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Abstract

Quantifying precipitation variability beyond the instrumental period is essential for putting current
and future fluctuations into long-term perspective and to provide a test-bed for evaluating climate
simulations. For South-eastern Asia such quantifications are scarce and millennium-long attempts
are  still  missing.  In  this  study we  take  a  pseudo-proxy approach  to  evaluate  the  potential  for
generating  summer  precipitation  reconstructions  over  South-eastern  Asia  during  the  past
millennium. The ability of a series of novel Bayesian approaches to generate reconstructions at
either annual or decadal resolutions and under diverse scenarios of pseudo-proxy records’ noise is
analysed and compared to the classic Analogue Method. 

 

We find that for all the algorithms and resolutions a high-density of pseudo-proxy information is a
necessary  but  not  sufficient  condition  for  a  successful  reconstruction.  Among  the  selected
algorithms, the Bayesian techniques perform generally better than the Analogue Method, being the
difference in abilities highest over the semi-arid areas and in the decadal-resolution framework. The
superiority  of  the  Bayesian  schemes  indicates  that  directly  modelling  the  space  and  time
precipitation field variability is more appropriate than just relying in a pool of observational-based
analogues, in which certain precipitation regimes might be absent.  Using a pseudo-proxy network
with  locations  and  noise-levels  similar  to  the  ones  found  in  the  real  world,  we  conclude  that
performing a millennium-long precipitation reconstruction over South-eastern Asia is feasible as the
Bayesian schemes provide skilful results over most of the target area.

1. Introduction

Earth’s climate varies in all spatial and temporal time-scales, as it is forced by either natural or
anthropic  factors.  To understand the dynamics  of  such variability,  the  analysis  of  the available
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instrumental  information  is  an  essential  tool.  However,  the  time-coverage  of  the  instrumental
records is rather short and, therefore, information from climate archives (natural and documentary)
going back centuries is important to put current and future changes into a long-term perspective and
to serve as a validation terrain for model simulations with the ultimate goal of understanding the
underlying physical mechanisms.

South-eastern  Asian  societies  and  economies  are  heavily  dependent  on  the  summer  rainfall
(monsoon-dominated)  as  a  fresh  water  resource,  thus,  it  is  important  to  investigate  how these
precipitation patterns have varied in the past to provide a useful guide for the climate response to
future  changes.  Previous  hydro  Climate  Field  Reconstructions  (CFRs)  over  Asia  revealed  a
substantial mismatch between modelled and reconstructed precipitation patterns (Shi et al. 2017)
and the spatial variability of large-scale droughts during the Little Ice Age (Cook et al. 2010, Feng
et al. 2013). While these studies covered the last 500-700 years, a gridded hydroclimate product
going beyond Medieval times on a spatio-temporal high resolution is yet missing. Whether such a
long  and  highly  resolved  reconstruction  is  possible  given  nowadays  available  data  and
methodologies is the subject of this paper.

Reconstructing the temporal evolution of climatic variables in the space domain (CFR) based on the
information  from a  sparse  network  of  proxies  and  partially  overlapping  instrumental  data  is  a
complex mathematical  problem. First  of all,  the proxy data  used for generating reconstructions
display a set of characteristics that make their use challenging: Their distribution in space and time
is heterogeneous with fewer records further back in time; different proxy archives have different
temporal resolutions and possibly including dating uncertainties; proxy data might reflect different
climate variables (temperature, precipitation, sea-level changes, pH, sea water temperature, water

mass circulation,  etc.),  recording climate conditions at different times of the year,  and this data
contains non-climatic information (usually referred to as non-climatic noise). Second, the overlap
with instrumental observations is commonly short, limiting opportunities for statistical learning and
further validation. Third, and in contrast to average climate reconstructions, CFR require the spatial
scale-up of  the  available  information  therefore  implying the  need for  strategic  inferring  of  the
missing values in the target climate field, even in locations where no data might be input. Finally, as
the number of paleo climatic information becomes smaller back in time it is virtually impossible to
have an  independent  proxy data  set  to  properly  validate  the  output  reconstruction.  A common
approach to overcome this shortcoming and have a proper validation stage is using a pseudo-reality.
The  process  of  using  a  Global  Climate  Model  (GCM)  simulation  to  assess  the  ability  of  a
reconstruction technique is known as Pseudo Proxy Experiment (PPE; Smerdon, 2012; Mann and
Rutherford,  2002).  In  a  PPE,  simulated  data  are  modified  to  mimic  real-world  proxies  and
instrumental  observations  (called  pseudo-proxy  and  pseudo-instrumental  data  sets)  and  the
reconstruction  algorithms  are  applied.  The  reconstruction  results  are  then  compared  with  the
available  simulated  target  field,  giving  an  estimation  of  the  skill  of  the  method  in  real-world
applications.
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There are several ways to perform a CFR (see Luterbacher and Zorita, 2018 for a review). The
classical approach is through a multivariate regression perspective: a statistical relationship between
proxy and instrumental data is inferred from the overlapping (calibration) period and then, assuming
stationarity of this relationship, the missing instrumental values are predicted or reconstructed back
through time. Some of the most common techniques for climate reconstructions included in this
category  are:  Regularized  Expectation-Maximization  (RegEM,  Schneider,  2001),  Canonical
Correlation Analysis (CCA; Smerdon et al., 2010), Markov Random Fields (Guillot et al., 2015)
and the Analogue Method (Franke et al., 2011). The performance of these methods strongly depends
on the length of the instrumental data. If the overlapping period between proxy and instrumental
data is short, in comparison with the number of spatial locations considered, the estimation of the
covariance matrix is uncertain and the matrix inversion process is numerically unstable, leading to
poor performance when presented with new data out of the learning sample.

Another  strategy  to  perform  a  CFR,  more  novel  as  it  has  only  recently  been  applied  in
paleoclimatology, is the Bayesian approach (e.g. Tingley and Huybers, 2010, 2013;  Werner et al.,
2013; Luterbacher et al., 2016; Werner et al., 2018; Zhang et al., 2018). The Bayesian strategy is
probabilistic,  incorporates information about the climate–proxy connection as constraints on the
reconstruction problem and has the benefit of providing more comprehensive uncertainty estimates
for the derived reconstructions. Robust comparisons between established methods and the emerging
efforts (Werner et al., 2013, Nilsen et al. 2018) underpin the benefits and justify further application
of the computationally more expensive method. So far, most of the paleoclimatic applications of
this methodology involve temperature reconstructions. Efforts to apply this probabilistic framework
to  the  more  complex  and  highly  variable  hydroclimate  are  only  in  the  initial  stages,  but  the
advantages of the methodology over more classical approaches are auspicious.

Gómez-Navarro et al. (2015) used a pseudo-proxy experiment (PPE) approach to assess the skill of
several  statistical  techniques  (classical  regression  methods  and  Bayesian)  in  reconstructing  the
precipitation of the past two millennia over continental Europe. The authors find that none of the
schemes  shows  better  performance  than  the  others  and  that  precipitation  reconstructions  over
Europe are only possible given a spatially dense and uniformly distributed network of proxies, as
the accuracy strongly deteriorates with distance to the proxy sites.

In this study we propose to evaluate, via PPE, the potential to generate a last-millennium summer
precipitation  reconstruction  for  South-eastern  Asia.  We  use  three  CFR  techniques:  Bayesian
Hierarchical  Modeling  (BHM),  BHM  coupled  with  clustering  processes  (with  two  different
numbers  of  clusters)  and  Analogue  Method.  For  each  of  the  schemes  we  perform  two
reconstructions: one at annual and one at decadal resolution. In addition, the influence of the noise
level in pseudo-proxies on the final reconstruction is evaluated. 
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This is the first time that a BHM approach is applied to the hydroclimate of Asia and its coupling
with clustering techniques is a methodological advance, conforming an innovation in the field. The
systematic evaluation of the skill of these probabilistic methods, and the comparison with the more
classical  and  well  established  Analogue  technique,  is  a  necessary  step  into  learning  about  the
precipitation variability and the opportunities or obstacles to generate long-ranged informed guesses
about  it.  The  PPE  exercise  is  a  fundamental  validation  step,  essential  for  selecting  the  most
appropriate  method  to  improve  real-world  reconstructions  and,  finally,  derive  a  new  and  not
previously attempted gridded product of South-eastern Asia summer precipitation during the last
1000  years.  In  this  work  only  summer  precipitation  is  targeted  as  the  pseudo-proxy  network
selected  is  based  on  real-world  indicators  of  summer  hydroclimatic  variations  (see  Data  and
Methodology section).

The manuscript is organized as follows. In section 2 we present the data and methodology and
describe in detail the three reconstruction techniques, as well as the skill scores used for quality
evaluation. Section 3 is devoted to the results and discussions: we evaluate the skill of each of the
reconstruction  methods,  at  both  annual  and  decadal  resolution,  and  investigate  the  role  of  the
pseudo-proxy noise. Finally, in section 4 we present conclusions and a short outlook.

2. Data and Methodology

2.1. Model

As  a  virtual  reality  setup  for  our  study  we  use  one  full-forcing  simulation  (run  001)  of  the
Community  Earth  System Model  (CESM) from the  Last  Millennium Ensemble  (LME) Project
(Otto-Bliesner et al., 2016). The simulation is performed with horizontal resolution of ~2° (~1°) in
the atmosphere and land (ocean and ice) components. The CESM is forced with reconstructions of
the transient evolution of: solar intensity, volcanic emissions, greenhouse gases, aerosols, land use
conditions  and orbital  parameters,  all  together,  for  the  period  850-2005.  The target  variable  to
reconstruct is June-July-August (JJA) precipitation over continental Southeast Asia, here defined as
all continental grid points in the domain: Equator-50N, 72.5E-127.5E. Given the model resolution,
this implies that the reconstruction is attempted over 366 grid points.

Figure 1 depicts the JJA mean precipitation in the run used in this manuscript, considering only the
last 100 years of simulation (period 1906-2005).  Historical simulations with the CESM show a
reasonable performance at reproducing summer precipitation over continental Asia: the simulated
JJA precipitation is generally in agreement with observations, although a false rainfall center over
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the eastern Qinghai-Tibetan Plateau is generated in these simulations (Wang et al., 2015).

2.2. Proxy Data locations

For this study we select the locations of 47 real-world precipitation/drought sensitive proxies in the
target domain, that span the last millennium. The locations of tree ring, speleothem, lake sediment
and ice core sites as well as of some documentary data are mainly derived from the networks used
in Chen et al. (2015) and Ljungqvist et al. (2016) (Table 1). The criteria for the selection of records
was: millennium-long (with start date before 1000CE), at least two values per century, terrestrial,
published  in  the  peer-reviewed  literature  and  described  as  indicator  of  local  variations  in
hydroclimate.

2.3. Design of the Pseudo Proxy Experiments (PPEs)

For the design of the PPE we build two data networks: a pseudo proxy and a pseudo instrumental.
The pseudo proxy network is based on the locations of the real-world hydroclimate proxies listed in
Table 1. As some of these 47 records are in close proximity, this translates into having 38 different
model grid points (about 10% of the total grid points in the study region). The selected locations are
not evenly distributed across South-eastern Asia: the highest concentrations are found over East
China and over the dry lands in the northwest of the study region (Fig. 1). There are neither pseudo
proxy sites southward of 20N, nor over Mongolia and the Himalayas. To emulate real proxies, we
consider  the  modelled  precipitation  time-series  spanning the  complete  period  of  the  simulation
(1156  years,  either  with  annual  or  decadal  resolution)  at  each  of  the  38  selected  sites  and
contaminate them by the addition of noise.  We select four different levels of additive Gaussian
white noise, corresponding to null, low, medium, and high levels of noise. The selected noise levels
are such that the correlation between the original and the contaminated time-series is: 1, 0.7, 0.5 and
0.3, respectively. A correlation equal to 1 implies an idealised situation of perfect proxies to study
the  representativeness  of  our  spatial  sampling.  A correlation  of  0.7  represents  an  optimistic
situation, but still realistic: for example,  Shi et al. (2014) find correlations of up to 0.7 with a tree-
based reconstruction of the South Asian Summer Monsoon Index. A correlation of 0.5 between the
proxy series and precipitation corresponds to a medium-level noise, and could be regarded as the
average  situation  with  real  proxies  (examples  for  Asia:  He  et  al.,  2018;  Liu  et  al.,  2013).  A
correlation of 0.3 represents a high-noise setting, which is still rather common in real-world proxies
(e.g. Jones et al. 1999).

For the pseudo instrumental network we consider all the locations for which a reconstruction is
targeted: 366 model-grid points in South-eastern Asia.  For each of these locations,  we take the
modelled precipitation time-series for the last 100 years of simulation (at either annual or decadal
resolution)  and add a  small  Gaussian-noise to  represent  the  instrumental  errors  present  in  real
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precipitation measurements. The added noise is such that, at each location, the correlation between
original and contaminated time-series is 0.95.

As an example, Figure 2 shows the simulated precipitation time-series at location [20N,82.5E] (east
India) together with the associated pseudo proxy and instrumental time-series, both at annual and
decadal resolution, for the case of medium-noise level (corresponding to a 0.5 correlation with the
target precipitation).  At annual resolution, the simulated mean JJA precipitation at this site is 241
mm/month,  with a standard deviation of 48 mm/month.  No statistically significant changes are
found either in mean or variance. The maximum (minimum) summer precipitation at this location is
423  (87)  mm/month  and  occurred  in  the  year  1022  (1208)  of  the  simulation,  respectively.  At
decadal resolution, the standard deviation is reduced to 14 mm/month and the maximum (minimum)
precipitation value is 283 (208) mm/month, occurring at the period 1180-1189 (870-879).

2.4. Reconstruction Techniques

In the following subsections we describe in detail each of the three reconstruction techniques used
in this manuscript.

2.4.1.Bayesian Hierarchical Modelling (BHM)

In  the  BHM  technique  a  hierarchy  of  parametric  stochastic  models  is  used  to  describe  the
relationship between climate,  instrumental and proxy data.  The model parameters are estimated
using the available data, through the Bayes’s rule. The hierarchy consists of three basic components.
First, in the process level, a stochastic model describing the time evolution of the climate variable is
selected. Second, in the data level, stochastic relationships between the instrumental and proxy data
and the climate variable are developed. Finally, a level of prior information about the parameters
involved in the other two components of the hierarchy is coupled. Here we use the BHM algorithm
named Bayesian Algorithm for Reconstructing Climate Anomalies in Space and Time (BARCAST),
developed by Tingley and Huybers (2010). Following, we specify the assumptions and equations
for each of the levels in the model hierarchy.

Process level:

The process level describes the evolution of the true climatic field as a multivariate autoregressive
process of order 1, AR(1),with spatially correlated innovations.

The evolution of the true precipitation, sampled at a finite number of spatial locations, is assumed to
follow a first-order autoregressive process:
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Pr t+1−μ=α(Prt−μ)+ϵPr , t (1)

where Pr t is the vector consisting of the true precipitation values in all the locations at time step t,

μ is the mean of the process, α the AR(1) coefficient. Note that the coefficients μ and α
are the same for all the locations. To account for different precipitation means at each location th
following procedure is followed: first, the time-series are standardized; second, the BHM is applied;
finally, the outputs are inversely de-standardized. The standardization is performed using the sample

mean and standard deviation from the pseudo instrumental times-series. The innovations ϵPr ,t ,

accounting  for  the  interannual  or  interdecadal  variability,  are  assumed  to  be  independent  and

identically distributed (iid) normal draws ϵPr ,t∼N (0, Σ) with an exponentially-decaying spatial

structure: 

Σij=σ2 e−ϕ|x i− x j| (2)

where |x i−x j| is the distance between the locations i-th and j-th of the precipitation vector, ϕ is

the range parameter (being 1/ ϕ  the e-folding distance) and σ  is the partial sill of the spatial

covariance matrix (spatial persistence, homogeneous in space).

The temporal model within BARCAST allows the estimations of the field at a certain temporal step
to be influenced by the information in  the previous  time-step.  The assumed covariance  matrix
structure is supposed constant in time and follows an exponentially decaying pattern with distance.
Note that, by assuming this structure if two distant locations have well-correlated precipitation time-
series  this  will  not  be  well  represented  by  the  BARCAST  model  assumed.  The  method
parameterizes the spatial covariance matrix with two unknown parameters: the covariance at null
distance ( σ ) and the exponential decay rate with distance ( ϕ ).

The  model  assumes  that  the  climatic  variable,  precipitation,  follows  a  Gaussian  distribution.
Although this might not be the case, especially for arid regions, the simulated JJA precipitation in
the area of study can be taken to reasonably follow this assumption: for the pseudo-proxy selected
locations 63% of the time-series (considering the instrumental period) pass the Kologorov-Smirnov
test for normality at a 95% confidence level (Figure A1). Despite the Gaussian conditions are not
met in all the grid points the model is still valid, although it might not be the most optimal fit at
these locations.

Figure 3 shows the correlation decay with distance for the simulated JJA precipitation for different
latitudinal bands. For annual data (Figure 3a), the correlation between precipitation time-series in
consecutive grid-points is usually high, around 0.8. With few exceptions, the simulated precipitation
follows an  exponentially-decaying pattern  with  distance,  with  points  located  further  away than
600km showing no significant correlation. Therefore, we take the exponentially-decaying spatial
structure of the covariance matrix in BARCAST to be a reasonable assumption for the model. For
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decadal data (Figure 3b), the correlations behaviours are not uniform with respect to the latitudinal
bands. For some of the latitudes the plot follows an exponentially-decaying shape,  for others it
additionally evidences a teleconnection-pattern (notably the northern-most 44N-48N latitude band) .

Data level:

The data level specifies the relationship between the measurements (both proxy and instrumental)
and the true field values.

The  instrumental  observations  at  each  time  are  assumed  to  be  noisy  variations  of  the  true
precipitation field:

Inst t=H Inst ,t (Prt +ϵInst ,t) (3)

the  noise  terms  are  assumed  to  be  iid  multivariate  normal  draws ϵInst ,t∼N (0 ,τ Inst
2 ) ,  while

H Inst , t is a diagonal matrix with a one in position (i,i) if an instrumental observation is available

at the i-th location, with a zero otherwise.

The proxy observations are assumed to follow an unknown statistically linear relationship with the
true precipitation at each location:

Proxyt=HProxy , t(β1 Proxyt+β0+ϵProxy ,t) (4)

again, the HProx ,t is a diagonal matrix with ones only for the locations with proxy observations,

and the noise terms are iid normal draws: ϵProxy ,t∼N (0 , τProxy
2 )

Prior level:

To  close  the  scheme,  prior  distributions  must  be  specified  for  the  eight  scalar  parameters

(α ,μ ,σ ,ϕ ,β1,β2, τ Inst
2 , τProxy

2 ) and the initial climate field (i.e. at the first time-step). We use the

same priors as Tingley and Huybers (2010) and select prior distributions that are sufficiently diffuse
to not have any important influence on the posterior distributions.

Using Bayes’ rule the posterior distribution of each of the unknown variables can be calculated.
Samples are drawn from this posterior distributions using a Gibbs sampler, with a Metropolis step
(Gelman et  al,  2003)  to  update ϕ ,  the  spatial  range  parameter.   The  output  of  the  Bayesian

algorithm is not a unique reconstruction, but an ensemble of 1200 equally-probable draws all of
them consistent with the model equations.
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2.4.2.Bayesian Hierarchical Modelling coupled to Clustering

Here we propose to couple the BHM with a clustering algorithm. The aim of the clustering step is to
segregate  South-eastern  Asia  into  several  clusters,  according  to  similarities  in  the  precipitation
regimes during the pseudo-instrumental period. After the clustering, the BHM code is run within
each cluster in an independent manner. Finally, all the results are merged together to produce the
entire spatial  reconstruction over the post 850 period.  The idea behind the clustering step is to
reduce the complexity of the problem to be presented to the BHM algorithm, as after clustering the
code does not have to deal with extreme differences in precipitation regimes (as dipole patterns at
mountain ranges) and large number of grid cells.

We use a hierarchical agglomerative clustering technique. Each observation starts in its own cluster
and pairs of clusters are agglomerated as one moves up in the hierarchy (Izenman, 2008). We select
a complete-linking strategy: the distance between sets of observations is defined as the maximum of
the  pairwise  distances  between  the  observations  in  each  of  the  sets.  First,  the  method  groups
together the two closest observations, according to the selected distance, creating a cluster of two
observations.  Then,  the  sets  whose  distance  is  minimum are  agglomerated  together,  iteratively
repeating the process.

Here, the elements to cluster together are the different grid-points in South-eastern Asia. The input
variables  for  the  method  are  the  pseudo-instrumental  precipitation  time-series  at  each  of  these
locations. The distance between two points is defined as: One minus the correlation between the
pseudo-instrumental precipitation time-series at these locations (points highly correlated display a
small  distance).  In  this  way,  the  method  groups  together  points  whose  pseudo-instrumental
precipitation time-series are highly correlated. We should note that the clustering algorithm does not
require  any  expert-knowledge  as  it  is  a  fully  unsupervised  machine  learning  technique.  This
characteristic makes it easy to apply as a pre-BHM stage in any other context or area of study.

For both, the annual and the decadal, reconstructions we select two cases: clustering into 5 and into
10 groups (note that the clusters might be different when using the annual/decadal information, see
Figure A2). We term the reconstructions in this category: BHM+5Clusters and BHM+10Clusters.
The criteria for the selection of the number of clusters was that most of the clusters should include
pseudo-proxy locations (if a cluster does not include pseudo-proxy information the BHM scheme
only uses instrumental-period data). While this condition is met without problems for 5 Clusters,
with the 10 Clusters division (at both annual and decadal cases) one of the clusters is disjunct with
the pseudo-proxy network.  As a  consequence,  a  higher  number of clustering divisions  was not
attempted.
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2.4.3. Analogue Method

The  Analogue  Method  is  a  learning  technique  first  introduced  by  Lorenz  (1969)  for  weather
forecasting. The technique uses predictors to determine the value of the target variable, based on the
statistical relationship between them in a learning set: the so-called pool of possible analogues. The
method can also be applied to produce a CFR. In our study and for each time step (year or decade),
the predictor variables are the proxy records (38 predictors) and the target variable is the complete
precipitation field at the given time-step. For the annually-resolved reconstruction the learning set
consists of the precipitation fields at each of the years in the instrumental period, i.e. all the time-
steps in which we simultaneously have the information about proxy and target. For the decadally-
resolved reconstruction, the learning set consists of the mean precipitation field in each possible 10-
years period during the instrumental era.

The reconstruction of the precipitation field at time-step t is obtained as follows. First, a distance
between time-steps is defined. Let ti be a time-step included in the pool (instrumental period). Then,
the distance between t and ti is, in this paper, defined as the Euclidean distance between the vectors
of proxy data at times t and ti:

d (t ,t i)=√∑
j=1

K

(Prox(l j , t)−Prox(l j , t i))
2 (5)

where Prox(l j , t) is the value of the proxy at location lj and time t. Locations l1,…,  lK are all the

proxy locations (K=38). Second, the time-steps in the pool are ordered according to their distance
from t. Third, the N closest time-steps are selected from the pool, and termed analogues: t1,…, tN.
Finally, the precipitation reconstruction for time t is the mean of the precipitation field in the N
analogues:

Reconstruction( t)=
Pr (t 1)+...+Pr (tN)

N
(6)

N can be any value between 1 and the total number of elements in the pool of analogues. On the one
hand, for annual (decadal) reconstructions using N=1 will imply having a reconstruction identical to
just 1 year (10-years mean) of the instrumental period and, therefore, particularities of this year (10-
years period) might be involved. On the other hand, using the maximal N implies just giving as
reconstruction the mean during the instrumental period,  which eliminates all the inter-annual or
inter-decadal  variability.  In  this  paper  we  select  as  N  intermediate  values,  considering  N
approximately equal to 20% of the number of possible analogues. Experiments using values of N
between 15% and 40% of the number of possible analogues were performed and the results are not
significantly different as the ones selected to display here (not shown).

Note that in this manuscript we use the Analogue Method in its classical version (obtaining the pool
of analogues from the observational data set) and not in combination with the use of an GCM to
draw the Analogue cases from.
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2.5. Skill Metrics

To evaluate the performance of the CFR methodologies we compare the reconstruction with the true
precipitation field.  We select  three different  skill  metrics. The first  skill  metric,  the Correlation
Coefficient, evaluates the ability of the reconstruction to reproduce the temporal evolution of the
target. At each grid point, we calculate the Pearson correlation between the reconstruction and the
true precipitation  time-series,  considering the  whole  reconstruction period.  As for  the Bayesian
algorithms we have an ensemble of reconstructions we first calculate the correlation of each of
these ensembles with the true precipitation and, finally, we show the mean of these correlations.

The second skill metric quantifies the absolute biases of the reconstruction at each location. Instead
of directly using the Root Mean Squared Error (RMSE), we compare the RMSE of the different
reconstructions  with  the  RMSE  obtained  with  the  simplest  possible  reconstruction:  using  the
climatological  mean  during  the  instrumental  period.  In  reconstruction  studies,  this  is  usually
referred to as the Reduction of Error (RE, Cook et al., 1994) and is defined, at each location l, as:

R E(l)=1−
∑

t

(Pr (l ,t )−Reconstruction( l , t))2

∑
t

(Pr(l , t)−Climatology (l))2
(7)

where Reconstruction(l , t) is the reconstruction being evaluated at location l and time-step t and

Climatology (l) is the climatological mean at location l. The sum is done over all the time-steps

within  the  reconstruction  period.  In  this  case  for  the  Bayesian  techniques,  and to  simplify  the
interpretation, we show this metric for the median reconstruction.

The  last  skill  metric  is  especially  designed  to  evaluate  probabilistic  ensemble  forecasts  of
continuous predictands and is, therefore, particularly suitable for evaluating the Bayesian schemes.
We use  the Continuous  Ranked Probability  Score  (Hersbach 2000;  Wilks,  2011;  Werner  et  al.,
2018). The CRPS measures the difference between the accumulated probability density function
and the step function that jumps from 0 to 1 at the observed value:

CRPS=∫
−∞

∞

(F ( y)−F0( y ))2 dy (8)

F0( y)=0, y<observed value
1, y≥observed value

(9)

 It has a negative orientation, meaning smaller values are better. This metric can only be provided
for the Bayesian schemes and not for the Analogue reconstructions.
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3. Results

In the following sub-sections we evaluate the ability of the different reconstruction techniques. In
subsection  3.1  we  select  a  pseudo-proxy  scenario  with  medium  noise-level  (equivalent  to  a
correlation  with  the  target  precipitation  of  0.5)  and  evaluate  the  reconstruction  schemes.  In
subsection 3.2, we assess the impact of the noise in the pseudo-proxies time-series on the quality of
the reconstruction.

3.1. Evaluation of Reconstruction Techniques: Medium-noise pseudo-proxy 
case

As measures of performance we present the three selected skill metrics (see 2.3 for details), and in
each case, we show the results at annual and at decadal resolution. 

Figure 4 displays the Correlation Coefficient for the different reconstruction techniques. According
to this skill measure, regardless of the method and resolution, proxy-rich East China (EChina, 20N-
40N, 100E-120E) stands out as the best-reconstructed area. However, a fairly dense coverage by
proxy  records  seems  not  to  be  a  universal  indicator  of  success,  as  North-Western  Arid  China
(NWAChina, 40N-50N, 72.5E-90E) is highlighted as an area where the Bayesian algorithms are
successful while the Analogue Method displays no ability. On the other hand, areas poorly covered
by the pseudo-proxy network (south of 18N, North-Eastern Asia and South of Tibet at longitudes
85E-95E) are the regions where the correlation coefficient is lowest. 

For the annual-resolution reconstructions, the best performance is obtained by the BHM technique,
showing  a  spatial  mean  correlation  with  the  target  of  0.4  (Fig.  4a).  Coupling  the  BHM  with
clustering partially deteriorates the results, with the correlation coefficient severely dropping over
the  proxy-rich  EChina  region  (Fig.  4b  and  4c).  Meanwhile,  the  performance  of  the  Analogue
Method  is  inferior:  the  Correlation  Coefficient  spatial  mean  is  0.25  and  there  is  no  skill  in
reconstructing precipitation north of 42N despite the fact that pseudo-proxies are located in that
region (Fig. 4d).

For the decadally-resolved reconstructions the difference between the Bayesian methods and the
Analogue is  even larger.  In  terms of  the  Correlation  Coefficient  measure  the  BHM (Analogue
Method) is the best (worst) performing with a spatial average of 0.37 (0.1). Among the Bayesian
schemes, the cluster coupling maintains the skill levels in all regions except India, where lower
correlation values  are  obtained.  The Analogue Method shows a much constrained geographical
skill, with correlation values above 0.2 only over EChina and central India.
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In general, for each of the methods, the Correlation Coefficient is higher for the annually-resolved
than for the decadally-resolved reconstruction. One exception to that is the BHM+5Clusters over
EChina. This behaviour is probably derived from the clustering division (see Figure A2).

Figure 5 shows the results for the RE index. In most of the grid-points the RE index is positive,
indicating a reduction of the error in comparison to forecasting the instrumental-period climatology
as reconstruction. For all the Bayesian methods and both time-resolutions the highest skill is found
in regions with high density of pseudo-proxy information. Again, the Analogue Method shows a
clear inferior performance over  NWAChina, in spite of the considerable number of pseudo-proxy
locations present there.

For  the  annual  reconstruction,  improvements  from  climatology  are  found  for  the  Bayesian
approaches in EChina,  NWAChina, Mongolia and, to a lesser extent, in central India (Fig. 5a, 5b
and 5c). For the Analogue Method, the improvement with respect to climatology is confined only to
EChina and central India, and the improvement is weaker than with the Bayesian techniques (Fig.
5d).

For the decadal data, similar results are obtained. However, the RE index is notably negative in
some grid-points for the BHM+5clusters (mainly in the northern-most extent of the study region;
Fig. 5f) and the Analogue cases (everywhere with exception of EChina; Fig. 5h).

Figure 6 displays the results for the CRPS metric, for the probabilistic methods (Bayesian schemes).
For this metric,  the annually-resolved (decadally-resolved) reconstructions have a CRPS of 190
mm/month  (22  mm/month),  compared  to  the  target  precipitation  spatially-averaged  standard
deviation  of  34  mm/month  (11  mm/month)  for  annual  (decadal)  data.  This  indicates  that  the
methods have more problems in reproducing the expected probability distribution functions in the
annual case.

For  the  annual  resolution  reconstructions  there  is  almost  no  noticeable  difference  in  the
performance of the three Bayesian schemes.  For this  metric,  the region of best  performance is
NWAChina. In this case, the performance over the proxy-rich EChina is intermediate (unlike with
the Correlation Coefficient and RE Index metrics). For the decadal resolution reconstructions, the
performance among the methods is quite different. While the spatial mean is in all the three cases
similar  (around  22  mm/month),  the  spread  among  grid  points  is  much  higher  for  the
BHM+10Clusters scheme. In particular, for the 10 clusters scheme the skill over China and the
South-East of the study region is much higher than in the other methods. In general, the regions
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with a dense proxy network display better performance levels and central India and the North-East
of the study area stand out as low-performing areas for all the three methodologies.

Three main conclusions can be drawn from the experiments above: First, proxy-depleted areas can
not  be  successfully  reconstructed.  Second,  the  Bayesian  schemes  are  superior  to  the  Analogue
Method in all metrics (this difference is particularly acute over  NWAChina where the Analogue
fails despite the relatively good coverage by proxy data). Third, among the Bayesian algorithms the
results are similar, although a partial deterioration of the skill is detected in some regions when
clustering is coupled. 

The under-performance of the Analogue method in comparison with the BHM variants might seem
in contradiction with the results of Gómez-Navarro et al. (2015), who do not find any significant
skill differences between these schemes. However, we should note an important difference between
the  two  studies:  in  Gómez-Navarro  et  al.  (2015)  the  authors  use  as  pool  of  analogues  an
independent highly-resolved simulation performed with a regional model, while in this manuscript
we use  the  classical  analogue approach based on the  instrumental-period  pool.  This  difference
makes it impossible to draw a fair comparison between the two studies, indicating that the pool of
analogues  is  essential  for  determining  the  potential  success  of  the  Analogue  Method  as
reconstruction technique.

We hypothesise a couple of reasons for the failure of the Analogue Method over NWAChina: first,
the  semi-arid  precipitation  regime  dominant  in  the  area  and  second  an  insufficient  number  of
analogues in the pool. As the method is unsuccessful both at annual and decadal resolutions we
think that the number of elements in the pool of analogues is not an important variable and that the
main cause for the failure resides in the fact that non-normal behaving time-series could potentially
be more difficult to mimic by analogues than Gaussian-behaving ones. However, providing a proof
for  such hypothesis  is  out  of  the  scope of  this  manuscript  and will  require  the  design  of  new
theoretical experiments with input data arising from different probability distributions. 

Disentangling the reasons leading to a partial  deterioration of skill  when coupling the BHM to
Clustering algorithms will require additional experiments. However, we hypothesize that the main
reason for such behaviour is related to the loss of information from geographical-neighbours. While
during clustering geographical-neighbors can be separated, the information from such sites is taken
into account in the covariance matrix structure of BHM and, therefore, losing information from
close locations might affect the final performance.

3.2. Effect of noise in Pseudo-proxy records
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Next,  we  evaluate  the  impact  of  noise  in  the  pseudo-proxy  time-series  on  the  skill  of  the
reconstruction techniques. We focus on two schemes: one Bayesian (BHM+5Clusters, selected for
its  balance between skill  and computational  requirements,  as shown in subsection 3.1)  and the
Analogue Method. We work with four noise levels for the pseudo-proxy time-series: high-noise
(correlation with truth: 0.3), medium-noise (correlation with truth: 0.5), low-noise (correlation with
truth: 0.7) and perfect-proxy (correlation with truth: 1). Note that the medium-noise proxies case
corresponds to the level used through sub-section 3.1. To simplify and summarize the results, in this
subsection we display  the reconstructions  performance in  terms of  only one skill  measure:  the
Correlation Coefficient.

Figure 7 shows the dependency of the Correlation Coefficient, averaged in space, with noise levels
in the pseudo-proxies records. At annual resolution, the skill of the methods increases in an almost
linear way with the quality of the pseudo-proxies records, except for a drop in the Bayesian skill in
the No-noise scenario. The BHM+5Clusters performance is better than the Analogue Method in all
cases except the No-noise one. For high-noise proxies the skill of the BHM+5Clusters (Analogue
Method) is 0.23 (0.18), while in the perfect-proxy scenario the BHM+5Clusters (Analogue Method)
reaches  0.30  (0.42).  For  decadally-resolved  reconstructions  the  picture  is  quite  different.  The
Bayesian  approaches  show a  quasi-constant  skill  for  the  medium,  low and  no noise  examples
(around 0.33) and the Analogue Method performs poorly showing for all the noise types a skill
between 0.09 and 0.15. While for the Bayesian schemes the spatial average skill for the annual or
decadal resolutions is  similar,  the difference between annual versus decadal is  important  in the
Analogue  case.  To  complement  the  spatially-averaged-information,  Figures  8  and  9  show  the
sensitivity of the correlation skill measure field to the noise-levels in the pseudo-proxies for the
BHM+5Clusters and the Analogue Method, respectively.

For  the  Bayesian  algorithm  (Fig.  8),  the  perfect-proxy  case  shows  high  performance  over
NWAChina, EChina and North-East of the study area, at annual and decadal resolutions. For the
annual reconstruction, the skill of the scheme is low southward of 25N and over some grid cells in
the north of the area. For the decadal reconstruction, the same areas are also problematic and, in
addition, most of India is not well reconstructed. In general, as the noise level in the input pseudo-
proxies increases the performance of the method deteriorates and for the high-noise case only East
China and the NW of the study region show a moderate success.

Figure 9 presents the Analogue Method performance. For annual resolution, in the case of perfect
pseudo-proxies, the method is successful in the central part of the study area (between 15N and
45N), while the northern and southern most extremes are not well  reconstructed.  However,  the
decadal counter-part is only skilful in EChina. In the high-noise end of the spectrum, the Analogue
Method only shows a satisfactory performance in EChina, between 20N-40N (25N-35N) for the
annually-resolved (decadally-resolved) reconstruction.
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To summarize, as expected, the noise in the pseudo-proxy time-series is important , as the quality of
the reconstruction rapidly decreases with the noise level. 

4. Summary and Conclusions

This study evaluates the ability of several statistical techniques to reconstruct the precipitation field
over South-eastern Asia in a PPE setting. The reconstructions are performed using 1156 years of
model simulation (corresponding to the period 850-2005), at annual and at decadal resolution. The
techniques used are: BHM, BHM coupled with clustering (dividing South-eastern Asia into 5 or 10
clusters) and the Analogue Method. While the Analogue Method is a classical approach and has
been widely used, the Bayesian variants are novel for the hydro-climatological reconstructions’
field,  being  this  the  first  time  the  technique  is  applied  for  Asian  precipitation  reconstruction.
Moreover, the coupling of the Bayesian modelling with clustering algorithms is also an innovation
that could potentially lead to a more wide-spread application of these computationally-intensive
processes.

We find that for all the algorithms and resolutions a high-density of pseudo-proxy information is a
necessary but not sufficient condition for a successful reconstruction.  On one hand, the lack of
proxy data  over  regions  such  as  the  NE of  the  study  area,  south  of  Tibet  and south  of  20N,
determines that none of the methods is capable of delivering a skilful reconstruction. On the other
hand, a good performance over the proxy-rich areas of EChina and NWAChina is not guaranteed
just by the amount of data present there: while all the methods are highly successful over EChina,
only the Bayesian algorithms deliver quality reconstructions over NWAChina.

Among the three Bayesian schemes the differences in skill are not extremely notorious, although a
partial deterioration of the skill is detected in some regions when clustering is coupled. Noting that
the  Bayesian  technique  without  any  form  of  pre-clustering  of  the  area  of  interest  (BHM)  is
extremely computationally  expensive,  coupling it  with a  clustering scheme (BHM+5Clusters  or
BHM+10Clusters)  seems to  be  a  good compromise  between  success  of  the  reconstruction  and
computational demand (with computing times reduced up to 50%). 

We also find that the quality of the final  reconstructions  is  highly sensitive to the noise levels
included in the input pseudo-proxy data, being those variables negatively correlated. Only under a
perfect-proxy  (no-noise)  scenario  and  at  annual-resolution  is  the  Analogue  Method  capable  of
overperforming the Bayesian schemes over most areas. Even in this ideal no-noise case NWAChina
remains elusive for the Analogue methodology.
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As a summary, we find that for millennium-length precipitation reconstructions over South-eastern
Asia a dense network of proxy information is mandatory for success, highlighting the complex
nature of the precipitation field in the area of study. Among the selected algorithms, the Bayesian
techniques perform generally better  than the Analogue Method, being the difference in abilities
highest over the semi-arid Northwest and in the decadal-resolution framework. The superiority of
the  Bayesian  approach  indicates  that  directly  modelling  the  space  and  time  precipitation  field
variability  is  more  appropriate  than  just  relying  in  similarities  within  a  restricted  pool  of
observational analogues, in which certain regimes might not be present.

A natural  next  step is  to implement real-world reconstructions of precipitation in the region of
continental  South-eastern Asia. These PPE are auspicious for such a future endeavour, as some
moderate skill can be expected in most of the region. Nevertheless, it is important to acknowledge
that these experiments are highly idealised and that real-world data might incorporate additional
constraints  and challenges.  Additionally,  more  PPE could  be  also designed lifting  some of  the
simplifications assumed here. For example, while here we only took proxy time-series that cover
the whole period of interest, with the same temporal resolution, same signal to noise relation and
same relationship with the underlying hydroclimatic variable of interest, some of these constrains
could be modified to better resemble reality.
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Table 1: List of the real-world Proxy records used to select the locations of the pseudo-proxy 
network.

Site Longitude Latitude Archive Target Season Reference

1 Anyemaqen
Mountains

99.5 34.5 Tree Annual Gou et al, 2010

2 Balkhash Basin 75 46.9 Pollen Annueal Feng et al.,
2013

3 Buddha Cave 109.5 33.4 Speleothem Annual Paulsen et al.,
2003

4 Central India
Composite

82 19 Speleothem Summer Sinha et al.,
2011

5 Delingha 97.38 37.38 Tree Annual Yang et al.,
2014

6 Dharamjali
Cave

80.21 29.52 Speleothem Annual Sanwal et al.,
2013

7 Dongge Cave 108.8 25.28 Speleothem Annual Wang et al.,
2005

8 Eastern Tibetan
Plateau

102.52 32.77 Lake Annual Yu et al., 2006

9 Furong Cave 107.9 29.29 Speleothem Summer Li et al, 2011

10 Gonghai Lakee 112.23 38.9 Lake Summer Liu et al, 2011

11 Great Bend of
the Yellow

River

115 35 Documentary Annual Gong and
Hamed 1991

12 Guliya 81.48 35.28 Ice Annual Yao et al., 1996

13 Haihe River
Basin

116 40 Documentary Annual Yan et al., 1993

14 Hani 126.51 42.21 Lake Annual Hong et al.,
2005

15 Heihe River
Basin

100 38.2 Tree Annual Yang et al.,
2012

16 Heshang_Cave 109.36 19.41 Speleothem Annual Hu et al., 2008

17 Huangye Cave 105.12 33.92 Speleothem Annual Tan et al., 2011

18 Huguangyan
Lakee

110.28 21.15 Lake Annual Zeng et al.,
2012

19 Jianghuai 113.5 31.5 Documentary Annual Zheng et al.,
2006

20 Jiangnan 115 30 Documentary Annual Zheng et al.,
2006

21 Jiuxian Cave 109.1 33.57 Speleothem Summer Cai et al., 2010

22 Karakorum
Mountains

74.93 35.9 Tree Annual Treeydte et al.,
2006

23 Kesang Cave 81.75 42.87 Speleothem Annual Zheng et al.,
2012
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24 Kusai Lake 93.25 35.4 Lake Summer Liu et al., 2009

25 Lake Aibi 82.84 44.9 Lake Annual Wang et al.,
2013

26 Lake Gahai 102.33 34.24 Lake Annual He et al., 2013

27 Lake Hulun 117.5 49 Lake Annual Zhai et al.,
2011

28 Lake Nam Co 90.78 30.73 Lake Summer Kasper et al.,
2012

29 Lake
Xiaolongwan

126.35 42.3 Lake Annual Chu et al.,
2009

30 Lonxi Area 105 30 Documentary Annual Tan et al., 2008

31 North China
Plains

115 38 Documentary Annual Zheng et al.,
2006

32 North-eastern
Tibetian
Plateau

98 37 Tree Annual Yang et al.,
2014

33 Qaidam Basin 97.5 37.2 Tree Annual Yin et al., 2008

34 Qaidam Basin 97.5 37.2 Tree Annual Wang et al.,
2013

35 Qigai Nuur 109.5 39.5 Pollen Annual Sun et al., 2013

36 Qilian
Mountains

99.5 38.5 Tree Annual Zhang et al.,
2011

37 Qinghai
Province

99 37 Tree Annual Sheppard et al.,
2004

38 Southern China 110 25 Documentary Annual Qian et al.,
2003

39 Sugan Lake 93.9 38.85 Lake Annual He et al., 2013

40 Tsuifong Lake 121.6 24.5 Lake Annual Wang et al.,
2013

41 Wanxiang Cave 105 33.19 Speleothem Annual Zhang et al.,
2008

42 Wulungu Lake 87.15 47.15 Pollen Annual Liu et al., 2008

43 Yangtze Delta 121 32 Documentary Annual Zhang et al.,
2008

44 Yangtze Delta 120 32 Documentary Annual Jiang et al.,
2005

45 Yangtze Delta 115 30 Documentary Annual Qian et al.,
2003

46 Yellow River 110 35 Documentary Annual Qian et al.,
2003

47 Zhijin Cave 105.84 26.73 Speleothem Summer Kuo et al.,
2011
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Figure 1: Simulated mean JJA precipitation (mm/month) during the instrumental period
(years 1906-2005)  over continental Asia. Black dots: Pseudo-Proxy network.
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Figure 2: Example of Pseudo-Proxy, Pseudo-Instrumental and True precipitation time-series
at location [20N,82.5E]. a) Annually-resolved data b) Decadally-resolved data.
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Figure 3: Correlation of Simulated JJA precipitation time-series across different latitudinal
bands, versus distance. Only the instrumental period (years 1906-2005) and the grid-points in

continental Asia are considered for the calculation. a) Annual-resolution Data, b) Decadal-
resolution Data. Dashed horizontal lines indicate the thresholds of statistical significance at a

95% confidence level according to the t-student test.
For this plot, all grid-points in the same latitude band are grouped together and then one-to-

one correlations are calculated between members of the same group.
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Figure 4: Correlation between Target Precipitation and different Reconstructions, at each
grid point. Left: Annually-resolved data. Right: Decadally-resolved data.

a and e: BHM. b and f: BHM + 5Clusters. c and g: BHM + 10 Clsuters. d and h: Analogue
Method. The boxplots (indicating median, 25% and 75% percentitles and non-outlier limits)

to the right of the colour bars show the distribution of the grid point Correlation Coefficients.
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Black dots: Pseudo-Proxy network.

33

1



Figure 5: RE Index for different Reconstructions, at each grid point. Left: Annually-resolved
data. Right: Decadally-resolved data. a and e: BHM. b and f: BHM + 5Clusters. c and g:

BHM + 10 Clsuters. d and h: Analogue Method. The boxplots (indicating median, 25% and
75% percentitles and non-outlier limits) to the right of the colour bars show the distribution

of the grid point RE Index.
Black dots: Pseudo-Proxy network.
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Figure 6: CRPS for different Reconstructions, at each
grid point. Left: Annually-resolved data. Right: Decadally-resolved data.

a) and d): BHM Reconstruction. b) and e): BHM+5Clusters. c) and f): BHM + 10 Clusters.
The boxplots (indicating median, 25% and 75% percentitles and non-outlier limits) to the

right of the colour bars show the distribution of the grid point CRPS. 
Black dots: Pseudo-Proxy network.
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Figure 7: Spatial Mean Correlation Skill of Reconstruction techniques for different noise
levels (expressed here in terms of the correlation between the pseudo-proxy and truth).
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Figure 8: BHM+5Clusters performance in terms of Correlation with target for different levels
of noise at annual (left column) or decadal (right column) resolution. A and b) No noise. C and

d) low noise. E and f) Medium-level noise. G and h) High noise.
The boxplots (indicating median, 25% and 75% percentitles and non-outlier limits) to the
right of the colour bars show the distribution of the grid point Correlation Coefficients.

Black dots: Pseudo-Proxy network.
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Figure 9: Analogue Method performance in terms of Correlation with target for different
levels of noise at annual (left column) or decadal (right column) resolution. A and b) No noise.

C and d) low noise. E and f) Medium-level noise. G and h) High noise.
The boxplots (indicating median, 25% and 75% percentitles and non-outlier limits) to the
right of the colour bars show the distribution of the grid point Correlation Coefficients.

Black dots: Pseudo-Proxy network.
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Appendix A

Figure A1: Kolmogorov-Smirnov Normality test on the Simulated JJA Precipitation during
instrumental period (years 1906-2005, at annual resolution). a) Rejection or acceptance of

Normality hypothesis, at a 95% confidence level, b) p-values.
Black dots: Pseudo-Proxy network.
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Figure A2: Divisions into Clusters (in each plot different colors indicate different Clusters),
using the simulated JJA precipitation in the instrumental period (years 1996-2005) as input. a)

Annual Data, division into 5 Clusters, b) Annual Data, division into 10 Clusters, c) Decadal
Data, division into 5 Clusters, d) Decadal Data, division into 10 Clusters. Magenta dots:

Pseudo-Proxy network.
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