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Abstract. The equilibrium climate sensitivity (ECS) of climate models is calculated as the equilibrium global mean surface
warming resulting from a simulated doubling of the atmospheric CO4 concentration. In these simulations, long-term processes
in the climate system, such as land ice changes, are not incorporated. Hence, climate sensitivity derived from paleodata has
to be compensated for these processes, when comparing it to the ECS of climate models. Several recent studies found that
the impact these long-term processes have on global temperature cannot be quantified directly through the global radiative
forcing they induce. This renders the prevailing approach of deconvoluting paleotemperatures through a partitioning based on
radiative forcings inaccurate. Here, we therefore implement an efficacy factor [ y), that relates the impact of land ice changes
on global temperature to that of CO- changes, in our calculation of climate sensitivity from paleodata. We apply our refined
approach to a proxy-inferred paleoclimate dataset, using e[y = 0.451’8:‘;’3 based on a multi-model assemblage of simulated
relative influences of land ice changes on the Last Glacial Maximum temperature anomaly. The implemented e,yj is smaller
than unity, meaning that per unit of radiative forcing the impact on global temperature is less strong for land ice changes than
for CO4 changes. Consequently, our obtained ECS estimate of 5.8 + 1.3 K, where the uncertainty reflects the implemented

range in €[}, is ~50% higher than when differences in efficacy are not considered.
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1 Introduction

Equilibrium climate sensitivity (ECS) expresses the simulated equilibrated surface air temperature response to an instantaneous
doubling of the atmospheric CO5 concentration. The simulated effect of the applied CO» radiative forcing anomaly includes
the Planck response, as well as the fast feedbacks such as those involving changes to snow, sea ice, lapse rate, clouds and
water vapour. ECS varies significantly between different state-of-the-art climate models, for instance the CMIP5 ensemble
shows a range of 1.9 to 4.4 K (Vial et al., 2013). Several ways have been put forward to constrain ECS, for example through
the usage of paleoclimate data (e.g. Covey et al., 1996; Edwards et al., 2007), which is also the focus of this study. However,
unlike results of models, temperature reconstructions based on paleoclimate proxy data always contain a mixed signal of all
processes active in the climate system. Among these are long-term processes (or slow feedbacks) such as changes in vegetation,
dust, and, arguably most importantly, land ice changes, which are kept constant in the climate model runs used to calculate
ECS. Therefore, it is necessary to correct paleotemperature records for the influence of these processes, in order to make a
meaningful comparison to ECS calculated by climate models.

In a co-ordinated community effort, the PALAEOSENS project proposed to relate the temperature response caused by
these long-term processes to the globally averaged radiative forcing they induce (PALAEOSENS Project Members, 2012).
Consequently, the paleotemperature record can be disentangled on the basis of the separate radiative forcings of these long-
term processes (e.g. von der Heydt et al., 2014; Martinez-Bot{ et al., 2015; Kohler et al., 2015, 2017b, 2018; Friedrich et al.,
2016). If all processes are accounted for in this manner, the effect of CO9 changes and the accompanying short-term feedbacks,
as described by the ECS, can be estimated. However, several studies have shown that, depending on the type of radiative
forcing, the same global average radiative forcing can lead to different global temperature changes (e.g. Stuber et al., 2005;
Hansen et al., 2005; Yoshimori et al., 2011). For instance, in a previous article (Stap et al., 2018) we simulated the separate and
combined effects of CO2 changes and land ice changes on global surface air temperature using the intermediate complexity
climate model CLIMBER-2 and showed that the specific global temperature change per unit radiative forcing change depends
on which process is involved. As a possible solution to this problem, Hansen et al. (2005) formulated the concept of "efficacy’
factors, which express the impact of radiative forcing by a certain process in comparison to the effect of radiative forcing by
COg, changes.

Based on the concept of Hansen et al. (2005), here we introduce an efficacy factor for radiative forcing by albedo changes
due to land ice variability, in our method of deriving climate sensitivity from paleodata. We first illustrate our refined approach
by applying it to transient simulations over the past 5 Myr using CLIMBER-2 (Stap et al., 2018), obtaining a quantification
of the effect on global temperature of CO4 changes and the accompanying short-term feedbacks from a simulation forced by
both land ice and CO- changes. We compare this result to a simulation where COs changes are the only operating long-term
process. In this manner, we can assess the error resulting from using a constant efficacy factor. Thereafter, we refine a previous
estimate of climate sensitivity based on a paleoclimate dataset of the past 800 kyr (Kéhler et al., 2015, 2018). In this dataset,
the sole effect of CO2 is not a-priori known. We therefore investigate the influence of the introduced efficacy factor on the

calculated climate sensitivity. To do so, we appraise the influence of land ice changes and the associated efficacy using a range
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that is given by different modelling efforts of the Last Glacial Maximum (LGM; ~21 kyr ago) (Shakun, 2017). The climate
sensitivity resulting from applying this range provides a quantification of the consequence of the uncertain efficacy of land ice

changes.

2 Material and methods

In this section, we first summarize the approach to obtaining climate sensitivity from paleodata, that has been used in numerous
earlier studies (e.g. PALAEOSENS Project Members, 2012; von der Heydt et al., 2014; Martinez-Boti et al., 2015; Kohler et al.,
2015, 2017b, 2018; Friedrich et al., 2016). We then discuss our main refinement to that approach, which is the inclusion of
the efficacy of land ice changes, and a further small refinement that is meant to unify the dependent variable in cross-plots of

radiative forcing and global temperature anomalies.
2.1 Approach to obtain climate sensitivity from paleodata

In climate model simulations used to quantify ECS, fast feedbacks, i.e. processes in the climate system with timescales of
less than ~100 yrs, are accounted for. However, slower processes, such as those involving changes to ice sheets, vegetation
and dust, are commonly kept constant. The resulting response is also sometimes called ‘Charney*‘ sensitivity (Charney et al.,
1979). Following the notation of PALAEOSENS Project Members (2012), the ratio of the temperature change (AT]co,)) to
the radiative forcing due to the CO; change (A R|co,)), yields 5S¢ (in KW~—!m2, and where « stands for actuo):

_ ATjco,

S0 = ——=2
ARjco,

e))

The subscript denotes that COs is the only long-term process involved. Analogously, paleoclimate sensitivity (S?) can be

deduced from paleo-temperature reconstructions and paleo-COs records as

AT,
- _~"s (2)
ARjco,)

Sl)
In this case, the average global paleotemperature anomaly with respect to the pre-industrial (PI) (AT}) is, however, also affected
by the long-term processes that are typically neglected in climate simulations. Therefore, a correction to the paleotemperature

record is needed to obtain ATjco,) from AT,:
ATico,) = ATy (1 - f), 3)

or equivalently S from S?:

AT,

§ =501 = RReon

1=/ “4)

Here, f represents the effect of the slow feedbacks on paleotemperature (e.g. van de Wal et al., 2011). To obtain f, PALAEOSENS

Project Members (2012) proposed an approach, which has subsequently been used in numerous studies aiming to constrain
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climate sensitivity from paleodata (e.g. von der Heydt et al., 2014; Martinez-Boti et al., 2015; Kohler et al., 2015, 2017b, 2018;
Friedrich et al., 2016), and paleoclimate modelling studies (e.g. PALAEOSENS Project Members, 2012; Friedrich et al., 2016;
Chandan and Peltier, 2018). They suggested to quantify the influence of the long-term processes (X) by the radiative forcing

change they induce (A R[x)), relative to the total radiative forcing perturbation:

AR B ARjco,)

= —1- 5)
! AR[COQ] + AR[X] AR[COQ] + AR[X]

Combining Egs. 4 and 5 and following the PALAEOSENS nomenclature, we can then derive the ’specific’ paleoclimate sensi-

tivity S|co,,x]» Where X represents the processes that are accounted for in the calculation of f:

ATg 1 AR[X] ATg ATg

AR[COZ] (1- AR[COQ] + AR[X] - AR[COQ] + AR[X] - AR[COQ,X] '

(6)

Sico,,x] =

If, for instance, only the most important slow feedback in the climate system, namely radiative forcing anomalies induced by
albedo changes due to land ice (LI) variability are taken into account, then one can correct SP to derive the following specific
climate sensitivity:

AT, _ AT, '
[co,] + ARy ARjco,.Ly

S[co,,L1] = AR @)

Using this approach, several studies performed a least-squares regression through scattered data from paleotemperature and
radiative forcing records (Martinez-Botf et al., 2015; Friedrich et al., 2016; Kohler et al., 2015, 2017b, 2018) relating AT} to
AR|co,,L1 in a time-independent manner, from which S|co, Ly could be determined. In the course of those studies, a state
dependency of S|co,,Ly as function of background climate has been deduced for those data which are best approximated by a
non-linear function. Furthermore, the quantification of S|co, L1 for those state-dependent cases has been formalized in Khler
etal. (2017b). A synthesis of estimates of S|co,,L1) from both colder- and warmer-than-present climates has been compiled by

von der Heydt et al. (2016).
2.2 Refinement 1: Taking the efficacy of land ice changes into account

The validity of the PALAEOSENS approach to calculate f is contingent on the notion that identical global-average radiative
forcing changes leads to identical global temperature responses, regardless of the processes involved. However, it has been
demonstrated that the horizontal and vertical distribution of the radiative forcing affects the resulting temperature response
(e.g. Stuber et al., 2005; Hansen et al., 2005; Yoshimori et al., 2011; Stap et al., 2018) because, e.g. different fast feedbacks
are triggered depending on the location of the forcing. To address this issue, Hansen et al. (2005) introduced the concept
of “efficacy’ factors, which we will explore further in this study. These factors (gx)) relate the strength of the temperature
response to radiative forcing caused by a certain process X (ATjx)/AR[x)), to a similar ratio caused by CO, radiative forcing

(ATico,) / AR|co,))- This introduction of efficacy requires a reformulation of f as f:

ex)AR B ARjco,

_ 1 , ®
ARjco,) +ex]AR ARco,) +ex]ARx)

fe
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and hence also of Sjco, x] as S[ECO%X]:

5 _ ATE
(€022 AR(co,) +ex AR

(€))

In these reformulations, where in principle €xj can take any value, we introduce the superscript €. This serves to clearly
distinguish these newly-derived sensitivities from those of the PALAEOSENS approach in which efficacy was not taken into
account, implying that identical radiative forcing of different processes leads to identical temperature changes.

To calculate 5[6002,1,1]’ we constrain the efficacy factor for radiative forcing by land ice changes (e[.1)), using the following

formulation, which is based on, but slightly modified from Hansen et al. (2005):
AT[LI] . ATg — AT[LI]

=Ly (10)
This leads to:
w ARjco,
— 11
Ly =T, ARy (1T)

where w represents the fractional relative influence of land ice changes on the global temperature change (w = ATjry /ATy). If
€[L1) i assumed to be constant in time (see Sect. 3.2), it can be calculated using Eq. 11 from data of any time step in the record
of AR|co,] and ARyrj, and consequently applied to the whole record (Fig. 1a,c). As before, with this &1 a quantification of
SFCOQ,LI] can be obtained by performing a least-squares regression through scattered data from paleotemperature and radiative
forcing records, now relating AT, to (AR[CO2] +ewy AR[LI]) in a time-independent manner.

Note that apart from the formulation based on Hansen et al. (2005) followed here, other formulations of the efficacy factor
are possible. For instance, one can define an alternative efficacy factor (€11, a1¢) such that it relates the effect of land ice changes

on global temperature directly to the radiative forcing anomaly caused by CO5 changes, leading to:

AT,

St alt = . 12)
(€02 X418 AR(co,) + e anAR[co,)
In this alternative case, the efficacy factor €1, a1; relates to our original e[y as:
AR[LI] (13)

E[LI],alt = E[LI]W-
2

This implies that if [y is indeed constant, any non-linearity in the relation between AR|co,) and ARy would demand a
more complex formulation of the alternative efficacy factor e[y a1¢ (e.g. via a higher-order polynomial). Since we find such
a non-linearity in our data (Fig. 2), using an F test to determine that a second order polynomial is a significantly (p value <

0.0001) better fit to the data than a linear function, we refrain from following this alternative formulation further.
2.3 Refinement 2: Unifying the dependent variable

To calculate S [ECOQ LI previous studies have used cross-plots of global temperature anomalies and radiative forcing. The

latter is caused by a combination of CO4 and land-ice changes, which is cumbersome if one wants to compare S[ECO2 Ly 0
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other specific paleoclimate sensitivities Sfcog X where more and/or different long-term processes are considered. Here, we

therefore reformulate our quantification of S[ECOQ’LI] to unify the dependent variable as ARco,)-

. _ AT, _ ATy AR[COQ] _ AT[S_X]
[CO2.X] AR[COQ] + E[X]AR[X] AR[CO2] AR[coz] + €[X]AR[X] AR[COQ] '

(14)

Here, AT[E_X] is the global temperature change (with respect to PI) stripped of the inferred influence of processes X, defined

as:
AR|co,]
ATE 1 := AT, 2 . (15)
= ® AR(co,) + e AR
Hence, for the calculation of .S fcoz,LI] we use:
AR
ATE 1) = AT, [CO] (16)

® ARco,) +eLyARLy
Now, we quantify SFCOQ’LI] by performing a least-squares regression (regfunc) through scattered data from AT[‘i L] and
ARjco,). We use the precondition that no change in COs is related to no change in AT[iLI], meaning the regression intersects

the y-axis at the origin ((z,y) = (0,0)). Following Kohler et al. (2017b), for any non-zero A Rj¢o,], We calculate S[ECO2 L1 388

- regfunc
S[00,,L1) = AR . (17)
AR(co,) [CO]TAR o,
If AR[co,) = 0Wm~2, as is among others the case for pre-industrial conditions, S[acoz,LI] is quantified as:
0 (regfunc)
Sfcos i == : (18)
(002 11 AR[co,1=0 5(ARco,)) AR[c0o,1=0

Equations 17 and 18 yield a quantification of S[Ecoz,LI]’ which can be compared to the value obtained for S[Ecog,LI] using the
PALAEOSENS approach that does not consider efficacy differences (equivalent to using er,;j = 1) (Kohler et al., 2018).

To obtain S, one needs to multiply Sjco, Ly by a conversion factor ¢ = 0.64 4-0.07 (1o-uncertainty) that accounts for
the influence of other long-term processes, namely vegetation, aerosol and non-CO4 greenhouse gas changes (PALAEOSENS
Project Members, 2012). Note that this multiplication by ¢ ignores any possible state-dependencies in ¢ and assumes unit
efficacy for processes other than land ice changes. Because a comprehensive analysis of the efficacy and state-dependency of
these other processes is beyond the scope of this study, it is a source of uncertainty to be investigated in future research. Finally,
we obtain the equivalent ECS by multiplying 5S¢ by ARaxco, = 3.71+0.37Wm~2 (lo-uncertainty), the radiative forcing
perturbation representing a CO4y doubling (Myhre et al., 1998).

3 TIllustration of the approach using model simulations

In this section, we illustrate our refined approach, which considers efficacy differences, by applying it to transient simulations

over the past 5 Myr using CLIMBER-2 (Stap et al., 2018). We obtain a quantification of the effect on global temperature of
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CO3 changes and the accompanying short-term feedbacks from a simulation forced by both land ice and CO4 changes. We
compare this result to a simulation where CO4 changes are the only operating long-term process. By doing so, we assess the

error resulting from using a constant efficacy factor.
3.1 CLIMBER-2 model simulations

Currently, long (~ 10° to ~ 10° years) integrations of state-of-the-art climate models, such as general circulation models
and Earth system models, are not yet not feasible due to limited computer power. This gap can be filled by using models of
reduced complexity (Claussen et al., 2002; Stap et al., 2017). Using the intermediate complexity climate model CLIMBER-2
(Petoukhov et al., 2000; Ganopolski et al., 2001), climate simulations over the past 5 Myr were performed and analysed in
Stap et al. (2018). CLIMBER-2 combines a 2.5-dimensional statistical-dynamical atmosphere model, with a 3-basin zonally
averaged ocean model (Stocker et al., 1992), and a model that calculates dynamic vegetation cover based on the temperature and
precipitation (Brovkin et al., 1997). The simulations could be forced by solar insolation changes due to orbital (O) variations
(Laskar et al., 2004), by land ice (I) changes on both hemispheres (based on de Boer et al., 2013), and by COs (C) changes
(based on van de Wal et al., 2011). In the reference experiment (OIC) all these factors are varied, while in other model
integrations the land ice (experiment OC) or the CO2 concentration (experiment OI) is kept fixed at PI level. The synergy
of land ice and CO5 changes is negligibly small, meaning their induced temperature changes add approximately linearly
when both forcings are applied. Furthermore, the influence of orbital variations is also very small, so that experiment OC
approximately yields the sole effect of CO2 changes on global temperature (ATjoc)). As in Stap et al. (2018), we use the
simple energy balance model of Kohler et al. (2010) to analyse the applied radiative forcing of land ice albedo and CO5

changes and simulated global temperature changes, after averaging to 1,000 year temporal resolution (Fig. 1a,b).
3.2 Analysis

First, we analyse experiment OC, which will serve as a target for our approach as deployed later in this section. We use a
least-squares regression through scattered data of ARjco,] and ATjoc; to fit a second order polynomial (Fig. 3a). Using a
higher order polynomial rather than a linear function allows us to capture state dependency of paleoclimate sensitivity. Fitting
even higher order polynomials leads to negligible coefficients for the higher powers, and is not pursued further. From the fit,
we calculate a specific paleoclimate sensitivity S, 15y of 0.74 KW' m? for PI conditions (AR[co,) =0 Wm™?) using
Eq. 18. Note that, in this case, S[ECOQ’LI] is equal to S[ECOQ], S[co,,L1) and S|co,] as there are no land ice changes and therefore
also no efficacy differences. The fit further shows decreasing S [Ecoz,LI] for rising AR|co,]-

Now, we apply our approach to the results of experiment OIC, in which both CO, and land ice cover vary over time, with
the aim of deducing the sole effect of CO5 changes on global temperature. We calculate the efficacy of land ice changes for the
Last Glacial Maximum (21 kyr ago; LGM) from experiment OI, in which the CO5 concentration is kept constant. We obtain
w = ATy /AT, = ATior/ATioic) = 0.54. Consequently, we find ej1,;j = 0.58 from Eq. 11, and apply this value to the whole
record of ARjco,) and ARry. In this manner, we calculate AT[E_LI] using Eq. 16. In principle, [y can be obtained using

data from any time step of the record, preferably when the radiative forcing anomalies are large to prevent outliers resulting
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from divisions by small numbers. For example, using the results from all glacial marine isotope stages of the past 810 kyr (MIS
2,6,8, 10, 12, 14, 16, 18, and 20), instead of only the LGM, leads to a mean (+10) [,y of 0.56 £ 0.09.

We then fit a second order polynomial to the scattered data of the thusly obtained AT[‘f_ L] from the results of experiment
OIC, and ARjco,) (Fig. 3b,c). Between AR|co,) = —0.5Wm~2 and ARjco,) = 0.5 W m™2, outliers resulted from division
by small numbers (not shown in Fig. 3b). To remove these outliers, we first calculate the root mean square error (RMSE)
between the fit and the data in the remainder of the domain. We then exclude all values from the range AR|co,] = —0.5Wm™?
to ARjco,) = 0.5 W m~2 where the fit differs from the data by more than 3 x RMSE, and perform the regression again. This
yields an Sf¢, 15 of 0.72 KW~ m? for PI (Fig. 3b) in the LGM-only case, and 0.731505 KW~ m? in the case where all
glacial periods are used (Fig. 3c). This supports our approach since it is only slightly lower than the S[Ecoz,m] of 0.74 KW~ 1m?
obtained from experiment OC, which it should approximate. The relationship between AT[i L] and AR|co,) (Fig. 3b) is less
linear than that between AT|oc) and AR|co,) (Fig. 3a), hence the state dependency of S[Ecoz,LI] is enhanced. However, the
difference between the S[ECO2,LI] obtained from both experiments remains smaller than 0.07 KW ~'m? through the entire
5-Myr interval in the LGM-only case, indicating that a constant efficacy is an acceptable assumption which only introduces a
negligible additional uncertainty. However, the possible time-dependency of efficacy could be investigated more rigorously in
future research using more sophisticated climate models.

The PALAEOSENS approach that does not consider efficacy differences (e = 1) yields a PI S|co, Ly of 0.54 K W 1m?
(Fig. 3d). This is clearly much more off-target than the results of our approach, signifying the importance of considering

efficacy.

4 Application to proxy-inferred paleoclimate data

In this section, we compare our refined approach to calculate S[‘fcobm] incorporating efficacy, to our previous quantification
of S [cO. L1 (Kohler et al., 2018), by reanalysing the same paleoclimate dataset (introduced in Kohler et al., 2015). Other than
for climate model simulations, in proxy-based datasets the influence of land ice changes on global temperature perturbations
cannot be directly obtained, and is hence a-priori unknown. We therefore base the value of e[1,;; we implement here on a multi-
model assemblage of simulated relative influences of land ice changes on the Last Glacial Maximum (LGM) temperature
anomaly (Shakun, 2017).

4.1 Proxy-inferred paleoclimate dataset

The dataset to be investigated contains reconstructions of AT, AR|co,], and ARy for the past 800 kyr. Although the dataset
covers the past 5 Myr, here we focus only on the past 800 kyr (Fig. 1c,d) because over this period AR[co,) is constrained by
high-fidelity measurements of COy within ice cores, whereas Pliocene and Early Pleistocene COy levels are still heavily
debated (e.g. Badger et al., 2013; Martinez-Boti et al., 2015; Willeit et al., 2015; Stap et al., 2016, 2017; Chalk et al., 2017,
Dyez et al., 2018). Radiative forcing by COs- is obtained from Antarctic ice core data compiled by Bereiter et al. (2015), using
ARjco, = 5.35 Wm~2-1n(CO, /(278 ppm)) (Myhre et al., 1998). The revised formulation for AR|co,) from Etminan et al.
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(2016) leads to very similar results with less than 0.01 Wm~? differences between the approaches for typical late Pleistocene
CO values (Kohler et al., 2017a). Radiative forcing caused by land ice albedo changes, as well as the global surface air
temperature record (ATy), are based on results of the 3D ice-sheet model ANICE (de Boer et al., 2014) forced by northern
hemispheric temperature anomalies with respect to a reference PI climate. The ANICE results are here considered to be proxy-
inferred, because, unlike climate models, ANICE is not constrained by climatic boundary conditions such as insolation and
greenhouse gases. The temperature anomalies follow directly from a benthic §'20 stack (Lisiecki and Raymo, 2005) using
an inverse technique. Nevertheless, the results are model-dependent and therefore subject to uncertainty. ANICE provided
geographically specific land ice distributions, and hence radiative forcing due to albedo changes with respect to PI on both
hemispheres. In Kohler et al. (2015), the northern hemispheric (NH) temperature anomalies (A7Ny) are translated into global
temperature perturbations (AT; in Kohler et al. (2015)) using polar amplification factors (fpa = ATNu/AT,) as follows: at
the LGM, fpa = 2.7 is taken from the average of PMIP3 model data (Braconnot et al., 2012), while at the mid-Pliocene Warm
Period (mPWP, about 3.2 Myr ago), fpa = 1.6 is calculated from the average of PlioMIP results (Haywood et al., 2013). At
all other times, fpa is linearly varied as a function of the NH temperature. In Appendix A, we investigate the influence of the
chosen polar amplification factor on our results. The temporal resolution of the dataset is 2,000 years.

Analysing this dataset, Kohler et al. (2018) found a temperature-CO2 divergence appearing mainly during, or in connection
with, periods of decreasing obliquity related to land ice growth or sea level fall. For these periods, a significantly different
Sico2,L1 Was obtained than for the remainder of the time frame. However, in the future we expect sea level to rise, hence these
intervals of strong temperature-CO4 divergence should not be considered for the interpretation of paleodata in the context of
future warming, e.g. by using paleodata to constrain ECS. In the following analysis, we therefore exclude these times with

strong temperature-CO4 divergence, leaving 217 data points as indicated in Fig. 1c,d.
4.2 Analysis

Shakun (2017) compiled model-based estimates of the relative impact of land ice changes on the LGM temperature anomaly
(win Eq. 11) using an ensemble of 12 climate models, and estimated w to be 0.46 4= 0.14 (mean +10, full range 0.20 — 0.68).
Applying these values, in combination with the LGM values (taken here as the mean of the data at 20 and 22 kyr ago)
ARjco,) = —2.04W m~?2 and ARy = —3.88Wm ™2, yields E[Ly = 0.45f8:g‘01. Implementing this range for 1) in Eq. 16,
we calculate AT[E_ Ly over the whole 800-kyr period. Fitting second order polynomials by least-squares regression to the
scattered data of AT[E_ L1 and AR|co,], we infer a PI S[ECOLLI] of 2.451’8:22 KW~!m? (Fig. 4a). The substantial uncertainty
given here only reflects the 1o uncertainty in €[r,;j. Similar to Kohler et al. (2018), we also detect a state dependency with
decreasing S[ECOZ’LI] towards colder climates for this dataset, more strongly so in case of lower er,5. This state dependency
is opposite to the one found in the CLIMBER-2 results (Sect. 3). The difference may be related either to the fact that fast
climate feedbacks are too linear, or that some slow feedbacks are underestimated in intermediate complexity climate models
like CLIMBER-2 (see Kohler et al., 2018, for a detailed discussion). At AR[COZ] = —2.04Wm~2, the LGM value, S‘E‘COQ’LI]
is only 1.457033 K W~ m2. The PALAEOSENS approach, which does not consider efficacy and is therefore equivalent to our
approach using ey = 1, yields Sjco, .y = 1.66 KW~'m? for PL, and Sico,,Lj = 0.93 KW' m? for the LGM (Fig. 4b).
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The specific paleoclimate sensitivities we find using the refined approach are hence generally larger than those obtained when
neglecting efficacy differences. This is because, for the range of the impact of land ice changes on the LGM temperature
anomaly implemented (w = 0.46 & 0.14), the efficacy factor €[rj is smaller than unity. In other words, these land ice changes
contribute comparatively less per unit radiative forcing to the global temperature anomalies than the CO4 changes.

Our inferred PI S[Eco2,L1] is equivalent to an S* of 1.6f8:2 KW~'m?, when only considering the uncertainty caused by the
implemented range in €[y}, and to an S of 1.6f8'_ é KW~ m?2, when only considering the uncertainty in the conversion factor
¢. The equivalent ECS is 5.8 = 1.3 K per CO doubling, when only considering the uncertainty caused by the implemented
range in [y}, and 5.8 & 0.6 K per CO2 doubling, when only considering the uncertainty in the conversion factor ARayco,-
The ECS we find is thus on the high end of the results of other approaches to obtain ECS (Knutti et al., 2017), e.g. the 2.0 to
4.3 K 95%-confidence range from a large model ensemble (Goodwin et al., 2018), and the 2.2 to 3.4 K 66% confidence range
from an emerging constraint from global temperature variability and CMIP5 (Cox et al., 2018). Hence, the low end of our ECS
estimate is in the best agreement with these other estimates. This could mean that the influence the relative influence of land
ice changes on the LGM temperature anomaly is on the high side, or possibly higher than, the 0.46 4= 0.14 range we consider
here. Alternatively, the conversion factor ¢ = 0.64 4 0.07 we use to convert S[co,,Ly to S is an overestimation, which could
be caused by a larger-than-unity efficacy of long-term processes besides CO» and land ice changes. We have focused primarily
on the effect of e[y on S [ECO%LH in this analysis, and therefore we have for simplicity ignored uncertainties in the investigated
proxy-inferred records themselves. A comprehensive description of these uncertainties and their influence on the calculated

climate sensitivity can be found in Kohler et al. (2015).

5 Conclusions

We have incorporated the concept of a constant efficacy factor (Hansen et al., 2005), that interrelates the global temperature
responses to radiative forcing caused by land ice changes and COs2 changes, into our framework of calculating specific pale-
oclimate sensitivity S[ECOLLI]. The aim of this effort has been to overcome the problem that land ice and CO changes can
lead to significantly different global temperature responses, even when they induce the same global-average radiative forcing.
Firstly, we have assessed the usefulness of considering efficacy differences by applying our refined approach to results of
5-Myr CLIMBER-2 simulations (Stap et al., 2018), where the separate effects of land ice changes and CO2 changes can be
isolated. In the results of these simulations, the error from assuming the efficacy factor to be constant in time is negligible.
Thereafter, we have used our approach to reanalyse an 800-kyr proxy-inferred paleoclimate dataset (Kohler et al., 2015). We
have inferred a range in the land ice change efficacy factor e[y from the relative impact of land ice changes on the LGM
temperature anomaly simulated by a 12-member climate model ensemble (Shakun, 2017). The thusly obtained efficacy factor
gLy = 0.45f8:‘3§ is smaller than unity, implying that the impact on global temperature per unit of radiative forcing is less strong
for land ice changes than for CO; changes. Consequently, our derived PS5, 1y of 2.45T0- 58 KW~ m? is ~50% larger than

when efficacy differences are neglected. The equivalent S* and ECS corresponding to this S[Ecoz Ly are 1.61‘8‘2 KW1m?
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and 5.8 + 1.3K per CO2 doubling respectively. The uncertainty in these estimates is only caused by the implemented range in

E[LI] .

Data availability. The CLIMBER-2 dataset is available at https://doi.pangaea.de/10.1594/PANGAEA.887427, and the proxy-inferred pale-
oclimate dataset is available at https://doi.pangaea.de/10.1594/PANGAEA.855449, from the PANGAEA database. For more information or

data, please contact the authors.

Appendix A: Influence of the polar amplification factor

In the analysis performed in Sect. 4.2, we have used a global temperature record that was obtained from northern high-latitude
temperature anomalies using a polar amplification factor fpa that varies from 2.7 at the coldest to 1.6 at the warmest conditions
(Sect. 4.1). However, recent climate model simulations of the Pliocene using updated paleogeographic boundary conditions
show that in warmer times polar amplification could have been nearly the same as in colder times (Kamae et al., 2016; Chandan
and Peltier, 2017). We therefore repeat the analysis using the same range in ey and the same dataset, but with an applied
constant fpa = 2.7 over the entire past 800 kyr to generate AT, (AT in Kohler et al. (2015)).

The constant polar amplification used here counteracts increasing state dependency towards low temperatures, as the temper-
ature differences are no longer amplified by changing polar amplification. Hence, S [5002 L1 is smaller at P, 1 .96Jj8:ﬁ KW~1m?
compared to 2.45t8;§3 K W~!m? using the variable fpa, but diminishes less strongly towards colder conditions (Fig. Ala cf.
Fig. 4a). As before, the PALAEOSENS approach (equivalent to our approach using €.y = 1), yields a lower PI S|co, 11 of
1.34 KW~ m? (Fig. Alb). The PI Sfco, 1y inferred here using our refined approach corresponds to an 5 of L3102 KW~ 1m?,

and an ECS of 4.671 3 K per CO, doubling.
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Figure 1. Timeseries of radiative forcing anomalies (A R) caused by CO2 (red) changes and land ice changes (blue), and global temperature
anomalies (AT,) with respect to PI, from a-b) the CLIMBER-2 model dataset (Stap et al., 2018), with temperature data for experiment OIC
in black and for experiment OC in green, and from c-d) the proxy-inferred dataset (Kohler et al., 2015), with solid lines for the whole dataset,
and dots for the data used in this study which exclude times with strong temperature-CO4 divergence (see Sect. 4.1). Note the differing axis

scales.
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Figure 3. Temperature anomalies with respect to PI over the last 5 Myr from CLIMBER-2 (Stap et al., 2018) against imposed radiative
forcing of CO2. a) Simulation with fixed PI land ice distribution (experiment OC) (ATjoc)). b) Calculated global temperature perturbations
from experiment OIC stripped of the inferred influence of land ice (AT[E_LI]) using Eq. 16 with g[r,;j = 0.58. Here, €[y is obtained from
matching climate sensitivity with the target value at the LGM. ¢) Same as in (b), but using €[;j = 0.47 (cyan dots), e[Ly; = 0.56 (pink dots),
and gLy = 0.65 (yellow dots), Here, e[y is obtained from the mean (+10) of matching climate sensitivity with the target value at all glacial
marine isotope stages of the past 810 kyr (MIS 2, 6, 8, 10, 12, 14, 16, 18, and 20). d) Same as in (b), but using £[r,;j = 1, which is equivalent
to the PALAEOSENS approach where efficacy differences were not considered. The red lines - and in (c¢) also the orange and blue lines -

represent second order polynomial least-squares regressions through the scattered data.
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Figure 4. The global temperature perturbations stripped of the inferred influence of land ice (AT[iLI]) calculated using Eq. 16 against
AR|co,] from the proxy-inferred paleoclimate dataset (Kohler et al., 2015), using: a) ey = 0.79 (maroon dots), e;.;j = 0.45 (cyan dots),
and ey = 0.25 (green dots). Here, g[Lyj is obtained by converting the multi-model assemblage of simulated relative influences of land
ice changes on the LGM temperature anomaly (0.46 £ 0.14) (Shakun, 2017). b) Same as in (a), but using () = 1 (grey dots), which is
equivalent to the PALAEOSENS approach. The brown, blue, dark green (a), and black lines (b) represent second order polynomial least-

squares regressions through the data.
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Figure Al. The global temperature perturbations stripped of the inferred influence of land ice (AT[i L1j) calculated using Eq. 16 against
AR|co,] from the proxy-inferred paleoclimate dataset (Kohler et al., 2015), using: a) ey = 0.79 (maroon dots), e;.,j = 0.45 (cyan dots),
and eLy; = 0.25 (green dots). Here, |1 is obtained from converting the multi-model assemblage of simulated relative influences of land
ice changes on the LGM temperature anomaly (0.46 £ 0.14) (Shakun, 2017). b) Same as in (a), but using €[r.;j = 1 (grey dots), which is
equivalent to the PALAEOSENS approach. The brown, blue, dark green (a), and black lines (b) represent second order polynomial least-
squares regressions through the data. Here, the global temperature anomalies are derived from the northern high-latitude temperature anomaly

reconstruction assuming a constant polar amplification factor (fpa) of 2.7, as opposed to the variable fpa used in Fig. 4.
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