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Abstract. The equilibrium climate sensitivity (ECS) of climate models is calculated as the equilibrium global mean surface

warming resulting from a simulated doubling of the atmospheric CO2 concentration. In these simulations, long-term processes

in the climate system, such as land ice changes, are not incorporated. Hence, they have to be compensated for when comparing

climate sensitivity derived from paleodata to the ECS of climate models. Several recent studies found that the impact these

long-term processes have on global temperature cannot be quantified directly through the global radiative forcing they induce.5

This renders the approach of deconvoluting paleotemperatures through a partitioning based on radiative forcings inaccurate.

Here, we therefore implement an efficacy factor ε[LI], that relates the impact of land ice changes on global temperature to

that of CO2 changes, in our calculation of climate sensitivity from paleodata. We apply our new approach to a proxy-inferred

paleoclimate dataset, and base the range in ε[LI] we use on a multi-model assemblage of simulated relative influences of land

ice changes on the Last Glacial Maximum temperature anomaly. We find that ε[LI] is smaller than unity, meaning that per unit10

of radiative forcing the impact on global temperature is less strong for land ice changes than for CO2 changes. Consequently,

our obtained ECS estimate of 5.8± 1.3K, where the uncertainty reflects the implemented range in ε[LI], is ∼50% higher than

the result of the old approach that does not consider efficacy.
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1 Introduction

Equilibrium climate sensitivity (ECS) expresses the simulated equilibrated surface air temperature response to an instantaneous

doubling of the atmospheric CO2 concentration. The simulated effect of the applied CO2 radiative forcing anomaly includes

the Planck response, as well as the fast feedbacks e.g. through snow, sea ice, lapse rate, clouds and water vapour changes.

ECS varies significantly between different state-of-the-art climate models, as for instance the CMIP5 ensemble shows a range5

of 1.9 to 4.4 K (Vial et al., 2013). Several ways have been put forward to constrain ECS, for example through the usage of

paleoclimate data (e.g. Covey et al., 1996; Edwards et al., 2007), which is also the focus of this study. However, unlike results

of models, which can be run ceteris paribus, temperature reconstructions based on paleoclimate proxy data always contain a

mixed signal of all processes active in the climate system. Among these are long-term processes (or slow feedbacks) such as

changes in vegetation, dust, and, arguably most importantly, land ice changes, which are not taken into account in the quantifi-10

cation of ECS. Therefore, it is necessary to correct paleotemperature records for the influence of these processes, in order to

make a meaningful comparison to ECS calculated by climate models.

In a co-ordinated community effort, the PALAEOSENS project proposed to relate the temperature response caused by these

long-term processes to the global averaged radiative forcing they induce (PALAEOSENS Project Members, 2012). Conse-

quently, the paleotemperature record can be disentangled on the basis of the separate radiative forcings of these long-term15

processes (e.g. von der Heydt et al., 2014; Martínez-Botí et al., 2015; Köhler et al., 2015, 2017b, 2018; Friedrich et al., 2016).

If all processes are accounted for in this manner, the sole effect of CO2 changes, as is asserted by the ECS, can be quantified.

However, several studies have shown that, depending on the type of radiative forcing, the same global average radiative forcing

can lead to different global temperature changes (e.g. Stuber et al., 2005; Hansen et al., 2005; Yoshimori et al., 2011). For

instance, in a previous article (Stap et al., 2018) we simulated the separate and combined effects of CO2 changes and land20

ice changes on global surface air temperature using the intermediate complexity climate model CLIMBER-2 and showed that

the specific global temperature change per unit radiative forcing change depends on which process is involved. As a possible

solution to this problem, Hansen et al. (2005) formulated the concept of ’efficacy’ factors, which express the impact of radiative

forcing by a certain process in comparison to the effect of radiative forcing by CO2 changes.

Based on the concept of Hansen et al. (2005), here we introduce an efficacy factor for radiative forcing by albedo changes25

due to land ice variability, in our method of deriving climate sensitivity from paleodata. We first validate our refined approach

by applying it to transient simulations over the past 5 Myr using CLIMBER-2 (Stap et al., 2018). We compare the results of

our approach of obtaining the sole effect of CO2 changes on global temperature from a simulation forced by land ice and CO2

changes, to a simulation where CO2 changes are the only operating long-term process. Hence, we can assess the error resulting

from using a constant efficacy factor. Thereafter, we refine a previous estimate of climate sensitivity based on a paleoclimate30

dataset of the past 800 kyr (Köhler et al., 2015, 2018). In this dataset, the sole effect of CO2 is not a-priori known. We there-

fore investigate the influence of the introduced efficacy factor on the calculated climate sensitivity. To do so, we appraise the

influence of land ice changes and the associated efficacy using a range that is given by different modelling efforts of the Last
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Glacial Maximum (LGM; ∼21 kyr ago) (Shakun, 2017). The climate sensitivity resulting from applying this range provides a

quantification of the consequence of the uncertain efficacy of land ice changes.

2 Material and methods

In this section, we recapitulate the approach to obtain climate sensitivity from paleodata, used in numerous earlier studies (e.g.

PALAEOSENS Project Members, 2012; von der Heydt et al., 2014; Martínez-Botí et al., 2015; Köhler et al., 2015, 2017b,5

2018; Friedrich et al., 2016). We also discuss the main refinement we make in this study, which is the inclusion of the efficacy

of land ice changes, and a further small refinement that unifies the dependent variable in cross-plots of radiative forcing and

global temperature anomalies.

2.1 Approach to obtain climate sensitivity from paleodata

Equilibrium climate sensitivity (ECS) is the long-term global average surface air temperature change resulting from a CO210

doubling, and is usually obtained from climate model simulations. In these simulations, fast feedbacks, i.e. processes in the

climate system with timescales of less than ∼100 yrs, are accounted for. However, slower processes, such as ice sheet, veg-

etation and dust changes, are commonly kept constant. The resulting response is also sometimes called ‘Charney‘ sensitivity

(Charney et al., 1979). Following the notation of PALAEOSENS Project Members (2012), taking the ratio of the temperature

change (∆T[CO2]) over the radiative forcing due to the CO2 change (∆R[CO2]), leads to Sa (in KW−1 m2, and where a stands15

for actuo):

Sa =
∆T[CO2]

∆R[CO2]
. (1)

The subscript denotes that CO2 is the only long-term process involved. Analogously, paleoclimate sensitivity (Sp) can be

deduced from paleo-temperature reconstructions and paleo-CO2 records as

Sp =
∆Tg

∆R[CO2]
. (2)

In this case, the average global paleotemperature anomaly with respect to the pre-industrial (PI) (∆Tg) is, however, also affected

by the long-term processes that are typically neglected in climate simulations. Therefore, a correction to the paleotemperature20

perturbation is needed to obtain ∆T[CO2] from ∆Tg:

∆T[CO2] = ∆Tg(1− f), (3)

or equivalently Sa from Sp:

Sa = Sp(1− f) =
∆Tg

∆R[CO2]
(1− f). (4)

Here, f represents the effect of the slow feedbacks on paleotemperature (e.g. van de Wal et al., 2011). To obtain f , PALAEOSENS

Project Members (2012) proposed an approach, which has subsequently been used in numerous studies aiming to constrain
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climate sensitivity from paleodata (e.g. von der Heydt et al., 2014; Martínez-Botí et al., 2015; Köhler et al., 2015, 2017b,

2018; Friedrich et al., 2016). Their idea was that the influence of long-term processes (X) on global temperature, is directly

proportional to the radiative forcing perturbation they induce (∆R[X]), hence:

f =
∆R[X]

∆R[CO2] + ∆R[X]
= 1−

∆R[CO2]

∆R[CO2] + ∆R[X]
(5)

Combining Eqs. 4 and 5 and following the PALAEOSENS nomenclature, we can then derive the ’specific’ paleoclimate sensi-

tivity S[CO2,X], where X represents the processes that are accounted for in the calculation of f :5

S[CO2,X] =
∆Tg

∆R[CO2]
(1−

∆R[X]

∆R[CO2] + ∆R[X]
) =

∆Tg

∆R[CO2] + ∆R[X]
=

∆Tg

∆R[CO2,X]
. (6)

If, for instance, only the most important slow feedback in the climate system, namely radiative forcing anomalies induced by

albedo changes due to land ice (LI) variability are taken into account, then one can correct Sp to derive the following specific

climate sensitivity:

S[CO2,LI] =
∆Tg

∆R[CO2] + ∆R[LI]
=

∆Tg

∆R[CO2,LI]
. (7)

Using this approach, several studies performed a least-squares regression through scattered data from paleotemperature and

radiative forcing records (Martínez-Botí et al., 2015; Friedrich et al., 2016; Köhler et al., 2015, 2017b, 2018) relating ∆Tg10

to ∆R[CO2,LI] in a time-independent manner, from which S[CO2,LI] could be determined. In this way, a state dependency of

S[CO2,LI] as function of background climate has been deduced for those data which are best approximated by a non-linear

function. Furthermore, the quantification of S[CO2,LI] for those state-dependent cases has been formalized in Köhler et al.

(2017b). A synthesis of estimates of S[CO2,LI] from both colder- and warmer-than-present climates has been compiled by

von der Heydt et al. (2016).15

To obtain Sa, one needs to multiply S[CO2,LI] by a factor of 0.64 that accounts for the influence of other long-term processes,

namely vegetation, aerosol and non-CO2 greenhouse gas changes (PALAEOSENS Project Members, 2012). Finally, we obtain

the equivalent ECS by multiplying Sa by 3.7 Wm−2, the radiative forcing perturbation representing a CO2 doubling (Myhre

et al., 1998).

2.2 Refinement 1: Taking the efficacy of land ice changes into account20

The validity of the PALAEOSENS approach to calculate f is contingent on the notion that identical global-average radiative

forcing changes leads to identical global temperature responses, regardless of the processes involved. However, it has been

demonstrated that the horizontal and vertical distribution of the radiative forcing affects the resulting temperature response

(e.g. Stuber et al., 2005; Hansen et al., 2005; Yoshimori et al., 2011; Stap et al., 2018) because, e.g. different fast feedbacks

are triggered depending on the location of the forcing. To address this issue, Hansen et al. (2005) introduced the concept25

of ’efficacy’ factors, which we will explore further in this study. These factors (ε[X]) relate the strength of the temperature

response to radiative forcing caused by a certain process X (∆T[X]/∆R[X]), to a similar ratio caused by CO2 radiative forcing
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(∆T[CO2]/∆R[CO2]). This introduction of efficacy requires a reformulation of f as fε:

fε =
ε[X]∆R[X]

∆R[CO2] + ε[X]∆R[X]
= 1−

∆R[CO2]

∆R[CO2] + ε[X]∆R[X]
, (8)

and hence also of S[CO2,X] as Sε
[CO2,X]:

Sε
[CO2,X] =

∆Tg

∆R[CO2] + ε[X]∆R[X]
. (9)

In these reformulations, where in principal ε[X] can take any value, we introduce the superscript ε. This serves to clearly

distinguish these newly-derived sensitivities from those of the PALAEOSENS project in which efficacy was not taken into

account, implying that identical radiative forcing of different processes leads to identical temperature changes.5

To calculate Sε
[CO2,LI], we constrain the efficacy factor for radiative forcing by land ice changes (ε[LI]), using the following

formulation, which is based on, but slightly modified from Hansen et al. (2005):

∆T[LI]

∆R[LI]
= ε[LI]

∆Tg −∆T[LI]

∆R[CO2]
. (10)

This leads to:

ε[LI] =
ω

1−ω

∆R[CO2]

∆R[LI]
, (11)

where ω represents the fractional relative influence of land ice changes on the global temperature change (ω = ∆T[LI]/∆Tg). If

ε[LI] is assumed to be constant in time (see Sect. 3.2 and 5), it can be calculated using Eq. 11 from data of any specific moment10

in time, and consequently applied to the whole record of ∆R[CO2] and ∆R[LI] (Fig. 1a,c). As before, with this ε[LI] a quantifi-

cation of Sε
[CO2,LI] can be obtained by performing a least-squares regression through scattered data from paleotemperature and

radiative forcing records, now relating ∆Tg to (∆R[CO2] + ε[LI]∆R[LI]) in a time-independent manner.

Note that apart from the formulation based on Hansen et al. (2005) followed here, other formulations of the efficacy factor

are possible. For instance, one can define an alternative efficacy factor (ε[LI],alt) such that it relates the effect of land ice changes15

on global temperature directly to the radiative forcing anomaly caused by CO2 changes, leading to:

Sε
[CO2,X],alt =

∆Tg

∆R[CO2] + ε[LI],alt∆R[CO2]
. (12)

In this alternative case, the efficacy factor ε[LI],alt relates to our original ε[LI] as:

ε[LI],alt = ε[LI]

∆R[LI]

∆R[CO2]
. (13)

This implies that if ε[LI] is indeed constant, any non-linearity in the relation between ∆R[CO2] and ∆R[LI] would demand a

more complex formulation of the alternative efficacy factor ε[LI],alt (e.g. via a higher-order polynomial). Since we find such

a non-linearity in our data (Fig. 2), using an F test to determine that a second order polynomial is a significantly (p value <20

0.0001) better fit to the data than a linear function, we refrain from following this alternative formulation further.
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2.3 Refinement 2: Unifying the dependent variable

In the cross-plots of radiative forcing and global temperature anomalies used to calculate Sε
[CO2,LI], the radiative forcing on

the x-axis is caused by a combination of CO2 and land-ice changes. To more readily compare Sε
[CO2,LI] to other specific

paleoclimate sensitivities Sε
[CO2,X], where more and/or different long-term processes are considered, the dependent variable

has to be unified. Here, we therefore reformulate our equation to get ∆R[CO2] in the nominator, enabling the use of cross-plots5

that now have ∆R[CO2] on the x-axis.

Sε
[CO2,X] =

∆Tg

∆R[CO2] + ε[X]∆R[X]
=

∆Tg

∆R[CO2]

∆R[CO2]

∆R[CO2] + ε[X]∆R[X]
=

∆T ε
[−X]

∆R[CO2]
. (14)

Here, ∆T ε
[−X] is the global temperature change (with respect to PI) stripped of the inferred influence of processes X, defined

as:

∆T ε
[−X] := ∆Tg

∆R[CO2]

∆R[CO2] + ε[X]∆R[X]
. (15)

Hence, for the calculation of Sε
[CO2,LI] we use:

∆T ε
[−LI] := ∆Tg

∆R[CO2]

∆R[CO2] + ε[LI]∆R[LI]
. (16)

Now, we quantify Sε
[CO2,LI] by performing a least-squares regression (regfunc) through scattered data from ∆T ε

[−LI] and10

∆R[CO2]. We use the precondition that no change in CO2 is related to no change in ∆T ε
[−LI], meaning the regression intersects

the y-axis at the origin ((x,y) = (0,0)). Following Köhler et al. (2017b), for any non-zero ∆R[CO2], we calculate Sε
[CO2,LI] as:

Sε
[CO2,LI]

∣∣∣∣
∆R[CO2]

=
regfunc

∆R[CO2]

∣∣∣∣
∆R[CO2]

. (17)

If ∆R[CO2] = 0Wm−2, as is among others the case for pre-industrial conditions, Sε
[CO2,LI] is quantified as:

Sε
[CO2,LI]

∣∣∣∣
∆R[CO2]=0

=
δ(regfunc)

δ(∆R[CO2])

∣∣∣∣
∆R[CO2]=0

. (18)

Equations 17 and 18 yield a quantification of Sε
[CO2,LI], which can be compared to the value obtained for S[CO2,LI] using the15

approach without considering efficacy (equivalent to using ε[LI] = 1) (Köhler et al., 2018).

In this study, we continue to use a multiplication factor of 0.64 to obtain Sa from Sε
[CO2,LI]. Note that this scaling still

assumes unit efficacy for processes other than land ice changes. Therefore, it is a source of uncertainty to be investigated in

future research. The equivalent ECS (in K per CO2 doubling) can again be calculated by multiplying Sa by 3.7 Wm−2.

3 Validation of the approach using model simulations20

In this section, we validate our refined approach by applying it to transient simulations over the past 5 Myr using CLIMBER-2

(Stap et al., 2018). We compare the results of our approach of obtaining the sole effect of CO2 changes on global temperature
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from a simulation forced by land ice and CO2 changes, to a simulation where CO2 changes are the only operating long-term

process. By doing so, we assess the error resulting from using a constant efficacy factor.

3.1 CLIMBER-2 model simulations

Using the intermediate complexity climate model CLIMBER-2 (Petoukhov et al., 2000; Ganopolski et al., 2001), climate

simulations over the past 5 Myr were performed and analysed in Stap et al. (2018). CLIMBER-2 combines a 2.5-dimensional5

statistical-dynamical atmosphere model, with a 3-basin zonally averaged ocean model (Stocker et al., 1992), and a model that

calculates dynamic vegetation cover based on the temperature and precipitation (Brovkin et al., 1997). In brief, the simulations

are forced by solar insolation which changes due to orbital (O) variations (Laskar et al., 2004), and further by land ice (I)

changes on both hemispheres (based on de Boer et al., 2013), and CO2 (C) changes (based on van de Wal et al., 2011). In the

reference experiment (OIC) all input data are varied, while in other model integrations the land ice (experiment OC) or the CO210

concentration (experiment OI) is kept fixed at PI level. The synergy of land ice and CO2 changes is negligibly small, meaning

their induced temperature changes add approximately linearly when both forcings are applied. Furthermore, the influence of

orbital variations is also very small, so that experiment OC approximately yields the sole effect of CO2 changes on global

temperature (∆T[OC]). As in Stap et al. (2018), we use the simple energy balance model of Köhler et al. (2010) to analyse the

applied radiative forcing of land ice albedo and CO2 changes and simulated global temperature changes, after averaging to15

1,000 year temporal resolution (Fig. 1a,b).

3.2 Analysis

First, we analyse experiment OC, which will serve as a target for our refined approach as deployed later in this section. We use

a least-squares regression through scattered data of ∆R[CO2] and ∆T[OC] to fit a second order polynomial (Fig. 3a). Using a

higher order polynomial rather than a linear function allows us to capture state dependency of paleoclimate sensitivity. Fitting20

even higher order polynomials leads to negligible coefficients for the higher powers, and is not pursued further. From the fit,

we calculate a specific paleoclimate sensitivity Sε
[CO2,LI] of 0.74 KW−1 m2 for PI conditions (∆R[CO2] = 0 Wm−2) using

Eq. 18. Note that, in this case, Sε
[CO2,LI] is equal to Sε

[CO2], S[CO2,LI] and S[CO2] as there are no land ice changes and therefore

also no efficacy differences. The fit further shows decreasing Sε
[CO2,LI] for rising ∆R[CO2].

Now, we apply our approach to the results of experiment OIC, in which both CO2 and land ice cover vary over time, with25

the aim of deducing the sole effect of CO2 changes on global temperature. We calculate the efficacy of land ice changes for the

Last Glacial Maximum (21 kyr ago; LGM) from experiment OI, in which the CO2 concentration is kept constant. We obtain

ω = ∆T[LI]/∆Tg = ∆T[OI]/∆T[OIC] = 0.54. Consequently, we find ε[LI] = 0.58 from Eq. 11, and apply this value to the whole

record of ∆R[CO2] and ∆R[LI]. In this manner, we calculate ∆T ε
[−LI] using Eq. 16. We then fit a second order polynomial to the

scattered data of the thusly obtained ∆T ε
[−LI] from the results of experiment OIC, and ∆R[CO2] (Fig. 3b). Between ∆R[CO2] =30

−0.5Wm−2 and ∆R[CO2] = 0.5Wm−2, outliers resulted from division by small numbers (not shown in Fig. 3b). To remove

these outliers, we first calculate the root mean square error (RMSE) between the fit and the data in the remainder of the domain.

We then exclude all 144 values from the range ∆R[CO2] = −0.5Wm−2 to ∆R[CO2] = 0.5Wm−2 where the fit differs from
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the data by more than 3 × RMSE, and perform the regression again. This yields an Sε
[CO2,LI] of 0.72 KW−1 m2 for PI (Fig. 3b),

which supports our approach since it is only slightly lower than the Sε
[CO2,LI] of 0.74 KW−1 m2 obtained from experiment

OC, which it should approximate. The relationship between ∆T ε
[−LI] and ∆R[CO2] (Fig. 3b) is more linear than that between

∆T[OC] and ∆R[CO2] (Fig. 3a), hence the state dependency of Sε
[CO2,LI] is reduced. However, the difference between the

Sε
[CO2,LI] obtained from both experiments remains smaller than 0.07 KW−1 m2 through the entire 5-Myr interval, indicating5

that a constant efficacy is an acceptable assumption which only introduces a negligible additional uncertainty. However, the

possible time-dependency of efficacy could be investigated more rigorously in future research using more sophisticated climate

models.

In principal, ε[LI] can be obtained using data from any moment in time, preferably when the radiative forcing anomalies

are large to prevent outliers resulting from divisions by small numbers. For example, using the results from all glacial marine10

isotope stages of the past 810 kyr (MIS 2, 6, 8, 10, 12, 14, 16, 18, and 20), instead of just the LGM, leads to a mean (±1σ)

ε[LI] of 0.56± 0.09. The resulting PI Sε
[CO2,LI] is 0.73+0.06

−0.05 KW−1 m2 (Fig. 3c).

The old approach, which is equal to using ε[LI] = 1 in the refined approach, yields a PI S[CO2,LI] of 0.54 KW−1 m2 (Fig. 3d).

This is clearly much more off-target than the results of our refined approach, signifying the importance of considering efficacy.

4 Application to proxy-inferred paleoclimate data15

In this section, we compare our refined approach to calculate Sε
[CO2,LI] incorporating efficacy, to our previous quantification of

S[CO2,LI] (Köhler et al., 2018), by reanalysing the same paleoclimate dataset (introduced in Köhler et al., 2015). Other than for

climate model simulations, the influence of land ice changes on global temperature perturbations cannot be directly obtained

from proxy-based datasets, and is hence a-priori unknown. We therefore base the value of ε[LI] we implement here on a multi-

model assemblage of simulated relative influences of land ice changes on the Last Glacial Maximum (LGM) temperature20

anomaly (Shakun, 2017).

4.1 Proxy-inferred paleoclimate dataset

The investigated dataset contains reconstructions of ∆Tg, ∆R[CO2], and ∆R[LI]. Although it covers the past 5 Myr, here we

focus on the past 800 kyr (Fig. 1c,d) because over this period ∆R[CO2] is constrained by high-fidelity ice core CO2 data,

whereas Pliocene and Early Pleistocene CO2 levels are still heavily debated (e.g. Badger et al., 2013; Martínez-Botí et al.,25

2015; Willeit et al., 2015; Stap et al., 2016, 2017; Chalk et al., 2017; Dyez et al., 2018). Radiative forcing by CO2 is obtained

from Antarctic ice core data compiled by Bereiter et al. (2015), using ∆R[CO2] = 5.35Wm−2 · ln(CO2/(278ppm)) (Myhre

et al., 1998). Revised formulations of ∆R[CO2] following Etminan et al. (2016) lead to very similar results with less than 0.01

Wm−2 differences between the approaches for typical late Pleistocene CO2 values (Köhler et al., 2017a). Radiative forcing

caused by land ice albedo changes, as well as the global surface air temperature record (∆Tg), are based on results of the30

3D ice-sheet model ANICE (de Boer et al., 2014). ANICE was forced by northern hemispheric temperature anomalies with

respect to a reference PI climate, obtained from a benthic δ18O stack (Lisiecki and Raymo, 2005) using an inverse technique.
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This provided geographically specific land ice distributions, and hence radiative forcing due to albedo changes with respect to

PI on both hemispheres. In Köhler et al. (2015), the northern hemispheric (NH) temperature anomalies (∆TNH) are translated

into global temperature perturbations (∆Tg1 in Köhler et al. (2015)) using polar amplification factors (fPA = ∆TNH/∆Tg) as

follows: at the LGM, fPA = 2.7 is taken from the average of PMIP3 model data (Braconnot et al., 2012), while at the mid-

Pliocene Warm Period (mPWP, about 3.2 Myr ago), fPA = 1.6 is calculated from the average of PlioMIP results (Haywood5

et al., 2013). At all other times, fPA is linearly varied as a function of NH temperature. In Appendix A, we investigate the

influence of the chosen polar amplification factor (Köhler et al., 2015) on our results. The temperature dynamics follow from

a benthic δ18O stack and are unconstrained by climatic boundary conditions such as insolation and greenhouse gases, since

ANICE only simulates land ice dynamics. Therefore, these results are here considered to be more similar to those of proxy-

based reconstructions than of climate-model-based simulations. The temporal resolution of the dataset is 2,000 years.10

Analysing this dataset, Köhler et al. (2018) found a temperature-CO2 divergence appearing mainly during, or in connection

with, periods of decreasing obliquity related to land ice growth or sea level fall. For these periods, a significantly different

S[CO2,LI] was obtained than for the remainder of the time frame. However, in the future we expect sea level to rise, hence these

intervals of strong temperature-CO2 divergence should not be considered for the interpretation of paleodata in the context of

future warming, e.g. by using paleodata to constrain ECS. In the following analysis, we therefore exclude these times with15

strong temperature-CO2 divergence, leaving 217 data points as indicated in Fig. 1c,d.

4.2 Analysis

Shakun (2017) compiled the simulated relative impact of land ice changes on the LGM temperature anomaly (ω in Eq. 11) using

a 12-member climate model ensemble, and found a range of 0.46± 0.14 (mean ±1σ, full range 0.20− 0.68). Applying these

values, in combination with the LGM values (taken here as the mean of the data at 20 and 22 kyr ago) ∆R[CO2] = −2.04Wm−220

and ∆R[LI] = −3.88Wm−2, yields ε[LI] = 0.45+0.34
−0.20. Implementing this range for ε[LI] in Eq. 16, we calculate ∆T ε

[−LI] over

the whole 800-kyr period. Fitting second order polynomials by least-squares regression to the scattered data of ∆T ε
[−LI] and

∆R[CO2], we infer a PI Sε
[CO2,LI] of 2.45+0.53

−0.56 KW−1 m2 (Fig. 4a). The substantial uncertainty given here only reflects the

1σ uncertainty in ε[LI]. Similar to Köhler et al. (2018), we also detect a state dependency with decreasing Sε
[CO2,LI] towards

colder climates for this dataset, more strongly so in case of lower ε[LI]. This state dependency is opposite to the one found25

in the CLIMBER-2 results. The difference may be related to the fact that fast climate feedbacks are too linear, or that some

slow feedbacks are underestimated in intermediate complexity climate models like CLIMBER-2 (see Köhler et al., 2018,

for a detailed discussion). At ∆R[CO2] = −2.04Wm−2, the LGM value, Sε
[CO2,LI] is only 1.45+0.33

−0.37 KW−1 m2. The old

approach, which does not consider efficacy and is therefore equivalent to the new approach using ε[LI] = 1, yields S[CO2,LI] =

1.66 KW−1 m2 for PI, and S[CO2,LI] = 0.93 KW−1 m2 for the LGM (Fig. 4b). The specific paleoclimate sensitivities we find30

using the refined approach are hence generally larger than those obtained by using the old approach. This is because, for the

range of the impact of land ice changes on the LGM temperature anomaly implemented (ω = 0.46± 0.14), the efficacy factor

ε[LI] is smaller than unity. In other words, these land ice changes contribute comparatively less per unit radiative forcing to the

global temperature anomalies than the CO2 changes.

9



Our inferred PI Sε
[CO2,LI] is equivalent to an Sa of 1.6+0.3

−0.4 KW−1 m2, and an ECS of 5.8± 1.3K per CO2 doubling. This

is on the high end of the results of other approaches to obtain ECS (Knutti et al., 2017), e.g. the 2.0 to 4.3 K 95%-confidence

range from a large model ensemble (Goodwin et al., 2018), and the 2.2 to 3.4 K 66% confidence range from an emerging

constraint from global temperature variability and CMIP5 (Cox et al., 2018). Hence, the low end of our ECS estimate is in the

best agreement with these other estimates. This could mean that the influence the relative influence of land ice changes on the5

LGM temperature anomaly is on the high side, or possibly higher than, the 0.46± 0.14 range we consider here. Alternatively,

the factor of 0.64 we use to convert S[CO2,LI] to Sa is an overestimation, which could be caused by a larger-than-unity efficacy

of long-term processes besides CO2 and land ice changes.

5 Conclusions

We have incorporated the concept of a constant efficacy factor (Hansen et al., 2005), that interrelates the global temperature10

responses to radiative forcing caused by land ice changes and CO2 changes, into our framework of calculating specific pale-

oclimate sensitivity Sε
[CO2,LI]. The aim of this effort has been to overcome the problem that land ice and CO2 changes can

lead to significantly different global temperature responses, even when they induce the same global-average radiative forcing.

Firstly, we have shown the importance of considering efficacy differences by applying our new approach to results of 5-Myr

CLIMBER-2 simulations (Stap et al., 2018), where the separate effects of land ice changes and CO2 changes can be isolated.15

In the results of these simulations, the error from assuming the efficacy factor to be constant in time is negligible. Thereafter,

we have used our new approach to reanalyse an 800-kyr proxy-inferred paleoclimate dataset (Köhler et al., 2015). We have

inferred a range in the land ice change efficacy factor ε[LI] from the 0.46±0.14 (mean ±1σ) relative impact of land ice changes

on the LGM temperature anomaly simulated by a 12-member climate model ensemble (Shakun, 2017). The thusly obtained

efficacy factor ε[LI] is smaller than unity, implying that the impact on global temperature per unit of radiative forcing is less20

strong for land ice changes than for CO2 changes. Consequently, our derived PI Sε
[CO2,LI] of 2.45+0.53

−0.56 KW−1 m2 is ∼50%

larger than the result of the old approach. The uncertainty in this estimate is only caused by the implemented range in ε[LI]. The

equivalent Sa and ECS corresponding to this Sε
[CO2,LI] are 1.6+0.3

−0.4 KW−1 m2 and 5.8±1.3K per CO2 doubling respectively.

Data availability. The CLIMBER-2 dataset is available at https://doi.pangaea.de/10.1594/PANGAEA.887427, and the proxy-inferred pale-

oclimate dataset is available at https://doi.pangaea.de/10.1594/PANGAEA.855449, from the PANGAEA database. For more information or25

data, please contact the authors.

Appendix A: Influence of the polar amplification factor

In the analysis performed in Sect. 4.2, we have used a global temperature record that was obtained from northern high-latitude

temperature anomalies using a polar amplification factor fPA that varies from 2.7 at the coldest to 1.6 at the warmest conditions

(Sect. 4.1). However, recent climate model simulations of the Pliocene using updated paleogeographic boundary conditions30

10



show that in warmer times polar amplification could have been nearly the same as in colder times (Kamae et al., 2016; Chandan

and Peltier, 2017). We therefore repeat the analysis using the same range in ε[LI] and the same dataset, but with an applied

constant fPA = 2.7 over the entire past 800 kyr to generate ∆Tg (∆Tg2 in Köhler et al. (2015)).

The constant polar amplification used here counteracts increasing state dependency towards low temperatures, as the temper-

ature differences are no longer amplified by changing polar amplification. Hence, Sε
[CO2,LI] is smaller at PI, 1.96+0.42

−0.44 KW−1 m25

compared to 2.45+0.53
−0.56 KW−1 m2 using the variable fPA, but diminishes less strongly towards colder conditions (Fig. A1a

cf. Fig. 4a). As before, the old approach (equivalent to the new approach using ε[LI] = 1), yields a lower PI S[CO2,LI] of

1.34 KW−1 m2 (Fig. A1b). The PI Sε
[CO2,LI] inferred here using the refined approach corresponds to an Sa of 1.3+0.2

−0.3 KW−1 m2,

and an ECS of 4.6+1.0
−1.3 K per CO2 doubling.
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Figure 1. Timeseries of radiative forcing anomalies (∆R) caused by CO2 (red) changes and land ice changes (blue), and global temperature

anomalies (∆Tg) with respect to PI, from a-b) the CLIMBER-2 model dataset (Stap et al., 2018), with temperature data for experiment OIC

in black and for experiment OC in green, and from c-d) the proxy-inferred dataset (Köhler et al., 2015), with solid lines for the whole dataset,

and dots for the data used in this study which exclude times with strong temperature-CO2 divergence (see Sect. 4.1). Note the differing axis

scales.
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Figure 2. The relation between radiative forcing anomalies caused by CO2 changes (∆R[CO2]) and land ice changes (∆R[LI]) from the

proxy-inferred dataset (Köhler et al., 2015) (pink dots). The red line represents a second order polynomial least-squares regression through

the scattered data.
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Figure 3. Temperature anomalies with respect to PI over the last 5 Myr from CLIMBER-2 (Stap et al., 2018) against imposed radiative

forcing of CO2. a) Simulation with fixed PI land ice distribution (experiment OC) (∆T[OC]). b) Calculated global temperature perturbations

from experiment OIC stripped of the inferred influence of land ice (∆T ε
[−LI]) using Eq. 16 with ε[LI] = 0.58. Here, ε[LI] is obtained from

matching climate sensitivity with the target value at the LGM. c) Same as in (b), but using ε[LI] = 0.47 (cyan dots), ε[LI] = 0.56 (pink dots),

and ε[LI] = 0.65 (yellow dots), Here, ε[LI] is obtained from the mean (±1σ) of matching climate sensitivity with the target value at all glacial

marine isotope stages of the past 810 kyr (MIS 2, 6, 8, 10, 12, 14, 16, 18, and 20). d) Same as in (b), but using ε[LI] = 1, which is equivalent

to the old approach where efficacy differences were not considered. The red lines - and in (c) also the orange and blue lines - represent second

order polynomial least-squares regressions through the scattered data.
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Figure 4. The global temperature perturbations stripped of the inferred influence of land ice (∆T ε
[−LI]) calculated using Eq. 16 against

∆R[CO2] from the proxy-inferred paleoclimate dataset (Köhler et al., 2015), using: a) ε[LI] = 0.79 (maroon dots), ε[LI] = 0.45 (cyan dots),

and ε[LI] = 0.25 (green dots). Here, ε[LI] is obtained by converting the multi-model assemblage of simulated relative influences of land ice

changes on the LGM temperature anomaly (0.46±0.14) (Shakun, 2017). b) Same as in (a), but using ε[LI] = 1 (grey dots), which is equivalent

to the old approach. The brown, blue, dark green (a), and black lines (b) represent second order polynomial least-squares regressions through

the data.
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Figure A1. The global temperature perturbations stripped of the inferred influence of land ice (∆T ε
[−LI]) calculated using Eq. 16 against

∆R[CO2] from the proxy-inferred paleoclimate dataset (Köhler et al., 2015), using: a) ε[LI] = 0.79 (maroon dots), ε[LI] = 0.45 (cyan dots),

and ε[LI] = 0.25 (green dots). Here, ε[LI] is obtained from converting the multi-model assemblage of simulated relative influences of land ice

changes on the LGM temperature anomaly (0.46±0.14) (Shakun, 2017). b) Same as in (a), but using ε[LI] = 1 (grey dots), which is equivalent

to the old approach. The brown, blue, dark green (a), and black lines (b) represent second order polynomial least-squares regressions through

the data. Here, the global temperature anomalies are derived from the northern high-latitude temperature anomaly reconstruction assuming a

constant polar amplification factor (fPA) of 2.7, as opposed to the variable fPA used in Fig. 4.
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