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‘Including the efficacy of land ice changes in deriving climate sensitivity from paleodata’ 
by L.B. Stap, P. Köhler and G. Lohmann.  
Submitted for potential publication by Earth System Dynamics 
 
 
 
REPLY TO THE COMMENTS BY THE REVIEWERS 
 
Color coding: 
Black – comments by reviewers 
Green – reply by authors 
Purple – changes made to the manuscript (line numbers refer to the color-coded revised 
manuscript) 
 
 
Reviewer #1 
The revised manuscript is greatly improved from its original form with regards to the scientific 
material and with regards to the clarification of the author’s methodology. I am providing my 
comments on the current version of the manuscript. Most of these are minor technical 
corrections/language suggestions. 
 
We thank the reviewer for considering our manuscript a second time. We have implemented 
all the suggestions, except where indicated below. 
 
Comments and suggested technical corrections 
1. The abstract does not include results on the findings of the efficacy factor. Please 
incorporate the efficacy factor estimate into the abstract. 
 
Changed to: 
 
Page 1, lines 11-13: 
We apply our refined approach to a proxy-inferred paleoclimate dataset, using   

[LI]=0.45+0.34
-0.20 based on a multi-model assemblage of simulated relative influences of land 

ice changes on the Last Glacial Maximum temperature anomaly. 
 
2. In the beginning of the abstract the authors start by discussing the ECS from climate 
simulations and then they mention about correcting them to compare to paleodata. But I 
don’t think this is what the paper is about; isn’t the whole method of the paper to instead 
correct paleodata to compare it more directly to ECS from climate models? 
 
We agree with the reviewer, and we have therefore rephrased this sentence to: 
 
Page 1, lines 6-7: 
Hence, climate sensitivity derived from paleodata has to be compensated for these processes, 
when comparing it to the ECS of climate models. 
 
3. Page 1 line 6: “This renders the prevailing approach” 
4. Page 1 line 13: “does not consider differences in efficacy” 
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Changed to: 
 
Page 1 line 15-16: 

Consequently, our obtained ECS estimate of 5.8  1.3K, where the uncertainty reflects the 

implemented range in [LI], is ~50% higher than when differences in efficacy are not 
considered. 
 
5. Page 2 line 4: “fast feedbacks e.g. through such as those involving changes to ……. changes. 
6. Page 2 line 5: “climate models, as for instance” 
7. Page line 10: The authors say the long term changes “are not taken into account in the 
quantification of ECS”, but I think what they mean is that they “are not taken into account in 
the course of estimating ECS from proxy data.” 
 
Changed to: 
 
Page 2, lines 9-11: 
Among these are long-term processes (or slow feedbacks) such as changes in vegetation, dust, 
and, arguably most importantly, land ice changes, which are kept constant in the climate 
model runs used to calculate ECS. 
 
8. Page 2 line 14: “global globally averaged” 
9. Page 2 line 17: There are two things wrong with this sentence. Firstly, the “sole effect” of 
CO2 is not simply the ECS, it also includes the response of land ice and vegetation to the 
increased radiative forcing, but which operate on timescales belong the ECS. One wouldn’t 
want to give the impression that those processed do not involve CO2. Secondly, the ECS is not 
the “sole effect” of CO2 also in the sense that it includes the primary effect from CO2 but also 
the secondary effect of feedbacks from short-term processes. I think it should say “…. the 
effect of CO2 changes as the accompanying short-term feedbacks, as described by the ECS can 
be estimated” 
10. Sentence on page 2 spanning lines 27—29 is convoluted. Please rephrase it 
 
Changed to: 
 
Page 2, lines 27-31 (similar at page 6 line 21 to page 7 line 2): 
We first illustrate our refined approach by applying it to transient simulations over the past 5 
Myr using CLIMBER-2 (Stap et al., 2018), obtaining a quantification of the effect on global 
temperature of CO2 changes and the accompanying short-term feedbacks from a simulation 
forced by both land ice and CO2 changes. We compare this result to a simulation where CO2 
changes are the only operating long-term process. 
 
11. Page 2 line 29: “Hence, In this manner, we can assess” 
12. Page 3 line 4: “in this section, we recapitulate first summarize the approach to obtaining 
climate sensitivity from paleo data that has been used in” 
13. Page 3 line 6: “We also then discuss the our main refinement we make in this study to that 
approach, ……. refinement that is meant to unify unifies the dependent variables …” 
14. Page 3 lines 10-11: This is the third repeat of the definition of ECS (previously mentioned 
at the start of the Abstract and the Introduction). Please remove it. 
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15. Page 3 line 12: “such as those involving changes to ice sheet ….. changes are kept constant” 
16. Page 3 line 14: “taking the ratio … over to ….. leads to yields” 
17. Page 3 line 20: “perturbation record” 
18. In the comment spanning pages 3 and 4 that discusses the use of the PALEOSENS 
members’ approach to estimating climate sensitivity from paleodata, also mention the use of 
the approach to estimating sensitivity within modelling studies (e.g. the PALEOSENS paper 
itself and Chandan and Peltier, 2018, CP). 
 
Changed to: 
 
Page 3 line 24 – page 4 line 3: 
To obtain f, PALAEOSENS Project Members (2012) proposed an approach, which has 
subsequently been used in numerous studies aiming to constrain climate sensitivity from 
paleodata (e.g. von der Heydt et al., 2014; Martínez-Botí et al., 2015; Köhler et al., 2015, 
2017b, 2018; Friedrich et al., 2016), and paleoclimate modelling studies (e.g. PALAEOSENS 
Project Members, 2012; Friedrich et al., 2016; Chandan and Peltier, 2018). 
 
19. Page 4 lines 2—3: This is not the best way to phrase it. I like what the authors had in the 
original version of the manuscript. Please revert back to that version. 
 
We have changed this sentence back to the original version. 
 
Page 4, lines 3-4: 
They suggested to quantify the influence of the long-term processes (X) by the radiative 

forcing change they induce (R[X]), relative to the total radiative forcing perturbation: 
 
20. Page 4 Line 11: In this way the course of those studies” 
21. The first paragraph on page 6 should be re-written as it is very raw in its current form 
 
Changed to: 
 
Page 5 line 22 – Page 6 line 2: 

To calculate S[CO2,LI], previous studies have used cross-plots of global temperature anomalies 
and radiative forcing. The latter is caused by a combination of CO2 and land-ice changes, which 

is cumbersome if one wants to compare S[CO2,LI], to other specific paleoclimate sensitivities 

S[CO2,LI], where more and/or different long-term processes are considered. Here, we therefore 

reformulate our quantification of S[CO2,X] to unify the dependent variable as R[CO2]. 
 
22. Page 6 line 5: “dependent variables have has to be unified. ….. nominator denominator” 
 
Changed, see previous comment. 
 
23. Page 6 Lines 17-19 are a repeat of what was said in lines 16—18 on page 4. Please unify 
the underlying material into one appropriate location. 
 
We have removed the redundant information at lines 16-18 on page 4, and rephrased the 
paragraph at page 6: 
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Page 6 lines 13-19: 

To obtain Sa, one needs to multiply S[CO2,LI] by a conversion factor  = 0.64  0.07 (1-
uncertainty) that accounts for the influence of other long-term processes, namely vegetation, 
aerosol and non-CO2 greenhouse gas changes (PALAEOSENS Project Members, 2012). Note 

that this multiplication by  ignores any possible state-dependencies in  and assumes unit 
efficacy for processes other than land ice changes. Because a comprehensive analysis of the 
efficacy and state-dependency of these other processes is beyond the scope of this study, it is 
a source of uncertainty to be investigated in future research. Finally, we obtain the equivalent 

ECS by multiplying Sa by R2xCO2 = 3.71  0.37 Wm-2 (1-uncertainty), the radiative forcing 

perturbation representing a CO2 doubling (Myhre et al., 1998). 
 
24. Page 7 Line 7: “In brief The simulation are could be forced by solar insolation which 
changes due to orbital (O) variations, and further by land ice (I) change…” 
25. Page 4 Line 10 “reference experiment (OIC) all input data these factors are varied” 
26. Page 8 Line 19: “cannot be directly obtained (e.g. from proxy-based datasets) and is hence 
apriori unknown” 
 
We specifically mean the proxy-based datasets here, hence we have changed this sentence 
to: 
 
Page 8, lines 21-23: 
Other than for climate model simulations, in proxy-based datasets the influence of land ice 
changes on global temperature perturbations cannot be directly obtained, and is hence a-
priori unknown. 
 
27. Page 8 Line 23: “The investigated dataset to be investigated contains ….. for the past 800 
kyr. Although it the dataset covers the past 5 Myr, here we focus only on the … constrained 
by high-fidelity ice core measurements of CO2 data within ice cores” 
28. Page 8 Line 28: “The revised formulations of for ΔRCO2 following from Etminan et al 2016 
leads to “ 
29. Page 8 Line 31: “ice sheet model ANICE (de Boer et al. 2014) . ANICE was forced by …. to a 
reference PI climate. The temperature anomalies were obtained from a benthic” 
30. Page 9 Line 6: “function of the NH temperature” 
31. Removed the reference from line 7 on page 9, as its not needed in the context of that 
comment and it is already referred to twice in the preceding 6 lines. 
32. Page 9 Line 9: “Therefore, these results are here considered to be more similar to those of 
from proxy-based reconstructions than of those from climate model-based simulations” 
 
Changed to (also because of a comment by reviewer #2): 
 
Page 9, lines 4-7: 
The ANICE results are here considered to be proxy-inferred, because, unlike climate models, 
ANICE is not constrained by climatic boundary conditions such as insolation and greenhouse 

gases. The temperature anomalies follow directly from a benthic 18O stack (Lisiecki and 
Raymo, 2005) using an inverse technique. 
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33. Page 9 Line 18: “Shakun (2017) compiled the simulated model based estimates of the 
relative impact …… using a an ensemble of 12-member climate models ensemble and found a 
range of estimated w to be …” 
34. Page 9 Line 24: “CLIMBER-2 results (section 3). The difference may be related either to the 
fact” 
35. Page 10 Line 14: “Finally, we have shown assessed the importance usefulness of 
considering” 
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Reviewer #2 
 
The manuscript is sufficiently improved that I can follow what the authors are trying to do, 
and attempt a review.  
 
Overall, within the practical constraints of the state-of-the-art, I think the work is reasonable 
enough, although some of the sources of uncertainty need better highlighting. I have a few 
comments of varying degrees of potential importance.  
 
We thank the reviewer for a second consideration of our work. At the suggestion of the 
reviewer, we have included more discussion of uncertainty sources, as described below. 
 
p2. 
"Ceteris paribus" - the language of the journal is English and superfluous Latin should, in my 
opinion, be avoided. Not all readers have a first language that has a Latin base. I Googled the 
meaning, and do not understand why you don't use English here. 
 
We have removed the whole clause containing this expression, because we felt it was 
redundant. 
 
p3. 
"Repeat" not "recapitulate" 
 
Changed to ‘summarize’ at the suggestion of reviewer #1. 
 
p4.  
I suspect that the 0.64 is highly uncertain and state dependent. It would be good if you gave 
a rough estimate of your uncertainty for this value. 
 

The conversion factor (named  in the revised manuscript) 0.64 is uncertain in three ways: 1) 

The PALEOSENS paper from which it is taken, gives a 1-uncertainty of 0.07. We have 
incorporated the effect of this uncertainty in our estimate of Sa in the revised manuscript. 2) 
It ignores any possible state-dependency of this factor, which is now mentioned in the 
manuscript. 3) It does not take into account efficacy differences for long-term processes other 
than land ice changes. As we feel that a comprehensive analysis of the efficacy of other 
processes is beyond the scope of this work, we refer to this fact as a source of uncertainty to 
be investigated in future research. 
 

We have furthermore included a brief quantification and discussion of the influence of the 1-

uncertainty of 0.37 in the factor (now called R2xCO2 in the revised manuscript) 3.71 Wm-2 to 

convert Sa to ECS. 
 
Page 6 lines 13-19: 

To obtain Sa, one needs to multiply S[CO2,LI] by a conversion factor  = 0.64  0.07 (1-
uncertainty) that accounts for the influence of other long-term processes, namely vegetation, 
aerosol and non-CO2 greenhouse gas changes (PALAEOSENS Project Members, 2012). Note 

that this multiplication by  ignores any possible state-dependencies in  and assumes unit 
efficacy for processes other than land ice changes. Because a comprehensive analysis of the 
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efficacy and state-dependency of these other processes is beyond the scope of this study, it is 
a source of uncertainty to be investigated in future research. Finally, we obtain the equivalent 

ECS by multiplying Sa by R2xCO2 = 3.71  0.37 Wm-2 (1-uncertainty), the radiative forcing 

perturbation representing a CO2 doubling (Myhre et al., 1998). 
 
Page 10, lines 5-8: 

Our inferred PI S[CO2,LI] is equivalent to an Sa of 1.6+0.3
-0.4 KW-1m2, when considering only the 

uncertainty caused by the implemented range in [LI], and to an Sa of 1.6+0.1
-0.2 KW-1m2, when 

only considering the uncertainty in the conversion factor . The equivalent ECS is 5.8  1.3 K 
per CO2 doubling, when only considering the uncertainty caused by the implemented range in 

[LI], and 5.8  0.6 K per CO2 doubling, when only considering the uncertainty in the conversion 

factor R2xCO2. 

 
p5. 
On p4, you state that, to convert from S_[LI,CO2] to S^a you should multiply by 0.64. Therefore 
DT_G on in eqn 10 should also be multiplied by 0.64. This may solve all your problems in terms 
of reconciling CLIMBER and the data as, if I understand correctly, you need to include this 
multiplicative factor for the data based analyses, but not for the CLIMBER analysis.  
 

The factor (now called ) to convert S[CO2,LI] to Sa accounts for the long-term processes other 
than CO2 and ice-sheet changes. Indeed, this factor has to be included in the data-based 
analysis, but not in the CLIMBER-2 analysis as these long-term processes are ignored in 
CLIMBER-2. However, in Eq. 10 we relate the change in temperature caused by land ice-

changes to the one caused by all other processes, aiming first to calculate S[CO2,LI]. Hence, here 

Tg should not be multiplied by . 
 
P5 
"Any specific moment", "in time" ... I do not think this is what you mean. Equation 1 relates to 
the steady state! This also causes me to ask what time averaging is used for the CLIMBER 
analysis on p7-8...? (Maybe this is already stated somewhere but I do not recall seeing this 
mentioned in the manuscript...?) 
 

Here, we mean any time step in the record of R[CO2] and R[LI], as is now indicated in the 
revised manuscript.  
 
Page 5, lines 9-10: 

If [LI] is assumed to be constant in time (see Sect. 3.2), it can be calculated using Eq. 11 from 

data of any time step in the record of R[CO2] and R[LI] , and consequently applied to the whole 
record (Fig. 1a,c). 
 
The time averaging of the CLIMBER-2 results was already indicated in the manuscript to be 
1,000 years. 
 
Page 7, line 19: 
(…), after averaging to 1,000 year temporal resolution (Fig. 1a,b). 
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p6. 
I don't think this is really a "validation" as such - more an "illustration" perhaps? Clearly 
CLIMBER is very simplified and other models may have quite different result. A sentence 
explaining why this information is not forthcoming from GCMs would be appropriate (ie you 
are forced to use a simplified model because of the CPU overhead). 
 
This section is now referred to as an ‘illustration’ rather than a ‘validation’ of our approach 
throughout the text. We have furthermore included a sentence explaining why we use results 
of an intermediate complexity climate model rather than a GCM.  
 
Page 7, lines 5-7: 
Currently, long (~105 to ~106 years) integrations of state-of-the-art climate models, such as 
general circulation models and Earth system models, are not yet not feasible due to limited 
computer power. This gap can be filled by using models of reduced complexity (Claussen et 
al., 2002; Stap et al., 2017). 
 
P7. "Note that, in the case S... is equal to... The fit further shows decreasing..." This seems silly, 
and confusing, especially since you then use it as a reason for referring in a confusing way to 
S_CO2,LI later on. Just call it S^E_[CO2]. It is surely clear to anyone who has managed to get 
this far through the paper what is meant. 
 

We have deliberately called it S[CO2,LI] because we compare it to another way of obtaining 

S[CO2,LI] later on. This should keep people from thinking we are comparing apples to oranges.  
 
P8 
Fig 3b looks to be less linear not more linear than 3a 
 

Indeed, it should be less linear, enhancing S[CO2,LI]. We have fixed this mistake in the revised 
manuscript. 
 
Page 8, lines 10-11: 

The relationship between T[-LI]  and R[CO2] (Fig. 3b) is less linear than that between T[OC]  

and R[CO2] (Fig. 3a), hence the state dependency of S[CO2,LI] is enhanced . 
 
Again we have an "any moment in time". Rephrase please. 
 
Changed to ‘any time step of the record’. 
 
The section "In principal [which should be "principle", but these days we rely on copy-editing 
to pick up this kind of thing] ... (Fig3c)." Should be moved to p7 where the LGM is first 
mentioned in this context. 
 
We have moved this part to page 7 line 32 to page 8 line 2. 
 
Please remove all the "old approach" / "new approach" labels. Give the approaches names, 
or reference the equations, or other papers. Otherwise people do not know what you are  
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talking about, and they will be even more lost in the future when there is a new new approach 
and your approach becomes the old approach! 
 
We agree that this could cause confusion. Throughout the revised manuscript, we therefore 
refer to the ‘old’ method as the PALAEOSENS approach (that does not consider efficacy 
differences). The ‘new’ method is now referred to as ‘our (refined) approach’. 
 
ANICE is used to convert from temperature to radiation. After seeing some of the ice model 
inter-comparison results I suspect this is a major source of uncertainty. If you agree, it would 
be good to see this at least mentioned.  
 
Please see our answer to the next comment. 
 
p9  
"Therefore, these results...similar to the of proxy data..." 
I do not know what you mean. Why? 
 

We meant to say that the ANICE temperature results are more directly related to the (18O) 
proxy, because they are not constrained by climatic boundary conditions. We have now 
clarified this. Of course, using only a single model leads to model dependency of the results, 
which is now acknowledged in the revised manuscript. 
 
Page 9, lines 4-7: 
The ANICE results are here considered to be proxy-inferred, because, unlike climate models, 
ANICE is not constrained by climatic boundary conditions such as insolation and greenhouse 

gases. The temperature anomalies follow directly from a benthic 18O stack (Lisiecki and 
Raymo, 2005) using an inverse technique. Nevertheless, the results are model-dependent and 
therefore subject to uncertainty. 
 
P10 and throughout. The uncertainty ranges are quite strange because they exclude an awful 
lot of known uncertainty. Maybe you could be more careful about stating in the Abstract and 
Conclusion what these ranges include and do not include in terms of known uncertainties. 
Also, what are the quoted ranges - 1 standard deviation? 2,3? 95%?? 
 
Because, in this manuscript, we focus on the effect of the efficacy factor for land ice changes 

([LI],) on climate sensitivity, the uncertainties we provide in the abstract and conclusions are 

only caused by the implemented range in [LI]. This is mentioned in the manuscript. 
 
Page 1 line 15-16: 

Consequently, our obtained ECS estimate of 5.8  1.3K, where the uncertainty reflects the 

implemented range in [LI], is ~50% higher than when differences in efficacy are not con-
sidered. 
 
Page 11, lines 1-2: 

The uncertainty in these estimates is only caused by the implemented range in [LI]. 
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As described in our reply to a previous comment of the reviewer, we have furthermore 

included the effects of the uncertainty in the factors to convert S[CO2,LI] to Sa and Sa to ECS 

(now called  and R2xCO2 respectively) on our estimates of Sa and ECS. Additionally, we note 

that any possible state-dependency of  is ignored. 
 
Page 6 lines 13-19: 

To obtain Sa, one needs to multiply S[CO2,LI] by a conversion factor  = 0.64  0.07 (1-
uncertainty) that accounts for the influence of other long-term processes, namely vegetation, 
aerosol and non-CO2 greenhouse gas changes (PALAEOSENS Project Members, 2012). Note 

that this multiplication by  ignores any possible state-dependencies in  and assumes unit 
efficacy for processes other than land ice changes. Because a comprehensive analysis of the 
efficacy and state-dependency of these other processes is beyond the scope of this study, it is 
a source of uncertainty to be investigated in future research. Finally, we obtain the equivalent 

ECS by multiplying Sa by R2xCO2 = 3.71  0.37 Wm-2 (1-uncertainty), the radiative forcing 

perturbation representing a CO2 doubling (Myhre et al., 1998). 
 
Page 10, lines 5-8: 

Our inferred PI S[CO2,LI] is equivalent to an Sa of 1.6+0.3
-0.4 KW-1m2, when considering only the 

uncertainty caused by the implemented range in [LI], and to an Sa of 1.6+0.1
-0.2 KW-1m2, when 

only considering the uncertainty in the conversion factor . The equivalent ECS is 5.8  1.3 K 
per CO2 doubling, when only considering the uncertainty caused by the implemented range in 

[LI], and 5.8  0.6 K per CO2 doubling, when only considering the uncertainty in the conversion 

factor R2xCO2. 

 
A comprehensive analysis of the effect of the uncertainties in the proxy-inferred records has 
already been performed by Köhler et al. (2015). We feel that repeating that exercise would 
distract from the primary focus of this paper, and therefore instead refer to this earlier study 
with respect to this issue. 
 
Page 10, lines 15-18: 

We have focused primarily on the effect of [LI] on S[CO2,LI] in this analysis, and therefore we 
have for simplicity ignored uncertainties in the investigated proxy-inferred records 
themselves. A comprehensive description of these uncertainties and their influence on the 
calculated climate sensitivity can be found in Köhler et al. (2015). 
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Abstract. The equilibrium climate sensitivity (ECS) of climate models is calculated as the equilibrium global mean surface

warming resulting from a simulated doubling of the atmospheric CO2 concentration. In these simulations, long-term processes5

in the climate system, such as land ice changes, are not incorporated. Hence, climate sensitivity derived from paleodata has

to be compensated for these processes, when comparing it to the ECS of climate models. Several recent studies found that

the impact these long-term processes have on global temperature cannot be quantified directly through the global radiative

forcing they induce. This renders the prevailing approach of deconvoluting paleotemperatures through a partitioning based on

radiative forcings inaccurate. Here, we therefore implement an efficacy factor ε[LI], that relates the impact of land ice changes10

on global temperature to that of CO2 changes, in our calculation of climate sensitivity from paleodata. We apply our refined

approach to a proxy-inferred paleoclimate dataset, using ε[LI] = 0.45+0.34
−0.20 based on a multi-model assemblage of simulated

relative influences of land ice changes on the Last Glacial Maximum temperature anomaly. The implemented ε[LI] is smaller

than unity, meaning that per unit of radiative forcing the impact on global temperature is less strong for land ice changes than

for CO2 changes. Consequently, our obtained ECS estimate of 5.8± 1.3K, where the uncertainty reflects the implemented15

range in ε[LI], is ∼50% higher than when differences in efficacy are not considered.

1



1 Introduction

Equilibrium climate sensitivity (ECS) expresses the simulated equilibrated surface air temperature response to an instantaneous

doubling of the atmospheric CO2 concentration. The simulated effect of the applied CO2 radiative forcing anomaly includes

the Planck response, as well as the fast feedbacks such as those involving changes to snow, sea ice, lapse rate, clouds and

water vapour. ECS varies significantly between different state-of-the-art climate models, for instance the CMIP5 ensemble5

shows a range of 1.9 to 4.4 K (Vial et al., 2013). Several ways have been put forward to constrain ECS, for example through

the usage of paleoclimate data (e.g. Covey et al., 1996; Edwards et al., 2007), which is also the focus of this study. However,

unlike results of models, temperature reconstructions based on paleoclimate proxy data always contain a mixed signal of all

processes active in the climate system. Among these are long-term processes (or slow feedbacks) such as changes in vegetation,

dust, and, arguably most importantly, land ice changes, which are kept constant in the climate model runs used to calculate10

ECS. Therefore, it is necessary to correct paleotemperature records for the influence of these processes, in order to make a

meaningful comparison to ECS calculated by climate models.

In a co-ordinated community effort, the PALAEOSENS project proposed to relate the temperature response caused by

these long-term processes to the globally averaged radiative forcing they induce (PALAEOSENS Project Members, 2012).

Consequently, the paleotemperature record can be disentangled on the basis of the separate radiative forcings of these long-15

term processes (e.g. von der Heydt et al., 2014; Martínez-Botí et al., 2015; Köhler et al., 2015, 2017b, 2018; Friedrich et al.,

2016). If all processes are accounted for in this manner, the effect of CO2 changes and the accompanying short-term feedbacks,

as described by the ECS, can be estimated. However, several studies have shown that, depending on the type of radiative

forcing, the same global average radiative forcing can lead to different global temperature changes (e.g. Stuber et al., 2005;

Hansen et al., 2005; Yoshimori et al., 2011). For instance, in a previous article (Stap et al., 2018) we simulated the separate and20

combined effects of CO2 changes and land ice changes on global surface air temperature using the intermediate complexity

climate model CLIMBER-2 and showed that the specific global temperature change per unit radiative forcing change depends

on which process is involved. As a possible solution to this problem, Hansen et al. (2005) formulated the concept of ’efficacy’

factors, which express the impact of radiative forcing by a certain process in comparison to the effect of radiative forcing by

CO2 changes.25

Based on the concept of Hansen et al. (2005), here we introduce an efficacy factor for radiative forcing by albedo changes

due to land ice variability, in our method of deriving climate sensitivity from paleodata. We first illustrate our refined approach

by applying it to transient simulations over the past 5 Myr using CLIMBER-2 (Stap et al., 2018), obtaining a quantification

of the effect on global temperature of CO2 changes and the accompanying short-term feedbacks from a simulation forced by

both land ice and CO2 changes. We compare this result to a simulation where CO2 changes are the only operating long-term30

process. In this manner, we can assess the error resulting from using a constant efficacy factor. Thereafter, we refine a previous

estimate of climate sensitivity based on a paleoclimate dataset of the past 800 kyr (Köhler et al., 2015, 2018). In this dataset,

the sole effect of CO2 is not a-priori known. We therefore investigate the influence of the introduced efficacy factor on the

calculated climate sensitivity. To do so, we appraise the influence of land ice changes and the associated efficacy using a range
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that is given by different modelling efforts of the Last Glacial Maximum (LGM; ∼21 kyr ago) (Shakun, 2017). The climate

sensitivity resulting from applying this range provides a quantification of the consequence of the uncertain efficacy of land ice

changes.

2 Material and methods

In this section, we first summarize the approach to obtaining climate sensitivity from paleodata, that has been used in numerous5

earlier studies (e.g. PALAEOSENS Project Members, 2012; von der Heydt et al., 2014; Martínez-Botí et al., 2015; Köhler et al.,

2015, 2017b, 2018; Friedrich et al., 2016). We then discuss our main refinement to that approach, which is the inclusion of

the efficacy of land ice changes, and a further small refinement that is meant to unify the dependent variable in cross-plots of

radiative forcing and global temperature anomalies.

2.1 Approach to obtain climate sensitivity from paleodata10

In climate model simulations used to quantify ECS, fast feedbacks, i.e. processes in the climate system with timescales of

less than ∼100 yrs, are accounted for. However, slower processes, such as those involving changes to ice sheets, vegetation

and dust, are commonly kept constant. The resulting response is also sometimes called ‘Charney‘ sensitivity (Charney et al.,

1979). Following the notation of PALAEOSENS Project Members (2012), the ratio of the temperature change (∆T[CO2]) to

the radiative forcing due to the CO2 change (∆R[CO2]), yields Sa (in KW−1 m2, and where a stands for actuo):15

Sa =
∆T[CO2]

∆R[CO2]
. (1)

The subscript denotes that CO2 is the only long-term process involved. Analogously, paleoclimate sensitivity (Sp) can be

deduced from paleo-temperature reconstructions and paleo-CO2 records as

Sp =
∆Tg

∆R[CO2]
. (2)

In this case, the average global paleotemperature anomaly with respect to the pre-industrial (PI) (∆Tg) is, however, also affected

by the long-term processes that are typically neglected in climate simulations. Therefore, a correction to the paleotemperature

record is needed to obtain ∆T[CO2] from ∆Tg:20

∆T[CO2] = ∆Tg(1− f), (3)

or equivalently Sa from Sp:

Sa = Sp(1− f) =
∆Tg

∆R[CO2]
(1− f). (4)

Here, f represents the effect of the slow feedbacks on paleotemperature (e.g. van de Wal et al., 2011). To obtain f , PALAEOSENS

Project Members (2012) proposed an approach, which has subsequently been used in numerous studies aiming to constrain
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climate sensitivity from paleodata (e.g. von der Heydt et al., 2014; Martínez-Botí et al., 2015; Köhler et al., 2015, 2017b, 2018;

Friedrich et al., 2016), and paleoclimate modelling studies (e.g. PALAEOSENS Project Members, 2012; Friedrich et al., 2016;

Chandan and Peltier, 2018). They suggested to quantify the influence of the long-term processes (X) by the radiative forcing

change they induce (∆R[X]), relative to the total radiative forcing perturbation:

f =
∆R[X]

∆R[CO2] + ∆R[X]
= 1−

∆R[CO2]

∆R[CO2] + ∆R[X]
(5)

Combining Eqs. 4 and 5 and following the PALAEOSENS nomenclature, we can then derive the ’specific’ paleoclimate sensi-5

tivity S[CO2,X], where X represents the processes that are accounted for in the calculation of f :

S[CO2,X] =
∆Tg

∆R[CO2]
(1−

∆R[X]

∆R[CO2] + ∆R[X]
) =

∆Tg

∆R[CO2] + ∆R[X]
=

∆Tg

∆R[CO2,X]
. (6)

If, for instance, only the most important slow feedback in the climate system, namely radiative forcing anomalies induced by

albedo changes due to land ice (LI) variability are taken into account, then one can correct Sp to derive the following specific

climate sensitivity:

S[CO2,LI] =
∆Tg

∆R[CO2] + ∆R[LI]
=

∆Tg

∆R[CO2,LI]
. (7)

Using this approach, several studies performed a least-squares regression through scattered data from paleotemperature and10

radiative forcing records (Martínez-Botí et al., 2015; Friedrich et al., 2016; Köhler et al., 2015, 2017b, 2018) relating ∆Tg to

∆R[CO2,LI] in a time-independent manner, from which S[CO2,LI] could be determined. In the course of those studies, a state

dependency of S[CO2,LI] as function of background climate has been deduced for those data which are best approximated by a

non-linear function. Furthermore, the quantification of S[CO2,LI] for those state-dependent cases has been formalized in Köhler

et al. (2017b). A synthesis of estimates of S[CO2,LI] from both colder- and warmer-than-present climates has been compiled by15

von der Heydt et al. (2016).

2.2 Refinement 1: Taking the efficacy of land ice changes into account

The validity of the PALAEOSENS approach to calculate f is contingent on the notion that identical global-average radiative

forcing changes leads to identical global temperature responses, regardless of the processes involved. However, it has been

demonstrated that the horizontal and vertical distribution of the radiative forcing affects the resulting temperature response20

(e.g. Stuber et al., 2005; Hansen et al., 2005; Yoshimori et al., 2011; Stap et al., 2018) because, e.g. different fast feedbacks

are triggered depending on the location of the forcing. To address this issue, Hansen et al. (2005) introduced the concept

of ’efficacy’ factors, which we will explore further in this study. These factors (ε[X]) relate the strength of the temperature

response to radiative forcing caused by a certain process X (∆T[X]/∆R[X]), to a similar ratio caused by CO2 radiative forcing

(∆T[CO2]/∆R[CO2]). This introduction of efficacy requires a reformulation of f as fε:25

fε =
ε[X]∆R[X]

∆R[CO2] + ε[X]∆R[X]
= 1−

∆R[CO2]

∆R[CO2] + ε[X]∆R[X]
, (8)
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and hence also of S[CO2,X] as Sε
[CO2,X]:

Sε
[CO2,X] =

∆Tg

∆R[CO2] + ε[X]∆R[X]
. (9)

In these reformulations, where in principle ε[X] can take any value, we introduce the superscript ε. This serves to clearly

distinguish these newly-derived sensitivities from those of the PALAEOSENS approach in which efficacy was not taken into

account, implying that identical radiative forcing of different processes leads to identical temperature changes.

To calculate Sε
[CO2,LI], we constrain the efficacy factor for radiative forcing by land ice changes (ε[LI]), using the following5

formulation, which is based on, but slightly modified from Hansen et al. (2005):

∆T[LI]

∆R[LI]
= ε[LI]

∆Tg −∆T[LI]

∆R[CO2]
. (10)

This leads to:

ε[LI] =
ω

1−ω

∆R[CO2]

∆R[LI]
, (11)

where ω represents the fractional relative influence of land ice changes on the global temperature change (ω = ∆T[LI]/∆Tg). If

ε[LI] is assumed to be constant in time (see Sect. 3.2), it can be calculated using Eq. 11 from data of any time step in the record

of ∆R[CO2] and ∆R[LI], and consequently applied to the whole record (Fig. 1a,c). As before, with this ε[LI] a quantification of10

Sε
[CO2,LI] can be obtained by performing a least-squares regression through scattered data from paleotemperature and radiative

forcing records, now relating ∆Tg to (∆R[CO2] + ε[LI]∆R[LI]) in a time-independent manner.

Note that apart from the formulation based on Hansen et al. (2005) followed here, other formulations of the efficacy factor

are possible. For instance, one can define an alternative efficacy factor (ε[LI],alt) such that it relates the effect of land ice changes

on global temperature directly to the radiative forcing anomaly caused by CO2 changes, leading to:15

Sε
[CO2,X],alt =

∆Tg

∆R[CO2] + ε[LI],alt∆R[CO2]
. (12)

In this alternative case, the efficacy factor ε[LI],alt relates to our original ε[LI] as:

ε[LI],alt = ε[LI]

∆R[LI]

∆R[CO2]
. (13)

This implies that if ε[LI] is indeed constant, any non-linearity in the relation between ∆R[CO2] and ∆R[LI] would demand a

more complex formulation of the alternative efficacy factor ε[LI],alt (e.g. via a higher-order polynomial). Since we find such

a non-linearity in our data (Fig. 2), using an F test to determine that a second order polynomial is a significantly (p value <

0.0001) better fit to the data than a linear function, we refrain from following this alternative formulation further.20

2.3 Refinement 2: Unifying the dependent variable

To calculate Sε
[CO2,LI], previous studies have used cross-plots of global temperature anomalies and radiative forcing. The

latter is caused by a combination of CO2 and land-ice changes, which is cumbersome if one wants to compare Sε
[CO2,LI] to
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other specific paleoclimate sensitivities Sε
[CO2,X], where more and/or different long-term processes are considered. Here, we

therefore reformulate our quantification of Sε
[CO2,LI] to unify the dependent variable as ∆R[CO2].

Sε
[CO2,X] =

∆Tg

∆R[CO2] + ε[X]∆R[X]
=

∆Tg

∆R[CO2]

∆R[CO2]

∆R[CO2] + ε[X]∆R[X]
=

∆T ε
[−X]

∆R[CO2]
. (14)

Here, ∆T ε
[−X] is the global temperature change (with respect to PI) stripped of the inferred influence of processes X, defined

as:

∆T ε
[−X] := ∆Tg

∆R[CO2]

∆R[CO2] + ε[X]∆R[X]
. (15)

Hence, for the calculation of Sε
[CO2,LI] we use:5

∆T ε
[−LI] := ∆Tg

∆R[CO2]

∆R[CO2] + ε[LI]∆R[LI]
. (16)

Now, we quantify Sε
[CO2,LI] by performing a least-squares regression (regfunc) through scattered data from ∆T ε

[−LI] and

∆R[CO2]. We use the precondition that no change in CO2 is related to no change in ∆T ε
[−LI], meaning the regression intersects

the y-axis at the origin ((x,y) = (0,0)). Following Köhler et al. (2017b), for any non-zero ∆R[CO2], we calculate Sε
[CO2,LI] as:

Sε
[CO2,LI]

∣∣∣∣
∆R[CO2]

=
regfunc

∆R[CO2]

∣∣∣∣
∆R[CO2]

. (17)

If ∆R[CO2] = 0Wm−2, as is among others the case for pre-industrial conditions, Sε
[CO2,LI] is quantified as:10

Sε
[CO2,LI]

∣∣∣∣
∆R[CO2]=0

=
δ(regfunc)

δ(∆R[CO2])

∣∣∣∣
∆R[CO2]=0

. (18)

Equations 17 and 18 yield a quantification of Sε
[CO2,LI], which can be compared to the value obtained for Sε

[CO2,LI] using the

PALAEOSENS approach that does not consider efficacy differences (equivalent to using ε[LI] = 1) (Köhler et al., 2018).

To obtain Sa, one needs to multiply S[CO2,LI] by a conversion factor φ= 0.64± 0.07 (1σ-uncertainty) that accounts for

the influence of other long-term processes, namely vegetation, aerosol and non-CO2 greenhouse gas changes (PALAEOSENS

Project Members, 2012). Note that this multiplication by φ ignores any possible state-dependencies in φ and assumes unit15

efficacy for processes other than land ice changes. Because a comprehensive analysis of the efficacy and state-dependency of

these other processes is beyond the scope of this study, it is a source of uncertainty to be investigated in future research. Finally,

we obtain the equivalent ECS by multiplying Sa by ∆R2xCO2
= 3.71± 0.37Wm−2 (1σ-uncertainty), the radiative forcing

perturbation representing a CO2 doubling (Myhre et al., 1998).

3 Illustration of the approach using model simulations20

In this section, we illustrate our refined approach, which considers efficacy differences, by applying it to transient simulations

over the past 5 Myr using CLIMBER-2 (Stap et al., 2018). We obtain a quantification of the effect on global temperature of
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CO2 changes and the accompanying short-term feedbacks from a simulation forced by both land ice and CO2 changes. We

compare this result to a simulation where CO2 changes are the only operating long-term process. By doing so, we assess the

error resulting from using a constant efficacy factor.

3.1 CLIMBER-2 model simulations

Currently, long (∼ 105 to ∼ 106 years) integrations of state-of-the-art climate models, such as general circulation models5

and Earth system models, are not yet not feasible due to limited computer power. This gap can be filled by using models of

reduced complexity (Claussen et al., 2002; Stap et al., 2017). Using the intermediate complexity climate model CLIMBER-2

(Petoukhov et al., 2000; Ganopolski et al., 2001), climate simulations over the past 5 Myr were performed and analysed in

Stap et al. (2018). CLIMBER-2 combines a 2.5-dimensional statistical-dynamical atmosphere model, with a 3-basin zonally

averaged ocean model (Stocker et al., 1992), and a model that calculates dynamic vegetation cover based on the temperature and10

precipitation (Brovkin et al., 1997). The simulations could be forced by solar insolation changes due to orbital (O) variations

(Laskar et al., 2004), by land ice (I) changes on both hemispheres (based on de Boer et al., 2013), and by CO2 (C) changes

(based on van de Wal et al., 2011). In the reference experiment (OIC) all these factors are varied, while in other model

integrations the land ice (experiment OC) or the CO2 concentration (experiment OI) is kept fixed at PI level. The synergy

of land ice and CO2 changes is negligibly small, meaning their induced temperature changes add approximately linearly15

when both forcings are applied. Furthermore, the influence of orbital variations is also very small, so that experiment OC

approximately yields the sole effect of CO2 changes on global temperature (∆T[OC]). As in Stap et al. (2018), we use the

simple energy balance model of Köhler et al. (2010) to analyse the applied radiative forcing of land ice albedo and CO2

changes and simulated global temperature changes, after averaging to 1,000 year temporal resolution (Fig. 1a,b).

3.2 Analysis20

First, we analyse experiment OC, which will serve as a target for our approach as deployed later in this section. We use a

least-squares regression through scattered data of ∆R[CO2] and ∆T[OC] to fit a second order polynomial (Fig. 3a). Using a

higher order polynomial rather than a linear function allows us to capture state dependency of paleoclimate sensitivity. Fitting

even higher order polynomials leads to negligible coefficients for the higher powers, and is not pursued further. From the fit,

we calculate a specific paleoclimate sensitivity Sε
[CO2,LI] of 0.74 KW−1 m2 for PI conditions (∆R[CO2] = 0 Wm−2) using25

Eq. 18. Note that, in this case, Sε
[CO2,LI] is equal to Sε

[CO2], S[CO2,LI] and S[CO2] as there are no land ice changes and therefore

also no efficacy differences. The fit further shows decreasing Sε
[CO2,LI] for rising ∆R[CO2].

Now, we apply our approach to the results of experiment OIC, in which both CO2 and land ice cover vary over time, with

the aim of deducing the sole effect of CO2 changes on global temperature. We calculate the efficacy of land ice changes for the

Last Glacial Maximum (21 kyr ago; LGM) from experiment OI, in which the CO2 concentration is kept constant. We obtain30

ω = ∆T[LI]/∆Tg = ∆T[OI]/∆T[OIC] = 0.54. Consequently, we find ε[LI] = 0.58 from Eq. 11, and apply this value to the whole

record of ∆R[CO2] and ∆R[LI]. In this manner, we calculate ∆T ε
[−LI] using Eq. 16. In principle, ε[LI] can be obtained using

data from any time step of the record, preferably when the radiative forcing anomalies are large to prevent outliers resulting
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from divisions by small numbers. For example, using the results from all glacial marine isotope stages of the past 810 kyr (MIS

2, 6, 8, 10, 12, 14, 16, 18, and 20), instead of only the LGM, leads to a mean (±1σ) ε[LI] of 0.56± 0.09.

We then fit a second order polynomial to the scattered data of the thusly obtained ∆T ε
[−LI] from the results of experiment

OIC, and ∆R[CO2] (Fig. 3b,c). Between ∆R[CO2] = −0.5Wm−2 and ∆R[CO2] = 0.5Wm−2, outliers resulted from division

by small numbers (not shown in Fig. 3b). To remove these outliers, we first calculate the root mean square error (RMSE)5

between the fit and the data in the remainder of the domain. We then exclude all values from the range ∆R[CO2] = −0.5Wm−2

to ∆R[CO2] = 0.5Wm−2 where the fit differs from the data by more than 3 × RMSE, and perform the regression again. This

yields an Sε
[CO2,LI] of 0.72 KW−1 m2 for PI (Fig. 3b) in the LGM-only case, and 0.73+0.06

−0.05 KW−1 m2 in the case where all

glacial periods are used (Fig. 3c). This supports our approach since it is only slightly lower than the Sε
[CO2,LI] of 0.74 KW−1 m2

obtained from experiment OC, which it should approximate. The relationship between ∆T ε
[−LI] and ∆R[CO2] (Fig. 3b) is less10

linear than that between ∆T[OC] and ∆R[CO2] (Fig. 3a), hence the state dependency of Sε
[CO2,LI] is enhanced. However, the

difference between the Sε
[CO2,LI] obtained from both experiments remains smaller than 0.07 KW−1 m2 through the entire

5-Myr interval in the LGM-only case, indicating that a constant efficacy is an acceptable assumption which only introduces a

negligible additional uncertainty. However, the possible time-dependency of efficacy could be investigated more rigorously in

future research using more sophisticated climate models.15

The PALAEOSENS approach that does not consider efficacy differences (ε[LI] = 1) yields a PI S[CO2,LI] of 0.54 KW−1 m2

(Fig. 3d). This is clearly much more off-target than the results of our approach, signifying the importance of considering

efficacy.

4 Application to proxy-inferred paleoclimate data

In this section, we compare our refined approach to calculate Sε
[CO2,LI] incorporating efficacy, to our previous quantification20

of S[CO2,LI] (Köhler et al., 2018), by reanalysing the same paleoclimate dataset (introduced in Köhler et al., 2015). Other than

for climate model simulations, in proxy-based datasets the influence of land ice changes on global temperature perturbations

cannot be directly obtained, and is hence a-priori unknown. We therefore base the value of ε[LI] we implement here on a multi-

model assemblage of simulated relative influences of land ice changes on the Last Glacial Maximum (LGM) temperature

anomaly (Shakun, 2017).25

4.1 Proxy-inferred paleoclimate dataset

The dataset to be investigated contains reconstructions of ∆Tg, ∆R[CO2], and ∆R[LI] for the past 800 kyr. Although the dataset

covers the past 5 Myr, here we focus only on the past 800 kyr (Fig. 1c,d) because over this period ∆R[CO2] is constrained by

high-fidelity measurements of CO2 within ice cores, whereas Pliocene and Early Pleistocene CO2 levels are still heavily

debated (e.g. Badger et al., 2013; Martínez-Botí et al., 2015; Willeit et al., 2015; Stap et al., 2016, 2017; Chalk et al., 2017;30

Dyez et al., 2018). Radiative forcing by CO2 is obtained from Antarctic ice core data compiled by Bereiter et al. (2015), using

∆R[CO2] = 5.35Wm−2 · ln(CO2/(278ppm)) (Myhre et al., 1998). The revised formulation for ∆R[CO2] from Etminan et al.
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(2016) leads to very similar results with less than 0.01 Wm−2 differences between the approaches for typical late Pleistocene

CO2 values (Köhler et al., 2017a). Radiative forcing caused by land ice albedo changes, as well as the global surface air

temperature record (∆Tg), are based on results of the 3D ice-sheet model ANICE (de Boer et al., 2014) forced by northern

hemispheric temperature anomalies with respect to a reference PI climate. The ANICE results are here considered to be proxy-

inferred, because, unlike climate models, ANICE is not constrained by climatic boundary conditions such as insolation and5

greenhouse gases. The temperature anomalies follow directly from a benthic δ18O stack (Lisiecki and Raymo, 2005) using

an inverse technique. Nevertheless, the results are model-dependent and therefore subject to uncertainty. ANICE provided

geographically specific land ice distributions, and hence radiative forcing due to albedo changes with respect to PI on both

hemispheres. In Köhler et al. (2015), the northern hemispheric (NH) temperature anomalies (∆TNH) are translated into global

temperature perturbations (∆Tg1 in Köhler et al. (2015)) using polar amplification factors (fPA = ∆TNH/∆Tg) as follows: at10

the LGM, fPA = 2.7 is taken from the average of PMIP3 model data (Braconnot et al., 2012), while at the mid-Pliocene Warm

Period (mPWP, about 3.2 Myr ago), fPA = 1.6 is calculated from the average of PlioMIP results (Haywood et al., 2013). At

all other times, fPA is linearly varied as a function of the NH temperature. In Appendix A, we investigate the influence of the

chosen polar amplification factor on our results. The temporal resolution of the dataset is 2,000 years.

Analysing this dataset, Köhler et al. (2018) found a temperature-CO2 divergence appearing mainly during, or in connection15

with, periods of decreasing obliquity related to land ice growth or sea level fall. For these periods, a significantly different

S[CO2,LI] was obtained than for the remainder of the time frame. However, in the future we expect sea level to rise, hence these

intervals of strong temperature-CO2 divergence should not be considered for the interpretation of paleodata in the context of

future warming, e.g. by using paleodata to constrain ECS. In the following analysis, we therefore exclude these times with

strong temperature-CO2 divergence, leaving 217 data points as indicated in Fig. 1c,d.20

4.2 Analysis

Shakun (2017) compiled model-based estimates of the relative impact of land ice changes on the LGM temperature anomaly

(ω in Eq. 11) using an ensemble of 12 climate models, and estimated ω to be 0.46± 0.14 (mean ±1σ, full range 0.20− 0.68).

Applying these values, in combination with the LGM values (taken here as the mean of the data at 20 and 22 kyr ago)

∆R[CO2] = −2.04Wm−2 and ∆R[LI] = −3.88Wm−2, yields ε[LI] = 0.45+0.34
−0.20. Implementing this range for ε[LI] in Eq. 16,25

we calculate ∆T ε
[−LI] over the whole 800-kyr period. Fitting second order polynomials by least-squares regression to the

scattered data of ∆T ε
[−LI] and ∆R[CO2], we infer a PI Sε

[CO2,LI] of 2.45+0.53
−0.56 KW−1 m2 (Fig. 4a). The substantial uncertainty

given here only reflects the 1σ uncertainty in ε[LI]. Similar to Köhler et al. (2018), we also detect a state dependency with

decreasing Sε
[CO2,LI] towards colder climates for this dataset, more strongly so in case of lower ε[LI]. This state dependency

is opposite to the one found in the CLIMBER-2 results (Sect. 3). The difference may be related either to the fact that fast30

climate feedbacks are too linear, or that some slow feedbacks are underestimated in intermediate complexity climate models

like CLIMBER-2 (see Köhler et al., 2018, for a detailed discussion). At ∆R[CO2] = −2.04Wm−2, the LGM value, Sε
[CO2,LI]

is only 1.45+0.33
−0.37 KW−1 m2. The PALAEOSENS approach, which does not consider efficacy and is therefore equivalent to our

approach using ε[LI] = 1, yields S[CO2,LI] = 1.66 KW−1 m2 for PI, and S[CO2,LI] = 0.93 KW−1 m2 for the LGM (Fig. 4b).
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The specific paleoclimate sensitivities we find using the refined approach are hence generally larger than those obtained when

neglecting efficacy differences. This is because, for the range of the impact of land ice changes on the LGM temperature

anomaly implemented (ω = 0.46± 0.14), the efficacy factor ε[LI] is smaller than unity. In other words, these land ice changes

contribute comparatively less per unit radiative forcing to the global temperature anomalies than the CO2 changes.

Our inferred PI Sε
[CO2,LI] is equivalent to an Sa of 1.6+0.3

−0.4 KW−1 m2, when only considering the uncertainty caused by the5

implemented range in ε[LI], and to an Sa of 1.6+0.1
−0.2 KW−1 m2, when only considering the uncertainty in the conversion factor

φ. The equivalent ECS is 5.8± 1.3K per CO2 doubling, when only considering the uncertainty caused by the implemented

range in ε[LI], and 5.8± 0.6K per CO2 doubling, when only considering the uncertainty in the conversion factor ∆R2xCO2
.

The ECS we find is thus on the high end of the results of other approaches to obtain ECS (Knutti et al., 2017), e.g. the 2.0 to

4.3 K 95%-confidence range from a large model ensemble (Goodwin et al., 2018), and the 2.2 to 3.4 K 66% confidence range10

from an emerging constraint from global temperature variability and CMIP5 (Cox et al., 2018). Hence, the low end of our ECS

estimate is in the best agreement with these other estimates. This could mean that the influence the relative influence of land

ice changes on the LGM temperature anomaly is on the high side, or possibly higher than, the 0.46± 0.14 range we consider

here. Alternatively, the conversion factor φ= 0.64± 0.07 we use to convert S[CO2,LI] to Sa is an overestimation, which could

be caused by a larger-than-unity efficacy of long-term processes besides CO2 and land ice changes. We have focused primarily15

on the effect of ε[LI] on Sε
[CO2,LI] in this analysis, and therefore we have for simplicity ignored uncertainties in the investigated

proxy-inferred records themselves. A comprehensive description of these uncertainties and their influence on the calculated

climate sensitivity can be found in Köhler et al. (2015).

5 Conclusions

We have incorporated the concept of a constant efficacy factor (Hansen et al., 2005), that interrelates the global temperature20

responses to radiative forcing caused by land ice changes and CO2 changes, into our framework of calculating specific pale-

oclimate sensitivity Sε
[CO2,LI]. The aim of this effort has been to overcome the problem that land ice and CO2 changes can

lead to significantly different global temperature responses, even when they induce the same global-average radiative forcing.

Firstly, we have assessed the usefulness of considering efficacy differences by applying our refined approach to results of

5-Myr CLIMBER-2 simulations (Stap et al., 2018), where the separate effects of land ice changes and CO2 changes can be25

isolated. In the results of these simulations, the error from assuming the efficacy factor to be constant in time is negligible.

Thereafter, we have used our approach to reanalyse an 800-kyr proxy-inferred paleoclimate dataset (Köhler et al., 2015). We

have inferred a range in the land ice change efficacy factor ε[LI] from the relative impact of land ice changes on the LGM

temperature anomaly simulated by a 12-member climate model ensemble (Shakun, 2017). The thusly obtained efficacy factor

ε[LI] = 0.45+0.34
−0.20 is smaller than unity, implying that the impact on global temperature per unit of radiative forcing is less strong30

for land ice changes than for CO2 changes. Consequently, our derived PI Sε
[CO2,LI] of 2.45+0.53

−0.56 KW−1 m2 is ∼50% larger than

when efficacy differences are neglected. The equivalent Sa and ECS corresponding to this Sε
[CO2,LI] are 1.6+0.3

−0.4 KW−1 m2
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and 5.8± 1.3K per CO2 doubling respectively. The uncertainty in these estimates is only caused by the implemented range in

ε[LI].

Data availability. The CLIMBER-2 dataset is available at https://doi.pangaea.de/10.1594/PANGAEA.887427, and the proxy-inferred pale-

oclimate dataset is available at https://doi.pangaea.de/10.1594/PANGAEA.855449, from the PANGAEA database. For more information or

data, please contact the authors.5

Appendix A: Influence of the polar amplification factor

In the analysis performed in Sect. 4.2, we have used a global temperature record that was obtained from northern high-latitude

temperature anomalies using a polar amplification factor fPA that varies from 2.7 at the coldest to 1.6 at the warmest conditions

(Sect. 4.1). However, recent climate model simulations of the Pliocene using updated paleogeographic boundary conditions

show that in warmer times polar amplification could have been nearly the same as in colder times (Kamae et al., 2016; Chandan10

and Peltier, 2017). We therefore repeat the analysis using the same range in ε[LI] and the same dataset, but with an applied

constant fPA = 2.7 over the entire past 800 kyr to generate ∆Tg (∆Tg2 in Köhler et al. (2015)).

The constant polar amplification used here counteracts increasing state dependency towards low temperatures, as the temper-

ature differences are no longer amplified by changing polar amplification. Hence, Sε
[CO2,LI] is smaller at PI, 1.96+0.42

−0.44 KW−1 m2

compared to 2.45+0.53
−0.56 KW−1 m2 using the variable fPA, but diminishes less strongly towards colder conditions (Fig. A1a cf.15

Fig. 4a). As before, the PALAEOSENS approach (equivalent to our approach using ε[LI] = 1), yields a lower PI S[CO2,LI] of

1.34 KW−1 m2 (Fig. A1b). The PI Sε
[CO2,LI] inferred here using our refined approach corresponds to an Sa of 1.3+0.2

−0.3 KW−1 m2,

and an ECS of 4.6+1.0
−1.3 K per CO2 doubling.
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Figure 1. Timeseries of radiative forcing anomalies (∆R) caused by CO2 (red) changes and land ice changes (blue), and global temperature

anomalies (∆Tg) with respect to PI, from a-b) the CLIMBER-2 model dataset (Stap et al., 2018), with temperature data for experiment OIC

in black and for experiment OC in green, and from c-d) the proxy-inferred dataset (Köhler et al., 2015), with solid lines for the whole dataset,

and dots for the data used in this study which exclude times with strong temperature-CO2 divergence (see Sect. 4.1). Note the differing axis

scales.
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Figure 2. The relation between radiative forcing anomalies caused by CO2 changes (∆R[CO2]) and land ice changes (∆R[LI]) from the

whole proxy-inferred dataset (Köhler et al., 2015) (pink dots). The red line represents a second order polynomial least-squares regression

through the scattered data.
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Figure 3. Temperature anomalies with respect to PI over the last 5 Myr from CLIMBER-2 (Stap et al., 2018) against imposed radiative

forcing of CO2. a) Simulation with fixed PI land ice distribution (experiment OC) (∆T[OC]). b) Calculated global temperature perturbations

from experiment OIC stripped of the inferred influence of land ice (∆T ε
[−LI]) using Eq. 16 with ε[LI] = 0.58. Here, ε[LI] is obtained from

matching climate sensitivity with the target value at the LGM. c) Same as in (b), but using ε[LI] = 0.47 (cyan dots), ε[LI] = 0.56 (pink dots),

and ε[LI] = 0.65 (yellow dots), Here, ε[LI] is obtained from the mean (±1σ) of matching climate sensitivity with the target value at all glacial

marine isotope stages of the past 810 kyr (MIS 2, 6, 8, 10, 12, 14, 16, 18, and 20). d) Same as in (b), but using ε[LI] = 1, which is equivalent

to the PALAEOSENS approach where efficacy differences were not considered. The red lines - and in (c) also the orange and blue lines -

represent second order polynomial least-squares regressions through the scattered data.
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Figure 4. The global temperature perturbations stripped of the inferred influence of land ice (∆T ε
[−LI]) calculated using Eq. 16 against

∆R[CO2] from the proxy-inferred paleoclimate dataset (Köhler et al., 2015), using: a) ε[LI] = 0.79 (maroon dots), ε[LI] = 0.45 (cyan dots),

and ε[LI] = 0.25 (green dots). Here, ε[LI] is obtained by converting the multi-model assemblage of simulated relative influences of land

ice changes on the LGM temperature anomaly (0.46± 0.14) (Shakun, 2017). b) Same as in (a), but using ε[LI] = 1 (grey dots), which is

equivalent to the PALAEOSENS approach. The brown, blue, dark green (a), and black lines (b) represent second order polynomial least-

squares regressions through the data.
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Figure A1. The global temperature perturbations stripped of the inferred influence of land ice (∆T ε
[−LI]) calculated using Eq. 16 against

∆R[CO2] from the proxy-inferred paleoclimate dataset (Köhler et al., 2015), using: a) ε[LI] = 0.79 (maroon dots), ε[LI] = 0.45 (cyan dots),

and ε[LI] = 0.25 (green dots). Here, ε[LI] is obtained from converting the multi-model assemblage of simulated relative influences of land

ice changes on the LGM temperature anomaly (0.46± 0.14) (Shakun, 2017). b) Same as in (a), but using ε[LI] = 1 (grey dots), which is

equivalent to the PALAEOSENS approach. The brown, blue, dark green (a), and black lines (b) represent second order polynomial least-

squares regressions through the data. Here, the global temperature anomalies are derived from the northern high-latitude temperature anomaly

reconstruction assuming a constant polar amplification factor (fPA) of 2.7, as opposed to the variable fPA used in Fig. 4.
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