

The paper tackles the problem of climate change in the Mediterranean, exploring the role of teleconnections and local feedbacks in modulating future projections. To this aim, climate simulations are designed and run using a state-of-the-art climate model. The authors find climate change in agreement with previous literature (warming and drying), however their findings suggest reduced amplitudes in change. They explain these differences with the improved ability of the model in simulating SNAO teleconnections and land surface feedbacks.

We thank the reviewer for a very through revision comments and feedback regarding our manuscript. We have addressed all of the major comments when revising the manuscript. This includes either applying the reviewer's suggestion or a thorough justification for not doing that. We have also made an effort to address the minor comments. Overall, we've reworked the text of the manuscript to improve its conciseness and clarity.

Major comments 1. I acknowledge the huge work the authors did in carefully revising and discussing the literature, and in performing and discussing many analysis, but this makes the paper very long. My first general recommendation is to somehow shorten the manuscript, to facilitate the reader to be focused on the key messages delivered by the paper. For instance, discussions of previous findings is sometimes too detailed and redundant: accepted knowledge on summer climate in the Mediterranean region should be described in detail in the Introduction (or in a dedicated Background section) and briefly recalled when necessary in the text.

AU: Thank you for the comment. Following the reviewer's suggestion we've reworked the manuscript to make it more comprehensible. Particularly, we have summarized the discussion of the previous studies in a more concise way (section 3.2.1 and 3.2.2, pp 9: lines 1-46, pp 10: lines 7-21). The relevant information on the Mediterranean climate moved from sections 3.2 and 3.3 (pp 8: lines 15-27) to the Introduction (pp2: lines 10-22).

2. The main finding of the paper is the different amplitude of future projection of the Mediterranean climate simulated by the CM2.5 model in comparison with CMIP3 and CMIP5 simulations. To illustrate this crucial aspect, the authors refer to the existing literature on the topic. However, when quantitative differences are discussed, comparison with a Figure would be helpful. I suggest the authors to add some figures (in the supplement) showing projections of the future Mediterranean climate (precipitation and temperature) in the CMIP5 ensemble or, if downloading CMIP5 data is too time consuming, at least the CM2.1 model output, to show differences with the same model at lower resolution and not including the improved land model LM3.

AU: Thank you for the suggestion. In order to facilitate the comparison between the CM2.5 future projections and other models we have updated references and also included a supplementary figure. Figure R1 depicts changes estimated based on the RCP8.5 CSIRO-Mk3-6-0 model 10-member projections ensemble. Unfortunately, there are no RCP scenarios for GFDL CM2.1. Instead, we use the CSIRO-Mk3-6-0 model, which includes the ocean component based on the GFDL ocean model. We refer also to the very comprehensive analysis in Jacob et al. 2014 and Fussel et al. 2017 (Map 3.4, pp. 76), employing many GCM-RCM combined simulations from the EURO-CORDEX project. Discussion of these results is included in the text (section 4.1, pp 15: lines 10-27).

Figure R1. Projected future changes for the summer (JJA) surface temperature (left, $^{\circ}\text{C}$), and precipitation (mm/day, right) based on the 10-member ensemble simulations of the CSIRO-Mk3-6-0 model, for the forcing scenario RCP8.5.

3. Data: why NCEP reanalysis are selected for comparison? On the same period, ERAI data are available at higher resolution. ECMWF datasets are also available for the 20th century. Same question about precipitation data: why University of Delaware? Testing other temperature/precipitation datasets (CRU, EOBS) would change your results? In general, comparing your results with different datasets would improve the robustness of your conclusions.

AU: Yes, we agree that a verification of the results with different datasets would improve the robustness of the conclusions. Following reviewer's suggestion we have incorporated EOBS dataset in the analysis of the regional precipitation (Figure 4). We agree that EOBS provides high quality data and serves as a good reference for the regional precipitation. Given the same spatial resolution as CM2.5, EOBS allows for comparing very fine features over the complex orography of the Mediterranean.

However, incorporating datasets with higher resolution wouldn't necessarily serve the purpose of the analysis of the large-scale circulation features. We have included below an additional figure (Figure R2), depicting sea level pressure and wind vector at 850hPa both in ERA-I and ERA 20CR, showing very good agreement between the suggested observational datasets.

Figure R2. Seasonal (JJA) sea level pressure (hPa) and wind vector at 850hPa (m/s) in (top) ERA-20C, (bottom) ERA-I; for the 1979-2017 period.

In the analysis of the mid-level and upper level atmospheric dynamics, we would refrain from using the 20th century data sets such as ECMWF's ERA-20C or NOAA-CIRES 20th Century Reanalysis. Both of these data sets are based on the assimilation of the surface pressure values, which makes them a less plausible reference in the analysis of the upper level atmospheric dynamics. For example, the comparison of the vertical velocity at 500 hPa in Figure R3 reveals a strong positive bias in ERA-I, compared to the rest of the analyzed datasets (note the difference in the scalebar).

Figure R3. Seasonal (July) time-mean vertical velocities at 500hPa (Pa/s), estimated for (top) NOAA-CIRES 20th Century Reanalysis, (middle) as ECMWF's ERA-20C, (bottom) ERA-Interim for 1979-2017.

4. One main issue of the paper is the choice of the time window to be analysed. The aim of the paper is to study summer Mediterranean climate, so that you select JJA. However, through the paper, different periods are selected for different analysis: JA or just July. I recommend to homogenize the period to be analyzed (preferably JJA), for better comparison of the results. If there are specific reasons to analyze different period, these reasons should be highlighted.

AU: The choice of the time window is dictated by the method being most adequate to the analyzed climate component.. The teleconnection of SNAO with the climate over the Mediterranean region is manifest mostly during the peak summer, i.e. July-August. On the other hand the analysis in section 3.3. "Summer climate regime over the eastern Mediterranean" focuses on the month of July. "The choice is driven by the fact that the magnitude of subsidence and the Etesians is at its maximum in July while the response of the Rossby waves to monsoon rainfall is also the strongest (Tyrlis et al. 2012, Lin et al. 2007, Lin et al. 2009). The justifications of all the time window choices are included in the manuscript, but we have highlighted this information both in Methods (pp 5, lines: 22-23; pp 6, lines: 25-27; pp 7, lines: 5-8) and in the text (pp 12, lines: 10-14).

5. Methods section is rather long and sometimes confused: EOF analysis is described twice, the description of correlation/regression analysis is not really necessary here, as well as the reference to figures discussed later in the paper. I recommend to focus the section on the description of more sophisticated methods, such as EOF and stormtrack definition, and leave the description of correlation/regression analysis to the Results section. The section should be then shortened and optimised.

AU: We have clarified and rewritten the Method section in a more concise way (pp 6, lines: 12-27, 29-38; pp 7, lines: 1-21). Additionally, we have updated the description of storm track definition (p5, 40-46).

6. Model validation: in Figures 1-4 you compare the CTRL simulation to the NCEP data, and I see some important biases in terms of intensity (SLP in monsoonal regions) and location of some features (axes of the anticyclonic circulations at 500 hPa). This is due to the fact that in NCEP reanalysis there is GHG forcing, which is not included in the CTRL simulation (as you also highlight in the text, P21, L34-37). It would not be more consistent to compare the CTRL simulation to a different period, i.e. a period of 20C reanalysis/precipitation less affected by GHG forcing?

AU: We would refrain from the suggestion offered by the reviewer. Comparing CTRL simulation with a different or longer period of observations than the recent three decades would be a more appropriate solution, from the perspective of contributing forcing components. However, the quality of the observations-based precipitation datasets is much lower before the satellite era (~1979). For the analysis of atmospheric circulation we prefer to use a shorter period of NCEP/NCAR2 (DOE) data set rather than the longer Twentieth Century Reanalysis. We justify this choice with the findings in Krueger et al. 2013. This study has shown that the early part of the SLP record (first half of the 20th century) in the Twentieth Century Reanalysis suffers substantial inhomogeneities, most likely associated with the increasing number of observations and improved measurement techniques. Moreover, taking into account that both the NOAA's 20CR Reanalysis as well as ECMWF's ERA-20C datasets assimilate only surface pressure reports, sea ice, and sea surface temperature distributions, the expression of the high level atmospheric variables is highly uncertain in these datasets, as shown for example in the Figure 2 (omega at 500hPa) in the response to the question #3.

7. SNAO simulation: the analysis of SNAO impact in Figure 5 is not compared with any reanalysis product. The SNAO impact on climate in Europe is explained with variations in the stormtrack (Figure 7): why reanalysis data are shown and not model simulation?

AU: The representation of the SNAO in observations, using the SLP in different time periods, is shown in Figure 6. However the observed impact of SNAO has been shown in detail in Folland et al. 2009 and Blade et al. 2012. We prefer to make a reference to the existing literature rather than to repeat an existing analysis, especially to maintain brevity given major comment 1 requesting that we shorten the manuscript length.

Yes, the SNAO teleconnection with hydroclimate in northwestern Europe can be directly explained with variations in large-scale circulation over the North Atlantic and associated variations in storm tracks (as shown in observations and simulations in Folland et al. 2009). In this manuscript we intend to emphasize the sensitivity of the relationship between the SNAO and the storm tracks to the chosen period. For example, the relationship is stronger for the period starting in mid-century (i.e. 1950-1990, dominated with the dipole SNAO pattern (Figure 6e) than for the later period (1970-2011, dominated with the monopole over the British Isles (Figure 6g), suggesting that the representation of SNAO derived from the recent decades is likely being obscured by other climate components. We don't intend to investigate the simulated in CM2.5 impacts of SNAO on the North-Atlantic storm tracks. This is of course an interesting topic, but beyond the scope of this manuscript. We will clarify this point in the manuscript (pp 10: lines 33- 45; pp 11: 1-3). To maintain brevity, given major comment 1 requesting that we shorten the manuscript length, we will also move Figure 7 to the supplementary material.

8. Figure 11: the caption of the figure and discussion at P17 should be improved. You first state that you compute EOFs for the CNTR simulation, than you project the HIST-PROJ fields onto the CTRL EOF to get the 1860-2100 time series. Then you state that you also compute EOFs separately for HIST and PROJ. Then you discuss the 1860-2100 time series in Fig. 11c, then you go to HIST and PROJ EOFs in Fig. 11ab, and finally you discuss the contribution of the 1860-2100 SNAO to the end-of century projection of precipitation (Fig. 11de). I find this discussion confusing. This is a crucial point of the paper and should be presented clearly. I recommend the authors to improve the readability of this section. Moreover, the discussion of the SNAO impact on temperature projection should be significantly expanded.

AU: Following the reviewer's suggestion, we will clarify this part of the discussion, as well as the caption of Figure 11 and the corresponding methods. Yes, we agree. In this section we address three problems, which requires three different analysis approaches. We consider important to justify each of them. We have made a substantial effort to optimize the length of the discussion, clarified the discussion and improved the relevant caption (pp 15, 16).

We also would like to remind, that the manuscript focuses on the impact of SNAO on the Mediterranean hydroclimate, and its future changes (section 3.2.2 and 4.2). There is a very limited knowledge on the impacts of SNAO on temperature (basically two papers: Blade et al. 2012, Folland et al. 2009), and these results are far from unequivocal. The results shown in these two articles differ depending on chosen length of dataset and method of analysis (e.g. whether the correlations are based on interannual variations or including multidecadal signal). Our analysis seems more consistent with Folland et al. 2009, who applied rigorous statistics to avoid effects of autocorrelation caused by low-frequency components in a relatively short data set. We have now included the relevant information and highlighted the existing ambiguity to the section 3.2.1 (pp 11). However, we would prefer to abstain from further discussion, to avoid speculation. If reviewer has certain opinion on this issue, it might be helpful to receive a more elaborate suggestion.

9. Results: the differences between CM2.5 and CMIP5 models in projecting the paper Mediterranean climate are explained with a) better representation of the SNAO teleconnection and b) improved representation of the land-atmosphere interaction by the LM3 model (see also the Abstract). However, the improvements of the LM3 model are not presented in the paper, nor how these new features actually improve the representation of the land-atmosphere interactions (e.g. *representation of soil moisture, evapotranspiration, albedo*). A brief presentation of the LM3 model as well as a discussion of how it improves climate simulation in the Mediterranean is needed.

AU: Thank you for bringing up this gap in our writing. We have clarified the Abstract, added references to the data section (pp 5, lines 1-4), and added text to the results and summary section (pp 15, lines 4-13; pp 21, lines 10-24) relating to land model improvements and some research highlighting LM3 performance. We agree that more analysis is required to further support this claim, which would add significant text and figures to the paper. We have included references of studies beginning to look into this problem, but have left the exploration of land-atmosphere interactions of the SNAO using LM3 for future research.

Added references:

Berg, A., B.R. Lintner, K. Findell, S.I. Seneviratne, B. van den Hurk, A. Ducharne, F. Chéry, S. Hagemann, D.M. Lawrence, S. Malyshev, A. Meier, and P. Gentine, 2015: Interannual Coupling between Summertime Surface Temperature and Precipitation over Land: Processes and Implications for Climate Change. *J. Climate*, 28, 1308–1328, <https://doi.org/10.1175/JCLI-D-14-00324.1>

Berg, A., Findell, K., Lintner, B., Giannini, A., Seneviratne, S. I., Van den Hurk, B., Ruth Lorenz, Andy Pitman, Stefan Hagemann, Arndt Meier, Frédérique Cheruy, Agnès Ducharne, Sergey Malyshev & P. C. D.

Milly, 2016: Land-atmosphere feedbacks amplify aridity increase over land under global warming. *Nature Climate Change*, 6(9), 869.

Milly, P.C., S.L. Malyshev, E. Shevliakova, K.A. Dunne, K.L. Findell, T. Gleeson, Z. Liang, P. Phillips, R.J. Stouffer, and S. Swenson, 2014: An Enhanced Model of Land Water and Energy for Global Hydrologic and Earth-System Studies. *J. Hydrometeor.*, 15, 1739–1761, <https://doi.org/10.1175/JHM-D-13-0162.1>

10. Conclusions: most of the paper is devoted to the analysis of the SNAO teleconnection and its impact on future climate change in the Mediterranean, which show a significant (P17, Figure 11) impact on precipitation in southern Europe. And in the abstract you indicate this as one of the main results of the paper. Conversely, in the Conclusions you somehow reduce the importance of the SNAO impact (P22, L38-40), explaining the differences with the CMIP5 simulations as a consequence of the improved land model. This point needs to be clarified.

AU: Following the reviewer's suggestion, we have clarified the main message of the manuscript. We agree that the analysis of the impacts of the SNAO teleconnection consumes a significant part of the manuscript. This part shows a significant contribution of the SNAO to precipitation over southern Europe. However, the comparison of the SNAO impacts between CM2.5 model and CMIP3/CMIP5 models suggests that the SNAO can not explain the difference in the future projections between these models. The apparent stark contrast between the CMIP3/CMIP5 and CM2.5 regional projections could more likely originate from the enhancements in the LM3 land model incorporated to CM2.5 at high spatial resolution, rather than the impacts of the SNAO. Future work should focus on understanding differences in land surface responses in this region to the SNAO and projected climate change.

Minor comments:

P2, L15: the connection between the Mediterranean and the African monsoon has been robustly described as Mediterranean → Africa (see papers by Raicich et al. 2003 and Rowell 2003 [[https://doi.org/10.1175/1520-0442\(2003\)0162.0.CO;2](https://doi.org/10.1175/1520-0442(2003)0162.0.CO;2)]).

The influence of the African monsoon on the Mediterranean is less clear: Ziv et al. 2004, but also Fontaine et al. 2011 [<https://doi.org/10.1002/joc.2108>], actually find a link between convection in Africa and subsidence in the Mediterranean, however the mechanism is still not clear (see Gaetani et al. 2011 [<https://doi.org/10.1029/2011GL047150>]). Indeed, the Asian monsoon could be dominant in modulating the Mediterranean-Africa connection. Please modify the sentence to account for this aspect.

Thank you for the comment. We found and included all the missing references, and modified the sentence (Raicich et al. 2003 and Rowell 2003, Fontaine et al. 2011) (pp 2, lines: 22-24).

P2, L26-29: please add a reference.

P3, L18-20: please add a reference.

Thank you, we add the references.

P3, L43: “fixed levels of radiative forcing”, do you mean ‘radiative forcing from fixed levels of emission/concentration’?

We have corrected the sentence (pp:4, line 14)

P4, Methods: is the model fully coupled? How many vertical levels are in the ocean model?

We have added the information (pp 4).

P6, L15-16: this sentence should be moved to the Results section. **Thank you, we have applied the suggestion.**

P6, L18-19: what do you mean with “vector time series”? The time series of the vector containing spatial data? **Correct.**

P7, L39: from Figure 4, precipitation magnitude is actually, not “apparently”, larger than observations.

We have corrected the sentence. (pp 8, line 19)

P7, L45: “none of the CMIP5...” **Yes, we applied the correction (pp 8, line 24).**

P8, L1: do you mean that the CM2.5 runs in the CMIP5 archive are better than other models in the archive? Or do you refer to the runs you analyse in this paper? If this is the case, you should provide a figure to support this statement.

Thank you. We referred to the CMIP5 analysis shown in Kelley et al. (2012). We will clarify this and add the reference where appropriate.

P8, L10-13: when discussing the impact of NAO and SNAO on European climate, add references.

We have added the references throughout the paper.

P8, L17: “and rather wet conditions”.

Thank you, we applied the correction (pp 2, line 11).

P8, L18-19: add references on future projections of SNAO.

This paragraph is now rewritten and moved to Introduction (pp2)

Section 3.2: the objective is to test the capability of the model in simulating the SNAO as an independent internally-generated mode of climate variability. However, the long introduction at P8-9 does not actually help in understanding why this is necessary. Is the internal variability modulated at multidecadal time scales? Is this modulation externally forced? Please try to clarify motivations and objectives of the section.

As stated in the introduction of section 3.2, the purpose is to analyze the capability of the CM2.5 model to simulate the SNAO as an independent, internally generated climate component, which would prove the physical validity of the statistically-derived component. The “internally-generated” means that that the modulation is generated by the internal climate variations and it is not externally forced. However “the origin of the multi-decadal signal of SNAO has been linked (Knight et al. 2006, Folland et al 2009, Linderholm and Folland 2017) to the Atlantic Multidecadal Oscillation, which originates from internal variations in thermohaline circulation (Knight et al. 2005, 2006, Delworth and Mann 2000; Enfield et al. 2001), but for the recent decades also from anthropogenic sources (Rotstain and Lohman 2002; Mann and Emanuel 2006).” Yes, we agree that the introduction of section 3.2 is too long. We have moved part of the information to section 1 and clarified the main purpose of section 3.2 (pp 8, lines: 30-44).

P8, L20-26: this paragraph is confusing: on the one hand, it is true that different approaches/datasets may lead to uncertainty in the observed SNAO-Mediterranean teleconnection; on the other hand, uncertainties in model simulations originate from model shortcomings. Therefore uncertainty in the real and model worlds could originate from both intrinsic non-linear nature of the phenomenon and inadequate statistical/modelling tools. Please rephrase.

We have substantially shortened and clarified the paragraph (pp 8, lines 30-44).

P9, L8-9: I cannot understand why and how anthropogenic forcing should intensify SNAO contribution (to the summer atmospheric circulation over North Atlantic). Please explain.

We have substantially rewritten this section and this sentence is not included.

P9, L34: add the figures for July and August to the Supplement.

We won't add this figure to the Supplementary Information, which already contains 10 supplementary figures, but have included the information that the figure is not attached (pp 9, line: 15),

P9, L35: what is the interest of comparing with the HadCM3 model?

This section analyzes the capability of CM2.5 in simulating SNAO and compares it with the available results of other models, in this case HadCM3 and HadGEM1 in Folland et al. 2009.

P9, L42: is it HadGEM1 or HadCM3?

The statement is correct.

P13, L6-7: why an East Mediterranean index is used to compute correlation in Figure 8d, instead of the first EOF for NCEP omega? **Figure 8d shows the correlations computed based on three-decade time series of NCEP omega at the mid-atmospheric level. Taking into account the relatively short length of the data set (compared to 1000 years CTRL run) and a relatively smaller plausibility of the data at the middle and higher atmospheric levels, we refrain from applying an EOF analysis to the NCEP dataset. In our consideration, applying an EOF analysis to such a short time series could lead to degeneracy of the derived eigenvalues. In other words, the EOF mode derived from the NCEP dataset could be easily a spurious combination of several modes, rather than a realistic representation of the SNAO mode.**

P14, L25-26: what do you mean with “estimated at the original model resolution”? Do you mean “computed”? **Yes, Thank you for the correction (pp 13, line 8)**

P14, L32: east. **Correction applied (pp 13, line 15)**

P17, L1-3: I don’t understand why you refer to Fig. 10a (showing end-of-century projections) to discuss changes in SNAO. You could maybe use this figure to support your analysis of future SNAO.

The figure shows the projected future changes (please note that in the current version this is Figure 9) and indeed we are using this figure to support the analysis of future SNAO (although it supports also the interpretation of the analysis of the already observed SNAO changes). The fingerprint of the future changes, derived from the sea level pressure projections, is consistent with the observed evolution of SNAO and thus it may constitute a possible contribution of the anthropogenic component already observed in the 20th century. We have tried to clarify this issue in the manuscript (pp 15, lines: 11-30).

P17, L14-16: it would be preferable to present the regression method to estimate the SNAO impact here rather than in the Method section. **Yes, we moved this line to the Methods.**

P17, L43: “warming is lower over . . . than . . .”

Thank you, we have substantially rewritten and improved this section.

P18, L7-12: it is not clear to me whether you are discussing your results (in Figure 10) or previous findings. If you discuss your results, please add more references to Figure 10, otherwise add a reference to a paper.

Yes, we have clarified the paragraph (pp 16, 17-25).

P20, L39-41 and 42-45: please add references.

Thank you, we have updated references in the section.

P21, L20: “preindustrial value”. **We have substantially shortened and clarified whole section.**

P22, L9-10: please add a citation to CMIP5 results.

Thank you, we have applied the correction.

Figures: for better comparison, figures presenting climate change in the Mediterranean should share the same geographical boundaries. Same recommendation for figures presenting SNAO and Asian monsoon teleconnections, respectively.

Unfortunately this idea is not feasible and doesn’t serve the purpose of the analysis. Each figure is presented in different context. For example, projected future changes for SLP are discussed in the context of the Euro-Atlantic climate. In contrast, regarding precipitation and temperature we want to focus on the Mediterranean region, but also discuss it from the perspective of climate in Europe. We have thoroughly reconsidered the way each figure is presented.

Figure 6: what do contours represent? The sign looks reversed with respect to the standard SNAO pattern. Could you please fix this, not to mislead the reader?

We have improved the figure and presented the SNAO at its positive phase. We have included the clarifying information in the caption. However, we strongly disagree with the reviewer in saying that the “positive phase” is a “standard pattern”.

Figure 7: does it make sense to project the SNAO index derived from 20CR onto NCEP data? Why not just analyse one dataset?

We agree with the reviewer that it is usually easier to use just one data set. However for the sake of consistency with an earlier part of the analysis, we used the 20CR dataset instead of the NCEP dataset. In the earlier part of the analysis we used the 20CR dataset, because the alternative ones, such as NCEP-NCAR1 or NCEP –DOE, would be too short for the analysis of the evolution of SNAO during the 20th century.

Figure 8: Do you perform EOF on omega 500 and 300 together? Or is EOF analysis performed separately on omega 500 and 300? If this is the case, which time series do you use for correlations?

Yes, the EOF analysis is performed separately for each level. The method is described in the manuscript but we will clarify and highlight this information also in the caption (pp7, lines 1-8).

Figure 10: wind is displayed at which level? Is not model resolution 0.5?

Thank you, we have included the missing information and applied the correction.

Figure 11: in panels d and e you show regressions, while in Fig. 9c you show correlations.

Figure d and e doesn't show regressions, but the projected changes. The impact of the SNAO in figure e is removed using linear regression. We have clarified the figure the caption.

Figure 12: is omega at 200 or 500? **The information is included.**

See P18, L23. Supplement: please follow the logical order of the paper to number the figures. Also please write complete captions, avoiding to refer to captions in the main text.

Thank you for all the comments and advice regarding the figures.

Dear editor,

I have read this paper and think it fits the scope of ESD. Moreover, I think the material presented in the paper is an welcome addition to the knowledge on climatic changes in the Mediterranean. My main issues with the current manuscript are in the presentation. I think it is quite long and should be more focused, possibly with a reduction in the number of figures.

Kind regards,

AU: We thank the reviewer for a very through revision comments and feedback regarding our manuscript. We have addressed all of the major comments when revising the manuscript. This includes either applying the reviewer's suggestion or a thorough justification for not doing that. We have also made an effort to address the minor comments. Overall, we've reworked the text of the manuscript to improve its conciseness and clarity.

Specific comments:

1. The paper is quite long and elaborate, maybe wise to focus a bit more and reduce the number of figures?

AU: Thank you for the comment. Following the reviewer's suggestion we will work on the manuscript to make it more comprehensible. We've reworked the manuscript to make it more comprehensible. Particularly, we have summarized the discussion of the previous studies in a more concise way (section 3.2.1 and 3.2.2, pp 9: lines 1-46, pp 10: lines 7-21). The relevant information on the Mediterranean climate moved from sections 3.2 and 3.3 (pp 8: lines 15-27) to the Introduction (pp2: lines 10-22). We also moved one figure with storm tracks to the Supplementary Material (Figure SI 2).

2. There are many long sentences throughout the paper, which make it hard to follow the reasoning sometimes. I suggest to have a good look at opportunities to shorten them.

AU: Thank you. We have improved the readability of the Introduction, Methods, Results and Summary.

3. In many places in the manuscript, geographic names (Levant, Asia Minor, Balkans, Sahara, North Africa, EMED, and many more) are used to describe the model results.

This assumes that the reader knows the location of all these places, which is probably not true. I suggest to indicate the relevant places in a figure and to be more specific in the geography when mentioning other places.

AU: Thank you. We described the necessary regions in the Methods section, and provided the specific locations (particularly pp 6, lines: 12-17).

4. You compare the high resolution model output to NCEP/DOE reanalysis of 2.5 degree resolution. Why not compare it to higher resolution products, such as ERA5?

AU: Thank you for the comment. Incorporating datasets with higher resolution wouldn't necessarily serve the purpose of the analysis of the large-scale circulation features. We have included below an additional figure (Figure R2), depicting sea level pressure and wind vector at 850hPa both in ERA-I and ERA 20CR, showing very good agreement between the suggested observational datasets.

Figure R2. Seasonal (JJA) sea level pressure (hPa) and wind vector at 850hPa (m/s) in (top) ERA-20C, (bottom) ERA-I; for the 1979-2017 period.

However a verification of the precipitation results with higher resolution datasets would improve the robustness of the conclusions. Following reviewer's suggestion we have incorporated EOBS dataset in the analysis of the regional precipitation (Figure 4). EOBS provides high quality data and serves as a good reference for the regional precipitation. Given the same spatial resolution as CM2.5, EOBS allows for comparing very fine features over the complex orography of the Mediterranean.

5. Is there a significant difference between the top and bottom panels in Fig 7? It is not clear to me, maybe use a different color scale?

AU: Please note that the figure is now in the Supplementary Material. Yes there is a significant difference between the top and bottom correlations (but not the storm track patterns), computed between the stormtrack proxy and the SNAO index. For example, negative correlations over northwest Europe in the 1970-2011 (bottom) are weaker than -0.5, while the correlations in 1950-1990 (top) are stronger than -0.65. The difference in the computed correlations questions the robustness of the SNAO (not the storm tracks), derived from the recent three-to –four decades. Please find more discussion on this in pp 10, lines 30-40.

6. Indicate different data sources (HIST, PROJ runs) in Fig 11c? Maybe by a vertical line in the plot?

AU: Thank you, we have included the vertical line in the figure.

7. P21L35, "This may stem from...". I agree that the anthropogenic forcing is not included in the control run and may contribute to this discrepancy. But what about other explanations?

AU: Please note that we substantially rewritten and clarified the Summary and Discussion section (18 and 19). We also included more information in Introduction (pp2, lines 11-16), and section 3.2.1 (pp 8, 32-36):

"The origin of the multi-decadal signal of SNAO has been linked (Knight et al. 2006, Folland et al 2009, Linderholm and Folland 2017) to the Atlantic Multidecadal Oscillation, which originates from internal variations in thermohaline circulation (Knight et al. 2005, 2006, Delworth and Mann 2000; Enfield et al. 2001), but for the recent decades also from anthropogenic sources (Rotstayn and Lohman 2002; Mann and Emanuel 2006)."

We would like to provide a more thorough explanation for the apparent better agreement between the observed and simulated SNAO before 1980s than for the later period:

This may stem from the fact that the SNAO component derived for the simulated and observed recent decades (1980s-2010s) could be to a large extent conditioned by a coincidence of the multidecadal scale internal (unforced) variability and multidecadal anthropogenic forcing. Taking into account the random nature of the unforced climate variations, their temporal evolution in the simulated 1980's-2010's period may look very different from the observed one. In a presence of an additional long-term component, such as anthropogenic forcing, the EOF analysis (which is set to extract a signal explaining a maximum variance) is likely to choose a combination of a random representation of the unforced variability and the anthropogenic forcing. This combination (regarded as the SNAO component) may have a very different form in the observations and simulations.

1 **Changes in the future summer Mediterranean climate: contribution of teleconnections**
2 **and local factors.**

3
4 Monika J. Barcikowska¹, Sarah B. Kapnick², Lakshmi Krishnamurty³, Simone Russo⁴,
5 Annalisa Cherchi⁵, Chris K. Folland^{6,7,8}

6
7 ¹Environmental Defense Fund, New York City

8 ²Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, 201 Forrestal
9 Road, Princeton, NJ 08540, USA

10 ³Princeton University, GFDL Princeton University Forrestal Campus, 201, Forrestal Road, Princeton, NJ
11 08542, USA

12 ⁴European Commission, Joint Research Centre, Via Enrico Fermi, Ispra, Italy

13 ⁵Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, and Istituto Nazionale di Geofisica e
14 Vulcanologia, Bologna, Italy

15 ⁶School of Environmental Sciences, University of East Anglia, Norwich, UK

16 ⁷Department of Earth Sciences, University of Gothenburg, Sweden

17 ⁸International Centre for Applied Climate Sciences, University of Southern Queensland, Australia

18
19 **Abstract**

20 The simulated regional future changes [for the Mediterranean region in summer with a high resolution coupled](#)
21 [model \(CM2.5\)](#) suggest pronounced warming and drying over most parts of the [region](#). However, the changes
22 are distinctively less radical when compared with the CMIP5 multi-model ensemble. [In addition](#), changes over
23 the Southeast (off the coast area of the Balkans) and Central Europe indicate not only a very modest warming,
24 compared to the CMIP5 projections, but also wetting tendencies. [Our](#) analysis highlights importance of a
25 correctly projected magnitude of changes of the [summer](#) North Atlantic Oscillation and its regional impacts,
26 which have the capacity to partly offset the anthropogenic warming and drying over the western and central
27 Mediterranean. However, the difference of CM2.5 projections of future changes over previous-generation
28 models indicates a possible role of other factors such as land surface-atmospheric interactions, which are a
29 governing factor for thermal- and hydro-climate over Central and Southeastern Europe. [De facto](#), [CM2.5](#)
30 [incorporates a new and improved land model \(LM3\)](#). The CM2.5 projections also indicate a maximum of
31 warming ([eastern Mediterranean land region](#)) and drying (Asia Minor) over the eastern Mediterranean. [In this](#)
32 [specific region, the projected](#) changes indicate a decreasing influence of atmospheric dynamics in maintaining
33 the regional temperature and precipitation balance and instead an increasing influence of local surface
34 temperature on the local surface atmospheric circulation.

35
36
37
38
39
40

41 **1. Introduction**

42 The climate of the Mediterranean region is primarily characterized by mild, wet winters and hot, dry summers.
43 This climate zone is located between 30°-45°N, hence it is affected by the variability of the atmospheric
44 circulation both in mid-latitudes and in the tropics. Moreover, the geomorphological characteristics of the

1 Mediterranean Sea region, including gulfs, peninsulas, islands, as well as the mountain ridges surrounding the
2 basin, make the climate of this region distinctively complex.

3
4 The North Atlantic Oscillation and the East Atlantic pattern (e.g. Hurrell, 1995, Krichak et al. 2002,
5 Barcikowska et al. 2017b) are the main manifestation of mid-latitudes influence for winter precipitation in the
6 northern parts of the region. The summer expression of the NAO (SNAO, Folland et al. 2009, Linderholm et
7 al., 2009, Blade et al. 2012), due to its northeastward-shifted location, affects the Mediterranean region, as
8 well. The observations-based SNAO shows a northern lobe centered over southern Greenland and a southern
9 lobe located close to the British Isles (Folland et al. 2009 and Blade et al. 2012). The positive SNAO phase
10 yields a stronger meridional SLP gradient over the North Atlantic, an enhanced anticyclonic southern lobe
11 with dry conditions over northwest Europe and rather wet conditions over the central Mediterranean. Several
12 studies indicated an existing linkage between SNAO phases and the Atlantic Meridional Oscillation (Knight
13 et al. 2006, Folland et al 2009, Linderholm and Folland 2017), which originates from both internal ocean
14 variations (Knight et al. 2005, 2006, Delworth and Mann 2000; Enfield et al. 2001), and anthropogenic
15 sources (Rotstain and Lohman 2002; Mann and Emanuel 2006). However, current literature has not yet
16 reached a full consensus on the spatial definition (fingerprint), origin and impacts of the SNAO. The results of
17 observational analysis vary, depending on the observational dataset, the chosen period, the chosen summer
18 months, and the analysis method (Barnston and Livezey, Hurrell and van Loon 1997, Hurrell and Folland
19 2002; Hurrell et al. 2003, 2009, Cassou et al. 2005, Folland 2009, Blade 2012). In fact, there is a strong
20 sensitivity of the derived SNAO fingerprint to the chosen period (i.e., for shorter periods of about 30 years-
21 length) with marked variations in the percentage of SLP variance explained over the selected domain (Blade
22 et al 2012). These sensitivities support the notion that the derived component may stem from the combined
23 effects of interannual to multi-decadal components, as highlighted by Folland et al. 2009 and Linderholm and
24 Folland, 2017.

25
26 In summer, the northward shift of the Hadley cell reveals a connection between the hot and arid eastern part of
27 the region and the Asian and African monsoons, as well as a possible connection between these two monsoons
28 (Rodwell and Hoskins 1996, Ziv et al. 2004, Fontaine et al. 2011, Raicich et al. 2003, Rowell 2003). The
29 regional summer climate features a seasonal minimum of the rainfall, persistent mid-level and upper-level
30 subsidence and low-level northerlies (Raicich et al. 2003, Mariotti et al. 2002, Tyrlis et al. 2013) centered over
31 the central-eastern part of the Mediterranean. The low-level northerlies are called Etesian winds (HMSO
32 1962; Metaxas 1977; Maheras 1980; Prezerakos 1984; Reddaway and Bigg 1996; Zecchetto and de Biasio
33 2007; Chronis et al. 2011) and they result from the zonal pressure gradient forged by the Atlantic subtropical
34 anticyclone and the western flanks of the Asian monsoon heat low (Bitan and Saaroni 1992; Saaroni and Ziv
35 2000; Alpert et al. 2004; Saaroni et al. 2010). The cool air advection of the Etesian winds counterbalances the
36 adiabatic warming of the mid- and upper level subsidence, maintaining in this way a thermal balance over the
37 eastern Mediterranean. Moreover, Ziv et al. 2004 have identified a significant correlation between these
38 factors, which likely stems from the Asian Summer Monsoon teleconnection exerting an influence on both the
39 Mediterranean surface and mid- and upper-troposphere dynamics. Rodwell and Hoskins, 1996 demonstrated
40 this linkge, showing that diabatic heating released by the Asian monsoon convection and precipitation triggers
41 a Rossby wave pattern response, which propagates westward, interacts with the mid-level westerlies, and
42 finally induces subsidence and hot and dry conditions over the eastern Mediterranean and the Sahara. This
43 mechanism has been corroborated in several observational and modeling studies (Tyrlis et al. 2013, Rizou et
44 al. 2015, Cherchi et al. 2014, Cherchi et al. 2016). On the other hand, the impact of the monsoon on the
45 Etesian winds has been shown (Rodwell and Hoskins 2001) to be a direct result of changes in the subsidence
46 over EMED, which via Sverdrup's equation trigger changes in the low-level northerly flow (i.e. the Etesians).

1 This agrees with Ziv et al. 2004 who pointed that changes in the low-level monsoon heat low, which expands
2 westward across Arabian Peninsula, could modulate the zonal pressure gradient and the concomitant Etesians.
3

4 The geographic location and socio-economic state of the Mediterranean makes the population in this region
5 particularly vulnerable to climate change. The southern part of the Mediterranean, which is dominated by
6 agricultural activities, is especially sensitive to prolonged water shortages and their consequences, such as
7 drought and wildfires. Giorgi (2006) found this region to be particularly responsive to projected climate
8 change and identified it as a climate hot spot. In fact, both CMIP3 (Giorgi and Lionello 2008, Hanf et al.
9 2012) and CMIP5 future projections region (Diffenbaugh and Giorgi 2012, Alessandri et al. 2014, Mariotti et
10 al. 2015, Feng et al. 2014) indicate a very strong warming and reductions in precipitation during the summer
11 season. These changes can severely impact water and food security.
12

13 At the same time, observational studies have yet to find unambiguous evidence of decreasing precipitation in
14 the recent decades (Blade et al. 2012b, Giorgi and Lionello 2008). Blade et al. (2012) argued that impacts of
15 the summer NAO teleconnection on the European hydroclimate are underrepresented in CMIP3 models, thus
16 questioning the credibility of future summer climate projections for the region. The underrepresentation of the
17 simulated impacts of SNAO could spuriously amplify projected Mediterranean warming and drying. Kelley et
18 al. (2012) indicated that CMIP5 models show a rather modest improvement in the simulated regional
19 hydroclimate, most likely due to increased horizontal resolution. Historical simulations of CMIP5 models still
20 differ from the observations, for example by showing a strong wetting over the northwestern parts of Europe
21 and drying over the southwestern parts of the Mediterranean (e.g. Kelley et al. 2012), though some earlier
22 lower resolution models do show strong drying over many, though not all, parts of north west Europe as well
23 (e.g. Rowell and Jones, 2006). These inconsistencies do not add to the credibility of the current future
24 projections for the Mediterranean and suggest that the severe simulated regional warming and drying requires
25 further investigation, likely using higher resolution models. A further caution is evidenced by the fact that
26 particularly over the last half century the SNAO and the summer European atmospheric circulation as a whole
27 have shown strong multi-decadal variability (Linderholm and Folland, 2017), just as the winter NAO (Scaife
28 et al. 2008). There is also paleoclimate data evidence of related multi-decadal to century timescale variations
29 in the SNAO and Mediterranean climate since 1441 (Linderholm et al. 2009).
30
31

32 The interpretation of the projected future severe warming over the eastern Mediterranean region remains
33 debatable. Cherchi et al. (2016) attempted to interpret the projected summer changes in the region from the
34 perspective of the monsoon –desert mechanism (Hoskins 1996, Rodwell and Hoskins 1996), which links the
35 hot and arid climate of the eastern Mediterranean to the South Asian monsoon rainfall. This mechanism, as
36 shown in the idealized simulations of Rodwell and Hoskins (1996), can be enforced by the diabatic heating of
37 the monsoon convection, which triggers westward propagating Rossby waves and a subsidence and warming
38 localized over the eastern Mediterranean. Given the fact that most CMIP5 models project an increase in the
39 future Asian Monsoon precipitation, one would also expect a strengthening of a subsidence in the eastern
40 Mediterranean. However projected changes indicate rather opposite tendencies of the subsidence in this region,
41 despite a strong severe drying and warming. Cherchi et al. (2016) could not unambiguously resolve this
42 inconsistency, suggesting an explanation associated with either changing representation/impacts of the
43 “desert-monsoon” mechanisms or the emerging presence of non-linear processes in the regional surface
44 circulation.
45

46 On the other hand, Seneviratne et al. (2006) identified soil moisture-temperature feedbacks as a dominant

1 factor controlling summer temperature variability in the Mediterranean and Central Europe in a changing
2 climate. Soil moisture-climate feedbacks were also linked to a non-linear warming of hot extremes in climate
3 change projections for the Mediterranean (Diffenbaugh et al. 2007). Hirschi et al. (2011) confirmed the effect
4 of soil moisture availability for hot extremes in observations in Southeastern Europe and found also that the
5 soil moisture-temperature feedbacks in RCMs are often overestimated over Central Europe. Some studies
6 argued that the deficiencies in the atmosphere - land surfaces feedbacks are a primary cause of a strong
7 summertime warm bias in most of the CMIP3 and CMIP5 models, which spuriously amplifies the projected
8 future temperatures (Christensen and Boberg, 2012, Mueller and Seneviratne, 2014).

9
10 | Accordingly, in this study, we,: a) analyze future summer climate changes over the Mediterranean region and
11 | b) investigate the possibility of emerging new regional climate regimes, describing them, and quantifying their
12 | contribution to the projected future changes over Europe. Identifying a regional signal attributed to a
13 | particular mechanism or climate regime is not an easy task, given the complexity of the climate in the region.
14 | This complexity stems not only from the complex morphology of the region, but also from the teleconnections
15 | acting on yearly-to-multi-decadal timescales (e.g. SNAO), and multi-decadal changes caused by
16 | anthropogenic gases and aerosols. Addressing these issues requires integrations at high spatial resolution,
17 | control runs with greenhouse gas and aerosol compositions being held at the fixed levels and well represented
18 | land-atmospheric feedbacks between soil moisture and precipitation. Hence, here we use control, historical
19 | and future simulations of the GFDL CM2.5 model (Delworth et al., 2012), that incorporates higher spatial
20 | resolution and improved land model (LM3), likely improving the simulated hydroclimate over many
21 | continental regions including Europe.

22
23 | In addition, we create an analysis of the Mediterranean summer climate and interpret the results through the
24 | prism of large-scale circulations, teleconnections and the regional factors. Section 2 describes the model and
25 | experiments used, the dataset for comparison and the methodology. Section 3 focuses on the summer time-
26 | mean climatology of the region, as well as its teleconnections. It evaluates the performance of the model in
27 | terms of the simulated regional precipitation, as well as large-scale circulation features, which shape the
28 | summer regime of the Mediterranean climate. It also examines the main components of internal variability
29 | dominating atmospheric circulation over the Euro-Atlantic region, such as the summer NAO, and their impact
30 | on Mediterranean climate. The last part of this section focuses on a representation of key dynamical features
31 | shaping the climate regime over the eastern Mediterranean, i.e. including the linkage between the mid- and
32 | upper-level subsidence and the low-level pressure gradient (and the associated Etesian winds) together with its
33 | coupling with the Indian Monsoon. Section 4 investigates future climate changes over the Mediterranean
34 | derived from the model projections. It examines the regional changes from the perspective of large-scale
35 | circulation over the Euro-Atlantic and associated summer NAO teleconnections. The derived regional changes
36 | are also interpreted in the context of the changing relationships between the dynamical factors governing the
37 | eastern Mediterranean. Again, the long control run is used to verify whether the derived changes in the eastern
38 | Mediterranean climate regime can be attributed to the local effects of the warming Mediterranean and how
39 | these effects will impact the whole Mediterranean and European climate. Section 5 discusses and summarizes
40 | the main results.

41
42
43
44 **2. Data and Methods**
45 2.1 Coupled model and experiments
46 The coupled model use in this study is the Geophysical Fluid Dynamics Laboratory (GFDL) CM2.5. It has an

1 atmospheric and land surface horizontal grid scale of approximately 50 km with 32 levels in the vertical. The
2 horizontal grid scale of the ocean increases from 28 km in the tropics to 8-11 km in high latitudes. CM2.5
3 incorporates a new land model (LM3), with an enhanced representation of soil moisture and land-atmospheric
4 feedbacks between soil moisture and precipitation (Milly et al. 2014, Berg et al. 2016). Details of the CM2.5
5 model features can be found in Delworth et al. (2012). The representation of the summer precipitation
6 climatology in CM2.5 is also compared using a 4000-years control run of GFDL CM2.1, that is the CM2.5's
7 predecessor. CM2.1 incorporates a grid scale of 2° latitude x 2.5° longitude for the atmosphere. The ocean
8 resolution is variable being approximately 1° latitude x 1° longitude, with a finer meridional resolution in the
9 tropics. The CM2.1 atmospheric model has 24 vertical levels (Delworth et al. 2006). The ocean component
10 CM2.1 and CM2.5 consists of 50 levels in the vertical. Future changes projected with CM2.5 are compared
11 with that derived with the CSIRO-Mk3-6-0 model (1.9° x 1.9° horizontal resolution for the atmosphere),
12 which includes the ocean component based on the GFDL ocean model. This choice was determined by the
13 fact that future projections of CSIRO-Mk3-6-0 model, unlike CM2.1, follow the same protocol of forcing
14 scenario, i.e. the IPCC RCP8.5 scenario (Meinshausen et al. 2011, Riahi et al. 2011), as those of CM2.5.

15
16 The set of experiments performed using CM2.5 are listed in Table 1 and it consists of control simulations
17 (hereafter CTRL) and 5-members ensembles of historical simulations (hereafter HIST), and of future
18 projections (hereafter PROJ) performed with CM2.5. The CTRL simulation consists of a 1000-year
19 integration, where greenhouse gas and aerosol compositions are held fixed at the levels of the year 1860. In
20 HIST and PROJ ensembles, the forcing follow the protocols of the Coupled Model Intercomparison Project
21 Phase 5 (<http://cmip-pcmdi.llnl.gov/cmip5/forcing.html>). For the historical period (1861-2005), the radiative
22 forcings are based on observational estimates of concentrations of well-mixed greenhouse gases (GHG),
23 ozone, volcanoes, aerosols, solar irradiance changes and land-use distribution. While for the future (2006-
24 2100) the radiative forcing follow an estimate of projected changes defined in the IPCC RCP8.5 scenario.
25 This scenario assumes high population growth, slow technological change and energy intensity improvements,
26 and a lack of developed climate change policies, resulting in large energy demand and GHG emissions.
27

28 2.2 Datasets used for comparison

29 The simulated features of large-scale circulation are compared with reanalysis data of monthly pressure at
30 mean sea-level (hereafter SLP), wind vectors at the 850hPa and 200hPa levels, and vertical velocity at 200hPa
31 for the period 1979-2017. Reanalysis data is provided by the NCEP-DOE AMIP-II Reanalysis 2 with 2.5° x
32 2.5° horizontal resolution and 17 vertical levels (Kanamitsu et al., 2002;
33 <https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html>).

34
35 The simulated precipitation is compared with the seasonal time-averaged precipitation provided by the
36 University of Delaware (V4.01), Legates and Willmott 1990; http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html (last access: July 2018). This is a global gridded land data set
37 with 0.5° x 0.5° horizontal resolution for the period 1980-2015. For the same period we use also EOBS
38 precipitation data set provided E-OBS dataset from the EU-FP6 project UERRA (<http://www.uerra.eu>) and
39 the Copernicus Climate Change Service (Cornes et al. 2018, version 17), provided at 0.25° x 0.25° horizontal
40 resolution.

41
42 The observational analysis of the summer North Atlantic Oscillation (section 3.2) is carried out using July-
43 August mean sea level pressure (SLP), provided by NOAA/ESRL PSD 20th Century Reanalysis version 2c
44 (Compo et al. 2006, https://www.esrl.noaa.gov/psd/data/20thC_Rean/). The spatial patterns of the dominant
45 component of the SLP variations are computed with Empirical Orthogonal Function (EOF) analysis, over the
46

1 domain [25°-70°N, 70°W-50E°], following Folland et al. 2009. The robustness of the pattern is tested against
2 | chosen periods of different length.

3 |
4 | The relationship between the SNAO and the North Atlantic storm track is derived by computing correlations
5 | between the SNAO index and the proxy of storm track in July-August. The storm tracks are represented with
6 | the standard deviation of the daily geopotential height at 300 hPa, following Folland et al. 2009. The data is a
7 | priori filtered using a Butterworth filter with a bandwidth of 2-8 days. The storm tracks are derived for the
8 | 1950-1990 and 1970-2011 periods, using NCEP/NCAR 1 data (Kalnay et al. 1996), provided by the
9 | NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at <https://www.esrl.noaa.gov/psd/>.

10 |
11 | 2.3 Analysis methods
12 |
13 |

14 | The representation of the simulated large-scale atmospheric circulation over the Mediterranean is analyzed
15 | using CTRL runs' monthly mean fields of the lower, mid- and upper- level dynamics over the region covering
16 | southern Europe, North Africa and South Asia [30°N–50°N, 30°W–110°E]. The analysis of the simulated
17 | SNAO teleconnection focuses on the Euro-Atlantic region. In the analysis of the eastern Mediterranean
18 | climate, we define region of focus as EMED [30°-36°N, 36°-42°E]. We will also refer to the eastern
19 | Mediterranean land region, which includes: Syria, Lebanon, Israel, Jordan, as the Levant region.

20 |
21 | The time-mean large-scale circulation features are analyzed based on the monthly means of hydro-
22 | meteorological variables for the summer (June, July and August, hereafter JJA) season. Future changes are
23 | estimated by comparing the climatology at the end of the twenty-first century (i.e. 2061–2099, hereinafter
24 | future) of the RCP8.5 scenario with that at the end of the twentieth century (i.e. 1961– 1999, hereinafter
25 | present) of the historical simulation using monthly mean fields for the summer season.

26 |
27 | The teleconnection of the Mediterranean climate with SNAO is analyzed using the full (1000 year) CTRL run
28 | (section 3.2), as well as the historical and future runs. The SNAO is defined as a lead component of SLP
29 | vector time series over the Euro-Atlantic region [25°N–75°N, 70°W–50°E] in “core summer” (July-August),
30 | following Folland et al. 2009. The choice of the time window is determined by the fact that the temporal
31 | behavior of the SNAO is significantly correlated only within these two months. The impact of this
32 | teleconnection on Mediterranean climate is estimated using correlations between SNAO PC time series and
33 | the regional temperature and precipitation, using the long CTRL experiments and the historical and future
34 | ensembles. The evolution of the SNAO fingerprint in the 20th and 21st century is analyzed by projecting the
35 | vector time series of HIST and PROJ experiments (240 yrs, 1861-2100) on the SNAO eigenvector derived
36 | from the CTRL run. To analyze potential changes in the spatial pattern of SNAO and associated impacts, the
37 | EOF analysis is applied independently to each of the HIST and PROJ ensembles, in the period 1950-2010 and
38 | 2040-2100, respectively, detrending the timeseries before computing the EOF. In both epochs, the analysis
39 | has been also tested for shorter periods (i.e. 50 and 30 years), which did not change the results in qualitative
40 | terms. Each of the five SNAO time series for the 1950-2010 and 2040-2100 periods were correlated with the
41 | respective detrended precipitation fields.

42 |
43 | The summer climate regime of the eastern Mediterranean (hereafter EMED) is examined from the perspective
44 | of the regional mid- and upper-tropospheric subsidence and its physical linkage with the surface circulation
45 | (section 3.3). The seasonal variability of the subsidence over the eastern Mediterranean is derived from
46 | EOF analysis applied to vertical velocity (omega) fields at 500 hPa, and also at 300 hPa over the region

1 | covering the Mediterranean, North Africa and Middle East in July season. The physical linkage between the
2 | subsidence and surface circulation is estimated using correlations between the time series of the first EOF
3 | component (PC1) and the regional sea level pressure, geopotential height and wind vectors at 850 hPa. The
4 | relationship between the EMED region dynamics and the Indian Summer Monsoon is estimated by computing
5 | additional correlations with precipitation, outgoing long wave radiation, and the vertically integrated water
6 | column. [The analysis shows the correlations computed using time series of EOF omega at 500 hPa, but the](#)
7 | [correlations using EOF omega 300 hPa were almost the same. The results of the analysis are shown for July,](#)
8 | [when the magnitude of subsidence and the Etesians is at its maximum and the response of the Rossby waves](#)
9 | [to monsoon rainfall is also strongest \(Tyrlis et al. 2012, Lin et al. 2007, Lin et al. 2009\). The results derived](#)
10 | [for June and August are shown in the Supplementary Information.](#)

11

12 Future changes in the dynamical linkages governing the summer climate regime over the eastern
13 Mediterranean were analyzed by comparing the five-decade long samples for July, i.e. 1960-2010 and 2050-
14 2100. The linkage was calculated in a similar manner to that of the control run using correlations between the
15 time series of the EOF over the EMED region subsidence and the atmospheric surface circulation fields. All
16 EOF time series were computed by projecting the respective run on the eigenvector derived from the control
17 run. The correlations were derived for each run (historical and future, respectively), using a priori detrended
18 timeseries. The final result shows the ensemble mean for the five-member historical and future correlations.

19

20 An additional analysis investigates the potential influence of the local temperature (i.e. in the EMED region)
21 on the derived local dynamical relationships (section 4.3 and Supplementary Material). Therefore, the derived
22 correlations were differentiated between samples with the 300 warmest and the 300 coldest summers (July)
23 over the Mediterranean, chosen from the control run time series. Their selection is based on surface
24 temperature in the EMED region. Additionally, a diagnosis of temperature impacts on the regional
25 atmospheric circulation was performed using composite differences between the two temperature samples and
26 the associated relative humidity, sea level pressure, wind components, geopotential height, vertical velocity
27 and precipitation. The results were corroborated by testing their sensitivity to the precise choice of the region.

28

29

30 | **3 Summer mean present climate and teleconnections over the Mediterranean region**

31 | **3.1 Simulated summer mean Mediterranean climate**

32

33 Figure 1 demonstrates that the model captures the subtropical low-tropospheric circulation with high fidelity
34 when compared with the reanalysis (NCEP-DOE). It reproduces accurately the zonal pressure gradient over
35 the Mediterranean, both in terms of pattern and magnitude, forged by the difference between the subtropical
36 anticyclone over the North Atlantic and the massive Asian monsoon heat low. The latter extends westward,
37 through the Arabian Peninsula towards the Levant region and southern Asia Minor. Concomitant to the zonal
38 pressure gradient and adjustments to the regional orography is a persistent west-northerly flow over the
39 central and eastern Mediterranean (i.e. the Etesian winds). The model reliably captures its local-scale features,
40 created by adjustments to the regional topography. This includes a local wind maximum centered over the
41 Aegean Sea and its southern extension reaching the Sahel region. These northerlies are also channeled through
42 the Red Sea Straits and the Persian Gulf, reaching the Indian Ocean.

43

44 Figure 2 shows that the model reproduces the location and magnitude of the summer subtropical mid-
45 troposphere anticyclone, which spreads from the eastern Mediterranean across the South Asia. The simulated
46 mid-troposphere also captures the location and a realistic magnitude of the persistent mid-troposphere (500

1 hPa) subsidence (positive omega) which creates the exceptionally hot and arid climate of the eastern
2 Mediterranean. This subsidence gradually decreases towards the Iranian Plateau, which together with
3 ascending motion over the South Asian monsoon region, creates a large-scale time-mean zonal gradient. The
4 simulated zonal gradient is well shown (Fig 3a) by a vertical cross-section of vertical velocity (omega)
5 averaged over 20°-34°N between the [east Mediterranean](#) region (positive omega means strong subsidence)
6 and the South Asia (negative omega means ascending air). This characteristic gradient agrees well with its
7 observational counterpart (Fig 3b) both in terms of magnitude and pattern. Importantly, the model captures the
8 observed local maximum of the [eastern Mediterranean](#) subsidence located at middle-tropospheric levels (300-
9 700 hPa), the region most sensitive to the impact of the Indian monsoon.

10
11 Figure 4 shows climatologies of the Mediterranean precipitation provided by the observations, the CM2.5
12 control run, and also its low-resolution (CMIP3) predecessor, i.e. CM2.1 at their original horizontal
13 resolutions. Although both CM2.1 and CM2.5 depict the general spatial features of the climatology (i.e. large
14 values in the northern Mediterranean, particularly over the Alps and the Balkans), the former introduces large
15 biases (up to 50%) in regions with sharp spatial gradients. CM2.5 resolves much better the spatial features of
16 precipitation, clearly indicating the advantages of higher horizontal model resolution for regions with complex
17 orography. However, precipitation magnitude in most mountainous areas, e.g. the northern Iberian Peninsula,
18 the Alps and over Asia Minor, is larger than in [both observational data sets, i.e. U. Delaware and EOBS. The](#)
19 [climatology in CM2.5, in terms of pattern and magnitude, seem to be much more consistent with the EOBS](#)
20 [data set. However, due to a relatively large](#) observational uncertainty in many mountainous areas, it is difficult
21 to validate the model rainfall climatology in these regions. Kelley et al. (2012) underlined the importance of
22 higher horizontal resolution in simulating precipitation over the Mediterranean. They compared the
23 climatologies of CMIP3 and CMIP5, suggested a modest improvement in [CMIP5 models compared to CMIP3](#)
24 [in representing precipitation over the Mediterranean region](#), most likely associated with increased horizontal
25 resolution. However, [none](#) of the CMIP precipitation climatologies could realistically capture the complexity
26 of regional features (e.g. local maxima over the northern Asia Minor and the Balkan coast) to such a high
27 degree as in CM2.5. Overall, our analysis indicates that the high-resolution CM2.5 control run provides a
28 realistic mean representation of the surface- and upper-tropospheric circulation over the Mediterranean. The
29 model skillfully simulates sharp gradients of precipitation over the morphologically complex terrain and its
30 climatology is considerably better than its low-resolution predecessor, the CM2.1 model.

31
32
33 **3.2 The impact of the summer North Atlantic teleconnections [on the Mediterranean region](#)**

34
35 The origin of the multi-decadal signal of SNAO has been linked (Knight et al. 2006, Folland et al 2009,
36 [Linderholm and Folland 2017](#)) to the Atlantic Multidecadal Oscillation, which originates from internal
37 variations in thermohaline circulation (Knight et al. 2005, 2006, Delworth and Mann 2000; Enfield et al.
38 2001), but for the recent decades also from anthropogenic sources (Rotstayn and Lohman 2002; Mann and
39 Emanuel 2006). The imperative of the following section is to test the capability of the model to simulate the
40 SNAO as an independent, internally generated climate component, which would prove the physical validity of
41 the statistically-derived component. The SNAO is defined as a leading eigenvector of the atmospheric
42 circulation over the North Atlantic region [25°-70°N, 70°W-50N°]. For this purpose we use the monthly SLP
43 output (July-August) of the full period (1000 years) of the CTRL experiment (Table 1). The analysis is also
44 repeated for the HIST and PROJ runs. The results are compared with the observational analysis, using SLP
45 provided by the 20CR dataset in the period 1870-2010. However, allowing for the fact that a) circulation over
46 the SNAO region is influenced by different key factors at different times, giving rise to time-varying

1 dominant modes of apparent internal variability; and b) each simulation represents a different, non-
2 deterministic state of internal climate variations, one should not expect to obtain from each run a replica of the
3 observed SNAO component.

4
5 The North Atlantic Oscillation (NAO) is the most prominent pattern of winter atmospheric variability in this
6 region and numerous studies have demonstrated its impact on European hydroclimate. Similar influences of
7 its summer counterpart (the SNAO) have also been discussed but with considerable differences of detail,
8 which stem from a distinct northward shift of the SNAO pattern compared to the winter NAO. However, the
9 results on the origin and impacts of SNAO are not equivocal, depending largely on the definition of the
10 SNAO, in terms of chosen spatio-temporal domain; and on the chosen observational dataset and methodology.
11

12 The imperative of the following section is to test the capability of the model to simulate the SNAO as an
13 independent, internally generated climate component, which would prove the physical validity of the
14 statistically-derived component. The SNAO is defined as a leading eigenvector of the atmospheric circulation
15 over the North Atlantic region [25°-70°N, 70°W-50°N]. For this purpose we use the monthly SLP output
16 (July-August) of the full period (1000 years) of the CTRL experiment (Table 1). The analysis is also repeated
17 for the HIST and PROJ runs. The results are compared with the observational analysis, using SLP provided by
18 the 20CR dataset in the period 1870-2010. However, allowing for the fact that a) circulation over the SNAO
19 region is influenced by different key factors at different times, giving rise to time-varying dominant modes of
20 apparent internal variability; and b) each simulation represents a different, non-deterministic state of internal
21 climate variations, one should not expect to obtain from each run a replica of the observed SNAO component.
22

23 3.2.1 Spatial pattern of SNAO

24
25 Considering the first two EOFs in the CTRL SLP averaged in summer, EOF1, representing the SNAO, clearly
26 dominate the summer SLP variations, explaining twice as much total variance as EOF2. Moreover, the
27 percentages of explained variance (34% and 15%) resemble those of the observations-based EOF1 and EOF2
28 in Folland et al. 2009, i.e. ~28% and ~14% respectively. In the following we focus on the leading pattern
29 (hereafter called CTRL EOF1).

30
31 Figure 5a depicts spatial pattern of CTRL EOF1. The derived dipole resembles the observed SNAO signature
32 (e.g. Folland et al. 2009), including a distinct northward shift when compared to the winter counterpart
33 (shown e.g. in Barcikowska et al. 2017). The dipole pattern has a northern lobe over the south-western flank
34 of Greenland and a southern lobe centered north of the Azores in the vicinity of ~45°N, 30°E. At its positive
35 phase SNAO is manifest with negative anomalies in the former and positive anomalies in the latter region,
36 thereby strengthening the meridional SLP gradient over the North Atlantic. The pattern is similar also when
37 analyzed for the single months July and August (not shown). The simulated SNAO pattern is almost identical
38 to the one derived from the HadCM3 model control run, as shown in Folland et al. 2009.
39

40 Further analysis indicates also that the signature of the simulated SNAO is much more consistent with the
41 observed one before 1950s, rather than in the recent six decades. Figure 6 depicts patterns of EOF1's derived
42 from four 50-yr periods of the 20CR reanalysis (i.e. a. 1870-1920, b. 1900-1950, c. 1940-1990, d. 1960-2010),
43 indicating clearly their evolution in time. Similar results were obtained for the independent 40-yr periods
44 (1851-1890, 1891-1930, 1931-1970, 1971-2010 in Figure SI1). The EOF derived for periods before 1950s
45 (shown here for 1870-1920 and 1900-1950) closely resembles the SNAO simulated in the model (Fig 5a), i.e.
46 including the northern centers of action at southern Greenland and with the southern lobe situated north of the

1 Azores (~45°N, 35°E). In contrast, the EOF derived for 1960-2010 or 1971-2010 exhibits a weak northern
2 lobe and a much stronger southern lobe, with the latter being also shifted north-east, towards the British Isles.
3 These differences are consistent with other observational analysis of the recent six decades (i.e. Blade et al.
4 2012 and Syed et al. 2012).

5 Analysis of the HIST runs shows that the pattern of the leading EOF also evolves in a similar way to the
6 observations-based SNAO pattern (Figure 6). For the early observational period (1870-1920), all the derived
7 SNAO signatures, i.e. EOF derived from all HIST runs (Figure 6b, Figure SI2 left column), observations, and
8 CTRL (Figure 5a) resemble the SLP dipole with the northern lobe over Greenland and the southern lobe
9 located north of the Azores around 40-45°N. In contrast, for the most recent period (1960-2010, Figure 6g, h)
10 both observations and HIST runs depict SNAO with the weaker northern lobe and southern lobe being shifted
11 north-eastward, towards the British Isles. These changes are found in 4 out of the 5 HIST members available,
12 when comparing the periods 1870-1920 and 1960-2010 (Figure SI2). This tendency slightly intensifies when
13 the more recent period is extended towards the future using PROJ members (e.g. 1970-2030, 1970-2060
14 Figure SI3). Considering the nature of HIST experiments, this analysis suggests that the anthropogenic forcing,
15 which is the only deterministic factor for them, is likely an important contributor in shaping the SNAO, and
16 hence explaining to some degree the temporal evolution of its spatial signature in the 20th century.
17

18
19
20 **3.2.2 Impact of SNAO on the Mediterranean hydroclimate**

21
22 Figure 5 indicates that the simulated SNAO yields a large-scale fingerprint in the precipitation, geopotential
23 height and temperature over the North Atlantic and Europe, which largely resembles the observed one (e.g.
24 Folland et al. 2009, Blade et al. 2012). This includes a distinct tripolar pattern of precipitation anomalies with
25 the lobe over the southern Greenland, over northern Europe and its vicinity over the North Atlantic, and over
26 southern Europe and most of the Mediterranean region (Fig 5c). The derived SNAO teleconnection at its
27 positive (negative) phase, manifested in the positive (negative) SLP anomalies over its southern lobe (Fig 5a),
28 is linked with an anomalous drying (wetting) over northwestern Europe, but with anomalous wetting (drying)
29 over the Mediterranean (Fig 5c).

30
31 The simulated location of the southern SLP node is located southwest of the British Isles, and so its largest
32 impact is in this region with negative correlations reaching a value of about -0.7 (Fig 5a). The maximum
33 impact of the observed teleconnection, as shown in Folland et al. 2009, is of similar magnitude and exceeds
34 ~0.6, though its location is centered over the British Isles. This difference directly relates to the difference in
35 the center of the observed southern node of SNAO, when compared from that in CTRL runs, discussed in the
36 previous section. For Mediterranean hydroclimate, the consequences of a positive SNAO phase are the inverse
37 of those in northwest Europe and also of smaller magnitudes (i.e. ~0.2-0.35). Corresponding wet anomalies
38 are centered over Italy, the central and southeastern Iberian Peninsula, and Asia Minor.

39
40 The pattern and magnitude of SNAO teleconnection presented here is largely consistent with the one derived
41 from the GFDL CM2.1 model, the low-resolution predecessor of CM2.5 (Blade et al. 2012). The CM2.5
42 correlation coefficients over the Mediterranean are also quite similar to those of the observations-based SNAO
43 in Folland et al. 2009, exceeding locally 0.3 (1900-1998). In contrast, Blade et al. 2012, using a shorter data
44 set (EOBS, 1950-2010), found much larger correlations, locally exceeding 0.6. This disparity may likely stem
45 from the difference in the length of the analyzed data sets and differences in contributing factors. For example,
46 the SNAO time series, as defined by Blade et al. 2012, are largely shaped by a multi-decadal signal of both
47 the natural and anthropogenic origin. By contrast, anthropogenic climate components are not included in the

1 CM2.5 control run and the simulated SNAO teleconnection stems predominantly from the internal climate
2 variations on interannual time scales.

3
4 The impact of the SNAO on the northern Europe and southern Europe hydroclimate has been explained
5 through different mechanisms. The teleconnection between SNAO and the northwestern Europe hydroclimate
6 has been straightforwardly explained with impact of the North Atlantic storm tracks, which are controlled by
7 the large-scale circulation in this region. Folland et al. 2009 have shown, using NCEP data, that a positive
8 (negative) SNAO index relates to the North Atlantic storm tracks being shifted northward (southward)
9 towards the northwestern (southwestern) Europe. Our analysis, using the SNAO index derived from 20CR,
10 and the storm tracks proxy derived from NCEP, confirms this relationship (Figure SI4). More importantly, the
11 strength of the derived relationship depends on the chosen period. For example, the derived correlations are
12 distinctively stronger in the earlier period, i.e. 1950-1990, when SNAO resembles a dipole pattern (Figure 6e),
13 than for the latter period (1970-2011), when the SNAO better resembles a monopole-type pattern located over
14 the British Isles (Figure 6g). These results are consistent with the notion that the monopole-like version of the
15 SNAO, derived from the most recent decades of observations, is contaminated by other climate components.
16 Hence it is not necessarily the most plausible representation of the SNAO. However, addressing this issue as
17 well as verifying the simulated linkage between the SNAO and the North Atlantic storm tracks are beyond the
18 scope of this study and it could be eventually subject for future research.

19
20 The impact of the SNAO on the Mediterranean hydroclimate (shown by in observations by Linderholm et al.
21 2009) can be better explained through associated changes in a mid- and upper-tropospheric geopotential
22 height, consistent with Blade et al 2012. Correlations derived between the SNAO time series and 500hPa
23 geopotential height (Fig 5b), show the strongest influence over the western and central Mediterranean, i.e. the
24 Iberian Peninsula, Italy and to a smaller extent the Balkan coast. Well collocated with this pattern are
25 correlations with precipitation and surface temperature, although for the latter the impact of the SNAO seems
26 much smaller. Hence, anomalous precipitation in these regions during the positive SNAO phase likely stem
27 from an anomalous mid- and upper tropospheric trough, associated cooling, and intensified potential
28 instability over the central Mediterranean.

29
30 Overall, the results presented in this section demonstrate that CM2.5 is capable of simulating SNAO
31 teleconnections and their contribution to Mediterranean hydroclimate. The associated physical mechanisms
32 are consistent with observational findings and other modeling studies employing older generations of models.

33
34 On the other hand, the impact of SNAO on surface temperature in the Mediterranean shows discernible
35 differences, compared to the observational studies (Blade et al. 2012, Folland et al. 2009). For example, the
36 maximum of the derived correlations in CM2.5 is located over the Iberian Peninsula (exceeding locally ~0.35).
37 In contrast, both studies show the maximum of the correlations shifted towards central and eastern
38 Mediterranean, although with a significant disparity in the derived magnitudes. While the former study
39 suggests the maximum magnitude of correlations reaching 0.7-0.8, the latter study suggests correlations twice
40 as smaller when using a longer data set and low-frequency component removed. Hence the impact of SNAO
41 on the European temperatures remains a debatable issue and requires further investigation in the future.

42
43 **3.3 Summer climate regime over the eastern Mediterranean**

44
45 In this section we investigate the ability of the CM2.5 control experiment to reproduce the summer climate
46 regime over the eastern Mediterranean (EMED, as defined ins Sect. 2), including the relationship between the

1 surface dynamics and the mid- and upper-tropospheric circulation over [the region and](#) its teleconnection with
2 the Indian Summer Monsoon ([hereafter ISM](#)). [Here we show](#) results for July [alone but those](#) for June and
3 August are shown [as](#) Supplementary Information. This choice is driven by the fact that the magnitude of
4 subsidence and the Etesians is at its maximum in July while the response of the Rossby waves to monsoon
5 rainfall is also strongest (Tyrlis et al. 2012, Lin et al. 2007, Lin et al. 2009).

6
7 Figure 7d, (see also Ziv et al. 2004, Tyrlis 2012) shows that the model captures skillfully the observed
8 features of the regional relationship between the mid- and upper-tropospheric subsidence and surface
9 circulation. The relationship is depicted in Figure 7 as correlations computed between time series of EOF1
10 (Figure 7a) of the mid and upper- tropospheric vertical velocity (omega) over the Mediterranean and those of
11 geopotential height at 850hPa, wind vector, outgoing longwave radiation and precipitation. EOF1 derived
12 either for omega at 500 hPa or 300 hPa, explains the dominant amount of variance (~33% and 35%,
13 respectively). Its spatial pattern closely resembles the simulated and the observed (Tyrlis et al 2012, Ziv et al.
14 2004) key feature of the mid- and upper omega summer climatology, i.e. with a maximum located near Crete.
15 The correlations (Figure 7b,c), derived between the EOF1 500hPa and the regional surface circulation, depict
16 a physically consistent linkage (Figure 9d, Ziv et al. 2004, Tyrlis 2012) between strengthening of the
17 subsidence over the EMED and strengthening of the zonal pressure gradient over the Mediterranean and thus
18 the Etesians over the EMED.

19
20 The Etesians spread southward from the Aegean Sea, through Egypt and towards the Sahel which is consistent
21 with observational findings underlining the role of the Etesians in regulating the moisture transport over
22 Africa and hence for regulating the African monsoon (Raicich et al. 2003, Ziv et al 2004, Lelieveld et al.
23 2002; Rowell 2003). The northerlies intensify also over the Arabian Peninsula as north westerlies, with wind
24 anomalies spreading towards the Gulf of Persia and the Indian Ocean. The simulated pattern agrees well with
25 its observational counterpart, derived by correlating the regional anomalies of omega 500hPa and meridional
26 wind using the detrended NCEP–DOE data set. Note that due to a relatively short data set (1979-2015), the
27 correlations are not significant at the 10% level for some regions and thus not shown, even if they agree well
28 with those simulated, for example the positive correlations in northwest Africa.

29
30 This relationship between mid-level subsidence and the low-level circulation is manifested to some extent in
31 the regional summer precipitation and outgoing longwave radiation. Figure 8 shows that correlations derived
32 between the same EOF of omega at 500hPa and precipitation are negative and centered over southern Italy
33 and the Balkans. This implies that the stronger subsidence over EMED may contribute to precipitation
34 reductions in these regions, consistent with the intensified zonal pressure gradient and the associated
35 intensification of the anticyclonic circulation over the western and central parts of the Mediterranean.
36 However, the summer precipitation in the Mediterranean is in general very low and correlations do not exceed
37 0.3, implying a rather small effect. On the other hand, the EMED subsidence variations show much stronger
38 correlations (up to 0.8) with the outgoing long-wave radiation (OLR) over the [region](#) (Figure 8). This is
39 consistent with the impact of the adiabatic descent and associated radiative cooling in dry regions under clear
40 sky conditions.

41
42 The [simulated relationship](#) between the interannual timescale variations in EMED region and the northwestern
43 parts of India ([Fig 8](#)) is consistent with the features of the observed teleconnection with the Indian summer
44 Monsoon (ISM) (Hoskins et al. 1996, Hoskins et al. 2001, Tyrlis et al. 2012, Ziv 2004, Cherchi et al. 2014).
45 The variations of the EOF of omega at 500hPa show significant and relatively high correlations with the three
46 monsoon indices, i.e. subsidence over EMED is negatively correlated with OLR (up to -0.45), and positively

1 correlated with vertically integrated water vapor (up to 0.6, not shown) and precipitation over the
2 northwestern parts of India (up to 0.3). This implies a connection between anomalously stronger subsidence
3 over the EMED region and the intensified Indian summer monsoon. Consistent with this linkage are
4 intensified southerly winds over the Arabian Sea, which feed the ISM with moisture (Figure 6b, c), and a
5 deeper heat low spreading west from India towards the Arabian Peninsula and the Sahel. The latter intensifies
6 the zonal pressure gradient over the Mediterranean, which illustrates how the ISM impacts the low-level
7 circulation in Mediterranean as suggested in Ziv et al. 2004.
8

9 These results suggest that CM2.5 is capable of capturing the most prominent features of the summer climate
10 regime over the EMED: the mid- and upper tropospheric subsidence over the EMED and the low-level
11 Etesian winds. Moreover, these results also show that the model reproduces their links with the ISM. Changes
12 in these interactions over the EMED and their teleconnections may give rise to pronounced effects on local
13 Mediterranean summer temperature regime. Accordingly, the next section investigates the projected future
14 Mediterranean climate, interpreting this through changes in large-scale circulation as well as through local
15 relationships and teleconnections.
16

17 4. Climate changes in the 21st century

18 4.1 Comparison of future and present summer climate

19 In CM2.5, the projected changes in large-scale circulation features over the Euro-Atlantic region and west
20 Asia correspond to a large extent to those seen in the CMIP3 and CMIP5 projections. Figure 9 depicts
21 changes in the summer surface atmospheric circulation, as shown by SLP in JJA and wind vectors computed
22 at the original model horizontal resolution ($\sim 0.5^\circ$). The most prominent feature over the Euro-Atlantic region,
23 a northward shift and strengthening of the meridional SLP gradient, and hence the meridional circulation cells,
24 is a typical fingerprint of anthropogenic climate change (Collins et al. 2013). The associated anomalous
25 bipolar SLP pattern shows negative (cyclonic) SLP anomalies centered over Greenland and positive
26 (anticyclonic) SLP anomalies centered southwest of the British Isles. This pattern closely resembles the
27 fingerprint of the CTRL-based SNAO. The projected positive SLP anomaly is however shifted slightly north
28 east of the CTRL SNAO, so it is likely that the anthropogenic fingerprint will project on the positive SNAO
29 phase, quite like as found by Folland et al. 2009 for HadCM3 and HadGEM1.
30

31 CM2.5 projections also indicate negative SLP anomalies over North Africa, the eastern Mediterranean and the
32 Arabian Peninsula, which are accompanied by a very strong warming exceeding 6°C . These changes, together
33 with an anomalous convergent flow and pronounced anomalies of ascending air at low-and mid-tropospheric
34 levels (Figure 3c, Figure SI5) over the Arabian Peninsula, contribute to the intensification of the Persian
35 trough. Although the Persian trough constitutes an extension of the southwest Asian Monsoon heat low, the
36 future SLP over the monsoon region shows positive anomalies. This indicates a weakening of the monsoon
37 heat low and, correspondingly, of the northerly flow over the Persian Gulf. It is also worth noting that the
38 anomalies of ascending motion over the Levant region and the Arabian Peninsula, together with an anomalous
39 subsidence over the center, north-eastern Mediterranean, and Asia Minor, create a distinct gradient in the
40 vertical velocity changes. This gradient is particularly evident in July (Figure SI5), due to a magnified
41 intensification of the heat low and anomalous ascending motion over the Levant region.
42

43

1 The projections also show clear differences, both quantitatively and qualitatively, when compared with the
2 CMIP5 multi-model ensemble of RCP8.5 projections (Collins et al. 2013) and the CMIP3 ensemble of the
3 A1B scenario (Giorgi and Lionello 2008). The intensity of the changes over the Euro-Atlantic region shown
4 by CM2.5 is much larger (Figure 9) than in the CMIP5 ensemble average (Collins et al. 2013, Fig 12.18),
5 even when the analysis is conducted at the CMIP resolution. For example, one of the most robust features of
6 the anthropogenic fingerprint, i.e. anomalous positive SLP anomaly in the vicinity of British Isles, is almost
7 twice as intense (~up to 3hPa), when analyzed at 2° horizontal resolution. Moreover, in contrast to the CMIP5
8 ensemble, the projected CM2.5 positive SLP anomalies over the British Isles expands through northwestern
9 Europe to the southeastern regions: this intensifies the anticyclonic circulation over the western and central
10 Mediterranean. The CMIP3 ensemble (Giorgi and Lionello et al. 2008) show similar tendencies but with a
11 much smaller magnitude confined just to northwestern Europe. On the other hand, the CMIP5 ensemble
12 shows negative SLP anomalies spread over the whole Europe, North Africa and Arabian Peninsula. These
13 differences between the CM2.5 and the CMIP ensembles yield opposite effects on the Mediterranean surface
14 circulation. In CM2.5, positive SLP tendencies to the west of the Mediterranean and the strengthening of the
15 heat low in the eastern Mediterranean, Arabian Peninsula and North Africa foster the strengthening of the
16 climatological zonal pressure gradient, and the associated northerly winds over the Aegean Sea. In contrast,
17 the strengthening of the heat low, which expands over the whole Mediterranean, gives rise to a weakening
18 effect on the regional zonal pressure gradient and the northerly flow in the central and eastern Mediterranean
19 (Collins et al. 2013, Fig 12.18).

20
21 Analysis of future changes in mean surface temperature and precipitation indicates (Fig 9b,c) a less radical
22 warming and a weaker and less spatially extensive drying over central and southern Europe, when compared
23 to the [CMIP3 \(Dubrowski et al. 2014\)](#), [CMIP5 \(Collins et al. 2013\)](#) ensembles and a high resolution EURO-
24 CORDEX GCM-RCM RCP8.5 multi-model ensemble (Fussel et al. 2017, Jacob et al. 2014, Figure SI6). [For](#)
25 [regions like the Iberian Peninsula and Asia Minor warming is on average ~2°C lower. The largest difference](#)
26 [\(more than 3°C\) occurs over the southeastern Europe and northern parts of the Balkans, which feature a local](#)
27 [minimum of warming ~1°C and wetting tendencies. The latter has not been captured in the CMIP models. For](#)
28 [example, the 10-member RCP8.5 ensemble of the CSIRO-Mk3-6-0 model projects \(Figure SI6\) a strong](#)
29 [warming, which over southern Europe exceeds locally ~7°C \(e.g. the southern France and Iberian Peninsula\),](#)
30 [while in the southeastern Europe and northern Balkans it exceeds ~6°C. The multi-model ensemble average of](#)
31 [combined GCM-RCM simulations from the EURO-CORDEX initiative \(Fussel et al. 2017, Map 3.4, pp. 76\)](#)
32 [indicates a comparable magnitude of warming, although with local maximum of warming \(exceeding 6°C\)](#)
33 [shifted towards the Iberian Peninsula, while warming over the southeastern Europe and northern Balkans](#)
34 [varying between 3.5 and 5.5°C. In both CMIP ensembles the projected very intense warming and drying over](#)
35 [the whole European region has been often questioned and linked with a warm summertime bias, caused likely](#)
36 [by the deficient representations of moisture-temperature feedbacks. However, some CMIP3 and CMIP5](#)
37 [models, which incorporate a relatively high resolutions \(CNRM-CM5 and EC-Earth-DMI, ~1-1.5°,](#)
38 [Christensen and Boberg, 2012\), although much lower than the CM2.5, feature both relatively low temperature](#)
39 [bias and also relatively milder anthropogenic changes.](#)

40
41 Furthermore, the gradient of warming between the southwestern and northeastern parts of Europe in CM2.5 is
42 much sharper and shifted southward when compared with these ensembles (see Fussel et al. 2017, Map3.4;
43 Figure SI6). For example, the minimum of warming (1.5-2°C) in the EURO-CORDEX ensemble is located
44 over the southeastern Baltic countries, while in the CM2.5 the minimum expands across the central Europe
45 and southeastward, towards the northern coast of [the](#) Black Sea. Hence the latter contributes in CM2.5 to a
46 stark contrast in the warming between the Mediterranean coast including coastal region of Balkans (4-6°), and

1 the inland Balkans together with southeastern Europe (1°C). This temperature gradient (Fig 9b) marks also a
2 clear transition zone between the drying of southwestern Europe and the wetting of northeastern Europe (Fig
3 9c). This transition zone, analogously to the warming gradient, is much sharper and shifted southward in the
4 CM2.5 projections when compared with the CMIP3 and CMIP5 [models](#) (Fussel et al. 2017, Map 3.8). For
5 example, future changes derived from the CSIRO-Mk3-6-0 model ensemble (Figure SI6) feature drying over
6 whole Europe, except Scandinavia. However, the location of the precipitation transition zone among CMIP5
7 models features large inter-model spread, which makes the magnitude and sign of the changes over large parts
8 of central Europe uncertain (Fussel et al. 2017, Map 3.2).

9
10 Owing to its relatively high resolution, CM2.5 also provides more spatially refined information, which
11 includes for example sharper gradients along the coasts or in the mountainous regions. All coastal regions
12 experience reductions in precipitation, expected from the strengthening temperature contrast between the fast
13 warming land and slower warming sea. These reductions are especially pronounced along the northwestern
14 coasts of the Iberian Peninsula, where rainfall is typically larger due to incoming North Atlantic storms. The
15 advantages of the increased horizontal resolution also become apparent for the Levant and the Arabian
16 Peninsula. This is because the low-resolution CMIP models have difficulties with realistically resolving the
17 projected zonal gradient between oppositely signed rainfall tendencies (i.e. drying over the eastern
18 Mediterranean and wetting on the western flanks of the monsoon). This results in a much smaller changes and
19 statistical insignificance.

20
21 Finally, the projected magnitude of the strong warming and drying in the Mediterranean shown by CMIP3 and
22 CMIP5 has often been questioned, due to the deficiencies in representing land-atmosphere feedbacks and a
23 weak sensitivity to atmospheric teleconnections such as the SNAO. For example, Blade et al. 2012 argued that
24 the drying projected in most CMIP3 and CMIP5 models is overestimated due to a deficiency in capturing the
25 SNAO teleconnection and its cooling and wetting effects over the Mediterranean associated with a future
26 more positive SNAO. However, our analysis has shown that the regional impacts of the SNAO in CM2.5
27 (section 3) are almost the same as those indicated by the low-resolution CM2.1 model. This suggests that the
28 difference in the projected future changes between the CM2.5 and previous generation models may stem
29 rather from the other factors such as representation of soil moisture and land-atmospheric feedbacks between
30 soil moisture and precipitation in the LM3 model used in CM2.5 (Berg et al. 2016; Milly et al. 2014).

31
32
33 **4.2 Future changes in SNAO- Mediterranean teleconnections**

34
35 Temporal evolution of the SNAO depicted (Figure 10c) by the ensemble average of the HIST+PROJ runs
36 reveals relatively weak positive SNAO tendencies in the latter half of the 20th century and a much stronger
37 positive trend during the 21st century. However, for the former period each realization features strong internal
38 variations. This is consistent with recent observations of SNAO featuring a rich interannual to multi-decadal
39 variability and a weak positive trend described in section 3.2.1. For the latter period (particularly 2040-2100)
40 the trend becomes strong enough to be discernible in every realization.

41
42 Further analysis suggests also subtle changes in the future spatial pattern of the SNAO. Comparison of SNAO
43 signatures in the 1960-2010 and 2050-2100 periods indicates a northeastward movement of the SLP dipole.
44 This feature is also consistent with the projected changes in large-scale circulation over the North Atlantic
45 (Figure 9a) featuring an intensification and northeastward shift of the meridional SLP gradient. Figure 10a,b,
46 shows that the derived northeastward intensification of [the](#) SNAO is manifest in the future European

1 hydroclimate. The correlations, derived between the time series of the SNAO principal component and
2 precipitation anomalies, indicate a shift of the southern SNAO lobe towards the British Isles. This corresponds
3 with a stronger influence of [the](#) SNAO on the Euro-Atlantic precipitation, i.e. enhanced drying during the
4 positive SNAO phase. The opposite-sign correlations over southern Europe show also a slight increase,
5 particularly for the Iberian Peninsula, southern Balkans and Asia Minor, indicating an increase in the wetting
6 impact of the SNAO on the Mediterranean.

7
8 It is important to mention that the intensified future impact of the SNAO over the Mediterranean, i.e. wetting,
9 is not reflected in the [overall](#) mean hydrological changes in this region (Figure 9b,c), with the latter indicating
10 rather a strong warming and drying. Hence the key implication of these results is that without the SNAO the
11 future climate drying in the Mediterranean would be even more severe. The inferred contribution of the
12 SNAO that offsets the regional drying is depicted in the following analysis. Figure 10d,e compares the overall
13 regional future changes, derived between 1961-1999 and 2061-2099, with the changes excluding the impact of
14 [the](#) SNAO. The comparison shows that without [the](#) SNAO contribution the average drying over the southeast
15 and central Iberian Peninsula would intensify from \sim 0.4 to -0.65 mm/day, and for the Balkan coast from \sim
16 0.3 to -0.55 mm/day, and for parts of Asia Minor from \sim 0.6 to -0.8 mm/day. The location of the largest
17 differences is consistent with the location of the intensified impact of the SNAO (Figure 10a,b). It is worth to
18 [highlighting](#) that for regions like [the](#) Iberian Peninsula, the estimated contribution of [the](#) SNAO (wetting) is
19 comparable with the magnitude of the projected overall drying. This confirms an important role of SNAO and
20 its future changes by [offsetting](#) the future drying in the southern Europe.

21
22 These results are also consistent with Blade et al. 2012, who emphasized the role of the SNAO in shaping the
23 future Mediterranean climate. On the other hand, our results do not support the theory proposed by Blade et al.
24 2012, that the regional impact of [the](#) SNAO simulated in the CMIP5 models is [too](#) weak, thereby causing an
25 excessive warming and drying in the future projections for the Mediterranean. The estimated impact of the
26 SNAO (in terms of pattern and magnitude) [in CM2.5](#) is almost the same as [that](#) shown for the CM2.1 (Blade
27 et al. 2012) and yet the CM2.5 projections indicate a substantially less intense warming and drying over
28 southern Europe, compared to CM2.1 (Blade et al. 2012), CMIP3 and CMIP5 ensembles (Collins et al. 2013).
29 For regions like northern Balkans and central Europe CM2.5 indicates even wetting tendencies, in contrast to
30 drying in the CM2.1 runs and CMIP3/CMIP5 ensembles. For these regions CM2.5 [even](#) indicates also
31 strikingly weaker warming, compared to the CMIP5 ensemble (Collins et al. 2013; [compare for example \$\sim\$ 1 to](#)
32 [2°C warming in CM2.5 with \$\sim\$ 6-7°C warming in CSIRO-Mk3-6-0 over southeastern Europe](#)). Additionally,
33 the fact that both GFDL models (i.e. CM2.1 and CM2.5) show very small or no SNAO impact [in these](#)
34 [regions](#), suggests [the influence of other factors than the SNAO are responsible for these discrepancies](#).

35 36 **4.3 Future changes in other aspects of the summer climate in the EMED region**

37
38 This section investigates other projected CM2.5 climate changes in the EMED region, including low-
39 tropospheric circulation and mid- and upper tropospheric subsidence, the main factors that maintain the
40 regional temperature balance. The projected future intensification of the Etesians as well as the weakening
41 subsidence should yield a cooling and wetting effect on that region. Nevertheless, future projections indicate a
42 very strong warming and drying in this region ([e.g. Figure 9; Cherchi et al 2016, Collins et al. 2013](#)). This
43 suggests a decreasing influence of the atmospheric dynamics on the temperature balance of this region and an
44 increasing impact of surface warming on surface circulation. The latter is manifested in the intensification of
45 the heat low over Sahara, EMED and Arabian Peninsula, accompanied by anomalous surface convergence and
46 ascending air centered over the maximum warming—the Levant and the Arabian Peninsula.

1
2 In the following, we investigate future changes in these factors governing the summer EMED regime by
3 analyzing the stationarity of the local linkages and teleconnections by comparing their representation in the
4 HIST and PROJ experiments. We also compare coupling of the EMED regime with the Indian summer
5 Monsoon and explore the impact of the local surface warming on the regional surface circulation.
6

7 **4.3.1 Changes in the local and remote relationships with the EMED climate regime**

8
9 Figure 11 compares the HIST and PROJ five-member ensemble mean correlations, showing substantial
10 qualitative and quantitative differences between the historical and the future periods. The linkage between the
11 EMED subsidence and surface circulation, in terms of pressure, northerly winds over the Aegean Sea
12 (Etesians), as well as their extension towards North Africa and Persian Gulf, is much weaker for 2050-2100.
13 For example, correlations between the EMED subsidence and the northerlies decrease locally (e.g. Persian
14 Gulf) by more than a factor of two (from ~0.7 to ~0.3) between 1960-2010 and 2050-2100. This is consistent
15 with radically decreased correlations with water vapor and precipitation (from ~0.4-0.5 to ~0) over the
16 African monsoon region, which is largely fed by moisture transported by the Etesians.
17

18 At the same time, correlations between the EMED subsidence and ISM indices (July), i.e. precipitation and
19 column integrated water vapor (Fig 11e, f), does not change much. In both cases correlations reach 0.5 for
20 precipitation, and 0.6 for the water vapor. For the latter, the maximum correlations only decrease from 0.7 to
21 0.6. Both patterns are slightly shifted toward the southern parts of India in the future period, consistent with a
22 southward shift of the southerlies over the Arabian Sea that act as a moisture supply for the ISM monsoon.
23

24 These results imply generally insignificant changes in the future mid- or upper-tropospheric teleconnection
25 between the EMED and ISM regions. However they do suggest a pronounced weakening of the local linkage
26 between the mid- and upper-tropospheric subsidence and surface circulation over the EMED. Moreover, given
27 that the local linkage serves as a “medium path” for the teleconnection between the ISM and surface
28 circulation over EMED, future weakening of the local linkage will most likely diminish the impact of this
29 teleconnection on the EMED surface circulation. On the other hand, the projected intensification of the heat
30 low over North Africa, EMED and Middle East suggests a growing contribution of surface temperature to the
31 summer climate regime in those regions. Thus in the following section we explore apparent nonlinearities in
32 the summer climate regime of the eastern Mediterranean associated with the local surface temperature.
33

34 **4.3.2 Nonlinear dependency of the local interrelations between the low-tropospheric and the mid- 35 tropospheric dynamics and their contributions to the thermal balance over EMED.**

36
37 The nonlinear dynamical influences over EMED can be explored using the CTRL in order to differentiate
38 impacts of the local (EMED) temperature on the local linkage between the mid- and upper tropospheric
39 subsidence and surface circulation. Removing the time-varying climate forcing impacts from the HIST runs
40 allows us to focus on the natural variability of the system and nonlinear interactions that may be difficult to
41 statistically calculate in shorter HIST runs. [As described in section 2, we construct](#) two samples from the
42 CTRL run [with 300 July months](#) with the lowest temperature and 300 with the highest [one with respect to](#) the
43 mean surface temperature for the EMED region. We carry out a correlation analysis for these two periods,
44 much as done in the previous section comparing recent historical and future periods. Figure SI7 shows a
45 radical drop in derived correlations between the mid-level subsidence and the Mediterranean pressure, Etesian

1 winds and their extension over the North Africa and Persian Gulf, and water vapor over the Sahel. These
2 results are similar to those comparing present and future climate for these variables (Fig 11).

3

4 Figure 12 [shows a direct response of the summer Mediterranean climate to the surface warming over EMED, estimated with](#) composite differences between the [two samples, in terms of](#) temperature, relative humidity, pressure and wind vector, geopotential height at 500hPa and 800hPa, omega at 500hPa and precipitation.
5 Interestingly, Figure 12a shows maximum of warming over Asia Minor and not the Levant, suggesting a
6 potential feedback between these regions. Fig 12c shows bipolar SLP anomalies, with low pressure coincident
7 with intensified heat low anomalies over North Africa, EMED and Middle East, and an anomalous
8 anticyclonic circulation between northeast and northwest of this region. The latter is centered over the Black
9 Sea and spreads towards the central Mediterranean, creating a stronger zonal pressure gradient over the
10 Mediterranean and intensified Etesian winds. The intensified heat low over the EMED and Arabian Peninsula
11 (Fig 12c) agree well with the enhanced local convergence and reduced subsidence at the low- and mid-
12 tropospheric levels at 500hPa (Figure 12e) and 700hPa (not shown). At the same time, the positive SLP
13 anomalies (Figure 12c) and increased subsidence over Asia Minor and Black Sea are physically consistent
14 with increased adiabatic warming and stability, manifested in the local maximum warming, reduced relative
15 humidity and precipitation. An analysis for the JJA season yields similar results, although with a reduced
16 magnitude due to a smaller contribution of June and August months ([Figure SI8](#)).
17

18

19 Analysis of the effects of local warming over larger domains, i.e. including southern parts of the [central](#) and
20 western Mediterranean (Figure [SI9](#)) yields similar results, i.e. opposite SLP anomalies for the southern
21 Mediterranean (North Africa and the EMED) and northern central and eastern Mediterranean. However, the
22 magnitude of the response over southwestern regions becomes equally strong to that over the EMED.
23 Interestingly, analyses for regions which include the northeastern parts of the Mediterranean (30°-50°E, 30°-
24 45°N), yields a reduced response (a weaker intensifying anticyclone) over these northern regions. Thus the
25 derived anomalous anticyclone over Balkans and Black Sea is much stronger when the warming is confined to
26 the southeastern parts (i.e. Levant and Arabian Peninsula). This emphasizes the role of the warming surface
27 temperature over arid regions of North Africa and Arabian Peninsula in shaping the climate of the surrounding
28 regions.
29

30

31 The composite response to anomalous warming over EMED can be readily associated with changes in the
32 local circulation, i.e. an intensified zonal pressure gradient and Etesians over Mediterranean, as well as an
33 intensified heat low, anomalous convergence and weakening low- and mid-tropospheric subsidence over the
34 EMED and the Arabian Peninsula. All these changes are also seen in the future projections obtained for JJA
35 (Figure 9a,b,c, Figure [SI5a,c,e](#)), and particularly in the month of July (Figure [SI5b,d,f](#)). Moreover, the
36 response of positive SLP, increased subsidence and drying over central Mediterranean (i.e. Italy), the Balkan
37 coast and Asia Minor are also consistent with the future changes (Figure 9), suggesting a potential
38 contribution of the warming over Levant and the Arabian Peninsula to projected warming and drying over
39 Asia Minor.
40

41 This analysis indicates that the dynamical regime over the EMED has a nonlinear influence on local
42 temperature. During relatively cool years the dynamical relationship between the low-level circulation and
43 mid-level subsidence, which balances the temperature over EMED, seems to be much stronger. By contrast,
44 warming over EMED region can trigger a local response in the surface atmospheric circulation, which
45 weakens the local dynamical linkages and hence their contribution in maintaining the local temperature
46 balance. Hence it is possible that surface temperature-driven atmospheric responses will become a more

1 prominent factor shaping future Mediterranean climate. This idea is supported by the consistency of this
2 response (i.e. strong warming, intensifying heat low, anomalous convergence and very pronounced ascending
3 motion at the low and mid-levels of the EMED and Arabian Peninsula, intensified zonal pressure gradient and
4 Etesians, drying over Asia Minor and southern Balkans) with projected anthropogenic changes over the
5 EMED region. Similar results are obtained for June and August, although with different intensity and location
6 of the SLP and precipitation anomalies.

7
8 The analysis however does not explain the processes involved in the dipole-like response in the circulation,
9 which includes SLP, winds and omega anomalies north from the EMED region (particularly Asia Minor and
10 Black Sea). One might suspect that, in response to warming over the EMED, the anomalous convergence and
11 ascending motion over the EMED triggers a seesaw connection with northward-located regions. This link
12 could stem from the interactions of the anomalous warming and upward velocity anomalies with the
13 seasonally varying descending branch of the Hadley cell over EMED, in result expanding it towards Asia
14 Minor. Testing this hypothesis needs more elaborate analysis and could be objective of coming research.

15 16 5. Summary and Discussion

17
18 Based on the state of the art future projections (CMIP3 and CMIP5-generation) the Mediterranean has been
19 identified as a climate change hot spot (Giorgi and Lionello 2008), not only due to the sensitivity of its climate
20 to the anthropogenic forcing but also due to the socio-economic vulnerability of the local societies. Yet the
21 projected changes are not fully reflected in the observations for the second half of the 20th century. While the
22 derived anthropogenic fingerprint clearly suggests strong warming and drying during the summer, the
23 observations indicate opposite wetting tendencies for some regions—in the vicinity of Black Sea and off the
24 Balkan coast. This discrepancy may stem from the fact that the Mediterranean climate features abundant
25 cross-scale variations, which at present dominate the anthropogenic signal. But there can be other reasons for
26 this inconsistency, i.e. the deficiencies in models' representation of land-atmospheric feedbacks (as mentioned
27 above) or the deficiencies in capturing impacts of certain teleconnections. The former has been shown to
28 cause an overestimation of the projected future summer warming and drying in most of CMIP3 and CMIP5
29 models (Christensen and Boberg, 2012, Christensen and Boberg, 2012, Mueller and Seneviratne, 2014),
30 particularly in the Mediterranean, Central and Southeast Europe (Diffenbaugh et al. 2007, Hirschi et al. 2011,
31 Seneviratne et al., 2006). The latter has been suggested to incapacitate CMIP3/CMIP5 models in offsetting
32 projected future regional drying, and hence spuriously exaggerate the regional warming and drying (Blade et
33 al. 2012). The Mediterranean is a region of the confluence of the mid-latitude and subtropical teleconnections,
34 which translated through the complex regional orography, makes simulating its climate extremely challenging.
35 Obtaining realistic future projections for this region require not only refined spatial scales, but also a realistic
36 balance between the contributing impacts of local land-atmosphere feedbacks, large-scale circulation, and
37 teleconnections.

38
39 In this study, we use the high-resolution CM2.5 climate model integrations to analyze the projected regional
40 future changes and interpret them through the prism of simulated SNAO teleconnections, the local dynamical
41 regime, and the impact of warming land surface.

42
43 The analysis of the CM2.5 control run demonstrates the high capability of the model to simulate realistic
44 summer climatology of the Mediterranean. The model very accurately reproduces key regional features of the
45 associated large –scale atmospheric circulation, both in terms of the location and magnitude. This includes, for
46 example, the subtropical mid-tropospheric anticyclone between the Levant and South Asia, and the low-

1 tropospheric zonal pressure gradient between the subtropical North Atlantic anticyclone and the massive
2 Asian monsoon heat low. The high spatial resolution of the integrations allows for capturing the sensitivity of
3 the low-level atmospheric flow to the local orography, which is manifest in two branches of Etesian winds:
4 over the Aegean Sea and its southward extension toward the Sahel region, as well as over the Persian Gulf.
5 Also the mean precipitation, which features an exceptional spatial complexity in the Mediterranean, is
6 represented with a much higher degree of realism when compared with the low-resolution CM2.1,[for example](#).
7

8 Our analysis shows also that CM2.5 simulates teleconnection of the Mediterranean with the atmospheric
9 circulation over the North Atlantic with high fidelity. The model plausibly reproduces the fingerprint of the
10 summer North Atlantic oscillation (SNAO), and its influence on the Mediterranean hydroclimate, when
11 compared with 20th century observations (Folland et al. 2009). Remarkably, the [simulated \(from the CTRL](#)
12 [experiment](#) SNAO fingerprint is in better agreement with the [observed](#) SNAO before the 1970s/1980s, rather
13 than for the later decades. This [is likely related to](#) the strong multi-decadal signal of the SNAO in the most
14 recent decades (as highlighted by Linderholm and Folland 2017) [that](#) may have partly originated from
15 anthropogenic forcing, which is not included in the CM2.5 control run, [though this is by no means certain](#).
16 The impacts of [the](#) SNAO on the Mediterranean hydroclimate are comparable, in terms of pattern and
17 magnitude, with the CMIP3/CMIP5 simulations, e.g. as manifested in the increased precipitation over
18 southern Europe during the positive SNAO phase. Overall, the analysis of the control run confirms the
19 capability of CM2.5 to simulate key components of the regional climate, i.e. SNAO teleconnections and the
20 local linkage between the surface and upper-level dynamics in the Mediterranean summer regime. The further
21 analysis investigates the regional the future changes through the prism of future evolution of these two factors.
22

23 [For the eastern Mediterranean](#), the most prominent features of [its](#) summer climate regime, [i.e.](#) the low-level
24 northerly flow and the mid- and upper -tropospheric subsidence, [are skillfully reproduced by the model](#). The
25 strong linkage between these two factors demonstrates their counterbalancing effects on the regional
26 temperature. Additionally, the significant correlations between the mid- and upper tropospheric subsidence
27 over the Mediterranean and the indices of the Indian [summer](#) monsoon are consistent with the [monsoon-desert](#)
28 [mechanism](#) (Rodwell and Hoskins, 1996, and Tyrlis et al., 2013).

29
30 The analysis of the [CM2.5](#) projected future climate changes over the Euro-Atlantic region is to [a](#) large extent
31 congruent with the CMIP5 ensemble. For example, changes in large-scale circulation over the North Atlantic,
32 such as an expansion of the Hadley cell, an intensification and a northward shift of the atmospheric meridional
33 cells, manifested by an anomalous anticyclone southwest of British Isles, constitute a typical fingerprint of the
34 future summer anthropogenic change. [In CM2.5, the](#) general drying of the subtropics (southern
35 [Mediterranean](#)) and wetting of the mid-latitudes (northern Europe) is consistent with the CMIP3/CMIP5
36 ensembles, and explained with the “wet-get-wetter and dry-get-drier” mechanism (Held and Soden, 2006;
37 Seager et al., 2007). Consistent with previous CMIP studies, CM2.5 projects [a](#) much stronger warming in
38 southwestern Europe and weaker warming in northeastern Europe.
39

40 However, CM2.5 projections reveal features, which are discernibly different from the CMIP3 and CMIP5
41 ensembles. For example, the magnitude of the CM2.5 projected warming over Europe and hence also the
42 Mediterranean is much less radical. The derived future changes in precipitation over the Mediterranean are
43 also smaller and feature a more complex pattern. This pattern consists of drying over large parts but also
44 wetting tendencies over the Alps and northern parts of the Balkans. The [CM2.5](#) projected wetting intensifies
45 further towards central and northeastern Europe, which in contrast to CMIP3 and CMIP5 ensembles
46 projecting rather drying over most of Europe, and wetting over Scandinavia. This difference is reflected in the

1 projected in CM2.5 drying – wetting contrast over Europe, which is much sharper and with the transition zone
2 being shifted southward, compared with the CMIP5 ensemble.

3
4 The [CM2.5](#) projected future circulation over southern Europe also differs from the CMIP ensembles. CM2.5
5 projections indicate a strengthening of the zonal pressure gradient over the Mediterranean and the associated
6 northerly flow/Etesian winds, contrary to a rather small weakening of the flow projected in CMIP5. This is a
7 direct consequence of a) the strengthening anticyclonic circulation over the North Atlantic and higher sea
8 level pressure over northwestern and central parts of Europe, and b) the intensification of the heat low over
9 Sahara, the Persian trough and Asia Minor. In contrast, the intensified heat low in the CMIP5 ensemble covers
10 not only arid subtropical regions but spreads over most of Eurasia (except the southern part of the monsoon
11 region), suggestive of dominating contributions of land-atmosphere feedbacks.

12
13 Further analysis has shown also that the [CM2.5](#) projected strengthening anticyclonic circulation over the
14 North Atlantic is reflected in the strengthening of the SNAO towards its positive phase, which is also
15 consistent with the CMIP3 and CMIP5 projections ([e.g. Collins et al. 2013, Folland 2009](#)). These changes of
16 SNAO have been shown to be manifest in the positive anomalies of precipitation (wetting) over large parts of
17 the Mediterranean. For example, without the impact of SNAO, the projected in CM2.5 drying over the Iberian
18 Peninsula, Italy, and the Balkan coast would be much stronger (locally up to ~30-40%). This confirms an
19 important role of SNAO in counterbalancing the thermodynamic effects of the projected drying over the
20 Mediterranean in both the CM2.5 and CMIP projections. Nevertheless, it is important to note that a) the
21 representation of the regional SNAO impacts, and b) projected future changes in SNAO, is comparable
22 between the CM2.5 and with some older generations models such as CM2.1, both in terms of pattern and
23 magnitude. Thus SNAO does not seem to be a strong candidate explaining the differences in the future
24 projections for the summer European climate between CM2.5 and CMIP3/CMIP5 ensembles.

25
26 Many studies have suggested rather [that](#) soil moisture-climate feedbacks [are](#) of dominant importance for
27 summer climate in these regions (Seneviratne et al. 2006, Diffenbaugh 2007, Hirschi et al 2011). At the same
28 time, most of CMIP3 and CMIP5 models are deficient in capturing soil moisture-atmosphere feedbacks
29 (Christensen and Boberg, 2012; Mueller and Seneviratne, 2014, Boberg and Christensen, 2012). This causes a
30 temperature dependent bias and spuriously amplifies the projected regional warming and drying, manifested
31 ultimately in the CMIP5 ensemble mean as a very strong overall warming and drying over Europe. In contrast,
32 Berg et al. 2016; Milly et al. 2014 demonstrated an improved representation of soil moisture and land-
33 atmospheric feedbacks between soil moisture and precipitation in the LM3 model used in CM2.5. The
34 enhanced feedbacks in this region are shown in Berg et al. (2015) with a lower resolution earth system model
35 using LM3. Hence the apparent stark contrast between the CMIP3/CMIP5 and CM2.5 (mild warming and
36 wetting) regional projections could more likely originate from the enhancements in the land model
37 incorporated [in](#) CM2.5 at [its](#) high spatial resolution, rather than the impacts of the SNAO. These feedbacks
38 should be explored in future work using targeted experiments like the Global Land–Atmosphere Coupling
39 Experiment (Seneviratne et al. 2013) but [lie](#) outside the scope of this paper.

40
41 Additionally, the changes in climate regime projected in CM2.5 also suggest a weakening role of atmospheric
42 dynamics in maintaining the regional hydroclimate and temperature balance over the eastern Mediterranean.
43 For example, the projected changes over Asia Minor show very strong drying and warming, despite the
44 increasing influence (i.e. wetting and cooling) of the SNAO teleconnection. Also, the warming over the Asia
45 Minor and Levant regions constitutes a local maximum for the changes in the Mediterranean region, despite

1 | the cooling effect of strongly intensifying Etesians and the weakening mid- and upper-tropospheric
2 subsidence in EMED.

3
4 The derived weakening linkage between the low-level circulation (e.g. northerly flow) and the mid-and upper-
5 level subsidence over the EMED, which balances the regional temperature, is indicative of the nonlinearity in
6 the summer EMED regime introduced by the local surface temperature. Additionally, the comparison of
7 warmer and cooler EMED seasons in the control run indicates an increasing influence of local surface
8 temperature on the local low-level atmospheric circulation in a warmer climate. This response stems likely
9 from a sensitivity of this desert-like land to radiative forcing. It is manifest in an anomalous intensification of
10 the heat low over the EMED, Sahara and the Persian trough, but also in positive SLP anomalies, increasing
11 subsidence, maximum warming, reduced relative humidity, and reduced precipitation in the regions located
12 north from Levant, in particular Asia Minor. All of these features are consistent with future climate changes
13 projected by CM2.5. This supports the overall notion of an increasing impact of the interactions between land
14 surface and atmosphere, as well as a decreasing influence of atmospheric dynamics, and hence of
15 | teleconnections, on the future summer regime in this region.

16

17

18

19 **"The authors declare that they have no conflict of interest."**

20

21 **Acknowledgements**

22 The authors are grateful to Ileana Blade, Fred Kucharski and Eduardo Zorita, Salvatore Pascale and Baoqiang
23 Xiang for helpful comments and discussions.

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1 **References:**

2 Alessandri, A., De Felice, M., Zeng, N., Mariotti, A., Pan, Y., Cherchi, A., Lee, J.Y., Wang, B., Ha, K.J., Ruti,
3 P., Artale, V.: Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century.
4 Sci Rep 4:7211, 2014

5

6 Allan, R. and C.K. Folland, 2018: Atmospheric circulation. 1. Mean sea level pressure and related modes of
7 variability—In: State of the Climate 2017. *Bull. Amer. Meteor. Soc.*, **99**, S39-S41.

8

9 Alpert, P., Osetinsky, I., Ziv, B., Shafir, H.: A new seasons definition based on classified daily synoptic
10 systems: an example for the eastern Mediterranean. *Int J Climatol* 24:1013–1021, 2004.

11

12 Baines, P. and C.K. Folland, 2007: Evidence for a rapid global climate shift across the late 1960s. *J. Climate*,
13 **20**, 2721-2744.

14

15 Barcikowska, M., Knutson, T. and Zhang, R.: Observed and simulated fingerprints of multidecadal climate
16 variability, and their contributions to periods of global SST stagnation. *Journal of Climate*, 30(2), 2017

17

18 Barcikowska, M., Kapnick, S.B., and F. Feser: Impact of large-scale circulation changes in the North Atlantic
19 sector on the current and future Mediterranean winter hydroclimate. *Climate Dynamics*, 2017b,
20 doi:10.1007/s00382-017-3735-5

21

22 Barnston, A.G., Livezey, R.E.: Classification, seasonality and persistence of low-frequency atmospheric
23 circulation patterns. *Mon Wea Rev* 115:1083–1126, 1987

24

25 Berg, A., B.R. Lintner, K. Findell, S.I. Seneviratne, B. van den Hurk, A. Ducharne, F. Chéruy, S. Hagemann,
26 D.M. Lawrence, S. Malyshev, A. Meier, and P. Gentine, 2015: Interannual Coupling between Summertime
27 Surface Temperature and Precipitation over Land: Processes and Implications for Climate Change. *J. Climate*,
28 1308–1328, <https://doi.org/10.1175/JCLI-D-14-00324.1>

29

30 Berg, A., Findell, K., Lintner, B., Giannini, A., Seneviratne, S. I., Van den Hurk, B., Ruth Lorenz, Andy
31 Pitman, Stefan Hagemann, Arndt Meier, Frédérique Cheruy, Agnès Ducharne, Sergey Malyshev & P. C. D.
32 Milly, 2016: Land–atmosphere feedbacks amplify aridity increase over land under global warming. *Nature
33 Climate Change*, 6(9), 869.

34

35

36 Blade, I., Liebmann, B., Fortuny, D., van Oldenborgh, G.J.: Observed and simulated impacts of the summer
37 NAO in Europe: implications for projected drying in the Mediterranean region. *Clim Dyn* 39:709–727, 2012.

38

39 Bladé, I., D. Fortuny, van Oldenborgh, G.J., Liebmann, B.: The summer North Atlantic Oscillation in CMIP3
40 models and related uncertainties in projected summer drying in Europe, *J. Geophys. Res.*, 117, D16104,
41 2012b

42

43 Bitan, A., Saaroni, H.: The horizontal and vertical extension of the Persian Gulf pressure trough. *Int J
44 Climatol* 12:733–747, 1992

1 Booth, B.B.B., Dunstone, N.J., Halloran, P.R., Andrews, T., and N. Bellouin, 2012: Aerosols implicated as a
2 prime driver of twentieth-century North Atlantic climate variability, *Nature*, **484**, 228–232
3 doi:10.1038/nature10946

4 Cassou, C., L. Terray, J. W. Hurrell, and C. Deser: North Atlantic winter climate regimes: Spatial asymmetry,
5 stationarity with time, and oceanic forcing. *J. Climate*, **17**, 1055–1068, 2004
6

7 Cassou, C., L. Terray, and A. S. Phillips: Tropical Atlantic influence on European heat waves. *J. Climate*, **18**,
8 2805–2811, 2005
9

10 Cherchi, A., Annamalai, H., Masina, S., Navarra, A.: South Asian summer monsoon and eastern
11 Mediterranean climate: the monsoon- desert mechanism in CMIP5 simulations. *J Clim* **27**: 6877– 6903, 2014
12

13 Cherchi, A., Annamalai, H., Masina, S. et al. *Clim Dyn* (2016) **47**: 2361. <https://doi.org/10.1007/s00382-015-2968-4>
14

15 Cheruy, F., J. L. Dufresne, F. Hourdin, and A. Ducharne: Role of clouds and land -atmosphere coupling in
16 midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations,
17 *Geophys. Res. Lett.*, **41**, 6493–6500, doi:10.1002/2014GL061145, 2014.
18

19 Christensen, J. H., and F. Boberg: Temperature dependent climate projection deficiencies in CMIP5 models,
20 *Geophys. Res. Lett.*, **39**, L24705, doi:10.1029/2012GL053650, 2012.
21

22 Chronis, T., Raitsos, D.E., Kassis, D., Sarantopoulos, A.: The summer North Atlantic oscillation influence on
23 the Eastern Mediterranean. *J Clim* **24**:5584–5596, 2011
24

25

26 Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T.
27 Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013: Long-term Climate Change:
28 Projections, Commitments and Irreversibility. In: *Climate Change 2013: The Physical Science Basis.*
29 Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
30 Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex
31 and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY,
32 USA.
33

34 Compo, G.P., J.S. Whitaker, and P.D. Sardeshmukh, 2006: Feasibility of a 100 year reanalysis using only
35 surface pressure data. *Bull. Amer. Met. Soc.*, **87**, 175–190, <http://dx.doi.org/10.1175/BAMS-87-2-175>.
36

37 Compo, G.P., J. S. Whitaker, P. D. Sardeshmukh, N. Matsui, R. J. Allan, X. Yin, B. E. Gleason Jr., R. S. Vose,
38 G. Rutledge, P. Bessemoulin, S. Brönnimann, M. Brunet, R. I. Crouthamel, A. N. Grant, P. Y. Groisman, P. D.
39 Jones, M. C. Kruk, A. C. Kruger, G. J. Marshall, M. Maugeri, H. Y. Mok, Ø. Nordli, T. F. Ross, R. M. Trigo,
40 X. L. Wang, S. D. Woodruff, S. J. Worley, 2011: The twentieth century reanalysis project. *Q. J. R. Meteorol.
41 Soc.* **137**, 1–28.
42

43 Cornes, R., G. van der Schrier, E.J.M. van den Besselaar, and P.D. Jones. 2018: An Ensemble Version of the
44 E-OBS Temperature and Precipitation Datasets, *J. Geophys. Res. Atmos.*, **123**. doi:10.1029/2017JD028200
45

1 Delworth, T.L., A.J. Broccoli, A. Rosati, R.J. Stouffer, V. Balaji, J.A. Beesley, W.F. Cooke, K.W. Dixon, J.
2 Dunne, K.A. Dunne, J.W. Durachta, K.L. Findell, P. Ginoux, A. Gnanadesikan, C.T. Gordon, S.M. Griffies, R.
3 Gudgel, M.J. Harrison, I.M. Held, R.S. Hemler, L.W. Horowitz, S.A. Klein, T.R. Knutson, P.J. Kushner, A.R.
4 Langenhorst, H. Lee, S. Lin, J. Lu, S.L. Malyshev, P.C. Milly, V. Ramaswamy, J. Russell, M.D. Schwarzkopf,
5 E. Shevliakova, J.J. Sirutis, M.J. Spelman, W.F. Stern, M. Winton, A.T. Wittenberg, B. Wyman, F. Zeng, and
6 R. Zhang, [GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics.](#)
7 *J. Climate*, 19, 643–674, 2006
8

9 Delworth, T.L., A. Rosati, W. Anderson, A.J. Adcroft, V. Balaji, R. Benson, K. Dixon, S.M. Griffies, H. Lee,
10 R.C. Pacanowski, G.A. Vecchi, A.T. Wittenberg, F. Zeng, and R. Zhang, 2012: [Simulated Climate and](#)
11 [Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model](#). *J. Climate*, 25, 2755–2781,
12 2012
13

14 Delworth, T. and Mann, M.: Observed and simulated multidecadal variability in the Northern Hemisphere
15 Climate Dynamics, 16: 661, 2000
16

17 Diffenbaugh, N. S., J. S. Pal, F. Giorgi, and X. Gao: Heat stress intensification in the Mediterranean climate
18 change hotspot, *Geophys. Res. Lett.*, 34, L11706, doi:10.1029/2007GL030000, 2007
19

20 Enfield, D. B., Mestas - Nunez, A.M., Trimble, P.J.: The Atlantic multidecadal oscillation and its relation to
21 rainfall and river flows in the continental U.S., *Geophys. Res. Lett.*, 28, 2077–2080, 2001
22

23 [Fontaine, B. , Roucou, P. , Gaetani, M. and Marteau, R. \(2011\), Recent changes in precipitation, ITCZ](#)
24 [convection and northern tropical circulation over North Africa \(1979–2007\). Int. J. Climatol.](#), 31: 633-648.
25 [doi:10.1002/joc.2108](#)
26

27 Giorgi, F. ; 2006: Climate change hot - spots, *Geophys. Res. Lett.*, 33, L08707, doi:10.1029/2006GL025734.
28

29 Giorgi, F. and Lionello, P.: Climate change projections for the Mediterranean region. *Glob Planet Change*
30 63:90–104, 2008
31

32 Feng, S., Hu, Q., Huang, W., Ho, C.-H., Li, R. & Tang, Z. Projected climate regime shift under future global
33 warming from multi-model, multi-scenario CMIP5 simulations. *Global Planet. Change* 112, 41–52 (2014).
34 Füssel, H.M., André Jol, Andreas Marx, et al. edited by Hans-Martin Füssel, André Jol, Andreas Marx,
35 Mikael Hildén: Climate change, impacts and vulnerability in Europe 2016 - An indicator-based report Vol.
36 1/2017.
37

38 Folland, C.K., Knight, J., Linderholm, H.W., Fereday, D., Ineson, S., Hurrell, J.W.: The summer North
39 Atlantic Oscillation: past, present, and future. *J Climate* 22:1082–1103, 2009
40

41 Hanf, F., Körper, J., Spangehl, T. & Cubasch, U. Shifts of climate zones in multi-model climate change
42 experiments using the Köppen climate classification. *Meteorol. Z.* 21, 111–123 (2012).
43

44 Hoskins, B.J.,: On the existence and strength of the summer subtropical anticyclones —Bernhard Haurwitz
45 memorial. *Bull Am Meteorol Soc* 77:1287–1292, 1996
46

1 HMSO: Weather in the Mediterranean I: general meteorology, 2nd edn. Her Majesty Stationery Office,
2 London, p 362, 1962

3

4 Hurrell, J.W.: Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation.
5 Science 269:676–679, 1995

6

7 Hurrell, J.W., Deser, C.: North Atlantic climate variability: the role of the North Atlantic Oscillation. J Mar
8 Syst 78(1): 28–41, 2009

9

10 Hurrell, J.W., Folland, C.K.: A change in the summer circulation over the North Atlantic. CLIVAR
11 Exchanges, No. 25, International CLIVAR Project Office, Southampton, United Kingdom, pp 52–54, 2002

12

13 Hurrell, J.W., Kushnir, Y., Ottersen, G., Visbeck, M.: An overview of the North Atlantic Oscillation. The
14 North Atlantic Oscillation: climatic significance and environmental impact. Geophys Monogr. Am Geophys
15 Union 134:1–35, 2003

16

17 Hurrell, J. W., and H. van Loon: Decadal variations in climate associated with the North Atlantic Oscillation.
18 Climatic Change, 36, 301–326, 1997

19

20 Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué,
21 M., Georgievski, G., Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N.,
22 Jones, C., Keuler, K., Kovats, S. et al., 2014, 'EURO-CORDEX: New high-resolution climate change
23 projections for European impact research', Regional Environmental Change 14(2), 563–578 (doi:
24 10.1007/s10113-013-0499-2).

25

26 Kalnay et al., The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc., 77, 437-470, 1996.

27

28 Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. Yang, J.J. Hnilo, M. Fiorino, and G.L. Potter: [NCEP–DOE
29 AMIP-II Reanalysis \(R-2\)](#). Bull. Amer. Meteor. Soc., 83, 1631–1644, [2002](#)

30

31 Kelley, C., Ting, M., Seager, R., Kushnir, Y.: Mediterranean precipitation climatology, seasonal cycle, and
32 trend as simulated by CMIP5. Geophys Res Lett 39:L21703, 2012

33

34 Krichak, S.O., Kishcha, P., Alpert, P.: Decadal trends of main Eurasian oscillations and the Mediterranean
35 precipitation, Teor. Appl. Climatol., 72: 29-220, 2002

36

37 Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann: A signature of persistent natural
38 thermohaline circulation cycles in observed climate. Geophys. Res. Lett., 32, L20708, 2005

39

40 [Knight, J. R., R., C. K. Folland, and A. A. Scaife, 2006: Climatic impacts of the Atlantic multidecadal
41 oscillation. Geophys. Res. Lett., 33, L17706, doi:10.1029/2006GL026242](#)

42

43 Legates, D. R., and C. J. Willmott, 1990: Mean seasonal and spatial variability in gauge-corrected, global
44 precipitation. Int. J. Climatol., 10, 111–127.

45

1 Lelieveld, J., Berresheim, H., Borrmann, S., et al.: Global air pollution crossroads over the Mediterranean.
2 *Science* 298: 794–799, 2002

3

4 Lelieveld, J., Hadjinicolaou, P., Kostopoulou, E., Chenoweth, J., Giannakopoulos, C., Hannides, C., Lange,
5 M.A., El Maayar, M., Tararthe, M., Tyrlis, E., Xoplaki, E.: Climate change and impacts in the eastern
6 Mediterranean and the Middle East. *Clim Chang* 114:667–687, 2012

7

8 Lin, H.: Global extratropical response to diabatic heating variability of the Asian summer monsoon. *J Atmos*
9 *Sci* 66: 2697–2713, 2009

10

11 Lin, H., Derome, J., Brunet, G.: The nonlinear transient atmospheric response to tropical forcing. *J Clim*
12 20:5642–5665, 2007

13

14 Linderholm, H.W. and C K. Folland, 2017: Summer North Atlantic Oscillation (SNAO) variability on
15 interannual to palaeoclimate time scales. *CLIVAR Exchanges* 72, 57-60 and *Past Global Changes Magazine*,
16 25, No. 1. doi: 10.22498/pages.25.1.57

17

18 Linderholm, H.W., Folland, C.K. and A. Walther, 2009: A multicentury perspective on the summer North
19 Atlantic Oscillation (SNAO) and drought in the eastern Atlantic Region. *J. Quaternary Science*, 24, 415-425.
20 Doi:10.1002/jqs.1261

21

22 Maheras, P.: Le problem des Etesiens. *Mediterranee*, N40, 57-66, 1980.

23

24 Mann, M. E., and Emanuel, K.A.: Atlantic hurricane trends linked to climate change, *Eos Trans. AGU*, 87(24),
25 233–241, doi: 10.1029/2006EO240001, 2006

26

27 Mariotti, A., Dell'Aquila, A.: Decadal climate variability in the Mediterranean region: roles of large-scale
28 forcings and regional processes. *Clim Dyn* 38:1129–1145, 2012

29

30 Mariotti, A., Pan, Y., Zeng, N., Alessandri, A.: Long-term climate change in the Mediterranean region in the
31 midst of decadal variability. *Clim Dyn* 44:1437–1456, 2015

32

33 Mariotti, A., Struglia, M.V., Zeng, N., Lau, K.M.: The hydrological cycle in the Mediterranean region and
34 implications for the water budget of the Mediterranean Sea. *J Clim* 15:1674–1690, 2002

35

36 Meehl, G., A. et al. Global climate projections. In: Solomon S et al. (eds) *Climate change 2007: The Physical*
37 *Science Basis*. Cambridge University Press, Cambridge, pp 747–845, 2007.

38

39 Meinshausen, M. and Smith, J. S and Calvin, K.V. and Daniel, J., and Kainuma, M., and Lamarque, J.-F. and
40 Matsumoto, K., and A Montzka, S., C B Raper, S., and Riahi, K. and Thomson, A.M. and Velders, Guus J. M.,
41 and Vuuren, D: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. *Climatic*
42 *Change*, 2011

43

44 Metaxas D.A: The interannual variability of the Etesian frequency as a response of atmospheric circulation
45 anomalies. *Bulletin of the Hellenic Meteorological Society* 2(5): 30–40, 1977

46

1 Milly, P.C., S.L. Malyshev, E. Shevliakova, K.A. Dunne, K.L. Findell, T. Gleeson, Z. Liang, P. Phillipps, R.J.
2 Stouffer, and S. Swenson, 2014: An Enhanced Model of Land Water and Energy for Global Hydrologic and
3 Earth-System Studies. *J. Hydrometeor.*, 15, 1739–1761, <https://doi.org/10.1175/JHM-D-13-0162.1>

4

5 Mueller, B., and S. I. Seneviratne (2014), Systematic land climate and evapotranspiration biases in CMIP5
6 simulations, *Geophys. Res. Lett.*, 41, 128–134, doi:10.1002/2013GL058055, 2014.

7

8 Mueller, B., and S. I. Seneviratne (2012), Hot days induced by precipitation deficits at the global scale, *Proc.*
9 *Natl. Acad. Sci. U. S. A.*, 109, 12,398–12,403, doi:10.1073/pnas.1204330109, 2012.

10

11 Prezerakos, N.G.: Does the extension of the Azores anticyclone towards the Balkans really exist. *Archive fur*
12 *Meteorologie, Geophysile und Bioklimatologie, Serie A: Meteorologie und Geophysik* 33: 217–227, 1984

13

14 Poli, P., H. Hersbach, P. Berrisford, and coauthors: ERA-20C Deterministic. *ERA Report Series Number 20*,
15 2015

16

17 Riahi, K., Rao, S., Krey, V. et al. *Climatic Change*, 109: 33. 2011

18

19 Raicich, F., Pinardi, N., Navarra, A.: Teleconnections between Indian monsoon and Sahel rainfall and the
20 Mediterranean. *Int J Climatol* 23:173–186, 2003

21

22 Rizou, D., Flocas, H.A., Athanasiadis, P., Bartzokas, A.: Relationship between the Indian summer monsoon
23 and the large-scale circulation variability over the Mediterranean, *Atmospheric Research*, Volume 152, 159–
24 169, 2015.

25

26 Reddaway, J.M., Bigg, G.R.: Climatic change over the Mediterranean and links to the more general
27 atmospheric circulation. *Int J Climatol* 16:651–661, 1996

28

29 Rodwell, M.J., Hoskins, B.J.: Monsoons and the dynamics of deserts. *Q J R Meteorol Soc* 122:1385–1404,
30 1996

31

32 Rodwell, M.J., Hoskins, B.J.: Subtropical anticyclones and summer monsoons. *J Clim* 14:3192–3211, 2001

33

34 Rotstayn, L., and U. Lohman: Tropical rainfall trends and the indirect aerosol effect. *J. Climate*, 15, 2103–
35 2116, 2002

36

37 Rowell, D.P., 2003: The Impact of Mediterranean SSTs on the Sahelian Rainfall Season. *J. Climate*, 16, 849–
38 862, [https://doi.org/10.1175/1520-0442\(2003\)016<0849:TIOMSO>2.0.CO;2](https://doi.org/10.1175/1520-0442(2003)016<0849:TIOMSO>2.0.CO;2)

39

40 Rowell, D.P. and Jones, R.G., 2006: [Causes and uncertainty of future summer drying over Europe](#). *Climate*
41 *Dynamics*, 27: 281-299

42

43 Saaroni, H., Ziv, B.: Summer rain episodes in a Mediterranean climate, the case of Israel: climatological-
44 dynamical analysis. *Int J Climatol* 20:191–209, 2000

45

1 Saaroni, H., Ziv, B., Osetinsky, I., Alpert, P.: Factors governing the interannual variation and the long-term
2 trend of the 850 hPa temperature over Israel. *Q J R Meteorol Soc* 136:305–318, 2010

3

4 Scaife, A., Folland, C.K., Alexander, L.V. Moberg, A., Brown, S. and J.R. Knight, 2008: European climate
5 extremes and the North Atlantic Oscillation. *J. Climate*, **21**, 72-83.

6

7 Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär: Landatmosphere coupling and climate change in Europe,
8 *Nature*, 443(7108), 205–209, doi:10.1038/nature05095, 2006

9

10 Seneviratne, S. I., et al. : Changes in climate extremes and their impacts on the natural physical environment,
11 in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special
12 Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), edited by C. B.
13 Field et al., pp. 109–230, Cambridge Univ. Press, Cambridge, U. K, 2012

14

15 Sutton, R. T., and D. L. R. Hodson: Atlantic Ocean forcing of the North American and European summer
16 climate. *Science*, 309, 115–118, 2005

17

18 Trenberth K.E., Paolino D.A. Jr: The Northern Hemisphere sea level pressure data set: trends, errors and
19 discontinuities. *Mon Wea Rev*, 108:855–872, 1980

20

21 Tyrlis, E., Lelieveld, J., Steil, B.: The summer circulation over the Eastern Mediterranean and the Middle
22 East: influence of the South Asian monsoon. *Clim Dyn* 40:1103–1123, 2013

23

24 Willmott, C. J. and K. Matsuura: Terrestrial Air Temperature and Precipitation: Monthly and Annual Time
25 Series (1950 - 1999), 2001

26

27 Zecchetto, S., de Biasio, F.: Sea surface winds over the Mediterranean basin from satellite data (2000-04):
28 meso- and local-scale features on annual and seasonal time scales. *J Appl Meteorol Climatol* 46:814–827,
29 2007

30

31 Ziv, B., Saaroni, H., Alpert, P.: The factors governing the summer regime of the eastern Mediterranean. *Int J*
32 *Climatol* 24:1859–1871, 2004

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1 Table1 Abbreviation names for the CM2.5 experiments

2

NAME of the experiment	Ensemble size	Number of years total	Historical period [yrs]
CTRL	1	1000 yrs	-
HIST	5	145	1861-2005
PROJ	5	95	2006-2100

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

1

2

3 **FIGURES**4 **Figure 1. Seasonal (JJA) sea level pressure (hPa) and wind vector at 850hPa (m/s) in a) NCEP-DOE2, b) CM2.5.**
5 Time-mean of seasonal data from years 101–1000 of the control simulations are used, and years 1979–2017 of the
6 observed data.

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

1 Figure 2. Seasonal (July) time-mean vertical velocities at 500hPa (Pa/s) and wind vectors at 200hPa (Pa/s),
2 estimated for a) NCEP-DOE2 in the period 1979-2017, and b) CM2.5 CTRL run in years 101-1000. Both data
3 sets are interpolated to the 2.5° horizontal grid.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1 **Figure 3. Height (pressure)-longitude cross-section of vertical velocity (Pa/s, shaded contours, downward motion**
 2 **denoted with positive values) and vector of zonal wind (m/s) and vertical velocity (converted to m/s and scaled**
 3 **with a factor of 1000) in July. Figure shows time-mean values in July a) derived for the period 1979-2017 in**
 4 **NCEP-DOE2, b) derived from 101-1000 years of CNTL run in CM2.5; and c) projected future changes in the**
 5 **period 2061-2099 in PROJ ensemble mean, compared with the baseline period 1961-1999 in the HIST ensemble**
 6 **mean. All fields are shown on the $2.5^\circ \times 2.5^\circ$ horizontal grid and at the original vertical levels, common for CM2.5**
 7 **and NCEP-DOE2.**

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

1 Figure 4. Seasonal (JJA) mean precipitation (mm/day) for a) EOBS observations, b) University of Delaware
2 Climatology, b) CM2.1, c) CM2.5. The time-mean of seasonal data from years 101–1000 of the control
3 simulations are used, and years 1980–2015 of the observed data sets. Both observational data sets are shown at
4 0.5° lat x lon resolution. [Regions with missing data are left blank.](#)

5

6

1
2 **Figure 5. Correlation between principal component time series of the SNAO SLP in JA and a) sea level pressure**
3 **b) temperature at 2m (shaded) and geopotential height at 850hPa (contours), c) precipitation. All derived from**
4 **the CTRL run. Contours in a) and c) are shown for 0.25 and 0.5 correlations. Correlations are shown only when**
5 **significant at 1% level.**

1
2
3
4
5
6
7
8

Figure 6. Spatial pattern of the SNAO (EOF), derived from the 20CR reanalysis (left), and from the first CM2.5 HIST run (right), shown as correlations between the first principal component time series and SLP in July-August. The pattern is derived from periods a)-b) 1870-1920, c)-d) 1900-1950, e)-f) 1940-1990, g)-h) 1960-2010. Please note that the sign of each derived EOF is arbitrary. The analysis took into account that fact and unified the sign, showing the SNAO at its positive phase.

9
10
11
12

1
2
3

4 | **Figure 7. a)** First EOF of CM2.5 vertical velocities at 500 hPa (EOF1 omega, shaded) and 300hPa (contours),
5 | derived from the monthly mean of July in the CTRL run. The time series of EOF1 omega at 500 hpa are
6 | correlated with **b)** geopotential height (shaded), u, v components (shown as vector) at 850hPa and **c)** meridional
7 | wind at 850hPa. **d)** Correlations derived between the observed (NCEP) omega 500hPa over the eastern
8 | Mediterranean region (32° - 34° N, 25° - 30° E) and the meridional wind at 850hPa. Correlations shown are at **b)-c)**
9 | the 1%, and **d)** the 10% significance level.
10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

1
2
3
4
5
6
7

**Figure 8. Correlations between the time series of the EOF1 omega (derived for omega 500hPa, see Figure 7a) and
a) outgoing long wave radiation (shaded), omega at 500 hPa (contours: -0.2, 0.2, 0.4), b) precipitation; derived
from the monthly means of July in CTRL run. Correlations shown are at the 1% significance level.**

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

1
2 Figure 9. Projected future changes for the summer (JJA) a) sea level pressure (hPa, shaded) and u,v wind
3 components at 850hPa (m/s, vector), b) surface temperature (°C), c) total precipitation rate [mm/day], over the
4 period 2061-2099 compared with the baseline period 1961-1999. Changes are derived at the original horizontal
5 resolution.
6

1
2 **Figure 10. (a, b)** Correlations (shaded) between the SNAO time series and precipitation in 1900-1950 (a) HIST
3 runs, and 2050-2100 (b) PROJ runs). Contours denote 0.25 and 0.5. c) Evolution of SNAO SLP time series in
4 1850-2100 period for each run (blue) and the ensemble mean (red). The vertical line divides the HIST and PROJ
5 time series. (d, e) Projected future changes in the summer precipitation (mm/day) (as in Fig 8c, except that
6 estimated at 1° horizontal resolution), d) including SNAO impact and e) with the impact of the future SNAO
7 removed (shaded). The impact of SNAO is estimated based on the linear regression between the detrended time
8 series of SNAO and precipitation.

1 **Figure 11. Correlations between the PC1 time series of omega at 500hPa in July and surface atmospheric**
 2 **circulation in the periods (a,c,e) 1960-2010 and (b,d,f) 2050-2100. Correlation values are estimated for a)-b)**
 3 **SLP (shaded and contours), c)-d) meridional wind (shaded and contours), e)-f) precipitation (shaded and contours)**
 4 **and vertically integrated water vapor (contours for the values -0.5, 0.3, 0.5). For a)-d) contours are shown for**
 5 **0.25 and 0.5 correlation values.**

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

1
2 **Figure 12. a)** Composite differences between the sample with the 300 warmest and 300 coolest seasons over the
3 eastern Mediterranean (30° - 36° N, 36° - 42° E), for July in the CTRL run, derived from a) surface temperature
4 ($^{\circ}$ C), and associated differences in b) relative humidity, c) SLP (hPa) and vector wind at 850hpa (m/s), d) height
5 at 850hPa (shaded) and 500hPa (contours), e) omega at 500 hPa, f) precipitation (mm/day).
6

1
2
3 **Supplementary Material**
4

5 Fig SI1. Spatial pattern of SNAO, derived from the 20CR reanalysis, derived from periods: 1851-1890, 1891-
6 1930, 1931-1970, 1971-2010.
7

8 Fig SI2. Spatial patterns of the SNAO using SLP, derived from five HIST runs in 1870-1920 (left column),
9 and 1960-2010 (right column). The pattern is shown as correlations between time series of the first PC of SLP
10 and SLP fields in July-August. The sign of each derived EOF is arbitrary, but here the signs were converted to
11 match the SNAO at its negative phase.
12

13 Fig SI3. Spatial pattern of SNAO using SLP derived from the period 1970-2030 in the five HIST+PROJ runs.
14 The pattern is shown as correlations between the principal component time series of the first EOF of SLP and
15 SLP fields in July-August.
16

17 Figure SI4. (left) Mean storm track patterns for 1950–1990 (top) and 1970-2011 (bottom), represented by the
18 standard deviation of daily 300 hPa geopotential height (m) in July–August. The data was bandpass-filtered
19 on time scales of 2–8 days. (right) Correlations derived between the standard deviation of the filtered seasonal
20 (July-August) values of 300-hPa height (derived from NCEP/NCAR 1 data) and the SNAO index (derived
21 from 20CR data).
22

23 Fig SI5. Future changes projected for vertical velocities at a) 500 hPa, c) 600 hPa, e) 700 hPa in JJA and in
24 July in b), d), f) respectively. The changes are derived in the period 2061-2099 and compared with the
25 baseline period 1961-1999, derived at the original horizontal resolution ($\sim 0.25^\circ$). The vertical axis is oriented
26 downward, i.e. negative tendencies (in blue) indicate upward motion while positive tendencies (red, stronger
27 subsidence) indicate downward motion.
28

29 Figure SI6. Projected future changes for the summer (JJA) surface temperature (left, $^\circ\text{C}$), and precipitation
30 (right, mm/day) based on the 10-member ensemble simulations of the CSIRO-Mk3-6-0 model, for the forcing
31 scenario RCP8.5.
32

33 Fig SI7. As in Fig 11, except that correlations are derived, based on the sample with the 300 coldest (a,b) and
34 300 warmest (c,d) complete seasons over the eastern Mediterranean in the CTRL run. Correlations are shown
35 for a)-b) meridional wind, c)-d) precipitation.
36

37 Fig SI8. As in Figure 12c, except that for a) June, b) August, and for a larger domain.
38

39 Fig SI9. As in Figure 12c, except that the regions used for differentiation between warmest and coolest
40 seasons are larger: a) 0° - 40°E , 30° - 36°N , b) 20° - 40°E , 30° - 36°N , c) 30° - 50°E , 30° - 36°N , d) 30° - 50°E , 30° -
41 40°N , e) 30° - 50°E , 30° - 45°N .
42

43 Fig SI10. Correlations between the principal component time series of EOF1 omega over EMED and
44 precipitation in (a) June, (b) July (as in Figure 8c), (c) August. Solid lines denote positive correlations, and
45 stippled denote negative correlations, both for the absolute values larger, than 0.25.
46

1
2
3
4
5
6