand. With

increasing temperatures, there is an a priori assumption that rising evaporative demand will increase the demand side of the

water balance and, all else equal, droughts will become more severe. However, this assumption is not based on analyses,25

which motivates an objective study.
::
In

:::
this

:::::
study,

:::
we

::::
aim

::
to

:::::::::
understand

::
if,

::::::
despite

:::
no

::::::
evident

:::::
trend

::
in

:::::::::::
precipitation,

:::::::::
increasing

::::::::::
temperatures

:::::
could

:::
be

::::::::::
exacerbating

:::::::
drought.

In the current study we wish to align our drought definition as closely as possible with the major
::::::
human impact of drought —

the threat to food security. Across eastern
::::::
Eastern

:
Africa, the quality and quantity of food production for domestic consumption

is intimately linked to agricultural conditions. We therefore use the agricultural definition of drought — low soil moisture —30

because soil moisture is a better indicator of crop health than precipitation alone and
:
it
:
embodies the net effect of the supply

and demand side of the water balance , in regions without irrigation. Whilst short term single-season drought episodes can be

severe, we choose to analyse changes in drought on annual rather than sub-annual time scales because the worst crises in food

2



security in this region have occurred with multiple season
:::::::::::::
multiple-season droughts (Funk et al., 2015). We will also investigate

the influence of the main meteorological drivers of soil moisture trends, i.e.
:
, precipitation and temperature.

Ideally, we would study the influence of temperature on soil moisture via evapotranspiration (ET)
:::
ET, however observational

records are very limited in time and space and
:
, as the spatial decorrelation lengths of evapotranspiration are short

:::
ET

:::
are5

:::::
short,

:
their informational value is limited. We therefore analyse evaporative demand , which is

::::
(E0;

:::::::::
sometimes

:
also referred

to as “potential evapotranspiration” PET. PET
::
",

::
or

:::::
PET,

:::::::
although

::::
this

::
is

::::::
strictly

::::
only

::::
one

::::::
metric

::
of

::::
E0).

:::
E0:

is the amount

of evaporation that would occur
::::
under

:::::::::
prevailing

::::::::::::
meteorological

::::::::::
conditions,

:
if an unlimited supply of water were available,

which is calculable or available for both observations and model simulations and is
:
;
::
in

::::
that

:::::
sense,

:::
E0 ::::::::

measures
:::
the

::::
thirst

:::
of

::
the

:::::::::::
atmosphere.

:::
E0 ::

is
:::::::::
calculable

::
as

:
a function of temperature, humidity, solar radiation,

:
and wind speed.

:::
We

:::
use

::
a

::::::
variety10

::
of

:::::::
common

:::::::::::::::
parameterizations

::
of

:::
E0::::

that
:::::::
includes

::::
both

:::::::
potential

::::::::::::::::
evapotranspiration

:::
and

::::::::
reference

::::::::::::::::
evapotranspiration

:::
and

::::
that

:::::
ranges

::
in
::::::::

physical
::::::::::::
representation

:::
and

::::::::::
complexity

::::
from

::::::
simple

::::::::
estimates

::::::
based

:::::
solely

:::
on

::::::::::
temperature

::::
(the

::::::
Hamon

:::::::::
equation),

::::::
through

::::::::
estimates

::::
that

::::
also

:::::::
include

::::
solar

::::::::
radiation

:::
as

:
a
::::::

driver
::::
(the

:::::::::::::
Priestley-Taylor

:::::::::
equation),

:::
to

:::::::::
ultimately,

::::
fully

::::::::
physical

:::::::
estimates

::::
that

::::::
further

:::::::
include

:::::::
humidity

::::
and

::::
wind

::::::
speed

::
as

::::::
drivers

:::
(the

::::::::::::::::
Penman-Monteith

::::::::
equation).

:::
All

:::::::::
necessary

::::::
drivers

:::
are

:::::::
available

:::
for

::::
both

:::::::::::
observations

:::
and

:::::
model

:::::::::::
simulations.

::
In

:::
this

:::::::
manner,

:::
we

::::::
bracket

:::
the

::::::::::
complexity

::
in

:::
E0 ::::::::::::::

parameterizations
::
in

::
a15

::::::::::::::::::::
convergence-of-evidence

::::::::
approach

:::::::
familiar

::
to

:::
the

::::::::::::::::
drought-monitoring

::::::::::
community.

We investigate evaporative demand
::
E0:as a means to study the influence of temperature on soil moisture, however, for regions

that are irrigated or where irrigation is being considered, evaporative demand
::
E0:itself can be regarded as more relevant than

soil moisture as a measure of drought tendency.

Whilst attribution studies specifically for the east
::::::
specific

::
to

:::
the

::::
East African region have not previously used soil moisture or20

PET
::
E0 to explore drought, PET

::
E0 has been used in various attribution or trend studies outside our regionof study

:::
this

:::::
region, to

explore for example, the influence of climate change on the hydrological
:::::::::
hydrologic cycle in China (e.g. Yin et al., 2010; Li et al., 2014; Fan and Thomas, 2018)

::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Yin et al., 2010; Li et al., 2014; Fan and Thomas, 2018) ,

trends and variability at sites in West Africa Obada et al. (2017)
::::::::::::::::
(Obada et al., 2017) and compound events of low precipitation

and high PET in Europe Manning et al. (2018)
::
E0::

in
::::::
Europe

:::::::::::::::::::
(Manning et al., 2018) .

Summarizing, the objectives of this study areto (i) ,
:::::
first, consider the attribution question “do increasing global temperatures25

contribute to drier soils and thus exacerbate the risk of agricultural drought (low soil moisture) in eastern
::::::
Eastern

:
Africa?”

and(ii) ,
:::::::

second,
:
to investigate if global-warming driven trends in precipitation or local temperature via PET

::
E0 explain any

emerging trend in agricultural drought. Our approach to attribution comprises the following steps: (1) Definition
::::::::
definition

of the study variables and explanation of the study regions, ;
:
(2) Description

:::::::::
description of observational data and detection

of trends in observations
:
;
:
(3) Model

:::::
model

:
evaluation including description of the models,

:
; (4) Attribution

::::::::
attribution

:
of30

trends in models,
:
;
:::
and

:
(5) Synthesis

:::::::
synthesis

:
of the results. Assessments will be based on both observations and climate and

hydrological model output on the annual time scale. ,
::::::::

between
:::
the

:::::
years

::::
1900

:::
(to

::::::::
represent

:::
the

:::::::::::
pre-industrial

::::
era)

::::
and

:::::
2018.

We will illustrate the method using examples of recent droughts in eastern
::::::
Eastern Africa.

The outline of the remainder of the paper is as follows: In Section 2
:
of

::::
this

:::::
paper

:::::::
presents

:
the chosen study regionsare

presented
:
, followed by a description of the datasets used in the study. In Section 3 we describe

::::::::
describes the stepwise approach35

to attribution usedin this paper, including assumptions and decisions made and illustrative examples. In Section 4 , the results
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Table 1. The six study regions. See also Fig. 1

Region Long name Latitude Longitude
Seasonal

::::::
Months

:::
of

::::::
seasonal

:
precipitation

peak(s)

Primary livelihood zone

WE West
::::::
Western Ethiopia 7�N-14�N 34�E-38�E Aug agropastoral/mixed land

EE East
:::::

Eastern Ethiopia 8�N-13�N 38�E-43�E Apr, Jul/Aug pastoral

NS

North
:::::::
Northern

::
Soma-

lia/Somaliland region and

East
:::::

Eastern Ethiopia

5�N-12�N 43�E-52�E Apr/May, Oct pastoral

NK North
::::::
Northern

:
Kenya 2�N-4.5�N 34�E-41�E Apr, Oct/Nov pastoral

CK Central Kenya 1.5�S-1.5�N 35�E-38.5�E Apr, Nov agropastoral/mixed land

SS South
::::::
Southern

:
Somalia 2�S-5�N 41�E-48�E Apr/May, Oct/Nov pastoral/agropastoral

are synthesized per
:::::::::
synthesizes

:::
the

::::::
results

::
by

:
region. Finally, the discussion and conclusions are presented in Sections 5 and 6

::::::
present

:::
the

:::::::::
discussion

:::
and

::::::::::
conclusions.

2 Study variables, region and datasets

In this section, we present the chosen study variables and study regions in eastern
:::::
Eastern

:
Africa and the datasets used to5

provide the variables to be analysed. Brief descriptions of the projects from which the datasets originate are provided in the

supplement.

2.1 Study variables and region

We analyse four different variables: soil moisture, precipitation, temperature, and PET
::
E0. We average these variables over

six
:::::::::::::
non-overlapping

:
regions, as trend analyses of time series of regionally averaged quantities are more robust than the same10

analyses for point locations. This is especially true for precipitation, which shows small-scale spatial variability if the time

period is not long enough to sufficiently sample the distribution from multiple precipitation events. It is however necessary to

select homogeneous zones
::::::
regions, so that the signals present are not averaged out.

The focus of the study is on eastern
::::::
Eastern Africa — Ethiopia, Kenya,

:
and Somalia (including the Somaliland region). We

selected six regions based on precipitation zones, in which the annual mean precipitation and seasonal cycle are homogeneous15

(Fig. 1a), livelihood zones (see Fig. 1b) and discussions with local experts from
::
the

:
Kenya Meteorological Department and

the National Meteorological Agency (NMA) of Ethiopia and the Famine Early Warning Systems Network (FEWS NET). The

regions are shown in Fig. 1 and listed in Table 1. Data is annually and spatially averaged over the study regions.
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Figure 1. Left:
::
(a)

:
annual mean precipitation [mm/day] and the six study regions. Note that only land values are used. Right:

::
(b) livelihood

zones after Pricope et al. (2013), which were also used to define the study regions.

2.2 Datasets

For the four study variables, we use as many datasets as readily available
::
all

::::::
readily

::::::::
available

:::::::
datasets

:
over the study area,

provided that (i) the data are sufficiently complete over a time period long enough to be used for trend calculations
:
, and (ii) the

model data pass the validation tests (see Sect. 3). For this purpose, we decided to use time series of
:
at
:::::
least 35 yearsand longer.5

As the focus of this paper is on annual time scales, using monthly data is sufficient. The observational and model datasets

used in this study are shown in Fig. 2 and listed in tables
:::::
Tables ?? and 3 below.

:
(For brief descriptions of the projects from

which these data originate, please see the Supplement.
:
) Note that we use the data as it is

::::
they

:::
are available without applying

any additional bias correction,
::::::::::
resampling

::
or

::::::::::
downscaling. Some of the data has undergone bias correction within project

::::
their

::::::
projects

:
of origin, as described in the Supplement.10

:::
The

::::::::
following

::::::::::
subsections

:::::::
address

:::
the

:::::::::::
observational

:::::::
datasets

:::
and

:::::::::
modelling

::::::
datasets

::
in
:::::
turn.

:::::::::::
Observational

::::::::
datasets: For observations of precipitation and daily mean near-surface temperature, we use gridded observa-

tional data sets and reanalyses.

For soil moisture and PET
::
E0, no direct observations meeting the above criteria exist. Instead, we use observational estimates

of soil moisture and PET
:::
E0 resulting from various combinations of observational forcing data and models (see Fig. 2a).15

Concerning soil moisture , observational series are fewand
:::::::::::
Observational

:::::
series

:::
of

:::
soil

:::::::
moisture

:::
are

::::
few,

:
generally too short

to use for trend analysisand they
:
,
:::
and do not correlate well with reanalysis or model data over eastern

::::::
Eastern Africa (McNally

et al., 2016). It is therefore important to use multiple observationally forced model estimates to span the large uncertainties

from inter-dataset differences. There being no a priori reason to favour one soil moisture dataset over another, we treat all

resulting soil moisture datasets equally. For all
:::
both

::::::::
observed

::::
and

::::::::
modelled soil moisture data sets, observed and modelled,
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we use the topmost layer (see Fig. 2 for the depth of the topmost layer) provided by each datasetand scale each time series to

have a standard deviation of 1 in order to make comparisons in trends possible. An exception to this is
:
,
:::::
except

:::
for

:::
the

::::::
model

weather@home where the available soil moisture variable is an integrated measure of all four layers of soil moisturein the

model, including the deep soil.
::::
Each

::::
time

:::::
series

::
is

::::::
scaled

::
to

::::
have

::
a

:::::::
standard

::::::::
deviation

::
of

::
1

::
in

:::::
order

::
to

:::::
make

:::::::::::
comparisons

::
in5

:::::
trends

:::::::
possible.

:

PET
::
E0:is a function of temperature, humidity, solar radiation

:
, and wind speed, and as such is not a directly observable

variable. Observational estimates of PET
::
E0:used here originate from reanalysis data sets or reanalysis-driven impact models.

For both observed and modelled PET
::
E0, there are various ways of parametrizing PET

::::::::::::::
parameterizations, ranging from simple

temperature
::::::::::
temperature-

:
or radiation-based schemes to sophisticated schemes based on all the aforementioned components.10

Whilst the Penman-Monteith scheme is often considered superior (e.g. Hobbins et al., 2016)
::::::::::::::::::::::
(e.g., Hobbins et al., 2016) , one

is often constrained from using a Penman-Monteith parameterization due either to the lack of accurate or reliable input data

or because the choice of PET
::
E0 parameterization within a given hydrological model setting is already prescribed, as in the

ISIMIP ensemble. We thus chose to use a variety of PET parameterizations
::
E0 ::::::::::::::

parameterizations
:::::::
(mostly

:::
the

::::
PET

::::::
metric)

:
and

input datasets in order to cover the range of possible PET
::
E0:values and trends in PET. The PET

:::
E0.

::::
The

::
E0:scheme used by15

each data set is noted in Fig. 2.

Concerning model data sets, most
::::::::
Modelled

:::::::
datasets:

:::::
Most

:
simulations stem from the ISIMIP project, which provides

output of the variables under investigation for four different impact models driven by four different GCMs. These simulations

are complemented by other readily available model runs
::::::::::::::::::::::
(EC-Earth-PCRGLOB-WB

::::
and

:::::::::::::
weather@home)

:
with different (but

compatible) framings.20

With the datasetswe use we
:::::
Using

:::::
these

:::::::
various

::::::::::
observations

::::
and

::::::::
modelled

::::::::
datasets,

:::
we cover a wide range of different

factors that influence PET
::
E0:and soil moisture. The different factors include meteorological forcing, model choice, RCP

scenario for the greenhouse gas concentration trajectory, PET
::
E0:scheme, number of soil layers and depth of topsoil layer,

dynamic vegetation modelling (LPJmL only)
:
, and transient versus time slice

::::::::
time-slice runs (see next section on ‘Methods’).

3 Methods25

In this sectionwe describe first the method we use ,
:::
we

::::
first

:::::::
describe

:::
the

:::::::
method for detection and attribution of trends in the

four variables, including model validation and the synthesis of observational and model results. Furthermore, in subsection

:::::::::
Subsection

:
3.2 we describe

::::::::
describes the assumptions and decisions that are made concerning the data/model setupand in

subsection ;
::::

and
:::::::::
Subsection

:
3.3 we provide

:::::::
provides an example of how the method is applied to real data.

3.1 Detection and attribution of trends30

::
In

:::
this

::::::
section

:::
we

:::::
detect

:::::
trends

::
in
:::::::::::
observations

:::
and

:::::::
analyse

:::::::
whether

::::
these

::::::
trends,

::
if

::::::
present,

::::
can

::
be

::::::::
attributed

::
to

::::::
human

:::::::
induced

::::::
climate

:::::::
change.

::
In

:::::
doing

:::
so,

::
the

::::::::
approach

:::::
taken

::
to

:::::::::::::
communicating

::::::::::
uncertainty

:
is
:::
to

6



Table 2. Observational data used in this study.

Observational

dataset

Full name Time period

used

Spatial reso-

lution (�lat x
�lon)

Reference
:::::::
Citations(s)

Observatational/reanalysis data set

CenTrends (prcp) Centennial Trends data set 1900–2014 0.1x0.1 Funk et al. (2015)

CRU TS4 (temp) CRU TS4.01
1901–2019

::::::::
1901–2018

:

0.5x0.5 Harris et al. (2014)

Berkeley (temp) Berkeley Earth
1750–2019

::::::::
1900–2018

:

1.0x1.0 Rohde et al. (2013b, a)

ERA-I ERA-Interim
1979–2019

::::::::
1979–2018

:

0.5x0.5 Dee et al. (2011)

Observation-driven hydro/impact model

LPJmL-WFDEI

(soil moisture)

Lund-Potsdam-Jena managed Land -

WATCH-Forcing-Data-ERA-Interim

1971–2010 0.5 x 0.5 Bondeau et al. (2007); Rost et al.

(2008); Schaphoff et al. (2013);

Weedon et al. (2014)

PCRGLOB-

WFDEI (soil

moisture)

PCRaster GLOBal Water Balance

model - WATCH-Forcing-Data-ERA-

Interim

1971–2010 0.5 x 0.5 Sutanudjaja et al. (2018); Weedon

et al. (2014)

CLM-ERA-I (soil

moisture, PET
::
E0)

Community Land Model version 4 -

ERA-Interim

1979–2016 0.5 x 0.5 Oleson et al. (2010)

CLM-WFDEI

(soil moisture,

PET
::
E0)

Community Land Model version 4 -

WATCH-Forcing-Data-ERA-Interim

1979–2013 0.5 x 0.5 Lawrence et al. (2011); Weedon

et al. (2014)

FLDAS (soil

moisture)

Famine Early Warning Systems Net-

work (FEWS NET) Land Data Assimi-

lation System

1981–2018 0.1 x 0.1 McNally et al. (2017)

MERRA Ref-ET

(PET
::
E0)

Modern-Era Retrospective analysis for

Research and Applications Reference

Evapotranspiration

1980–2018 0.125 x 0.125 Hobbins et al. (2018)
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Table 3. Model data used in this study.

Model dataset Full name Time period

used

Spatial reso-

lution (�lat x
�lon)

Reference
:::::::
Citations(s)

GCM/RCM

GFDL GFDL-ESM2M, Geophysical Fluid

Dynamics Laboratory - Earth System

Model 2M

1861–2018 2.02x2.5 Dunne et al. (2012, 2013)

HadGEM HadGEM2-ES, Hadley Centre Global

Environmental Model version 2-ES

1859–2018 1.25x1.88 Collins et al. (2011); Jones et al.

(2011)

IPSL IPSL-CM5A-LR, Institut Pierre Simon

Laplace - CM5A-LR

1850–2018 1.89x3.75 Dufresne et al. (2013)

MIROC MIROC5, Model for Interdisciplinary

Research on Climate - version 5

1850–2018 1.4x1.4 Watanabe et al. (2010)

EC-Earth EC-Earth 2.3 1850–2018 1.12x1.125 Hazeleger et al. (2012)

w@h (temp, prcp,

soil moisture)

Weather@home 2005–2016 and

counterfactual

climate

0.11x0.11 Massey et al. (2015); Guillod et al.

(2017)

Hydro/impact models

H08 (soil mois-

ture, PET
::
E0)

H08 1861–2018 0.5x0.5 Hanasaki et al. (2008a, b)

LPJmL (soil

moisture, PET
::
E0)

Lund-Potsdam-Jena managed Land

model

1861–2018 0.5x0.5 Bondeau et al. (2007); Rost et al.

(2008); Schaphoff et al. (2013)

PCRGLOB (soil

moisture, PET
::
E0)

PCRGLOB-WB, PCRaster GLOBal

Water Balance model

1861–2018 0.5x0.5 Sutanudjaja et al. (2018)

WaterGAP2 (soil

moisture, PET
::
E0)

Water Global Analysis and Progress

Model version 2

1861–2018 0.5x0.5 Müller Schmied et al. (2016)
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Figure 2. Datasets used in this paper. Top
::
(a): observational precipitation (prcp) and near-surface temperature (temp) datasets, bottom

::
(b):

models. Listed under PET
::
E0 is the PET

::
E0:

scheme (T: Priestley-Taylor, M: Penman-Monteith, H: Hamon, B: Bulk formula) and, under SM,

is the depth of the top soil moisture layer available (RD: depends on rooting depth (0.1-1.5m for WaterGAP2); IL: integrated over all layers).

Shading indicates an experiment with either multiple input datasets or multiple hydrological models. The number of resulting hydrological

model simulations are indicated by horizontal lines on the right side of the figure.

–
:::::::
Perform

:
a
::::::::::
multi-model

::::
and

::::::::::::::
multi-observation

:::::::
analysis

::::
that

::::::::::
summarises

::::
what

:::
we

::::::::
currently

:::::
know,

:::::
using

::::::
readily

::::::::
available

:::
data

::::
and

:::::::
methods.

:

–
:::::
Apply

::::::
simple

:::::::::
evaluation

:::::::::
techniques

::
to

::::::
readily

:::::::
available

:::::
data,

::::::
treating

:::::::
datasets

:::
that

::::::
satisfy

:::::::::
evaluation

::::::
criteria

::::::
equally

::::
and

:::::::
rejecting

:::
the

::::::
others.5

–
:::::::::::
Communicate

:::::::::::
uncertainties

:::::
from

::::::::
synthesis.

::
A
:::::::

simple
::::
‘yes’

:::
or

::::
‘no’

::
is

:::
not

::::::::::
appropriate

::
if

:::::
there

::
is

::
no

:::::::::
significant

::::::
trend.

::::::
Rather,

:::
the

::::::::::
uncertainties

::::::::::
(confidence

::::::::
intervals)

::::
and

::::
their

:::::
origin

:::::
(e.g.,

::::::
natural

::::::::
variability

:::
or

:::::
model

::::::
spread)

:::
are

::::::
given.
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We use a multi-method, multi-model approach to address attribution. We use global mean surface temperature (GMST) as

a measure for anthropogenic climate change for calculating trends. We calculate trends for all variables, regions and datasets

and synthesize results into one overarching attribution statement for each of the four variables
:::
(soil

::::::::
moisture,

::::::::::::
precipitation,

::::::::::
temperature,

::::
and

:::
E0)

:
in each of the six regions. We use this method, following the approach applied in earlier studies on

drought in eastern
::::::
Eastern

:
Africa (e.g., Philip et al., 2018a; Uhe et al., 2018) and other drought- and heat-attribution studies5

(e.g., Philip et al., 2018b; van Oldenborgh et al., 2018; Kew et al., 2019; Sippel et al., 2016) , which
:
as
::
it
:
represents the current

state of the art in extreme event attribution. The method is extensively explained in van Oldenborgh et al. (2019), Philip et al.

(2019), van Oldenborgh et al. (2018)
:
, and van der Wiel et al. (2017).

In this study, for transient model runs and observational time series, we statistically model (i.e., fit) the dependency of annual

means of the different variables on GMST, (the model GMST for models, and GISTEMP surface temperature GMST (Hansen10

et al., 2010) for observations and reanalyses) as follows:

After inspection of whether a Gaussian or a General Pareto Distribution fits the observational or
::
and

:
reanalysis data best, we

use the following distributions:

– for soil moisture: a Gaussian distribution that scales with GMST, focussing on low values,

– for precipitation: a General Pareto Distribution (GPD) that scales to
:::
with

:
GMST, analyzing low extremes15

– for temperature: a Gaussian distribution that shifts with GMST, focussing on high values, and

– for PET
:::
E0: a Gaussian distribution that scales with GMST, focussing on high values.

When the distribution is shifted, a linear trend ↵ is fitted by making the location parameter µ dependent on GMST as

µ= µ0 +↵T, (1)

with ↵ in [units of the study variable]/K. When the distribution is scaled,20

µ = µ0 exp(↵T/µ0), (2)

� = �0 exp(↵T/µ0), (3)

which keeps the ratio of the location and scale parameter �/µ invariant. In each case, the fitted distribution is evaluated twice:

once for the year 1900 and once for the year 2018. Confidence intervals (CI) are estimated using a non-parametric bootstrap-

ping procedure. This allows us to calculate the return period of an event as if it would have
:::
had

:
happened in the year 1900 or in25

the year 2018. To obtain a first-order approximation of the percentage change
::
in

:::
the

:::::::::
magnitude

::
of

:::
the

:::::
study

:::::::
variable between

the two reference years, ↵ is multiplied by 100% times the change in GMST and divided by µ0 (for the shift fit this is ex-

act). Note that for some variables — e.g., precipitation — it is appropriate to scale rather than shift the distribution with GMST

(see van Oldenborgh et al., 2019; Philip et al., 2019, for an explanation)
:::::::::::::::::::::::::::::::::::::::
(van Oldenborgh et al., 2019; Philip et al., 2019) . For

the very large weather@home ensemble simulations of actual and counterfactual climates, it is not necessary to use a fitting30

routine as the large amount of data permits a direct estimation of the trend. This also provides an opportunity to check the

10



assumptions made in the fitting, notably that the values follow an extreme-value distribution and that the distribution shifts or

scales with the smoothed GMST. We calculate trends for the time series of spatially and annually averaged data of all four vari-

ables and all six regions for all datasets by dividing the difference in the variable between the two ensembles by the difference

in GMST.

Figures 3 and ?? present the methods applied to transient series and time slices,
:
respectively. For reference and to aid

interpretation of the return-period diagrams, the magnitude of a hypothetical event with a 20-year return period in the year

2018or
:
,
:::
i.e.,

:
in the current climate,

:
is shown as a horizontal line or square. Reading the return period at which this line crosses

the fit for the reference year 1900 shows how frequent an event with a 20-year return period in today’s climate would have5

been then.

4 Synthesis results

In this section, to
::
we

:
illustrate the synthesis method, intermediate

:
.
::::::::::
Intermediate

:
synthesis figures, which not only show the

overall synthesis but also the results for individual models, are presented for the region SS for each of the four variables.

See the caption of Fig. 4 for more information. The ;
:::
the

:
intermediate synthesis figures of all six regions can be found in10

the Supplementary Information. Table 4 and Fig. 5 summarize all final synthesized findings
::
for

:::
all

::::::
regions. Using both the

intermediate and final synthesis results
:
, we first draw conclusions based on different GCMs and hydrological models and then

turn to conclusions per
::
for

::::
each

:
variable.

First,
:
we look for consistent behaviour in the trends from individual GCMs across the four variables.

:::
We

::::
note

::::
that

:::
the

:::::
results

:::::
from

:::
low

:::::::::
resolution

::::::
GCMs

:::
do

:::
not

::::::::::
consistently

:::::
stand

:::
out

:::::::::
compared

::
to

::::::
higher

:::::::::
resolution

::::::
models

::::
and

:::
also

:::
do

:::::::
overlap15

::::
with

:::::::::::
observational

::::::::::
uncertainty. Some general conclusions about the different GCMs are as follows: (i) for GCM-driven model

runs with stronger positive trends in temperature, there is a tendency that
:::
for the positive trends in PET are also

::
E0::::

also
::
to

:::
be

stronger and vice versa
::
for

::::::
weaker

::::::
trends; (ii) the uncertainty in precipitation trends is high compared to the trend magnitudes.

This is one of the reasons
:
,
:::::
which

:::::::
partially

:::::::
explains

:
why a clear relation with soil moisture trends is not evident; (iii) no clear

relation between local temperature trends and soil moisture trends is evident.20

Looking at the different hydrological models,
:
we conclude that the trend in PCR-GLOBWB PET

::
E0, which uses the Hamon

PET
::
E0:scheme that depends only on temperature, is generally higher than the trend in in EC-Earth PET

:::
E0, which uses the

more-complex Penman-Monteith PET
::
E0:scheme that additionally depends on humidity, wind and

:::::
speed,

:::
and

:::::
solar radiation.

Using this more complex scheme can influence the trend in soil moisture, especially in wetter regions.

The analyses of the individual model runs, stratifying by GCM or hydrological model, do not lead to a clear conclusion on

the relation between the trends in
:::
soil

::::::::
moisture,

:
precipitation, temperature, PET and soil moisture

:::
and

:::
E0. We therefore turn to

the analysis of the synthesized values , (see Table 4 and Fig. 5 for a summary of the outcome and Fig. 4 and Figs. S1 to S6 in5

the Supplementary Information for synthesis diagrams. The table gives a concluding
:
).

:::::
Table

:
5
::::::::::
summarizes

:::
the

:
interpretation

of the synthesized results shown in Fig. 5.
:::
The

:::::
more

:::
the

:::::::
magenta

:::
bar

::
is
::::::::
centered

::
in

:::
the

:::::
white

::::
box,

:::
the

:::::
better

:::
the

::::::
models

:::::
agree

::::
with

::::::::::
observations

::::
and

::
the

:::::
more

:::
we

::::
trust

:::
our

:::::::::
attribution

:::::::::
statement.
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Figure 3.
::::::::
Illustrative

::::::::
examples

::
of

::
the

:::::
fitting

::::::
method

:::
for

:::
each

:::::::
variable,

:::
for

::::::
selected

:::::
study

::::::
regions.

::
(a)

:::::::
FLDAS

:::
soil

:::::::
moisture

:::::
(Gauss

:::
fit,

:::
low

:::::::
extremes,

:::::
region

::::
WE);

:::
(b)

::::::::
CenTrends

::::::::::
precipitation

:::::
(GPD

::
fit,

:::
low

::::::::
extremes,

:::::
region

::::
CK);

::
(c)

:::::::
Berkeley

:::::::::
temperature

:::::::
anomaly

::::::
(Gauss

::
fit,

::::
high

:::::::
extremes,

:::::
region

::::
NK);

:::
(d)

:::::::
MERRA

:::
E0::::::

(Gauss
::
fit,

::::
high

::::::::
extremes,

:::::
region

::::
NS).

:::
Top

::
of

::::
each

:::::
panel:

:::::::
annually

:::::::
averaged

::::
data

:::::
(stars)

::::::
against

:::::
GMST

:::
and

::
fit

::::
lines

:
-
:::
the

::::::
location

::::::::
parameter

:
µ
::::::
(thick),

::::
µ±�

:::
and

::::::
µ± 2�

::::
(thin

::::
lines,

:::::::
Gaussian

:::
fits)

:::
and

:::
the

::
6-

:::
and

::::::
40-year

:::::
return

:::::
values

::::
(thin

::::
lines,

::::
GPD

:::
fit).

::::::
Vertical

:::
bars

::::::
indicate

:::
the

::::
95%

::::::::
confidence

::::::
interval

::
on

:::
the

::::::
location

::::::::
parameter

:
µ
::
at

:::
the

:::
two

:::::::
reference

::::
years

::::
2018

:::
and

::::
1900.

::::
The

::::::
magenta

:::::
square

::::::::
illustrates

:::
the

::::::::
magnitude

::
of

::
an

:::::
event

::::::::
constructed

::
to
::::
have

::
a

::::::
20-year

::::
return

::::::
period

::
in

::::
2018

:::
(not

:::::::
included

::
in

:::
the

:::
fit).

::::::
Bottom

:
of
::::

each
:::::
panel:

:::::
return

:::::
period

:::::::
diagrams

:::
for

::
the

:::::
fitted

::::::::
distribution

:::
and

::::
95%

::::::::
confidence

::::::::
intervals,

::
for

:::::::
reference

:::::
years

::::
2018

:::
(red

:::::
lines)

:::
and

::::
1900

::::
(blue

:::::
lines).

:::
The

:::::::
annually

:::::::
averaged

:::
data

::
is

:::::
plotted

:::::
twice,

:::::
shifted

::
or
:::::

scaled
::::
with

::::::::
smoothed

:::::
global

::::
mean

:::::::::
temperature

::
up

::
to
::::
2018

:::
and

:::::
down

::
to

::::
1900.

:::
The

:::::::
magenta

:::
line

:::::::
illustrates

:::
the

::::::::
magnitude

::
of

:
a
::::::::::
hypothetical

::::
event

::::
with

:
a
::::::
20-year

:::::
return

:::::
period

:
in
:::::

2018.

For soil moisture we find no significant synthesized trends: there is practically no change in region EE and no trend to a

smallpositive
:
,
::::::
positive

:::
but

:
non-significant trend in regions WE, NS, NK, CK and SS.10

12



Table 4. Summary of synthesis results for each region and study variable. Note that ‘0’ means no significant changeand
:
, a ‘+’ sign indicates

a positive trend, where in soil moisture this means
:::
and a change towards

:
‘-’

::::
sign

:::::::
indicates

:
a wetter soil

::::::
negative

::::
trend. The uncertainties

associated with each result are depicted in Fig. 5

Region Soil moisture Precipitation Temperature PET
::
E0

WE 0/+ 0/+ + +

EE 0 0 + +

NS 0/+ + + +

NK 0/+ 0/+ + 0/+

CK 0/+ 0 + 0/+

SS 0/+ 0/- + +

For precipitation, regions WE and NK show a positive but non-significant trend, in region
:::::::
although

::
in

::::::
region

:::
WE

:::::::
models

:::
and

::::::::::
observations

::::
only

::::::::
partially

::::::
overlap.

:::
In

:::::
region

:
NS there is a small positive trend, regions EE and CK show no trend and

:::
(for

::
EE

:::::
only

::::
with

:::::
partial

:::::::
overlap

::
of

::::::
models

:::
and

::::::::::::
observations),

::::
and region SS a negative

:
, non-significant trend.

As expected from global climate change, the local annually averaged temperatures all have a significant positive trend, with

best estimates between 1.0�and 1.3�per degree of GMST increase. Related to this, trends in PET
::
E0:are also positive in four15

of the six regions but lower than for temperature and generally with larger confidence intervals. The regions NK and CK

are the exceptions. Although weighted averages show positive trends, models show tendencies opposite to observations. This

incompatibility renders the results uncertain.

We can identify the following relationships between different variables: (i) Precipitation trends have a (small) influence on

soil moisture trends in regions WE, NS and NK; (ii) in regions WE, EE, NS, NK and CK, temperature and PET
::
E0 have no20

discernible influence on soil moisture trends; (iii) in region SS, the non-significant negative trend in precipitation does not lead

to lower soil moisture and neither do the trends in temperature or PET.
:::
E0.

:::::
While

::
it
::::::
would

::
be

::::::::
desirable

:::
to

:::
link

::::
the

::::::
overall

::::::
findings

:::
to

:::::::::
differences

::
in
::::::::

regional
:::::::
climate,

:::
the

:::::::::
differences

:::
in

:::
the

::::::::::
synthesized

::::::
results

:::::::
between

:::::::
regions

:::
are

:::
too

:::::
small

:::::::
relative

::
to

:::::::::
confidence

::::::::
intervals

::
to

:::
be

::::
able

::
to

:::
say

::::::::
anything

::::::::::
meaningful.

::
It
::::

was
:::::::::::

nevertheless
::::::::
necessary

:::
to

:::::
divide

::::
the

:::::
study

::::
area

::::
into

:::::::::::
homogeneous

:::::::
regions,

::
so

::::
that

:::::::
extremes

::::::::::
experienced

::::::
within

::::
each

::::::
region

:::
are

:::::::::::
representative

:::
for

::::
that

:::::
region

:::
and

:::::::::::::
inhomogeneity

::
is25

:::
not

:::::::::
influencing

:::
the

:::::::
location

::
of

:::
the

:::::::::
occurrence

::
of
:::::::::
extremes.

5 Discussion

In this section, we discuss the interpretation of
::::::
interpret

:
our results in the light of how

:::
our choices and assumptions made may

have influenced the outcome
::::::::
outcomes

:
and we compare previous studies on similar topics

::::
them

::
to

:::::::
previous

::::::
studies.

We study drought trends on annual as opposed to sub-annual time scales, as long-term drought presents a greater risk for30

food security. We define the annual period to be from January to December. This definition is a natural choice for each of our

study regions, where the single or dual seasonal cycle peaks in precipitation (rainy seasons) and temperature do not extend

13



beyond December into the next year. The Jan–Dec definition has the consequence that multi-season droughts out of phase with

this period do not appear extreme in the observational time series used here, whilst they would appear extreme in
:::::
Whilst

::
it

::::
may

::
be

::::::::
preferable

::
to
::::
use

:::
soil

:::::::
moisture

:::
as a Jul–Jun series. For example, in the well-documented 2010/2011 drought event in eastern

Africa, only the second rainy season in 2010 and first rainy season of 2011 were exceptionally dry. This choice however does

not affect the resulting annual trends, which are similar for both the Jan–Dec and Jul–Jun annual definition.

On the annual time scale, we do not see strong explanatory relationships between the trends in the four studied variables.5

To gain insight in the relationships between the variables, we additionally looked at correlations on a sub-annual time scale.

Simple correlations between monthly precipitation, temperature, PET and soil moisture(not shown) support the conclusions

of Manning et al. (2018) on the influence of precipitation and PET on soil moisture at dry sites in Europe.They found that at

water-limited sites the influence of precipitation on soil moisture is much larger than the influence of temperature, via PET, on

soil moisture.In our study, we find the same for the driest regions and the driest months in the wetter regions, and for the more10

temperature-based PET schemes.

::::::
drought

::::::::
indicator,

:::::::::::
observations

:::
and

:::::::::
simulations

::
of
:::::::::::
precipitation

:::
are

::::
more

:::::::
reliable

::
in

:::
this

:::::
region

:::::::::::::::::::::::::::
(Coughlan de Perez et al., 2019).

::::::::::
Precipitation

:::
has

::
a
::::
large

::::::::
influence

:::
on

::::::::::
agricultural

:::::::
droughts

:::
and

::
is
::::::::
therefore

::::::::::
appropriate

::
to

:::
use

::
in

:::::::::
attribution

::::::
studies

::
in

:::::::
Eastern

::::::
Africa,

::::::::::::
supplementing

:::
the

::::::::
analysis

::
of

::::
soil

::::::::
moisture.

::::
The

::::::::
outcome

::
of

::::::::
previous

::::::
studies

::::
that

::::
have

::::::::
focussed

:::
on

:::::::::::
precipitation

::::::
deficits

::::
only

:::::::::::::::::::::::::::::::::::::
(e.g., Philip et al., 2018a; Uhe et al., 2018) are

::::
thus

::::
still

:::::::
relevant

:::
and

::::::::
compare

::::
well

::::
with

:::
our

:::::::::::
results—i.e.,

:::
that

:::
no15

::::::::
consistent

:::::::::
significant

:::::
trends

::
in

::::::::
droughts

::
are

::::::
found.

:
Looking at seasonal cycles — monthly means averaged over recent decades

— a
:
A

:
comparison between seasonal cycles of the different variables

::::::::
(averaging

:::
the

:::::::
monthly

::::::
means

::::
over

:::::
recent

:::::::
decades)

:
shows

that the seasonal cycle of soil moisture is similar to that of precipitation in all six study regions. In contrast, the inverse seasonal

cycle of temperature is not similar to that of soil moisture. Whether the PET
::
E0:seasonal cycle reflects elements of the soil

moisture cycle or not depends on the PET
::
E0 scheme used: temperature- or radiation-based schemes show a seasonal cycle that20

is similar to that of temperature, whereas more advanced schemes reflect a mixture between the seasonal cycles of precipitation

and temperature.
:
,
::
as

::::
they

::::
also

::::::::
synthesize

:::
the

::::::::
seasonal

::::
cycle

:::
in

::::::::
humidity,

:::::
which

::
is

:::::::
strongly

:::::::::
correlated

::
to

:::
that

:::
of

:::::::::::
precipitation.

We thus conclude that the influence of precipitation on soil moisture is higher than that of temperature or PET
:::
most

:::
E0:::::::

schemes.

This is supported by the synthesized results that show negligible or no trends in soil moisture and precipitation whereas the

trends in temperature and PET
::
E0:are strongly positive.25

If temperature has , via PET, an influence on trends in soil moisture
::::::
(through

::::
E0), we expect to see that the positive trend in

temperature is coupled to a drying trend in soil moisture
:::
soil

:::::::
moisture

:::::
trend. As we average over the annual scale, we may miss

parts of the season when this effect is strongest. Therefore we selected a region and period outside the rainy season, in which

the seasonal peak in temperature corresponds to a dip in soil moisture (region CK, months Feb–Mar), to inspect sub-annual

trends (not shown). Even then, we find that there is no negative trend in soil moisture accompanying the positive temperature30

trends.

While improving the data with respect to some characteristics, an additional uncertainty arises from the bias correction of

the GCM data prior to use in the hydrological model. The bias correction in ISIMIP was set up to preserve the
:::
We

:::::
study

::::::
drought

::::::
trends

::
on

::::::
annual

:::
as

:::::::
opposed

::
to

:::::::::
sub-annual

:::::
time

:::::
scales,

:::
as long-term trend, but it also decreases the daily variability
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by truncating extreme high values (e. g., in precipitation) (Hempel et al., 2013) . The most important element for our analysis35

is that it also increases the daily variability by removing excessive drizzle, which is often present in GCM precipitation data.

Prudhomme et al. (2014) noted that such a statistical bias correction can influence the signal of runoff changes but that
::::::
drought

:::::::
presents

:
a
::::::
greater

::::
risk

::
for

:::::
food

:::::::
security.

:::
On

:::
the

::::::
annual

::::
time

:::::
scale,

:::
we

::
do

:::
not

:::
see

::::::
strong

::::::::::
explanatory

:::::::::::
relationships

:::::::
between

:::
the

:::::
trends

:
in

:::
the

::::
four

:::::::
studied

:::::::
variables

:::::
(soil

::::::::
moisture,

:::::::::::
precipitation,

:::::::::::
temperature,

:::
and

::::
E0).

:::
To

::::
gain

::::::
insight

::::
into

:::
the

:::::::::::
relationships

:::::::
between

:::
the

::::::::
variables,

:::
we

::::::::::
additionally

:::::
looked

::
at
::::::::::
correlations

:::
on

:
a
:::::::::
sub-annual

::::
time

:::::
scale.

:::::::
Simple

:::::::::
correlations

::::::::
between

:::::::
monthly5

:::
soil

::::::::
moisture,

:::::::::::
precipitation,

::::::::::
temperature,

::::
and

::
E0::::

(not
::::::
shown)

:::::::
support

:::
the

::::::::::
conclusions

::
of

::::::::::::::::::::
Manning et al. (2018) on

:::
the

::::::::
influence

::
of

::::::::::
precipitation

::::
and

:::
E0 ::

on
::::
soil

:::::::
moisture

::
at
:::::
water

:::::::
limited

::::
sites

::
in

:::::::
Europe.

::::
They

::::::
found

:::
that

::
at
::::::::::::
water-limited

::::
sites

:::
the

::::::::
influence

::
of

::::::::::
precipitation

:::
on

:::
soil

::::::::
moisture

::
is

:::::
much

:::::
larger

::::
than

::::
that

::
of

::::::::::
temperature

:::
via

::::
E0.

::
In

:::
our

:::::
study,

:::
we

::::
find

:::
the

:::::
same

:::
for

:::
the

:::::
driest

::::::
regions

:::
and

:
the effect generally remains smaller than the uncertainty from GCMs and global impact models. By far the largest

difference we found in our analysis between trends in original and bias-corrected data was for temperature for IPSL in region10

NK: we found 1.9 K/K (95% CI 1.8 to 2.1 K/K)for the original trend and 1.4 K/K (95% CI 1.3 to 1.5 K/K)for the trend in

bias-corrected data
::::
driest

:::::::
months

::
in

:::
the

::::::
wetter

:::::::
regions,

:::
and

:::
for

:::
the

:::::
more

:::::::::::::::
temperature-based

:::
E0::::::::

schemes.
::::
This

::
is

::::::::::
presumably

::::::
because

::::::::::::::::
temperature-based

:::::::
schemes

:::::
(such

::
as

:::
the

::::::
Hamon

:::::::::
approach)

::
do

:::
not

::::::
reflect

::::
land

::::::::::::::::
surface-atmosphere

::::::::::
interactions

::
as

::::
well

::
as

::::
those

::::
that

:::
are

::::
also

::::::
driven

::
by

::::::::
humidity

::::
and

::::
wind

:::::
speed

:::::
(such

:::
as

:::
the

:::::::::::::::
Penman-Monteith

::::::::
approach)

:::
or,

::
to

::
a

:::::
lesser

::::::
degree,

:::
by

:::::::
radiation

:::::
(such

::
as

:::
the

:::::::::::::
Priestley-Taylor

:::::::::
approach).15

All other differences were smaller and non-significant.

:::::::
Previous

::::::
studies

::::
have

::::::
shown

:::
that

::::
both

:::
the

::
E0:::::::

scheme
:::
and

::::
their

::::
input

::::
data

:::
can

::::
have

::
a

::::
large

::::::::
influence

::
on

:::
E0 :::::

values
::::::::::::::::::::::::::::::::::::::::::
(Trambauer et al., 2014; Wartenburger et al., 2018).

:::
We

::::::
confirm

:::
this

:::::
using

:::
the

::::::::::::
CLM-ERA-PT

:::::::::::::::
(Priestley-Taylor),

:::::::::::::::
CLM-WFDEI-PT

:::
and

:::::::::::::
CLM-ERA-PM

::::::::::::::::
(Penman-Monteith)

:::::::
datasets

:::
(not

:::::::
shown).

::
In

::::
our

:::::
study

:::::::
regions,

::
E0::::::

values
:::
are

::::::::::
consistently

::::::
higher

:::::
when

:::::
using

:::
PM

::::
than

:::::
when

:::::
using

:::
PT.

::::
The

::::::::::
differences

::
in

:::::
trends

::
in

::
E0:::::

using
:::::
ERA

::
or

::::::
WFDEI

:::::
input

::
or

:::::
using

::
PT

::
or

::::
PM

::::
input

:::
are

:::::::::
sometimes

:::::::::
significant.

::::::::
However,

:::::::::
comparing

:::::
study

:::::::
regions,20

::::
there

::
is

::
no

::::::::::
consistency

::
in
:::
the

::::::::::
difference;

::
in

:::
four

::::
out

::
of

:::
the

:::
six

::::::
regions

:::
the

:::
PM

::::
data

::::::
shows

:
a
::::::
higher

:::::
trend

::::
than

:::
the

::
PT

::::
data

::::
and

::
in

:::
four

:::
out

:::
of

:::
the

::
six

:::::::
regions

:::::::
WFDEI

:::
data

::::::
shows

:
a
::::::
higher

::::
trend

::::
than

:::
the

:::::
ERA

::::
data.

:

A study by Rowell et al. (2015) discussed the possibility that climate model precipitation trends in East Africa are influenced

by
::
the inability of the models to

::::::
reliably

:
represent key physical processesreliably. In attribution studies on drought, especially

for this region, it is therefore high priority to extend model evaluation techniques to assess models’ representation of key25

physical processes. The approach taken in this paper has been to apply simple evaluation techniques on the seasonal cycle

and frequency distributions of readily available data and that results from models passing validation tests represent the status

of our current knowledge.
:
. Rainy seasons in this region are governed by large-scale processes, such as

::
El

:::::::::::::
Niño-Southern

:::::::::
Oscillation

:::::::
(ENSO)

::::::::
dynamics

:::
and

:
the shifting of the ITCZ and ENSO dynamics. The ability of a model to capture the seasonal

cycle in precipitation and temperature thus provides
::::::::::
Intertropical

:::::::::::
Convergence

::::
Zone

:::::::
(ITCZ).

:::
We

::::
view

:::
the

::::
tests

:::
we

:::::::
perform

:::
on30

:::::::
seasonal

:::::
cycle

:::
and

:::::::::
frequency

:::::::::::
distributions,

:::::
which

:::::::
provide some assurance that large-scale physical processes are reasonably

well describedby the model. We see the tests we perform as
:
,
::
to

::
be

:
a minimum requirement for model validation. However, to

::
To

:
improve the performance of models and to understand the discrepancies between models and observations, a much more

thorough investigation into the models’ representation of physical processes and feedbacks is required, such as demonstrated

15



by James et al. (2018) and encouraged by the IMPALA (Improving Model Processes for African Climate) project (https:35

//futureclimateafrica.org/project/impala/).

It is still unknown how vegetation will respond to substantial increases of CO2 concentration. Two counteracting effects

— physiological (restriction of stomatal openings leading to decreased evapotranspiration) and structural (increased leaf

area leading to more stomata and increased evapotranspiration) responses — are expected, but their net effect is unknown

(e.g. Wada et al., 2013) . So-called ‘dynamic vegetation models’ include these CO2 effects and there are indications that these5

models show a weaker response of drought to climate change (Wada et al., 2013; Prudhomme et al., 2014) . In this study our

selection of hydrological models is restricted by the variables we require, however, out of the four ISIMIP hydrological models

that match our criteria, one (LPJmL) uses dynamic vegetation modeling. The soil moisture response to increasing GMST in

LPJmL simulations is mid-range amongst the ISIMIP results. The PET response for LPJmL simulations is, however, somewhat

on the low side of the ISIMIP results. It has not been verified if this behaviour is linked to dynamic vegetation modelling, but10

with confidence intervals generally overlapping with the synthesized model outcome, there is no exceptional difference.

The approach taken in this paper towards uncertainty has been to Perform a multi-model and multi-observation analysis

that summarises what we know at the present moment, using readily available data and methods. Apply simple evaluation

techniques to readily available data, treating datasets that satisfy evaluation criteria equally and rejecting the others. Communicate

uncertainties from synthesis. A simple ‘yes’ or ‘no’ is not appropriate in this analysis where there is no clear significant positive15

or negative trend. Rather, the uncertainties (confidence intervals) and their origin (e.g. natural variability or model spread) are

given.

In the long term, a trend in PET
::
E0 only has meaning for crop growth if there is water available for evaporation

:::::::::::::::
evapotranspiration.

Much of eastern
::::::
Eastern Africa is in a water-limited evaporation regime. In the case that irrigation would be locally applied,

more water would become available for evaporation, shifting the situation away from a
:::::::::::
hydroclimate,

::::::::
requiring

::::::::
irrigation

:::
for20

::::
crop

::::::
growth.

::
In

:::::::
irrigated

:::::
areas

::::::
within

:::::
larger water-limited

:::::::
regions,

::
the

::::::::
increased

:::::
water

::::::::::
availability

:::::
shifts

::
the

:::::
local

:::::::::::
hydroclimate

::::
away

:::::
from

:::
the

::::::::::
surrounding

::::::::::::
water-limited regime and towards an energy limited regime. A trend in PET

::::::
towards

::
a

::::::
locally

::::::::::::
energy-limited

::::::
regime.

:::::::
Positive

::::::
trends

::
in

::
E0:seen in our analyses (especially if the analysis using

::::::
variety

::
of

:
different schemes

produces a robust PET
::
E0 trend) could then signify a trend in real evaporation

:::::
actual

:::
ET and would therefore be accompanied

by an increase in
::::
both irrigation water demand . Note

:::
and,

::
if
::::
that

:::::::
demand

:::
can

::
be

::::
met,

:::
in

::::
crop

::::::
growth.

:::::::::
However,

:
it
::::::
should

:::
be25

::::
noted

:
that irrigation is not accounted for by the models or reanalysis datasets used here.

Previous studies have shown that both the PET scheme and the input data used for calculation of PET can have a large

influence on PET values (Trambauer et al., 2014; Wartenburger et al., 2018) . We confirm this using the CLM-ERA-PT (Priestley-Taylor),

CLM-WFDEI-PT and CLM-ERA-PM (Penman-Monteith) datasets (not shown).In our study regions, PET values are consistently

higher when using PM then when using PT.The differences in trends in PET using ERA or WFDEI input or using PT or PM30

input are sometimes significant. However, comparing study regions, there is no consistency in the difference; in four out of the

six regionsthe PM data shows a higher trend than the PT data and
:::::
Trends

:::
in

::
E0:::::

away
:::::
from

:::::::
irrigated

::::::
regions

:::::
(i.e., in four out

of the six regionsWFDEI data shows a higher trend than the ERA data
:::::::::::
water-limited

:::::::
regions)

::::
will

::::::::
generally

::::::
denote

:::::
lower

:::
ET
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::::
rates

:::::::
(through

:::
the

:::::::::::::
complementary

::::::::
dynamics

:::::::
between

:::
E0:::

and
:::
ET

::::
that

::::::::
dominate

::
in

::::
such

::::::::
regions),

:::::
higher

:::::::
sensible

:::::::
heating

::
of

:::
the

:::::::::
atmosphere

:::::
from

:
a
::::
drier

:::::::
surface,

:::
and

::::::::::
consequent

::::::
greater

:::::::
drought

:::::::
exposure.35

There
:::::
There

:::
are

:::::
some

:::::::
factors

:::::::::
influencing

::::::::
droughts

::::
and

:::::::::
attribution

::::::
results

::::
that

:::
are

:::::::
beyond

:::
the

:::::
scope

:::
of

::::
this

:::::
paper.

::::
For

:::::::
example,

:::::
there

:
is some evidence that warm spells are increasing in length, particularly in Ethiopia and northern

:::::::
Northern

Somalia/Somaliland region (Gebrechorkos et al., 2019), as is the number of consecutive dry days in some parts of eastern

::::::
Eastern

:
Africa, which may have an impact on drought length and increase the rapidity of onset and the intensity of drought

(Trenberth et al., 2014).5

However, the overall impact on crops and food security during long-duration droughts on annual timescales is probably

insensitive to this.

It is possible
::::::::::
Furthermore,

::
it

::
is

:::::
likely that increasing temperatures have a negative impact on food security during droughts

in ways that are beyond the scope of this study
::::::
through, e.g., decreased immunity of livestock, or increased water demand for

cooling and water supply (Gebrechorkos et al., 2019, and references therein). In addition, in regions suffering from recent10

meteorological drought, non-meteorological factors such as increasing population and land-use changes also play a role in

worsening the declining vegetation conditions, even after precipitation returns to normal (Pricope et al., 2013).

:
It
::

is
::::

also
::::

still
::::::::

unknown
:::::

how
:::::::::
vegetation

::::
will

:::::::
respond

::
to

::::::::::
substantial

::::::::
increases

::
in

:::::
CO2 ::::::::::::

concentration.
::::
Two

::::::::::::
counteracting

:::::
effects

:::
—

:::::::::::
physiological

::::::::::
(restriction

::
of

::::::::
stomatal

::::::::
openings

::::::
leading

::
to

:::::::::
decreased

::::::::::::::::
evapotranspiration)

::::
and

::::::::
structural

:::::::::
(increased

:::
leaf

::::
area

::::::
leading

::
to

:::::
more

:::::::
stomata

:::
and

::::::::
increased

::::::::::::::::
evapotranspiration)

::::::::
responses

:::
—

:::
are

::::::::
expected,

:::
but

::::
their

:::
net

:::::
effect

::
is

::::::::
unknown15

::::::::::::::::::::
(e.g., Wada et al., 2013) .

:::::
There

:::
are

::::::::::
indications

::::
that

::::::::
‘dynamic

:::::::::
vegetation

:::::::
models’

:::
that

:::::::
include

:::::
these

::::
CO2::::::

effects
:::
and

:::::
show

::
a

::::::
weaker

:::::::
response

:::
of

::::::
drought

:::
to

::::::
climate

::::::
change

:::::::::::::::::::::::::::::::::::::
(Wada et al., 2013; Prudhomme et al., 2014) .

::::
One

:::
of

:::
the

::::::::::
hydrological

:::::::
models

::::
used

::
in

:::
this

:::::
study

::::::::
(LPJmL)

::::
uses

:::::::
dynamic

:::::::::
vegetation

::::::::
modeling

:::
but

::::
there

:::::
were

::
no

:::::::
notable

::::::
effects.

6 Conclusions

In this first multi-model, multi-method attribution study using several drought estimates in eastern
::::::
Eastern

:
Africa, we ad-20

dress the recurring question on whether increasing global temperatures exacerbate drought. Previous attribution studies for the

eastern
::::::
Eastern

:
Africa region have examined drought from a meteorological perspective (precipitation deficit) and have found

no clear trends above the noise of natural variability. In this study, we examined trends in eastern
::::::
Eastern

:
African drought from

an agricultural perspective (soil moisture) as well as the meteorological perspective (precipitation, temperatureand PET) ,
::::
and

::
E0:for six regions in eastern

::::::
Eastern Africa. We also investigate whether global-warming driven trends in these meteorological25

variables can be seen to contribute to trends towards drier soils. In this section, we draw conclusions for each variable in turn

and make recommendations.

Out of
::
Of the four studied variables, soil moisture is most closely related to food security

:
, via crop health. In standardized

soil moisture data, we found no discernible trends. The uncertainties in trends from model runs were found to be large and

there are no long observational runs available. This emphasizes that the use of an ensemble of models is imperative. Due to the30

large uncertainties in both soil moisture observations and simulations, we conclude that soil moisture cannot be relied upon on
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its own as a drought indicator and it is therefore important to examine other drought indicators as well. Besides, soil moisture

also has a physical lower limit: once the soil is dry it will remain dry. In water limited regions an analysis of precipitation is

thus a helpful addition.
:::
find

:::
no

::::
trend

::::::::
emerging

:::::
from

::::::
natural

:::::::::
variability.

Precipitation was found to have a stronger influence than temperature or PET
::
E0:on soil moisture variability, especially in

the drier study regions (the significant positive trend in temperature is not reflected by a decrease in soil moisture). However,

the confidence intervals on precipitation trend estimations are large and no clear trend is evident.

As expected from the increase in global temperatures, we find significant positive trends in local temperatures in all six5

regions. The synthesized trend is between 1.0 and 1.3 times the trend in GMST, which corresponds to a local temperature rise

of 1.1 to 1.4 degrees from pre-industrial times to 2018. However, the influence of this
:::::::
warming

:
on annual soil moisture trends

appears limited.

PET has a more direct link via evaporation to soil moisture than temperature. The trends in PET
:::
Soil

::::::::
moisture

::
is

:::::
more

::::::
directly

::::::
linked

::
to

:::
E0 :::

(via
::::
ET)

::::
than

::
it

::
is

::
to

::::::::::
temperature.

:::::::
Trends

::
in

::
E0:are predominantly positive, although in the regions NK10

and CK the uncertainty in this trend is large. This generally agrees with the positive trends in temperature. Similar to the results

for temperature, we do not find strong relations between PET
:::::
trends

::
in

::
E0:and soil moisturetrends. Nevertheless, the results can

still be of interest, especially in irrigated regions
:::
both

:::
for

:::::::
irrigated

:::::::
regions

:::::
where

::::
crop

::::::
growth

::
is

::::::
limited

::::
only

::
by

:::::::::::::
meteorological

::::::::
conditions

::::
and

:::
for

:::::::::::
water-limited

::::::
regions

::::::
where

:::
the

:::::::::
availability

::
of

:::::
water

::
to
:::::::::

evaporate
::::::
greatly

::::::::
constrains

::::::
forage

::::::
growth. Due to

large differences in results from different hydrological model runs, we recommend that PET
::
E0:attribution analyses be carried15

out using an ensemble of hydrological models. These should use various (observational) input datasets and driving GCMsand

cover various PET schemes , in order ,
::::::::
although

:::
the

:::::::
decision

::
to

:::::
cover

::::::
various

:::
E0:::::::

schemes
::
is
::
a

:::::::
trade-off

:::::::
between

:::
the

::::::
desire to

be representative of the uncertainty surrounding all valid approaches and
:::::::::
approaches

::::::::
currently

::
in

:::
use

:
not bias results towards a

particular method .
:::::
(which

::
is
:::::
what

::
we

:::::
leant

:::::::
towards

::::
here

::
by

:::::::::
including,

:::
for

:::::::
example,

:::
the

::::::::::::::::
temperature-based

::::::
Hamon

:::::::::
approach)

:::
and

:::
the

:::::
need

::
to

::::::
adhere

::
to

:::::::
physical

:::::
rigor

::
in

:::::
using

::::
the

::::::::
complete

::::
suite

::
of

:::::::
drivers

:::
and

:::
an

:::
E0 ::::::::::::::

parameterization
::::
that

::::::
reflects

:::
all20

::::::
relevant

:::::::::
dynamics

::::
(e.g.,

::
in

:::
the

:::::::::::::::
Penman-Monteith

:::::::::
approach).

:

Whilst it may be preferable to use soil moisture as a drought indicator , observations and simulations of precipitation

are more reliable
:::
We

::::::::
conclude

::::
that,

::::::::
although

:::
soil

::::::::
moisture

::
is

:::
the

:::::::
prefered

::::::::
indicator

::
of

::::::::::
agricultural

::::::::
drought,

:::
we

::::::::::
recommend

:::
that

::::
any

:::
soil

::::::::
moisture

:::::::
analysis

:::
be

::::::::::::
supplemented

::::
with

:::::::::::
precipitation

:::::::
analysis

::::
due

::
to

::::
the

:::::::
superior

::::::::
reliability

:::
of

:::::::::::
precipitation

:::::::::::
measurements

::::
and

:::
the

::::
large

::::::::
influence

::
of

:::::::::::
precipitation

::
on

:::::::
drought

:
in this region(Coughlan de Perez et al., 2019) . Precipitation25

has a large influence on agricultural droughts and is therefore appropriate to use in attribution studies in eastern Africa,

supplementing the analysis of soil moisture. The outcome of previous studies that have focussed on precipitation deficits

only (e.g., Philip et al., 2018a; Uhe et al., 2018) are thus still relevant and compare well with our results, that no consistent

significant trends on droughts are found.
:::::::
Besides,

:::
soil

::::::::
moisture

::::
also

:::
has

::
a
:::::::
physical

:::::
lower

:::::
limit:

:::::
once

:::
the

::::
soil

::
is

:::
dry

::
it
::::
will

::::::
remain

:::
dry.

::
In

:::::::::::
water-limited

:::::::
regions

::
an

:::::::
analysis

::
of

:::::::::::
precipitation

::
is

::::
thus

:
a
::::::
helpful

::::::::
addition.30

Finally, communication of the uncertainties in the analyses of soil moisture, precipitation, temperatureand PET ,
::::

and
:::
E0

(and any drought indicators) to policy makers, the media,
:
and other stakeholders is crucial. Without

:::::::::::::
Decision-makers

:::::
need

::
to

:::::::
properly

::::::
weight

:::
and

:::::::::
synthesise

:::::::
streams

::
of

:::::::::
potentially

:::::::::
competing

::::::::::
information

:::::
from

:::
the

::::::
variety

::
of

:::::::
models,

:::
but

:::::::
without insight
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into the uncertainties in synthesized trends in the different drought indicators, conclusions become meaningless and results can

easily be misinterpreted
:::
they

:::
are

:::::::
missing

:::
this

::::::
crucial

:::::::::::
information.

::::
They

:::::
need

::
to

:::::
know

::::
how

:::::
much

:::
the

:::::::
scientists

:::::
trust

::::
their

::::
own

::::::::::
conclusions,

:::
lest

::::::
results

:::
are

::::::::::::
misinterpreted

:::
and

::::::::::
conclusions

:::::::
become

::::::::::
meaningless.5
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Figure 4. Illustrative examples of the synthesized values of trends per degree
::
1K

:
GMST rise for soil moisture [

:
/K] (top left

:
a), PET

:::::::::
precipitation

:
[
::::::::
mm/day/K] (top right

:
b), precipitation

:::::::::
temperature [

:::
K/K] (bottom left

:
c) and temperature

::
E0 [

::::::::
mm/day/K] (bottom rightd) for

region SS. Black bars are the average trends, colored boxes denote the 95% CI. Blue represents observations and reanalyses, red represents

models and magenta the weighted synthesis. Coloured bars denote natural variability, white boxes also take representativity / model errors

into account,
:
if applicable (see Sect. 3). In the synthesis, the magenta bar denotes the weighted average of observations and models and the

white box denotes the unweighted average. Soil moisture trends are based on standardized data, the other trends are absolute trends.
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Figure 5. Summary of the synthesized values for soil moisture
:
in [

::
/K], PET, precipitation and

:
in
:
[
::::::::
mm/day/K],

:
temperature in [

:::
K/K],

:::
and

:::
E0

:
in
:

[
:::::::

mm/day/K]
::
in the six regions. The magenta bars denote the weighted averages of observations and models and the white boxes denote

the unweighted averages.
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