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Abstract 12 

We present an extension of the dynamic global vegetation model LPJmL to simulate planted forests 13 

intended for C sequestration. We implemented three functional types to simulate plantation trees in 14 

temperate, tropical, and boreal climates. The parameters of these functional types were optimized to 15 

fit target growth curves (TGCs). These curves represent the evolution of stemwood C over time in 16 

typical productive plantations and were derived by combining field observations and LPJmL estimates 17 

for equivalent natural forests. While the calibrated model underestimates stemwood C growth rates 18 

compared to the TGCs, it represents substantial improvement over using natural forests to represent 19 

afforestation. Based on a simulation experiment in which we compared global natural forest versus 20 

global forest plantation, we found that forest plantations allow for much larger C uptake rates on the 21 

time scale of 100 years, with a maximum difference of a factor 1.9, around 54 years. In subsequent 22 

simulations for an ambitious but realistic scenario in which 650 Mha (14% of global managed land, 23 

4.5% of global land surface) is converted to forest over 85 years, we found that natural forests take up 24 

37 PgC versus 48 PgC for forest plantations. Comparing these results to estimations of C sequestration 25 

required to achieve the 2oC climate target, we conclude that afforestation can offer a substantial 26 

contribution to climate mitigation. Full evaluation of afforestation as a climate change mitigation 27 

strategy requires an integrated assessment which considers all relevant aspects, including costs, 28 

biodiversity, and trade-offs with other land-use types. Our extended version of LPJmL can contribute 29 

such an assessment by providing improved estimates of C uptake rates by forest plantations. 30 
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1 Introduction 1 

It is increasingly clear that the stringent climate targets of the Paris Agreement cannot be achieved 2 

without negative emissions, i.e. net removal of carbon (C) from the atmosphere, later during the 21st 3 

century to compensate for emissions in the first half of the century (Gasser et al., 2015; Rogelj et al., 4 

2018). Of the many proposed techniques to achieve C uptake, the two options currently most 5 

discussed for large-scale implementation are bioenergy in combination with carbon capture and 6 

storage and afforestation (Williamson, 2016). Both approaches will require considerable amounts of 7 

land and thus compete with other land-use functions, for example food production and biodiversity. 8 

While bioenergy is receiving considerable attention (van Vuuren et al., 2013), less consideration has 9 

been given to afforestation as a tool for land-based mitigation. C uptake occurs when natural 10 

vegetation is allowed to grow back on former croplands and pasture. While deliberately taking 11 

cropland or pasture out of production may involve costs, the  direct management costs of natural 12 

regrowth are negligible. The carbon uptake rate of such natural regrowth, however,  will usually 13 

achieve only a fraction of the potential C uptake rate at short time scales. Considerably higher C uptake 14 

rates are possible by planting forests (Paquette and Messier, 2010). Assisting regrowth by planting 15 

trees can substantially boost growth rates compared to natural forests because initial stages of primary 16 

succession (with herbaceous or shrub vegetation) are skipped and because fast-growing tree species 17 

can be selected. Moreover, trees are usually planted as saplings, cultivated under controlled 18 

conditions, which improves chance of successful establishment compared to development from seeds 19 

(Gladstone and Thomas Ledig, 1990). 20 

Assessing the potential of land-based approaches for climate mitigation requires reliable estimates of 21 

C sequestration rates. Process-based models, such as dynamic global vegetation models (DGVMs), are 22 

a crucial tool for providing these estimates. DGVMs simulate carbon stocks and fluxes based on 23 

mechanistic descriptions of underlying processes, such as photosynthesis and organic matter 24 

decomposition in relation to environmental conditions. However, since the focus of DGVM 25 

development has traditionally been on natural ecosystems, very few of these models have an explicit 26 

representation of planted forests. Therefore, previous modelling studies on large-scale afforestation 27 

represented afforestation as natural regrowth (Krause et al., 2017), in some cases applying corrections 28 

to account for higher growth rates (Humpenoder et al., 2014; van Minnen et al., 2008). 29 

In this paper we present an updated version of the DGVM LPJmL (Bondeau et al., 2007; Schaphoff et 30 

al., 2013), modified to explicitly represent afforestation. Three new plant functional types have been  31 

implemented in order to represent planted forests in temperate, tropical, and boreal regions. The 32 

parameters of these plantation types were estimated based on observations of stemwood carbon from 33 

real-world forest plantations. Using this new LPJmL version we present a global assessment of 34 
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potential carbon sequestration rates in forest plantations and compare these to rates achieved by 1 

letting forests grow back naturally. 2 

2 Methods 3 

2.1 The LPJmL dynamic global vegetation model 4 

LPJmL (Lund-Potsdam-Jena Managed Land) is a global process-based model simulating vegetation 5 

dynamics and fluxes of carbon and water in the vegetation and soil of terrestrial ecosystems (Bondeau 6 

et al., 2007; Schaphoff et al., 2013; Sitch et al., 2003), including agricultural land and biomass 7 

plantations for bioenergy production (Beringer et al., 2011). The model runs primarily on a daily time 8 

step, except for C allocation, vegetation dynamics, and disturbances for natural vegetation and 9 

biomass plantations, which are resolved annually. Forcing consists of monthly climate variables (air 10 

temperature, precipitation, cloud fraction, and number of wet days per month)—which are 11 

interpolated to daily values (Gerten et al., 2004)—and annual atmospheric CO2 concentrations. Using 12 

a combination of plant physiological relations, generalized empirically established functions, and plant 13 

trait parameters, LPJmL simulates processes such as photosynthesis, plant growth, maintenance and 14 

regeneration losses, fire disturbance, soil moisture dynamics, runoff, evapotranspiration, irrigation 15 

and vegetation structure (Schaphoff et al. 2013). Natural vegetation is represented as a number of 16 

plant functional types (PFTs): aggregated vegetation classes representing variation in leaf-type 17 

(broadleaf, needleleaf), phenology (summergreen, evergreen, raingreen), and climate preference 18 

(boreal, temperate, tropical). Most model parameters related to vegetation are defined separately for 19 

each PFT. The model simulates the occurrence of each PFT based on bioclimatic limits and competition 20 

with other PFTs for resources. Agricultural ecosystems are handled in a separate module and are 21 

represented by a range of crop functional types (Bondeau et al., 2007). Additionally, two woody and 22 

one herbaceous PFTs are implemented to simulate short-rotation bioenergy plantations (Beringer et 23 

al., 2011). Area fractions specifying allocation to different land-use types are part of the model input. 24 

Finally, the model can simulate river discharge and surface water reservoirs, and several types of 25 

irrigation. LPJmL has been coupled to the IMAGE integrated assessment model, serving as the land 26 

surface component (Müller et al., 2016; Stehfest et al., 2014). 27 

In all simulations for this study the model was forced by semi-constant monthly climate input, 28 

representative for the period 1980–2010. This dataset was derived by repeating a cycle of detrended 29 

time series for this period, taken from the CRU TS3.23 global gridded (0.5°×0.5° degrees) climate 30 

dataset (Harris et al., 2014). For simplicity we chose to ignore the effect of atmospheric CO2 31 

concentration change at this stage, hence this variable was held fixed at the mean global value for 32 
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1980–2010 (362.4 ppmv). Fire disturbance was not considered. Further information on the model 1 

input and configuration is given in subsequent sections. 2 

2.2 Forest plantations 3 

LPJmL was extended to represent forest plantations. Specifically, a new land-use type was added, as 4 

well as three functional types to represent plantation trees in temperate, tropical, and boreal 5 

plantations. These types—referred to as forest plantation functional types (FPFTs)—are derived from 6 

the natural PFTs temperate broadleaved summergreen tree, tropical broadleaved evergreen tree, and 7 

boreal needleleaved evergreen tree, respectively. The occurrence of the FPFTs is subject to the same 8 

establishment and mortality rules used for natural PFTs. However, the bioclimatic limits are set such 9 

that they do not overlap, hence co-occurrence of different FPFTs in a single grid cell is rare, occurring 10 

only when climate fluctuates near a boundary between two types.. 11 

Structurally, the implementation largely follows that of the woody bioenergy plantations implemented 12 

in LPJmL (Beringer et al., 2011), which in turn are based on equivalent natural PFTs. Contrary to 13 

bioenergy trees, forest plantations are not automatically clear-cut after a fixed rotation period, but a 14 

fraction of the plantation fraction may be harvested, specified as model input. However, for the 15 

purpose of this study, harvest was set to zero. Forest plantation PFTs also differ from other PFTs with 16 

regard to establishment of new trees. A fixed initial planting density (𝑃init) was introduced, which 17 

determines the number of trees per unit area at planting. After planting, establishment of new trees 18 

occurs similar to natural PFTs: at fixed maximum rate, downscaled according to an exponentially 19 

declining function of foliar projective cover. Generally, stand density will decrease after plantation due 20 

to self-thinning, implemented according to Reineke’s rule (Reineke, 1933), which relates stem 21 

diameter to crown area. When the area-fraction forest plantations in a given grid cell increases over 22 

time, establishment is determined as a combination of 𝑃init and the standard establishment rate, 23 

weighted according to the old forest plantation fraction and the fraction added. 24 
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2.3 Calibration 1 

2.3.1 General setup 2 

To obtain realistic growth rates, we calibrated several FPFT-specific parameters, based on published 3 

observed growth data for forest plantations. Ideally, calibration of dynamic vegetation models should 4 

be performed using detailed observations for a given site. However, this requires a large amount of 5 

data, both for model input and to compare to model output to assess performance. While much data 6 

on growth of forest plantations has been published, the number of forest plantation sites for which 7 

calibration data as well as data for model input are available for sufficiently long time periods is not 8 

enough to derive globally applicable parameter sets. Therefore, we chose a different approach. Rather 9 

than aiming to reproduce site-level observations, we calibrated the model in order to obtain desired 10 

mean biome-level behavior, for each of the three FPFTs. For every iteration in the calibration, the 11 

model was run for a selection of 100 grid cells from the spatial domain of the FPFT being calibrated. 12 

Subsequently, model output for the relevant variables were aggregated over all grid cells and 13 

compared to observed values to determine model performance. 14 

Within the spatial domain for a given FPFT, many grid cells exist where growth is marginal due 15 

unfavorable climate and/or soil properties. The observations used in the calibration are not 16 

representative for these locations, since forest plantations from which data have been retrieved can 17 

be assumed to represent locations where productivity is sufficient for economic profitability. 18 

Therefore, rather than choosing grid cells randomly, the selection was limited to locations for which 19 

LPJmL simulates relatively high productivity. This was done based on results from a 300-year simulation 20 

with only natural vegetation, in the same setup as used in the calibration (see section 2.3). For each 21 

FPFT, 100 cells were selected for which the simulated stemwood C storage of the corresponding 22 

natural PFT (see section 2.2) exceeds the 70% percentile over the complete domain where this PFT is 23 

 

Figure 1. Location of the grid cells included in calibration simulations (100 per FPFT). The map shows simulated 
stemwood C (kgC m-2) for a simulation with potential natural vegetation. 
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dominant, i.e. has highest foliar projective cover (Fig. 1). During the calibration, LPJmL was run only for 1 

these cells, with land-use type set to forest plantations. 2 

2.3.2 Observations 3 

Target growth curves 4 

Time series of stand-level stemwood C were collected from various sources in the literature. For the 5 

tropical FPFT we used data from Brown et al. (1986), who derived time series of stemwood biomass 6 

for several species and species groups for tropical forest plantations. Data from natural poplar (populus 7 

x euramericana) forests were taken from Cannell (1982) for the calibration of the temperate FPFT. 8 

Finally, for the boreal FPFT we used data for Scots Pine (Pinus Sylvestris) plantations from Vanninen et 9 

al. (1996). Outliers in the observations were removed using Hampel filtering (Pearson, 2002). The data 10 

are depicted in Figure 2. 11 

Since most forest plantations are grown for timber production, they are harvested approximately at 12 

the optimal rotation length for maximum wood production, which is well before the trees reach 13 

maturity. Hence, growth data for higher tree ages are scarce. Calibrating LPJmL against these 14 

observations alone would result in excessive weight on the earlier part of the curve, leading to 15 

unpredictable results for the later part. Therefore, we did not use the observations directly in the 16 

LPJmL calibration but used them to derive growth curves representing the typical growing behavior of 17 

productive plantations for each FPFT. We refer to these as the target growth curves (TGCs). The general 18 

structure of the TGCs is given by the Chapman-Richards function, which is widely used to model forest 19 

growth (e.g. Von Gadow and Hui, 1999). It defines the stemwood C (𝐶SWC) at time 𝑡 as: 20 

 𝐶SWC(𝑡) = 𝐶SWC,max(1 − 𝑒−𝑘 𝑡)
𝑝

, (1) 

where 𝐶SWC,max is the maximum 𝐶SWC, 𝑘 is the growth rate, and 𝑝 is a shape parameter determining 21 

the timing of maximum growth. These parameters were estimated using a Bayesian non-linear 22 

regression approach. The scarcity of high-age observations was solved by constraining 𝐶SWC,max using 23 

a prior distribution based on LPJmL output for the corresponding natural PFTs, from the 300-year 24 

simulation used to select the calibration grid cells (see section 2.3.1). Specifically, for each FPFT we 25 

used the mean simulated stemwood C of the last 10 simulation years, averaged over the 100 26 

calibration cells as a representative value. 27 

The parameters were estimated using MCMC sampling. The sample with highest posterior density, 28 

together with the variances over the marginal posterior distributions, were used in the LPJmL 29 

calibration. Further details are given in the supplemental text. 30 
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Additional constraints 1 

Initial tests showed that parameter sets derived by calibration with the TGCs alone result in 2 

unrealistically high values of net primary production (NPP), leading to similarly high litter fluxes and 3 

soil carbon storage. This was traced to a higher carbon use efficiency (CUE)—the ratio of NPP to gross 4 

primary productivity—and a lower vegetation carbon turnover time (𝜏vegC; vegetation C to NPP ratio) 5 

compared to the natural PFT counterparts. Therefore, to assure realistic carbon fluxes and storage, we 6 

implemented additional constraints for these variables in the calibration. These constraints are based 7 

on LPJmL simulations for the natural PFT counterparts of the FPFTs, similar to the maximum stemwood 8 

C of the target growth curves (see Table 2 and Figure 4).  9 

Additionally, it was found that certain parameter sets, while leading to acceptable mean results, cause 10 

simulated trees for certain cells to die-off repeatedly at regular intervals. In order to avoid this we 11 

modified the calibration such that a penalty was added to the cost function when this occurs. 12 

Table 1. LPJmL parameters included in the calibration. Prior mode refers to the most probable value indicated by 
the prior distribution. 

Parameter Description Units 

Temperate Tropical Boreal 

Prior 

mode 
Estimate 

Prior 

mode 
Estimate 

Prior 

mode 
Estimate 

𝜶𝒂 
Fraction of PAR assimilated at 

ecosystem level, relative to leaf level 
- 0.5 0.61 0.5 0.60 0.5 0.53 

𝒈𝐦𝐢𝐧 Minimum canopy conductance mm s-1 0.5 0.62 0.5 0.48 0.3 0.28 

𝑬𝐦𝐚𝐱 Maximum transpiration rate mm d-1 5 5.5 7 11.7 5 6.07 

𝒓 Maintenance respiration coefficient gC gN-1 d-1 1.2 1.5 0.2 0.16 1.2 1.2 

𝒌𝐚𝐥𝐥𝐨𝐦𝟏 
Allometry parameter 1; relates crown 

area to stem diameter 
- 100 126 100 166 110 86.4 

𝒌𝐚𝐥𝐥𝐨𝐦𝟐 
Allometry parameter 2; relates tree 

height to stem diameter 
- 40 53.9 40 41.1 40 36.5 

𝒌𝐚𝐥𝐥𝐨𝐦𝟑 
Allometry parameter 3; relates tree 

height to stem diameter 
- 0.67 1.02 0.67 0.84 0.67 1.2 

𝐥𝐫𝐦𝐚𝐱 
Leaf to root ratio under non-water 

stressed conditions 
- 1 1.2 1 1.5 1 1.5 

𝐂𝐬𝐚𝐩𝐰𝐨𝐨𝐝;𝐬𝐚𝐩𝐥 Sapwood C of saplings gC m-2 1.2 1.02 1.2 1.2 1.2 1.4 

𝐋𝐀𝐈𝐬𝐚𝐩𝐥 Leaf area index of saplings - 1.5 1.4 1.5 1.4 1.5 1.7 

𝜶𝐥𝐞𝐚𝐟 Leaf longevity months 0.5 0.46 2 1.4 4 4.0 

𝝉𝐬𝐚𝐩𝐰𝐨𝐨𝐝 Turnover time of sapwood yr 20 20 20 46.3 20 15.7 

𝝉𝐥𝐞𝐚𝐟,𝐫𝐨𝐨𝐭 Turnover time of leaves and roots yr 1 1.3 2 1.8 4 4.7 

𝑷𝐢𝐧𝐢𝐭 Planting density m-2 0.15 0.15 0.15 0.15 0.15 0.17 

𝒌𝐦𝐨𝐫𝐭𝟏 Maximum mortality rate yr-1 0.03 0.064 0.03 0.058 0.03 0.048 
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2.3.3 Parameter estimation 1 

In the calibration 15 parameters were estimated, separately for each FPFT (Table 1). The calibration 2 

was performed on a transformed scale (logit for 𝛼𝑎; log for all other parameters), in view of the lower 3 

bound at zero (and upper bound at 1 for 𝛼𝑎). We applied a Bayesian cost function, including 4 

informative prior distributions. Priors express belief about reasonable parameter values before the 5 

calibration in the form of probability distributions and help to avoid unrealistic values, particularly for 6 

parameters that have little influence on the relevant model output. The priors were chosen such that 7 

their central tendency reflects existing parameter values for the corresponding natural PFTs, with a 8 

relatively wide variance to avoid overly strong influence on the calibration. Full specification of the 9 

priors is given in supplemental text S1. 10 

Similar to the parameters, all observations were transformed in the calibration (logit for CUE; log for 11 

all other observations). For the calibration simulations, LPJmL was started from zero vegetation and 12 

soil C and run for a period of 300 years, sufficient for the vegetation C to reach equilibrium with 13 

reasonable parameter values. LPJmL simulates heartwood and sapwood C pools, but does not 14 

distinguish between stem, branches, and coarse roots. For the purpose of the calibration, we assumed 15 

that all heartwood and 66% of the sapwood is located aboveground (Müller et al., 2016), and 84% of 16 

aboveground wood is located in the stem (which is representative for mature trees (Pretzsch, 2010).  17 

After simulation, the Chapman-Richards function was fitted to the time-series of simulated stemwood 18 

C for the 100 grid cells (using non-linear least squares) to derive FPFT-mean estimates of 𝐶SWC,max, 𝑘, 19 

and 𝑝 based on LPJmL predictions. Carbon use efficiency and vegetation turnover time were 20 

determined for the last 10 years of the simulation, averaged over the 100 grid cells. The observations 21 

were subsequently compared to the corresponding observations to determine log-likelihood, and 22 

combined with log prior density to determine the overall cost 𝐶(𝜃) for the given parameter set 𝜃. 23 

Further details are given in supplemental text S2. 24 

Table 2. Observations and corresponding fits for the 100 included grid cells included in the calibration. 
Observed values correspond to the mode of the likelihood function. 

Symbol Description Units 
Temperate Tropical Boreal 

Obs. Fit Obs. Fit Obs. Fit 

𝐂𝐒𝐖𝐂,𝐦𝐚𝐱 
Growth curve parameter; 

maximum stemwood C 
kgC m-2 6.77 6.45 15.62 15.74 7.45 7.56 

𝒌 Parameter of growth curve yr-1 0.197 0.0420 0.0566 0.0301 0.0500 0.0257 

𝒑 Parameter of growth curve - 3.91 3.37 1.59 1.69 4.28 4.64 

𝐂𝐔𝐄 
Carbon use efficiency; NPP 

to GPP ratio 
- 0.380 0.342 0.458 0.448 0.460 0.427 

𝝉𝐯𝐞𝐠𝐂 
Vegetation C turnover time; 

Vegetation C to NPP ratio 
yr 16.86 18.37 21.92 17.99 22.27 19.52 
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The optimal parameter set (with minimal value of 𝐶) was derived using the genoud algorithm (Mebane 1 

Jr. and Sekhon, 2011) which combines a genetic algorithm with a gradient search approach. This 2 

algorithm has previously been applied to calibrate LPJmL (Forkel et al., 2014). Additional description is 3 

given in supplemental text S2. 4 

2.4 Global simulations 5 

After calibration, several global simulations were performed. First, in order to assess sequestration 6 

potential of afforestation, a simulation was run in the same setup as used for the calibration, i.e. 7 

starting with zero vegetation and soil C and with land fully allocated to forest plantations and running 8 

for 300 years so that vegetation C pool can reach equilibrium. Additionally, a simulation with land fully 9 

allocated to natural vegetation was performed, to compare natural regrowth and afforestation as land-10 

based mitigation options. 11 

Second, we applied the model for an ambitious scenario of large-scale afforestation, assuming that 12 

from 2015 onwards approximately 14% of global managed land is (corresponding to 650 Mha or 4.5% 13 

of global land surface) gradually replaced by forest plantations over the course of 85 years. This 14 

afforestation area is in line with the average land area used for land-based mitigation (both bio-energy 15 

and afforestation) in 1.5 degree mitigation scenarios in Integrated Assessment Models (Doelman et 16 

al., in review; Rogelj et al., 2018). To bring soil C to reasonable values, the simulation was initialized by 17 

two spin-up phases: 1) a 1000-year phase with natural vegetation only until 1901, and 2) a phase from 18 

1900 to 2015 with transient cropland and pasture fractions, based on the HYDE dataset (Klein 19 

Goldewijk et al., 2010). From 2015 forest plantation area was increased and crop and pasture area 20 

was, balancing each other so that total area of managed (i.e. non-natural) land remained constant. 21 

From 2100 the simulation was continued for another 50 years with constant land-use. For this analysis, 22 

two complementary simulations were performed. First, a simulation where fractions of natural 23 

vegetation were increased, instead of forest plantations, and second, a “baseline” simulation where 24 

land-use fractions were held constant in time from 2015. Supplemental Figures S2 and S3 depict the 25 

development of land-use fractions for the three scenarios. 26 

3 Results 27 

3.1 Target growth curves 28 

Figure 2 depicts the stemwood C observations for the three FPFTs, LPJmL simulations for the 29 

corresponding natural PFTs, and the target growth curves (TGCs) resulting from the fitting procedure. 30 

The values of the maximum stemwood C (𝐶SWC,max), growth rate (𝑘), and shape parameter (𝑝) and 31 

their marginal variances are given in Table 2 (see also Figure S1). As expected, the observations show 32 

substantially higher growth rates than simulated for the natural PFTs, as well as an earlier timing of 33 
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maximum growth. The TGCs represent a compromise between the observations and the 𝐶SWC,max for 1 

natural PFTs, predicted by LPJmL: the initial high growth rate is representative for the observations, 2 

while 𝐶SWC,max is closer to that of the simulated natural PFTs and notably lower than the level 3 

indicated by the observations.  4 

The tropical FPFT has substantially higher 𝐶SWC,max, approximately twice as high as the other two 5 

FPFTs. With respect to the relative growth rate 𝑘, however, the tropical FPFT is comparable to the 6 

boreal FPFT. The temperate FPFT approaches its maximum stemwood approximately four times faster. 7 

The boreal TGC has the highest value of 𝑝, resulting in a later timing of maximum growth. 8 

 
Figure 2. Target growth curves for stemwood C, associated observations and LPJmL output for natural vegetation 
in the cells selected for calibration. 
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Figure 3. Prior distributions and estimated final values of the FPFT parameters estimated in the calibration. The 
boxplots indicate the 5% and 95% percentiles (whiskers) the median (red line) and 25% and 75% percentiles (box) 

or the priors. The final parameter estimate is indicated by the asterisk (∗). See Table 1 for explanation of the 

parameters. 

 
Figure 4. Ranges of the observations used in the calibration and LPJmL estimates after calibration. The boxplots 
indicate the 5% and 95% percentiles (whiskers) the median (red line) and 25% and 75% percentiles (box) of the 

likelihood function. The final fitted value is indicated by the asterisk (∗). CSWC,max: maximum stemwood C, 𝑘: 

growth rate; 𝑝: shape factor, CUE: carbon use efficiency (NPP to GPP ratio); 𝜏vegC:vegetation C turnover time 

(vegetation C to NPP ratio). 
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3.2 LPJmL calibration 1 

The parameter estimates resulting from the calibration are shown in Figure 3, together with the range 2 

of the prior distributions. Most estimates are within interquartile range of the priors, but for several 3 

parameters the calibration resulted in relatively strong changes, in particular 𝑘mort1, which controls 4 

mortality due to low growth efficiency. Specifically for the tropical FPFT, the estimates also clearly 5 

deviate from the prior for 𝐸max, 𝑘allom1, lrmax, and 𝜏sapwood.  6 

The ranges of the observed variables are depicted in Figure 4, together with the LPJmL predictions for 7 

the calibration grid cells, based on the optimized parameter sets. The parameter CSWC,max, is fit well 8 

by the model for all FPFTs. However, 𝑘 is clearly underestimated for all three FPFTs, compared to the 9 

observed ranges. This affects the simulated growth curve for stemwood C, as shown in Figure 5. In the 10 

LPJmL simulation, vegetation needs a longer time to reach its maximum stemwood biomass than the 11 

target growth curve. Nevertheless, the growth rate based on the optimized parameters represents a 12 

substantial improvement compared to the natural PFT counterparts. The carbon use efficiency (CUE) 13 

and vegetation turnover time (𝜏vegC) are also reasonably well fitted. 14 

 

 
Figure 5. Predicted stemwood C for 100 calibration grid cells of each FPFT based on the optimal parameter 

sets. Note the different scales of the y axes. 
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3.3  Global simulations 1 

3.3.1 Global afforestation and natural regrowth 2 

Figure 6 depicts the predicted spatial distribution of forest plantation functional types for a global 3 

simulation experiment with land fully allocated to forest plantations. The total area for the temperate, 4 

tropical and boreal plantation types is 2,472 Mha (1010 m2), 6,242 Mha, and 3,094 Mha, respectively, 5 

corresponding to 17%, 43%, and 22%, of global land surface. In 2,579 Mha (18%) no tree growth is 6 

simulated due to a too cold or too dry climate. Note that in many non-marginal regions tree growth 7 

may still be very low due to unfavorable conditions—the depicted distribution simply results from the 8 

bioclimatic limits set in the model. The distribution the FPFTs corresponds roughly to zones C, A, and 9 

D of the first level of the Köppen climate classification (Peel et al., 2007). Since there is no type for 10 

forest plantations in arid climates, the three FPFTs extend also into desert regions. 11 

The global vegetation C stock over time is depicted in Figure 7a (cf also Figure S2). Tropical plantations 12 

contribute most to C storage due to their larger area and higher productivity. Comparison with the 13 

simulation where all land is allocated to natural vegetation shows considerably faster C uptake for 14 

forest plantations (Figure 7b), with a maximum difference of 308 PgC (193%), after 54 years. After 300 15 

 

 
Figure 6. Spatial distribution of the different forest plantation 
functional types resulting from the bioclimatic limits. In marginal 
regions no trees are simulated, but grass may be present. 

 

 
Figure 7. Global total ecosystem C over time for simulations with global forest plantations or global natural 
vegetation. (a)  vegetation C storage per biome for the global forest plantation simulation only; (b) C storage per 
compartment for both simulations. 
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years, global vegetation C is 102 PgC higher (112%) for afforestation simulation. Soil and litter C storage 1 

is also proportionally higher for forest plantations. Note that the soil and litter C uptake rate is 2 

extremely high due to the fact that the simulation was started with zero C. In reality soil C will already 3 

be present before land-use change and uptake will be much slower, possibly even negative, depending 4 

on previous land-use. 5 

The potential for C uptake is illustrated by the mean annual increment (MAI) of vegetation C since the 6 

start of plantation (Figure 8). There are remarkable differences between the two simulations. After an 7 

initial similar increase, MAI sharply drops after approximately 10 years for natural regrowth, while for 8 

afforestation MAI keeps rising until approximately 30 years. The behavior for natural regrowth can be 9 

explained by vegetation succession, leading to a shift from grasses to trees. This succession does not 10 

occur for forest plantations, where trees start growing immediately, resulting in a substantially higher 11 

MAI in the early part of the simulation. From spatial differences in MAI after 50 years it is evident that 12 

tropical regions contribute most to this difference. 13 

3.3.2 Transient afforestation and natural regrowth 14 

Figure 9 depicts results of the global simulation scenarios with gradual increase in forest, applying 15 

either afforestation or  natural regrowth. Since changes in C storage—particularly for the soil—result 16 

also from land-use changes before  17 

 

Figure 8. Mean ecosystem sequestration rate (Mean annual increment, MAI), determined as total C storage divided 
by time since start for LPJmL simulations with only forest plantations or only natural vegetation. (a) global total 
versus time; (b) difference between (afforestation minus natural regrowth) after 50 years. 
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2015, we focus on the difference in global C stocks compared to the baseline simulation with constant 1 

land-use from 2015. Until 2015 all three simulations have very similar results, but small differences 2 

arise from the stochastic generation of daily precipitation. Gradual afforestation of 650 Mha land 3 

between 2015 and 2100 results in 19, 48, and 75 PgC additional C storage by 2065, 2100, and 2150, 4 

respectively, versus 16, 37, and 61 PgC for natural regrowth. Most of the difference between the two 5 

simulations is due to vegetation C, but from 2100 the difference for soil C grows and would ultimately 6 

dominate, had the simulation been continued after 2150. Global C sequestration rate peaks between 7 

2090 and 2100 at approximately 0.91 and 0.68 PgC yr-1 for afforestation and natural regrowth, with 8 

average rates of 0.25 and 0.19 PgC yr-1 until 2100. Around 2130 global sequestration rates are higher 9 

for the natural regrowth simulation because land-use remains constant from 2100, allowing natural 10 

ecosystems to “catch up”.  11 

4 Discussion 12 

4.1 LPJmL calibration 13 

4.1.1 Parameters changes 14 

Compared to the prior distributions—which are largely based on values for corresponding natural 15 

PFTs—the calibration resulted in a substantial shift for several parameters. We will discuss the more 16 

notable changes. First, 𝑘mort1 is substantially higher compared to the prior mode for all FPFTs. This 17 

parameter controls tree mortality related to low growth efficiency, which is defined as the ratio of the 18 

annual net biomass increment to leaf area. A high value of 𝑘mort1 results in higher mortality under 19 

unfavorable conditions. The increase of this parameter can be explained by the fact that the target 20 

growth curves have substantially higher growth rates than the natural PFT equivalents, while maximum 21 

biomass is approximately the same. The apparent conflict between these two constraints can in part 22 

   

Figure 9 Results of the simulations for gradual afforestation and natural regrowth. Both graphs show differences 
relative to the baseline simulation with constant land-use. (a) global C storage; (b) global C sequestration rate, 
smoothed using a 10-year moving average window. 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-13
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 16 April 2019
c© Author(s) 2019. CC BY 4.0 License.



16 

 

be resolved by increasing first-order mortality. A higher value for 𝑘mort1 for forest plantation trees is 1 

not necessarily unrealistic since it is likely that fast-growing tree species have low tolerance for low 2 

growth conditions (Pacala et al., 1996). 3 

The parameter 𝑘allom3, which relates tree stem diameter to tree height, has also substantially 4 

increased for all FPFTs. Higher values of this parameter mean higher trees for the same diameter, 5 

resulting in higher maximum biomass per tree. Again, this is in agreement with field observations, 6 

which have shown a positive relationship between tree growth rate and this parameter (Martinez Cano 7 

et al., 2018) 8 

The maximum leaf-to-root mass ratio, lrmax, is also high compared to the prior, particularly for the 9 

tropical and boreal FPFTs. This causes higher allocation of C to leaves, compared to roots, which 10 

positively affects growth rate via leaf area index and absorbed photosynthetically active radiation. 11 

Conversely, in LPJmL, lower root biomass does not reduce growth since there is no link between root 12 

biomass and water uptake. Hence, higher values of lrmax unequivocally lead to higher productivity in 13 

the model. 14 

For the tropical FPFT, 𝐸max, 𝜏sapwood, and 𝑘allom1 have increased. 𝐸max is the maximum water 15 

transport capacity and controls the transpiration rate. 𝜏sapwood is the turnover time of sapwood—16 

higher values result in more sapwood biomass, which allows for larger leaf area. Finally, 𝑘allom1 relates 17 

crown area to stem diameter. The generally stronger shifts for the tropical FPFT compared to 18 

temperate and boreal is explained by the lower uncertainties of parameters 𝑘 and 𝑝 of the target 19 

growth curve (Figure 4, S1), which is in turn caused by the larger number of stemwood C observations 20 

(Figure 2). 21 

4.1.2 Fit to observations 22 

The calibration resulted in good fits with respect to most observations, with the exception of the 23 

growth rate parameter of the target growth curves. Despite substantial improvement compared to the 24 

corresponding natural PFTs, this parameter is underestimated for all three FPFTs. As a result, predicted 25 

initial C uptake rates are lower than implied by the stemwood C observations, possibly underestimating 26 

the potential efficacy of forest plantations for climate mitigation. 27 

As discussed in section 2.3.2, we incorporated data into the calibration to constrain NPP to GPP ratio 28 

and vegetation C turnover time to values similar to that of the corresponding natural PFTs. Earlier 29 

calibrations, in which these constraints were not included, yielded a substantially better fit to the 30 

growth rate but with unrealistic litter fluxes, which points to a trade-off between the fit to these 31 

observations. From a mass-balance perspective this result is explicable: fast growth requires high NPP, 32 

which will result in high litter fluxes once vegetation reaches equilibrium biomass. This is exacerbated 33 
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by the fact that we constrained maximum stemwood C (𝐶SWC,max) at levels close to that of the 1 

corresponding natural PFTs. The fact that fast growth results in very high litter fluxes when trees reach 2 

equilibrium relates to the fact that LPJmL does not represent certain mechanisms that lead to declining 3 

productivity with age (Zaehle et al., 2006). In reality, NPP reduction with age has been frequently 4 

observed (Ryan et al., 1997). Multiple reasons for this phenomenon have been proposed, but the 5 

leading hypothesis is that hydraulic resistance increases with tree height due to longer distance 6 

between soil and leaves (Ryan and Yoder, 1997). This result in a lower photosynthesis rates and gross 7 

productivity (GPP). Since LPJmL does not include such mechanisms, it is mostly representative for 8 

mature forests. Incorporation of a more realistic representation of age-dependence of forest growth 9 

rate is likely to improve fit to observations (Zaehle et al., 2006). 10 

4.2 Global simulations 11 

4.2.1 Global afforestation versus natural regrowth 12 

Despite the underestimates growth rates, our results show C can be sequestered substantially faster 13 

by forest plantations compared to natural regrowth (Figure 7), particularly in the first 50 years 14 

following land conversion. The largest potential for plantations lies in tropical regions, which is not 15 

surprising, given that the maximum biomass of tropical FPFTs is more than twice as high compared to 16 

the temperate and boreal FPFTs. In addition to faster C sequestration, LPJmL also predicts a 12% higher 17 

equilibrium global vegetation C pool for forest plantations, despite the fact that the FPFTs were 18 

calibrated to produce a value of 𝐶SWC,max comparable to that of natural equivalent PFTs (Figure 5). 19 

This contradiction is in part explained by a larger productivity of forest plantations in less productive 20 

regions, which were not included in the calibration grid cells. Another reason is a larger spatial extent 21 

of the tropical FPFT compared to that of the natural tropical PFTs. 22 

Combined soil and litter C is also higher for forest plantations after 300 years (Figure 7b), but its 23 

proportion to total ecosystem C (60%) is globally almost identical to that of the natural vegetation, 24 

owing to the constraints on NPP to GPP ratio and vegetation C turnover time included in the calibration 25 

(see section 2.3.2). It is difficult to compare these results to observations for real-world plantations 26 

since studies on this topic have generally compared natural forests to tree plantations for production 27 

of wood or other products, where the effects of harvest and other management on soil C are likely 28 

considerable (Guo and Gifford, 2002; van Straaten et al., 2015). Such effects are not relevant for 29 

plantations intended for C sequestration. 30 

4.2.2 Gradual afforestation versus natural regrowth 31 

According to our projections, gradual conversion of 650 Mha managed land to natural forest between 32 

2015 and 2100 results in additional C uptake of 16 and 37 PgC by 2065 and 2100, respectively. If these 33 

lands are converted to forest plantations, the estimated C uptake is 19 and 48 PgC, i.e. 19% and 30% 34 
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higher. These should be seen as a conservative estimates, in view of the underestimated growth rates 1 

resulting from the calibration. To put these numbers into perspective, we compare them to results of 2 

Gasser et al. (2015), who estimated the negative emissions needed to limit global warming to 2oC for 3 

a range of scenarios in which both the start time and the rate of reduction of greenhouse gasses varied. 4 

In their most favorable scenario (energy and industry emission reduction starting in 2015 at a rate of 5 

5% per year) they estimated an average cumulative negative emission of 25–100 PgC is needed by 6 

2100, compared to 450–800 PgC in the most unfavorable scenario (energy and industry emission 7 

reduction starting in 2030 at 1% per year). Hence, large-scale forest plantations can offer a substantial 8 

contribution to climate mitigation but will likely not be sufficient. 9 

4.3 Comparison to previous work 10 

The results of the simulations for transient afforestation and natural regrowth compare well to results 11 

of previous studies on potential C sequestration rates of forest plantations and natural regrowth. For 12 

example, using the IMAGE integrated assessment model, van Minnen et al. (2008) performed a 13 

simulation experiment based on the IPCC SRES A1B  scenario where 831 Mha agricultural land is 14 

converted to permanent forest plantations between 2000 and 2100, taking into consideration land 15 

demand for food production and other uses. They estimated an additional 93 PgC  can be sequestered, 16 

but mostly after 2050, when land becomes gradually available due to decreasing population and 17 

increasing agricultural efficiency. 18 

Humpenöder et al. (2014) presented a much more ambitious afforestation scenario, in which 2773 19 

Mha land is converted to forest plantations. The authors used maximum C storage for natural 20 

vegetation predicted by LPJmL, but corrected sequestration rates using stylized growth curves for 21 

plantations in different climate regions. They estimate an additional C uptake of 192 PgC after 80 years. 22 

Roughly converting our estimate to the same land area  yields a similar result (205 PgC). This similarity 23 

is not surprising, given that we used the same model, and our FPFTs were calibrated to produce the 24 

same maximum biomass as the natural PFT equivalents. 25 

Potential sequestration rates by natural regrowth were studied by Krause et al. (2017), using the 26 

dynamic global vegetation model LPJ-GUESS. In two scenarios, derived by IMAGE and the agricultural 27 

land-use model MAgPIE, 1119 and 914 Mha were converted to natural lands, resulting in a predicted 28 

additional C uptake of 76 and 55 PgC, respectively, between 2000 and 2099. This compares well with 29 

our estimates for natural regrowth. 30 

4.4 Model limitations 31 

In our implementation of planted forests the diversity of plantation tree species is reduced to three 32 

functional types with fixed properties. While the functional diversity of plantation tree species is not 33 
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as vast as that of natural forests—especially in the context of C sequestration—the predictions would 1 

likely improve from implementation of additional FPFTs, particularly for the tropical biome. The model 2 

currently predicts a relatively large C storage for dry tropical zone compared to natural regrowth, 3 

which may not be fully realistic, given water limitations. Addition of a dry tropical FPFT would allow for 4 

a more accurate assessment of C sequestration in these regions. 5 

This study does not consider the effects of climate change and CO2 concentration on productivity of 6 

forest plantations. Although there is still considerable uncertainty regarding this topic, accounting for 7 

CO2 fertilization will likely increase the C sequestration potential (Schimel et al., 2015) in both natural 8 

and managed forests. However, in order to properly assess this, it is important to take into account 9 

nutrient limitation to productivity as well (Norby et al., 2010).  10 

We also did not consider possible management options that may improve C uptake rates. In particular, 11 

regular thinning can result in substantially higher C uptake rates (van Minnen et al., 2008). The model 12 

supports harvesting, but this feature was not used in this study. However, continual thinning would 13 

result in export of nutrients from the ecosystem which would ultimately slow down growth rates, 14 

unless plantations are fertilized. Thus, representing regular harvest in LPJmL would also require 15 

representation of nutrient limitation. 16 

4.5 Considerations beyond C uptake 17 

Evaluation of afforestation and natural regrowth as strategies for climate change mitigation involves a 18 

range of considerations other than carbon sequestration. First, converting agricultural land to forest 19 

involves a number of costs. For both natural and planted forests this includes price for acquiring land, 20 

while specifically for the latter costs related to establishing and maintaining the plantation are relevant 21 

(e.g. land preparation, planting of seedlings). The costs per unit C sequestered will rise with increasing 22 

area of (planted) forest, mainly due to competition for land (Doelman et al., in review). 23 

Second, the positive effects of carbon uptake of changing land-cover to forest, can be offset due 24 

biophysical changes in the surface energy budget, related to changes in albedo, evapotranspiration, 25 

and surface roughness (Perugini et al., 2017). This may result in a net warming effect, regionally, and 26 

possibly globally, depending on the extent of land-cover change. 27 

Third, the reduction of cropland and pasture might also have a negative impact on food security due 28 

to increased competition for land (Hasegawa et al., 2018). In order to maintain food production for the 29 

growing population, strong intensification of the agricultural sector would be required. Locally, this 30 

will result in a range of negative effects on the environment, due to higher application of fertilizers and 31 

plant protection products, as well as water extraction for irrigation (Smith et al., 2013). Furthermore, 32 
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in terms of climate change mitigation, agricultural intensification will likely partially offset the benefits 1 

of afforestation and regrowth, e.g. due to higher N2O emissions from fertilizers (Burney et al., 2010).  2 

Finally, biodiversity is a particularly important aspect to consider, given that plantation forests have 3 

usually substantially lower species richness than primary or secondary forests (Barlow et al., 2007). A 4 

more balanced solution may be a compromise between biodiversity and C sequestration by 5 

establishing a mixture of native and plantation species, or plantation forest with a native undergrowth 6 

(Barlow et al., 2007; Bremer and Farley, 2010). 7 

5 Conclusions 8 

To our knowledge, the extension of LPJmL presented here represents the first model of forest 9 

plantations for C sequestration as part of a DGVM for global-scale applications. Although calibration 10 

of the model still resulted in underestimated growth rates compared to observations of stemwood C, 11 

this represents an improvement over previous approaches. According to our simulations, conversion 12 

of 650 Mha of land to forest over 85 years results in an additional C uptake of 48 PgC for forest 13 

plantation, versus 37 PgC for natural regrowth, with greatest potential in the tropics. We conclude that 14 

large scale afforestation can offer a substantial contribution to C uptake, particularly in a time scale of 15 

approximately  50–100 years. Evaluating afforestation as a strategy for climate change mitigation 16 

requires consideration of all relevant aspects in a comprehensive assessment. Our model can 17 

contribute to such an evaluation by providing improved estimates of C uptake rates. 18 
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